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Genomic, Pathway Network, and Immunologic Features 
Distinguishing Squamous Carcinomas

A full list of authors and affiliations appears at the end of the article.

SUMMARY

This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing 

molecular features of squamous cell carcinomas (SCCs) from five sites associated with smoking 
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and/or human papillomavirus (HPV). SCCs harbor 3q, 5p, and other recurrent chromosomal copy-

number alterations (CNAs), DNA mutations, and/or aberrant methylation of genes and 

microRNAs, which are correlated with the expression of multi-gene programs linked to squamous 

cell stemness, epithelial-to-mesenchymal differentiation, growth, genomic integrity, oxidative 

damage, death, and inflammation. Low-CNA SCCs tended to be HPV(+) and display 

hypermethylation with repression of TET1 demethylase and FANCF, previously linked to 

predisposition to SCC, or harbor mutations affecting CASP8, RAS-MAPK pathways, chromatin 

modifiers, and immunoregulatory molecules. We uncovered hypomethylation of the alternative 

promoter that drives expression of the ΔNp63 oncogene and embedded miR944. Co-expression of 

immune checkpoint, T-regulatory, and Myeloid suppressor cells signatures may explain reduced 

efficacy of immune therapy. These findings support possibilities for molecular classification and 

therapeutic approaches.

Graphical abstract

In Brief Campbell et al. reveal that squamous cell cancers from different tissue sites may be 

distinguished from other cancers and subclassified molecularly by recurrent alterations in 

chromosomes, DNA methylation, messenger and microRNA expression, or by mutations. These 

affect squamous cell pathways and programs that provide candidates for therapy.

INTRODUCTION

Squamous cell carcinomas (SCCs) are common cancers that can arise from the epithelia of 

the aerodigestive and genitourinary tracts. They share histological characteristics, which are 

of limited value for predicting site of origin, cause, clinical behavior, prognosis, or optimal 

therapy. The Cancer Genome Atlas (TCGA) recently completed initial analyses of 

mutations, DNA copy-number alterations, DNA methylation, RNA/micro-RNA, and protein 

expression for SCCs from 5 individual sites, including lung (LUSC), head and neck 

(HNSC), esophageal (ESCA), cervical (CESC), and bladder cancers (BLCA) (Cancer 
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Genome Atlas Network, 2015; Cancer Genome Atlas Research Network, 2012, 2014; 

Cancer Genome Atlas Research Network et al., 2017a, 2017b). Those studies highlighted 

selected genomic alterations of potential biologic or therapeutic interest in tumors from 

these sites, and related to tobacco use and human papillomavirus (HPV) infection. Previous 

comparisons (PanCan-12; Dotto and Rustgi, 2016; Hoadley et al., 2014) suggested that 

tumors from these different sites share some common molecular signatures. Since then, 

TCGA datasets have been reanalyzed and nearly doubled with new data for ~1,400 

squamous cancers, and they have expanded to include ~10,000 tumors of 33 cancer types. 

These provide an opportunity to use newer tools to integrate omics data toward a better 

molecular taxonomy for SCCs and their subtypes and identify features and relationships of 

biologic and clinical relevance for future investigation.

This pursuit of a molecular taxonomy of SCCs and their subtypes has been aided by the 

availability of newer analytical tools and computational resources. We used TumorMap 

(TM) (Newton et al., 2017), an interactive visualization and analysis portal, coupled with 

integrated Cluster (iCluster [iC]) (Shen et al., 2009), and we found high overlap with 

original histopathologic classifications of SCC. Further, these tools uncovered broader and 

subtype-related genetic and epigenetic alterations that distinguish SCCs from other cancers 

and from one another. We examined the complex recurrent chromosomal alterations and 

methylation patterns underlying genome-wide mRNA expression observed in SCCs using 

MVisAGe (for Modeling, Visualizing and Analyzing the Cancer Genome) and MethylMix 

(Gevaert, 2015). These identified recurrent chromosomal alterations and CpG methylation 

strongly correlated with the expression of multiple genes that converge on pathways and 

functions relevant to SCC biology and therapeutics. mRNA clustering viewed using 

interactive Next-Generation Clustered Heat-maps (NG-CHMs) (Broom et al., 2017), and an 

updated Pathway Recognition Algorithm using Data Integration on Genomic Models 

(PARADIGM) tool (Vaske et al., 2010), helped to integrate omics data with pathways related 

to squamous cell stemness, differentiation, growth, immortalization, proliferation, survival, 

and inflammation. Clustered mRNA alterations for immune checkpoint PD-L1, cytokines, 

and cell determinants were deconvoluted using validated gene signatures for immune cell 

types and CIBERSORT, revealing overlap between effector T cell and immune checkpoint 

signatures with those of T-regulatory and Myeloid suppressor cells, which are linked to 

reduced efficacy of immune therapy (Charoentong et al., 2017; Gentles et al., 2015). These 

analyses and findings have the potential to influence how we classify SCCs into molecular 

subtypes, with possible implications for diagnosis, prognosis, and therapy. They also provide 

an atlas of organized datasets for further hypotheses generation and exploration by the large 

communities of biological and clinical researchers who are investigating squamous 

malignancies.

RESULTS

TM and iC Identify Significant Features Distinguishing SCCs and Subtypes among 
PanCancer-33 Tumors

To identify a molecular signature-based classification, we conducted an integrated TM and 

iC analysis of 9,759 tumor samples from PanCancer-33 cancers for which DNA copy-
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number alteration (CNA), methylation, mRNA, microRNA (miRNA), and a smaller set of 

protein expression profiles were available. SCC tumors from 5 sites of origin (LUSC, 

HNSC, CESC, ESCA, and BLCA) were found to overlap 5/28 islands closely co-localized 

by TM and 3 major iCs when compared to other cancers (Figures 1A–1I). Most HPV+ 

CESC and HNSC samples mapped closest to a distinct TM island and iC27 (p < 0.001) 

enriched for lifelong non-smoking individuals, while most HPV(−) cancers mapped to 

nearby islands and iC10 and iC25, associated with distinct molecular patterns, tissues of 

origin, and smoking history.

SCCs segregated into major subtypes by CNA, methylation, and RNA/miRNA expression 

patterns, underpinned by significant molecular features in SCC versus non-SCC, and 

between SCCs (Figures 1E–1I; Tables S1A–S1L). All three major SCC-related clusters 

included significant chromosome 3q and 5p copy gains (Figures 1E and 1F; Table S1A). 

iC10/25 displayed 9p losses, and iC25 harbored 11q gains. Many iC10/25 HPV(−) SCC 

tumors were associated with higher DNA CNA and broad hypomethylation, with 

corresponding patterns of increased mRNA and miRNA expression (Figures 1F–1I). The 

majority of iC27 HPV(+) CESCs, HNSCs, and some HPV(−) SCCs exhibited lower 

genomic DNA CNAs and wider hypermethylation, with a broader decrease in mRNAs and 

miRNAs. These observations suggest that most SCCs are driven by a combination of 

recurrent CN and other alterations, while HPV, epigenetic, or other alterations may have a 

greater role in subtypes with fewer CNAs. Overall, mRNA expression in SCC was enriched 

for 3q genes SOX2, TP63, and TP73, implicated in squamous stemness and differentiation, 

and immune chemokines, cytochrome, oxidative reduction, and cell adhesion pathway-

related genes (Tables S1C, S1F, and S1G).

Strikingly, this multiplatform molecular classification by TM/iC co-mapped together all 

1,341 (100%) of 1,409 tumors with squamous histopathologic diagnosis for which data for 

the 4 platforms were available, among 1,481 tumors from PanCan-33 (Figures 1A, 1B, and 

1E; Table S1M). Additional BLCA tumors clustered with BLCA with histopathologic 

squamous differentiation, suggesting more of these cancers share squamous molecular 

features than appreciated by pathologic criteria. A fraction of PanCan-33 breast, lung, and 

esophageal adenocarcinomas shared molecular features and co-clustered with SCC (Figures 

1E–1I), similar to the PanCan-12 study (Hoadley et al., 2014). We used 1,409 tumors 

confirmed to have squamous histology for further Pan-SCC analyses below, for which 

clinical, individual platform, and HPV classification are included in Tables S1M–S1P. DNA 

copy-number, mutations, methylation, mRNA, miRNA, and protein expression analyses are 

aggregated in Tables S2A–S2N, S3A, S3B, S4A–S4F, S5A, and S5B).

DNA CNAs Correlate with Expression of mRNAs in Key Growth, Mitotic DNA Integrity, 
Chromatin Modifier, and Death Pathways

To explore the relationship of recurrent chromosomal CNAs with mRNA expression 

genome-wide, Pan-SCC CNAs were correlated with expression for each coding region using 

MVisAGe. Smoothed Pearson correlation coefficients (ρ values) were plotted to identify 

chromosomal regions for which CNA was most highly correlated with gene expression, and 

selected individual genes with ρ ≥ 0.6 were highlighted (Figure 2A; Table S3). This revealed 
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broad and focal chromosomal regions for which CNAs were highly correlated with the 

expression of multiple genes, in addition to those within CNA peaks found by genomic 

identification of significant targets in cancer (GISTIC) analyses (Figures 2B–2G, S1A, and 

S1B; Table S3). Remarkably, many of these genes on the same or different chromosomes are 

implicated in related pathways and functions.

Chromosome 3q most significantly associated with SCC by iC (Table S1A) showed the 

highest correlation of CN gain with expression for multiple genes in a broad peak between 

3q24 and 3q29 (Figure 2B; ~160–190 Mb). Strikingly, ACTL6A at the top peak in 3q26 was 

recently associated with worse prognosis, and it was reported to form a novel complex with 

oncogenic N-terminal-truncated ΔNp63 isoforms of the nearby 3q28 squamous 

differentiation gene TP63 in HNSC (Saladi et al., 2017). Unexpectedly, the CN/expression 

correlation for TP63 was lower than for other nearby genes, and it was associated with 

predominant expression of the ΔNp63α isoform for all 5 sites (Figure 2H), consistent with 

epigenetic regulation of these alternatively transcribed isoforms discovered below. The 

ACTLA6/ΔNp63α complex can cooperatively drive a transcriptional program that 

suppresses differentiation and promotes activation of Hippo growth pathway transcriptional 

co-factor YAP1. Intriguingly, we found 11q22 amplification to be highly correlated with 

YAP1 expression, and enrichment for this amplicon in mostly HPV(+) SCCs displayed 

relative mutual exclusivity with higher 3q amplifications harboring ACTL6A and TP63 in 

the Pan-SCC dataset (Figures 2E and S1C; Fisher’s exact test, p = 0.007). These 

observations suggest that 3q26 or 11q22 CNAs could be alternative drivers orchestrating 

deregulation of ACTLA6/TP63 differentiation and Hippo growth pathway YAP1 gene 

expression in SCC subtypes. 3q26 and 11q22 gains also strongly correlated with the 

expression of additional genes implicated in cell stemness (SOX2 and PRKCI), 
immortalization (TERC and FXR1) WNT/β-catenin differentiation (DVL3), growth 

(PIK3CA and ZNF639), and survival (BIRC2).

Chromosome 5p gains that distinguished Pan-SCC tumors by iC correlated with the 

expression of genes linked to chromosomal instability and mitosis (Figure 2C). TRIP13 can 

promote error-prone non-homologous end joining, cell proliferation, survival, and cisplatin 

chemoresistance in HNSC (Banerjee et al., 2014), and it can cooperate with chaperonin CCT 
in regulating the mitotic assembly and checkpoint system (Kaisari et al., 2017). 5p gene 

TERT and 3q gene TERC form telomerase subunits important in stability of chromosomal 

tips, and they are associated with syndromes at increased risk of HNSC and genito-urinary 

(GU) tract SCC (Alter et al., 2013). Together, alteration of 5p genes with these functions is 

consistent with the generation of increased CNAs found in most SCCs.

Chr 8p11 CNAs correlate with the expression of chromosomal modifier WHSC1L1/NSD3 
in a subset enriched for HPV(−) SCC (Figure 2D). This encodes a novel methyltransferase 

recently found to promote monomethylation of histones and signal activation of membrane 

and nuclear epidermal growth factor receptor (EGFR) (Saloura et al., 2016, 2017). Chr 11q 

gene KDM2A is a histone demethylase implicated in the activation of genes involved in 

stemness, differentiation, and inflammation (Chen et al., 2017).
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Chromosome 11q13/22, 5p15, and 14q32 CNAs correlate with expression of multiple 

components of the nuclear factor κB (NF-κB)/REL- and ATM-signaling axes involved in 

cell survival or death (Derakhshan et al., 2017) (Figures 2C–2F). These include tumor 

necrosis factor receptor (TNFR)-associated Fas-associated death domain (FADD) and 

inhibitor of apoptosis proteins (IAPs) encoded by BIRC2/3, which can complex to promote 

NF-κB survival over cell death signaling. This complex can recruit IKKβ encoded by 

IKBKB to enhance the activation of NF-κB RELA, which is a transcriptional enhancer of 

cyclin CCND1 and prosurvival genes. These alterations in the extrinsic death pathway may 

be complemented by loss of ATM and gain of FASTKD3 expression, which are implicated 

in inhibiting the intrinsic mitochondrial cytochrome-mediated cell death pathway (Simarro 

et al., 2010). Copy loss of TNFR-associated factor TRAF3 has recently been implicated as a 

tumor suppressor of NF-κB gene expression and HPV infection, and it is a marker for 

HPV(+) HNSC tumors with better prognosis (Hajek et al., 2017).

This analysis also reveals CN-driven expression across several chromosomes of multiple 

components of the PI3K-AKT-mTOR-eIF pathway important in cell metabolism, protein 

expression, growth, and survival (Figures 2B–2D, 2F, and 2G). These include 3q amplicon 

genes PIK3CA and EIF2B2, 5p gene GOLPH3, 8p gene EIF4EBP1, and chromosome (chr) 

14 or 19 genes AKT1/2. PI3K-AKT signaling has been implicated in the activation of 3q 

transcription factor SOX2 and stemness, alternative transcription of ΔNp63, and 

phosphorylation and function of YAP1 in complex with ΔNp63 (Barbieri et al., 2003; 

Ehsanian et al., 2010). Together, the significance of these CN alterations, distinguishing 

major subsets of SCC by iC (Figure 1B; Table S1A), and strongly correlated expression by 

MVisAGe (Figure 2), support their roles as important drivers of SCC.

Relationships among DNA CNAs, HPV Status, and Mutations Affecting Genes Involved in 
Genomic Integrity, Mitogen and Death Pathways, and Chromatin Modification

Integration of unsupervised hierarchical clustering of significant CNAs, available for 1,386 

samples of squamous histology, HPV status, and significant mutations, helped resolve 

different candidate drivers of high- and low-copy-number variation (CNV) subtypes (Figures 

3A, 3B, and S2A–S2C). We resolved 5 major clusters, including higher to lower CNA C1–4, 

and a copy-quiet C5 with a sub-cluster C5A enriched for HPV(+) tumors (Figure 3A). C1–4 

with higher CNAs displayed 5p amplification and the highest frequency of deleterious 

mutations of TP53, consistent with their function in maintaining genomic integrity. 

Mutations in NFE2L2 and KEAP1, important in oxidative damage, were also enriched in 

C1–3. Low-CNA C5A and B tumors were enriched for mutations in (1) epigenetic modifiers 

EP300, MLL4, and CTCF; (2) mitogen pathway components EPHA2, HRAS, MAPK1, and 

RAC1; and (3) cell death mediator caspase CASP8 (Figures 1A, 1B, and S2B). Intriguingly, 

EP300 is a chromatin modifier recently linked to the enhancement of target gene activation 

by stemness transcription factor SOX2, which is amplified on 3q in higher CNA SCCs (Kim 

et al., 2017), and these alterations tended toward mutual exclusivity in CNA versus quiet 

subtypes (p = 0.004). Mutations in EPHA2, HRAS, MAPK1, and RAC1 cumulatively 

affected ~27% and 46% of C5 and C5A tumors, with EPHA2 and HRAS mutations tending 

toward mutual exclusivity across all C5 samples (Figure S2B; p = 0.037). EPHA2 mutations 

were enriched for truncating alterations, consistent with evidence that it serves as a negative 
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regulator of RAS pathway signaling (Macrae et al., 2005). Conversely, HRAS, MAPK1, and 

RAC1 showed missense hotspot mutations (Figure S2C), implicated in signal activation. 

HRAS and CASP8 significantly co-occured (Figure S2B; p = 0.001), suggesting CASP8 

inactivation may be linked to escape from HRAS-induced senescence. C5A SCC displayed 

mutations of HLA-A and -B and deletions of B2M, implicated in immune escape (Figure 

3B).

We examined if significant CNA or mutated genes are more significantly altered in SCCs, 

other cancers, or both (Figures 3C–3E, S1A, and S1B). SCC-related alterations underscore 

the importance of those implicated in stemness (SOX2), oxidative DNA damage response 

(NFE2L2), mitogenic growth and cell cycle (PDGFRA, IGF1R, CDK6, RAC1, MAPK1, 

EPHA2, and CREBBP), PI3K signaling (AKT1/3), NF-κB signaling (REL and TRAF3), 

squamous differentiation (FAT1/2, ROBO1, ZNF750, JUB, NOTCH1, and TP63), chromatin 

modifiers (KDM5A/6A, MLL3, and NSD1), and immune escape (PD-L1 and B2M). CN and 

mutations inactivating FAT1 trended toward mutual exclusivity with amplification of YAP1 
(p = 0.08), consistent with a role of FAT1 as a negative regulator of Hippo growth pathway 

(Gao et al., 2014). Interestingly, these were exclusive of amplifications of 3q gene PIK3CA 
(p = 0.005) or mutations of PTEN (p = 0.002), which could potentially enhance AKT 

signaling implicated in YAP1 inactivation via cytoplasmic sequestration (Ehsanian et al., 

2010). Inactivating deletions or mutations of TP63 and ZNF750 support possible alternative 

mechanisms for deregulation of the TP63-ZNF750 differentiation pathways (Figures 2D, 2E, 

S2D, and S2E) (Okuyama et al., 2007; Sen et al., 2012). JUB has been linked as a negative 

regulator of the WNT pathway (Haraguchi et al., 2008).

Integration of DNA Methylation, mRNA Expression, and Mutations Uncovers Chromatin 
Modifier, Fanconi DNA Repair, and SRC Kinase Family Signatures

To identify significant alterations in CpG island methylation between tumor and normal and 

inverse correlations with expression of their corresponding mRNAs, we used the recently 

developed MethylMix program (Gevaert, 2015). 905 differentially methylated and expressed 

genes were identified and assorted by consensus clustering into 5 groups (Figure 4A; Table 

S2K). Notably, hypermethylated C2 enriched for HPV(+) CESC and HNSC (p < 2.2E–16) 

predominantly overlapped the low-CNA cluster C5A (Figures 4A, 4B, and S3A; Fisher’s 

exact test for CNV-MethylMix Clusters, p = 1E–5). Hypermethylated C4 overlapped copy-

quiet CNA C5B and C3 and C4 with mostly HNSC. Hypomethylated C1, C3, and C5 

overlapped with higher CNA C1–3 enriched for HPV(−) LUSC, HNSC, ESCA, and BLCA. 

Among 28/51 genes significantly mutated and differentially distributed among the 

methylation clusters in SCC (Table S2L), hypermethylated HPV-enriched C2 also harbored 

fewer mutations in HRAS, CDKN2A(p16), CASP8, NFE2L2, NSD1, and TP53 than did 

clusters with predominantly HPV(−) SCC (Figures 4A and S3B). Strikingly, 

hypomethylation in C5 was linked to inactivating mutations in the H3K36 histone 

methyltransferase NSD1, defining a distinct subtype across SCC tissue sites previously 

observed in HNSC (Cancer Genome Atlas Network, 2015; Papillon-Cavanagh et al., 2017).

Several new differentially methylated and expressed genes in SCC clusters have been 

causally implicated in cancer development in Catalogue of Somatic Mutations in Cancer 
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(COSMIC) (Figures 4C and 4D; Table S2K). These include hypermethylated, repressed 

genes TET1, FANCF, and PPARG, enriched in C2 HPV(+) CESC and HNSC and C4 with 

HPV(−)HNSC (Figure 4C). TET1 is a demethylase whose inactivation is implicated in 

sustaining CpG hypermethylation in cancer (Li et al., 2016), consistent with 

hypermethylation found in C2 and C4. FANCF is a component of the Fanconi-BRCA 

pathway essential for DNA repair by non-homologous recombination (Ceccaldi et al., 2016). 

A broader analysis of FANC and DNA damage repair pathway genes revealed an 

unexpectedly high frequency (~12%) of somatic methylation, CNAs, and mutations 

affecting FANC-BRCA genes in SCC (Figure 4E), suggesting that acquired as well as 

germline alterations in this pathway may contribute to the development of a subset of SCC 

(Alter et al., 2013; Ceccaldi et al., 2016). Of these, FANCF methylation is more often 

observed in Pan-SCC than other PanCan-33 tumors (Figures 4F and S3C; chi-square, p < 

2.2E–16). PPARG encodes a nuclear receptor and transcriptional modulator of squamous 

differentiation of interest as a target for chemoprevention (McCormick et al., 2015). 

Hypomethylated, overexpressed genes included LCK in C5 and SYK (Figure 4D; Tables 

S2K and S2L). These are SRC family kinases implicated in signal activation of STAT 

transcription factors in SCC and in activated immune cells expressing immunoregulatory 

checkpoint molecules (Lund et al., 1999; Ma et al., 2015; Sen et al., 2015).

mRNA Analyses Identify SCC Subtypes Differentially Expressing 3q/11q, Oxidative DNA 
Damage, EMT, Transcription Factor, and Immune Signatures

To determine how genomic, epigenetic, and transcriptional alterations may relate to wider 

mRNA expression in SCC subtypes, we performed unsupervised consensus cluster analysis 

for 1,867 annotated cancer-related genes (Sadelain et al., 2011). K-means discriminated 6 

mRNA expression clusters that included mRNAs linked to significant CN, methylation, and 

miRNA-related alterations found via other platforms in this study (Figures 5A, 5B, and S4). 

Broadly, mRNA C1 with LUSC and other SCCs displayed higher expression of lymphocyte 

kinase (LCK), immune checkpoint PD-L1(CD274), T-regulatory (FOX3P), and Myeloid-

Derived Suppressor Cell (IDO1) immunoregulatory mRNA markers. Supporting the 

alternative CNAs in 3q or 11q22 observed above, C2 tumors displayed a significantly higher 

expression of 3q (SOX2 and PIK3CA) mRNAs and lower 11q22 (BIRC2/YAP1) mRNAs. 

Conversely, C3 and C6 showed lower expression of those, and they more highly expressed 

11q22-encoded YAP1/BIRC2 mRNAs. C5 enriched for HPV(+) CESC and HNSC showed a 

lower expression of mRNAs for 11q22 (YAP1 and BIRC2); 14q (TRAF3); and 

hypermethylated genes FANCF, TET1, and PPARG (Figures 5A, 5B, and S4). C6 and C1 

were enriched for HNSC and LUSC with mRNAs for ZEB2, IL-6, TWIST, SNAI1, CTGF, 

and CYR61 (Figures 5A, 5B, and S4), found below to be associated with miRNA clusters 

related to the epithelial-mesenchymal transition.

The increased expression of LCK overlapped those of immune checkpoint CD274/PDL1, 

Treg marker FOXP3, and myeloid derived suppressor cells (MDSCs) IDO1 mRNAs in C1, 

C5, and C6 subclusters (Figures 5A and S4), suggesting their expression could be linked to 

cellular immune responses. Another immune signature seen in C1, C3, C5, and C6 includes 

transcription factors NFKB1, STAT3, EGR1, and JUN/FOS, as well as TNF and chemokines 

CXCL1–3 mRNAs implicated in recruiting such cellular immune responses (Figures 4A and 
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S4) (Davis et al., 2016). We explored if expression of PD-L1 overlaps signatures that were 

recently developed and validated in other cancers for MDSCs, CD8+ CTL, Tregs, and other 

immune cells (Charoentong et al., 2017; Gentles et al., 2015). Consensus clustering using an 

MDSC-related signature sorted 4 clusters with very high to low expression of 49 MDSC-

related genes, including PD-L1 (Figure S5A). MDSC-inflamed C1 and C2 most 

significantly overlapped mRNA C1, 5, and 6 with increased immune checkpoint CD274/

PDL1, Treg marker FOXP3, and MDSC IDO1 mRNAs (Figures 5A, S4A, and S5A, mRNA 

cluster tracks; Table S4A; p = 1E–07). CIBERSORT profiling for other immune cell types 

(Figure S5B) revealed a parallel pattern of expression for CD8 CTL, natural killer, CD4+ 

(resting > activated) T helper (Th), and Treg signatures. Additionally, these tumors showed a 

higher ratio of M2 > M1 macrophage signatures, which are linked to the suppression of Th1 

and CTL tumor immunity. These observations indicate that SCC with increased CD8 CTL, 

natural killer (NK), and CD4 Th responses co-occur with opposing PD-L1, MDSC, and Treg 

signatures, providing a possible explanation and other targets for improving the limited 

efficacy of immune checkpoint therapy observed in SCC.

PARADIGM Pathway Analysis Distinguishes SCC Subtypes with Signaling, Transcription 
Factor, Immune, and Cell Cycle Signatures

To better understand the relationship between these complex patterns of mRNA expression 

to underlying alterations and pathways of biologic and clinical relevance, we used 

PARADIGM (Vaske et al., 2010). This analysis inferred the activities of ~19,000 pathway 

features based on expression, copy-number, and pathway interaction data for 9,829 tumor 

samples, including 1,373 SCCs. The analysis distinguished SCCs from other cancer types, 

and 6 SCC clusters were defined by hierarchical cluster analysis (Figure 6A). Several cluster 

pathways were significantly aligned with genomic and transcriptomic alterations defined 

above, when compared using Benjamini-Hochberg false discovery rate (FDR) corrections. 

C1, which includes predominantly LUSC and HNSC, supports relatively high inferred 

activation of MAPK-JUN/FOS, RELA/p50(NFKB1) complex, p53/63/73, and immune-

related/STAT pathways. C1 was enriched for amplification of MAPK1 (p = 0.001) and 

deletion of NF-κB negative regulator TRAF3 (p = 3E–05), relative to other clusters. In 

contrast, C2, with predominantly LUSC and ESCA, showed higher inferred activation of 

proliferation-related cell cycle components, with enrichment for CDK6 amplification (p = 

1.3E–08), CDKN2A deletion (3.6E–07), a decreased immune signature, and a lower 

proportion of cases with amplification of immune checkpoint PDL1 (p = 0.0003). C3 with 

HNSC showed MAPK-JUN-FOS, TP53/63/73, and proliferation signatures and lower 

immune signatures, associated with amplifications of EGFR, IGF1R, and PDGFA (p ≤ 

0.005). C4 and C5, with HPV+ CESC and some HPV(−) tumors, shared high proliferation-

related features, but they had a lower proportion of cases with amplifications of MAPK1 (p 

≤ 6.4E–0.05) and FGFR1 (p = 0.0006). C4, which contains higher MYB/MYC negative 

regulator FBXW7 mutations (p = 0.04), displayed low inferred activation of immune 

features, while C5 was enriched for PDL1 (CD274) amplification (p = 0.0009), 

differentiating these HPV(+) SCC subsets. LUSC enriched cluster C6, which contained a 

higher proportion of cases with CDK6 amplifications (p = 1.9E–05) and exhibited higher 

proliferation-related signature but lower JUN/FOS and TP53/63/73 pathway activation.
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Display of underlying components of MAPK-JUN-FOS, immune-related, TP53/63/73, and 

proliferation-related pathways highlight the activation of important regulatory nodes in SCC 

(Figures 6B–6E). Consistent with overlapping expression patterns for transcription factors 

observed with mRNA profiling above (Figures 5A and S4A) PARADIGM revealed that 

JUNFOS, RELA/p50, and STAT3 form a network of co-activated transcription factors that 

regulate diverse cancer and immune-related mRNAs, such as TNF, CXCL1, PTGS2, and 

LCK (Figures 6B and 6C). Strikingly, PARADIGM C1, C5, and C6 with increased immune 

signatures also appeared to closely overlap the increased MDSC C1, C2, C3, and related 

immune signatures (Figures S5A and S5B, PARADIGM track; Table S4B; Fisher’s exact 

test, p = 1E–5), suggesting these pathways are linked to the co-occurring effector and 

deleterious immune responses observed in SCC.

Pan-SCC Protein Expression

Reverse-phase protein array (RPPA) data were obtained for 748 SCCs using a set of 189 

antibodies to assess expression and phosphorylation of proteins in multiple cancer-related 

pathways. Unsupervised clustering as described in the STAR Methods identified 6 clusters 

that revealed distinguishing patterns of protein expression and pathway activity (Figure S6A; 

Table S2M). Notably, a C2 arm and C3 with mostly HPV(+) CESC and C4 and C5 with 

LUSC, ESCA, CESC, and BLCA were enriched for growth factor and rapamycin-sensitive 

mTORC1 target P70S6KpT389 and RAD51 DNA damage factor (Dibble et al., 2009). The 

HPV(+) CESC C2 arm and C5 were also enriched for the mTORC2 target RICTORpT1135. 

C1, a C2 HNSC-enriched branch, and C6 with mostly LUSC lacked this RICTOR signature. 

However, C1 was enriched for activated EGFRpY1068/1173 and HER2pY1248, as potential 

therapeutic targets for this subset. C2 and C6 showed increased MAPKpT202Y204. 

AKTp473/T308 and GSK3p21S9 were enriched in C4 arm 1 and C6.

We found positive Pearson’s correlations between upstream MAPKpT202Y204 and JUN 

phospho-proteins, between AKT and mTOR, and among GSK3αβ, GSK3p21S9, and NF-

κBpS536 (Figure 6B). These are consistent with the genomic, mRNA, and inferred pathway 

alterations found above and co-activation of these pathways observed in functional and 

preclinical studies from HNSC (Mohan et al., 2015). Subsets of C1, C2, C5, and C6 tumors 

with increased CAVEOLIN1, MYH11, and YAPpS127 and decreased βCATENIN 

correlated with higher EMT and reactive tissue scores (Figure 6A), reported in breast and 

other cancers characterized by profuse stromal invasion and tumor fibroblast signaling. As 

RPPA-robust antibodies for immune checkpoint determinants were not available at the time 

of these analyses, we integrated RPPA data with mRNA expression data to identify protein 

correlates of CTLA4 and PD-L1 mRNA expression. Increased LCK protein expression, 

which was found to co-cluster with PD-L1 in mRNA analyses above, was also found to 

correlate with CTLA4 mRNA expression across most tumor types, except ESCA (Figure 

6C). Taken together, our methylation, mRNA, and RPPA profiling data highlight LCK/

PDL1/CTLA expression signatures that could also be investigated as predictors of response 

to immune therapies.
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miRNAs Linked to Expression of EMT and Transcription FactorΔNp63 mRNAs and 
Hypomethylation in SCC

We performed unsupervised consensus clustering for 1,381 Pan-SCC samples using 270 

expressed miRNA mature strands (≥25 reads per million [RPM] in at least 10% of samples), 

and we selected a five-cluster solution, as described in the STAR Methods (Figure S7A). 

This segregated HPV(−) tumors into C1–4 and most HPV(+) CESC and HNSC in C5.

Additionally, we identified miRNAs that were differentially abundant in SCC (n = 1,381) 

versus non-SCC (n = 9,436) tumors (Figures S7A [bold] and S7B). Of these, we highlight 

the two with the largest positive fold changes in SCC, miR-205-5p and miR-944, and a set 

that included miRs-200a-c-5/3p, 141-5/3p, and 429, which we observed to exhibit decreased 

expression linked with an increased EMT score in miRNA C2 and C3 (Figures 7A and S7A, 

EMT score track). For these miRNAs, we identified significantly anti-correlated mRNAs 

(FDR < 0.05, Spearman rho < −0.2) for which there was also functional evidence annotated 

in miRTarBase version (v.)6.0 (Figures 7B and S7C). Notably, miR-205-5p as well as 

miR-200/141 and 429 were anti-correlated (rho ≤ −0.4) to the EMT-related transcription 

factors ZEB1 and ZEB2 (Figures 7C and S7C). Other anti-correlated miR-205-5p targets 

potentially related to EMT included connective tissue growth factor (CTGF), cysteine-rich 

protein 61 (CYR61) (Lau, 2016; Thakur and Mishra, 2016; Yeger and Perbal, 2016), and the 

inositol phosphatase INPPL1 (SHIP2), which is involved in extracellular matrix (ECM) 

degradation and carcinoma invasiveness (Rajadurai et al., 2016). The EMT-related mRNAs 

ZEB2, CTGF, and CYR61 were observed to cluster together above in a branch of mRNA C1 

with LUSC and C6 with HNSC that overlap miRNA C2 and C3 with decreased expression 

of these miRs (Figure S7A, mRNA track). These observations support a role for miR-205 

and miR-200 family members in regulating the expression of ZEB transcription factors and 

EMT differentiation gene signatures in these SCC subtypes. miR-944 targets include 

S100PBP, implicated in adhesion; SPRY1, a modulator of EGFR signaling; and NPR1, an 

Inhibitor-κB homolog that attenuates NF-κB signaling (Figure 7B) (He et al., 2016; 

Subramanian et al., 2016).

We examined the possibility that overexpression of miR-205 and miR-944 in SCC could be 

related to hypomethylation of CpG sites in the transcriptional start sites (TSSs) of these 

miRs and their host genes. Decreased methylation of the CpG TSSs predicted for MIR205 
and other CpGs in the region of host gene MIR205HG was strongly anti-correlated with 

miR205 expression (Spearman rho > 0.5), supporting a role for regional hypomethylation in 

the regulation of miR205 and its EMT target genes (Table S5A). Intriguingly, MIR944 
resides within the TP63 gene, within an intron beyond the alternative TSS for ΔNp63 

isoforms, which we found to be preferentially expressed in the Pan-SCC dataset (Figures 7D 

and 7E). Expression of miR-944 is most strongly and significantly correlated with 

expression of TP63 mRNAs among all miRs across the Pan-SCC dataset (Figure 7F; r = 

0.51, p < 5E–90). As the correlation of expression of TP63 with copy gain was lower than 

expected, we explored how both CN and methylation of TSSs and other CpG site probes for 

the TA and ΔNp63 isoforms affect the expression of TP63 (Figure 7D). We discovered that 

two CpG sites that were nearest the TSS for ΔNp63 and an experimentally determined TSS 

for MIR944 (Budach et al., 2016) were associated with lower CN coefficients and negative 
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methylation coefficients when compared to other TP63-associated sites, reflecting selective 

hypomethylation of these relative to other sites in the TP63 gene (Figures 7G and 7H). The 

cg06520450 site with lowest methylation was most significantly correlated with overall 

expression of TP63 and miR-944 (Tables S5A and S5B). These findings support a role for 

differential methylation as well as CN in the preferential expression of ΔNp63 and miR-944 

observed in SCC.

DISCUSSION

Here, integrated analyses of genetic, epigenetic, and expression alterations of the PanCan-33 

and the Pan-SCC datasets reveal that SCCs from 5 sites have overlapping and distinguishing 

molecular features that collectively set them apart from other cancers. Several SCC subtypes 

distinguished by genomic and epigenetic alterations were corroborated by independent 

analyses, demonstrating overlap with corresponding mRNA and miRNA expression and 

pathway activation inferred by PARADIGM and RPPA. Although some of these features 

may occur individually in other cancers, TM and iC multi-omic molecular classification 

closely overlapped classifications by histopathologic diagnosis, clinical site, and etiology, 

while identifying molecular alterations underlying these subtypes of biologic and clinical 

significance.

We uncovered a significant mutually exclusive relationship between gains in 3q or 11q22 

affecting the majority of SCCs (Figure S1C; Table S2A). This finding supports these as 

possible alternative drivers for a recently described mechanism by which 3q genes ACTLA6 
and ΔNp63 were found to repress squamous differentiation and promote activation of Hippo 

growth pathway transcriptional factor YAP1 (Saladi et al., 2017). This inverse relationship in 

11q22 and 3q CN gain is independently supported by a reciprocal pattern of YAP1 and p63 

protein immunostaining observed previously in HNSC tissue arrays (Ehsanian et al., 2010). 

In that study, ΔNp63 and AKT inhibition were shown to modulate YAP1. Recent studies 

indicate that the function or stability of ΔNp63 and YAP1 can be disrupted by natural 

isothiocynates such as sulforaphane, and by digitoxin, indicating potential as targets for 

chemoprevention or therapy (Fisher et al., 2017; Huang et al., 2017). We discovered that 

predominant expression of ΔNp63 isoforms and embedded miR-944 by SCC is correlated 

with decreased methylation of CpGs at the alternative TSS compared to those of the TSS for 

the TAp63 isoforms. A correlation between overall TP63 expression and miR-944 due to 

hypomethylation of the same TSS CpG island is supported by a recent genome-wide 

analysis (Doecke et al., 2016), but the link with the differential methylation of the alternative 

TSSs for TA/ΔN isoforms was unrecognized. Repression of TAp63 relative to ΔNp63 was 

reported to be reversed by 5-Aza-2′-deoxycytidine in BLCA lines (Park et al., 2000). The 

preferential transcription of ΔNp63 in SCC was also previously reported to be enhanced by 

PI3K signaling (Barbieri et al., 2003), consistent with the frequent alterations in PI3K-AKT 

found. These observations suggest that methylation and PI3K inhibitors could modulate TA/

ΔNp63 to inhibit SCC.

Indeed, PI3K-AKT-mTOR-eIF signaling appears to be a common pathway in which 

recurrent 3q26 CNAs (69%; Table S2) and PIK3CA mutations (11%–27%; Figure S2A) are 

observed. MVisAGe revealed a wider variety of CNAs strongly correlated with the 
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expression of multiple components downstream of PI3K than previously appreciated. 

Consistent with this, we observed increases in a variety of PI3K, AKT, mTOR, eIF 

components, and phospho-proteins and greater correlation scores for signaling downstream 

of mTOR than PI3K detected by RPPA. These observations may help explain the relatively 

lower sensitivity to PI3K inhibitors of tumors with 3q and other CNAs than those with 

hotspot mutations of PIK3CA (Mazumdar et al., 2014). SCCs are enriched for 

P70S6KpT389, RICTORpT1135, and RAD51 DNA damage proteins, which are associated 

with growth factor and rapamycin sensitivity (Dibble et al., 2009). Recent preclinical studies 

demonstrate that sensitivity of HNSC lines and xenografts with PIK3CA gains to dual PI3K-

mTOR inhibitors and irradiation is correlated with p-AKT and DNA damage responses, 

supporting investigation of agents targeting PI3K and mTOR in tumors in conjunction with 

irradiation and pharmacodynamic markers of functional activation (Leiker et al., 2015; 

Mohan et al., 2015). CNAs or mutations that enhance expression and activation of receptors 

and kinases activating PI3K-AKT and MAPK signal axes were observed and supported by 

RPPA. PI3K-mTOR and MEK inhibitors have demonstrated combinatorial inhibitory 

activity in preclinical studies and in subsets or selected patients in clinical studies (Grilley-

Olson et al., 2016; Herzog et al., 2013; Hou et al., 2014; Mohan et al., 2015). Co-activated 

MAPK-JUN-FOS, RELA/p50, and STAT3 inferred by PARADIGM in major SCC subsets 

(Figure 6), may be targeted simultaneously by HSP90 inhibitors (Friedman et al., 2013).

HPV(+) and (−) subsets harbored distinct alterations in cell death and survival pathways, 

which have potential biologic and therapeutic implications. Previously, rare germline 

genomic alterations in FANC-BRCA pathways have been shown to convey extreme risk for 

the development of HNSC and GU tract SCCs and susceptibility to HPV infection, but the 

association with HPV(+) SCC is controversial (Alter et al., 2013). FANC-BRCA defects are 

associated with increased sensitivity to standard DNA-damaging therapies, potentially 

helping explain the relative sensitivity of some HPV+ tumors to chemoradiotherapy and 

potential for their de-escalation. Targeted agents, such as WEE1 inhibitors that prevent G2 

checkpoint arrest and DNA repair, may warrant investigation in SCCs with these defects 

(Aarts et al., 2015) or those with TP53 mutations (Kao et al., 2017). PARADIGM supported 

increased inferred activity of a network including WEE1, PLK1, AURKA/B, and mTOR 

linked to SCC displaying the proliferation signature, and activity targeting WEE1 and others 

is supported by published genome-wide functional RNAi screens and preclinical studies 

targeting these kinases in HNSC (Hu et al., 2016; Kao et al., 2017). Lastly, the prevalence of 

11q13/22 with FADD/IAP alterations in >30% of HPV(−) HNSC, LUSC, and ESCA 

subtypes and their sensitivity to IAP inhibitors plus radiotherapy in recent preclinical studies 

support the investigation of IAP antagonists in those tumors (Eytan et al., 2016).

HPV(+) and (−) subtypes display signatures for LCK, checkpoint PD-L1, Tregs, and 

MDSCs that overlap protective immune CD4, CD8, and NK responses, possibly helping to 

explain immune escape of these tumors and limited response rates to immune checkpoint 

therapies. Small molecules, antibodies, or miRNA mimetics targeting these chemokines or 

their receptors could be of interest in targeting MDSCs and Tregs in conjunction with 

checkpoint inhibitors.
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STAR*METHODS

Detailed methods are provided in the online version of this paper and include the following:

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

RPPA antibodies RPPA Core Facility, MD 
Anderson Cancer Center

https://www.mdanderson.org/research/research-resources/core-facilities/functional-proteomics-rppa-core/antibody-information-and-protocols.html

Biological Samples

Raw, processed and clinical data TCGA Network https://portal.gdc.cancer.gov/legacy-archive/search/f

PancanAtlas publication page TCGA Network https://gdc.cancer.gov/about-data/publications/pancanatlas

Mutation data TCGA Network https://gdc.cancer.gov/about-data/publications/mc3-2017

FireBrowse portal Broad Institute http://gdac.broadinstitute.org

cBioPortal Memorial Sloan 
Kettering Cancer Center

http://www.cbioportal.org

Critical Commercial Assays

Genome-Wide Human SNP 
Array 6.0

Affymetrix/ThermoFisher 901182

HumanMethylation450 Platform Illumina WG-314-1003

HumanMethylation27 Platform Illumina WG-311-2201

Deposited Data

Raw genomic and clinical data NCI Genomic Data 
Commons

https://gdc.cancer.gov

COSMIC Census PMID: 14993899 http://cancer.sanger.ac.uk/census

Software and Algorithms

TumorMap PMID: 29092953 https://tumormap.ucsc.edu/

iCluster PMID: 19759197 https://bioconductor.org/packages/release/bioc/html/iClusterPlus.html

GISTIC2 PMID: 21527027 http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/GISTIC_2.0

MutSig2CV PMID: 24390350 N/A

DAVID Bioinformatics PMID: 19131956 https://david.ncifcrf.gov

MVisAGe software Comprehensive R 
Archive Network

https://cran.r-project.org/web/packages/MVisAGe/index.html

MethylMix R Package PMID: 25609794 https://www.bioconductor.org/packages/release/bioc/html/MethylMix.html

Next-Generation Clustered 
Heatmaps (NG-CHMs)

PMID:29092932 http://bioinformatics.mdanderson.org/TCGA/NGCHMPortal/

ConsensusClusterPlus R package PMID: 20427518 https://www.bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html

Next-Generation Clustered 
Heatmap (NG-CHM)

PMID: 29092932 http://bioinformatics.mdanderson.org/TCGA/NGCHMPortal/

PARADIGM PMID: 20529912 http://sbenz.github.io/Paradigm/

miRTarBase v6.0 PMID: 26590260 http://mirtarbase.mbc.nctu.edu.tw

SuperCurveGUI R package PMID: 17599930 http://bioinformatics.mdanderson.org/Software/supercurve/

NumPy Python library PMID: 27362647 http://www.numpy.org/

Survival R package N/A https://cran.r-project.org/package=survival
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

facilitated by the Lead Contact, Carter VanWaes (vanwaesc@nidcd.nih.gov)

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Human Subjects—Tumor tissue, adjacent normal tissue, and normal whole blood 

samples were obtained from patients at contributing centers with informed consent 

according to their local Institutional Review Boards (IRBs, see below). Biospecimens were 

centrally processed and DNA, RNA, and protein were distributed to TCGA analysis centers.

TCGA Project Management has collected necessary human subjects documentation to 

ensure the project complies with 45-CFR-46 (the “Common Rule”). The program has 

obtained documentation from every contributing clinical site to verify that IRB approval has 

been obtained to participate in TCGA. Such documented approval may include one or more 

of the following: 1) An IRB-approved protocol with Informed Consent specific to TCGA or 

a substantially similar program. In the latter case, if the protocol was not TCGA-specific, the 

clinical site PI provided a further finding from the IRB that the already-approved protocol is 

sufficient to participate in TCGA; 2) A TCGA-specific IRB waiver has been granted; 3) A 

TCGA-specific letter that the IRB considers one of the exemptions in 45-CFR-46 applicable. 

The two most common exemptions cited were that the research falls under 46.102(f)(2) or 

46.101(b)(4). Both exempt requirements for informed consent, because the received data and 

material do not contain directly identifiable private information; 4) A TCGA-specific letter 

that the IRB does not consider the use of these data and materials to be human subjects 

research. This was most common for collections in which the donors were deceased.

A total of 11,188 patients were analyzed in TCGA with at least on molecular-profiling 

platform. This study contained both males and females with inclusions of genders dependent 

on tumor types. There were 5,769 females, 5,282 males and 137 missing information about 

gender. TCGA’s goal was to characterize adult human tumors; therefore, the vast majority 

are over the age of 18. However, there are 20 samples that are under the age of 18 that had 

tissue submitted prior to clinical data. Age was missing for 188 patients. The range of ages 

was 10–90 (maxed 90 for protection of human subjects) with a median age of diagnosis of 

60 years of age.

Clinical Samples, Data Types, and Genomic Platforms—Details about sample 

collection, tissue-specific sample selection criteria, clinical annotations, and the genomic 

data pipelines the PanCan-33 atlas can be found via the TCGA publication page of the 

Genome Data Commons (https://gdc.cancer.gov/about-data/publications/pancanatlas) and 

the original TCGA marker paper for each tissue site (Cancer Genome Atlas Network, 2015; 

Cancer Genome Atlas Research Network, 2012, 2014; Cancer Genome Atlas Research 

Network et al., 2017a, 2017b). Appropriate consent was obtained for all subjects by the local 

committee as required by TCGA. Data for molecular features from iC analysis for PanCan 

33 tumors are found in Tables S1A–S1L. We conducted a comprehensive study of 1409 

mostly untreated primary TCGA tumors with clinical-pathologic diagnosis of SCC or 

squamous differentiation (Tables S1M and S1N). The tissues of origin included 522 HNSC, 
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489 LUSC, 95 ESCA, 256 CESC, and 47 BLCA cases with squamous differentiation (Table 

S1O). Histological diagnoses by pathologists of the originating institution were used and 

were independently verified with high concordance by specialty pathologists for a majority 

of samples from each site (Cancer Genome Atlas Network, 2015; Cancer Genome Atlas 

Research Network, 2012, 2014; Cancer Genome Atlas Research Network et al., 2017a, 

2017b). Human papilloma virus (HPV) status and viral subtypes were assessed 

independently at the Broad Institute by DNA sequencing and PathSeq algorithm (Kostic et 

al., 2011) and at BC Cancer Center by RNA-seq expression levels (a Cancer Genome Atlas 

Research Network et al., 2017a). The concordance between the two was >99% (Table S1P). 

Data on DNA copy number, mutations, methylation, mRNA and miRNA sequencing and 

expression, and protein expression by reverse-phase protein arrays (RPPA) are aggregated in 

Tables S2A–S2N. TCGA clinical and platform data are available on the GDC website 

(https://gdc.cancer.gov).

METHODS DETAILS

iC and TM analysis of PanCan 33—The iC clustering algorithm formulates the 

problem of subgroup discovery as a joint multivariate regression of multiple data types with 

reference to a set of common latent variables, which represent the underlying 28 tumor 

subtypes (Shen et al., 2009). The Bayesian information criteria was used to guide the choice 

of number of clusters. Four datatypes for 9759 samples were used in this analysis as input: 

mRNA expression, somatic CNA, DNA methylation, and miRNA expression. Data were 

pre-processed using the following procedures: For mRNA, and mature strand miRNA 

sequence data, poorly expressed genes were excluded based on median-normalized counts, 

and variance filtering led to a list of reduced features for clustering. mRNA and miRNA 

expression features were log2 transformed, normalized and scaled before using as an input 

to iC. Pre-processing led to 3217 mRNA and 382 miRNA features. Pre-processed 

methylation data was obtained from the methylation single platform analysis group and 

included 3139 methylation features. CBS-segmented SCNA data was further reduced to a set 

of 3105 non-redundant regions. iC was optimized using k-means for 28 major clusters, and 

visualized by TM. The latent variables were used to generate a TM layout of the samples 

(Newton et al., 2017). The TM layout was computed using the Euclidean similarity between 

each pair of samples in the iC latent space. From the sample similarity matrix, TM uses the 

DrL layout engine to position the samples in a 2-dimensional map. Samples that were 

similar in the high-dimensional latent space of the input data to iC are positioned in close 

proximity to each other in the 2-dimensional space of the map.

Copy number/mRNA expression correlations by MVisAGe: MVisAGe software (https://

cran.r-project.org/web/packages/MVisAGe/index.html) was used to compute and visualize 

gene-level Pearson correlation coefficients computed from quantitative measurements of 

DNA copy number and gene expression. Briefly, quantitative DNA copy number 

measurements for the five tumor types were obtained after downloading the GISTIC2 output 

from the Broad Institute’s Firehose GDAC (https://gdac.broadinstitute.org/). Gene 

expression was quantified using log2(RSEM + 1) values from the same cohort. A total of n = 

1370 samples had both DNA copy number and gene expression data, while a total of n = 

16,872 genes had measurements with non-zero variance in both datatypes. Gene-level 
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Pearson correlation coefficients were computed (i) across all 1370 subjects, (ii) separately 

within each tumor type (BLCA (n = 44), CESC (n = 242), ESCA (n = 93), HNSC (n = 508), 

and LUSC (n = (483)), and (iii) separately within each group defined by HPV status (HPV- 

(n = 1068) and HPV+ (n = 302)). The smoothing parameters used to create plots of 

smoothed Pearson correlation coefficients over larger genomic regions were chosen based on 

manual review.

CNV analysis and clustering—Regions of significant CNA were identified using 

GISTIC2 (Mermel et al., 2011) on PanCanAtlas SNP6 segmentation files for the entire 

PanSCC cohort or the non-SCC tumors from the same tissue sites. Copy number values or 

bins for individual genes and regions were output from the GISTIC2 analysis. It should be 

noted that the regions identified by the GISTIC2 analysis may be smaller than the region of 

copy number change in many samples. Therefore, all true driver genes may not always be 

included in the GISTIC-defined peak region. Similarly, annotation of candidate driver 

gene(s) in the figures and tables is an interpretation of the most likely candidates in or 

around that peak. We used hierarchical clustering for copy number (Euclidean distance, 

wardD2 on R), as hierarchical clustering is more stable for copy number segment data 

because there are fewer copy number data points to cluster.

Mutation—Mutations were obtained from the MC3 maf file (v0.2.8). Significantly mutated 

genes were identified for each tumor type and for the combined PanSCC cohort using 

MutSig2CV (Lawrence et al., 2014), which combines p values from tests for high mutational 

frequency relative to the background mutation rate (pCV), clustering of mutations within the 

gene (pCL), and enrichment of mutations within evolutionarily conserved sites (pFN). These 

p values are combined using the Fisher’s method. In order to reduce the number of 

hypotheses tested in the MutSig2CV analysis, we excluded genes that exhibited low 

expression across tumors (median < 5 FPKM) as previously described (Campbell et al., 

2016). Only the genes with higher expression were considered in the Benjamini-Hochberg 

correction for multiple hypothesis testing. A one-sided Fisher’s exact test was used to 

determine if the proportion of loss-of-function mutations (including nonsense, frameshift, 

and de novo start out-of-frame mutations) to other mutations for a given gene was 

significantly higher compared to the proportion of loss-of-function mutations to other 

mutations across all other genes. To determine if mutational frequency for each gene was 

associated with CNA cluster status, a Fisher’s exact test with 10,000 simulations was used 

followed by a Bonferroni adjustment for multiple hypothesis testing.

Global Methylation—Two generations of Illumina infinium DNA methylation beadarrays, 

including HumanMethylation27 (HM27) and HumanMethylation450 (HM450), were used 

to assay 1,406 pan-squamous tumor samples and 156 normal samples in total. Data from 

HM27 and HM450 were combined and further normalized by using a probe-by-probe 

proportional rescaling method to yield a common set of 22,601 probes with comparative 

methylation levels between two platforms, as described in detail in Syn7073804 on Synapse. 

Briefly, we rescaled the HM27 data based on between-platform difference measured by 

technical replicates.
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Epigenetic silencing genes: Epigenetic silencing calls at the gene level were processed on 

probes located within (−1500, +1500) bp of all TSS defined by UCSC database and 

unmethylated in the normal tissues as well as sorted blood cells, with a median beta value of 

less than 0.2 required for each normal cell type. In order to get rid of the impact of tissue 

specificity on gene expression, we z-score transformed gene expression data first into scaled 

data within each tumor type. The Z scores were derived using the mean and standard 

deviation calculated with the unmethylated tumors only, defined as those with a beta value 

of (0, 0.1). Samples across all the tumor types were then pooled together. For each probe/

gene pair, we chose the probes that exhibited epigenetic silencing with the following criteria: 

1) at least 5 samples were observed with a beta value of 0.3 or above (defined as the 

methylated group); 2) mean Z score of the methylated group was lower than −2; 3) FDR-

corrected p value according to one-side t test on Z scores was lower than 1e-5 between 

unmethylated and methylated group; 4) the maximum beta value of the methylated group 

was higher than 0.75. Probes survived this step were retained to call epigenetic silencing 

events based on DNA methylation profiles for each sample. For genes with only one probe 

retained, a beta value cutoff of 0.3 was applied to call silencing events, while genes with 

multiple probes that show evidence of silencing, the beta value cutoff was relaxed to 0.2 

with the requirement that greater than half of the probes consistently silenced for that gene.

Due to the presence of multiple transcripts in the CDKN2A region, HM27 did not have a 

correct probe for the p16 promoter. Therefore, the silencing status for p16 was called with 

probe cg13601799 on HM450 as previously described (Chen et al., 2016), with a beta value 

of 0.2 or above considered as epigenetic silencing.

Functional analysis of those epigenetic silencing genes was conducted using DAVID 

bioinformatics resources (Huang et al., 2009).

MethylMix

Clustering of DNA methylation data: Methylation of neighboring CpG sites tends to be 

highly correlated. To reduce multiple testing of highly correlated CpG probes, and to reduce 

the dimensionality of the methylation array data, probes for each gene were clustered using 

hierarchical clustering with complete linkage. Average methylation values of these CpG 

clusters, were used as input for MethylMix.

Classification of abnormally methylated genes: MethylMix was applied to CpG cluster 

data available for 1408 SCC tumors to identify CpG clusters (hereafter referred to as 

‘genes’) that are abnormally methylated in all or a subset of cancers compared with adjacent 

normal tissue, where this abnormal methylation state is associated with decreased RNA 

expression of the same gene, as previously described (Gevaert, 2015). To maximize the 

number of patients for which methylation data was available, both 27k and 450k methylation 

array data was used. Methylation analysis was therefore restricted to probes represented on 

both arrays.

We aimed to identify genes that were aberrantly methylated in cancer versus 125 normal 

adjacent tissue samples available across multiple SCC types, i.e., pan-cancer abnormally 

methylated genes.
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Methylation of many genes differs between tissues under normal (non-cancerous) 

conditions. It is difficult to distinguish between genes that display normal tissue-specific 

methylation differences, and those that are abnormally methylated in some cancers but not 

others. Therefore, we restricted our analysis to genes whose methylation state was consistent 

across normal adjacent tissues associated with each SCC cancer site, i.e., genes that are 

‘unimodal’ across normal tissues. We applied MethylMix separately to normal tissue data 

for all SCCs sites, and then to tumor and normal tissue data combined, to identify genes that 

were unimodal across normal tissues, but abnormally methylated in all or a subgroup of 

tumors versus normal tissue. MethylMix identifies CpG clusters that are inversely linearly 

associated with mRNA expression of the corresponding gene, using linear regression, with 

an r-squared value > 0.1, and a p value < 0.001. These CpG clusters are termed ‘functional 

genes’. Overall, MethylMix identified 905 genes that were unimodal in normal tissue but 

abnormally methylated in cancer, and where methylation was inversely associated with RNA 

expression in cancer (Table S2K).

Consensus clustering to identify SCC DNA methylation subgroups: Unsupervised 

Consensus clustering was applied to DM values data for these 905 genes in all SCC patients, 

to identify robust methylation clusters (Putative subtypes). Consensus clustering was 

performed using the ConsensusClusterPlus R package (Wilkerson and Hayes, 2010), using 

1000 rounds of k-means clustering, with a maximum of k = 10 clusters. We identified five 

methylation clusters, with selection of the optimal number of clusters based on inspection of 

plots, dendrograms and features provided by the ConsensusClusterPlus output (Figure 4A). 

All of the clusters included more than one cancer type that displayed similar methylation 

patterns (Figure 4A).

DNA methylation profiles of DNA methylation clusters: The SCC clusters differed 

greatly in their average numbers hypermethylated and hypomethylated genes. Clusters 2 and 

4 displayed the highest numbers of hypermethylated genes, while cluster 3 had relatively 

few hypermethylated genes. Clusters 3 and 5 had the highest number of hypomethylated 

genes.

Differential distribution of significantly mutated genes between DNA methylation 
clusters: Of 51 genes that are significantly mutated in SCC overall, 28 were significantly 

differentially distributed between clusters (Table S2L; Figures 4A and S3B). These 

abnormally methylated genes included genes that have been causally implicated in cancer 

development (listed in the COSMIC census http://cancer.sanger.ac.uk/census). Some of 

these genes were abnormally methylated across multiple SCC types, and therefore represent 

pan-cancer abnormally methylated genes, while other genes were abnormally methylated 

within specific subtypes. For example, TET1 and FANCF are specifically hypermethylated 

in HPV+ subtype 2, while SYK is hypomethylated in HNSC, LUSC, and CESC within all 

subtypes. For each of the 905 abnormally methylated genes in SCC, MethylMix ascribed 

differential methylation (DM) values, a categorical variable indicating the methylation state 

for that gene (normal, hypomethylated or hypermethylated, relative to normal tissue) in each 

cancer.
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mRNA—Consensus hierarchical clustering was performed in R on the PanSCC cohort 

using 1867 previously defined cancer-related genes, as described in the text. The 1,867 gene 

compilation we used is based on evidence based compilation of cancer related genes, from 

major data bases such as the Cancer Atlas (999), Sanger Cancer Gene Census (452), CAN 

genes (192) and Waldman gene locus (455). These data bases include genes curated from 

SCC and other sites. The list was compiled by generating a dereplicated gene list from 

“Table 1: Databases of genes implicated in cancer” in Sadelain et al. (2011). Review of this 

gene list confirms that it includes many of the most significant and novel cancer related 

genes and signatures associated with iC, CNAs, mutations, methylation, miRNAs, paradigm 

analysis, and RPPA analyses found in the present study. Data was visualized with the next-

generation clustered heatmap tool mRNA clustering viewed using interactive Next-

Generation Clustered Heatmaps (NG-CHMs)(Broom et al., 2017), (http://

bioinformatics.mdanderson.org/TCGA/NGCHMPortal/). A k-means solution was found that 

discriminated 6 mRNA expression clusters that included mRNAs linked to significant CN, 

methylation, and miRNA-related alterations found via other platforms (Figures 5A, 5B, and 

S4).

PARADIGM

The PARADIGM algorithm (Vaske et al., 2010) was used to infer the activities of ~19K 

pathway features based on expression, copy number and pathway interaction data for 9829 

tumor samples, including 1373 squamous cancers. When we compared the PARADIGM 

integrated pathway levels (IPLs) between squamous and other cancer types. Median-

centered IPLs were used to compute the squared Euclidean distance between samples; and 

this metric was used as the input to the ConsensusClusterPlus algorithm. Hierarchical 

clustering using the Ward’s minimum variance method (i.e., ward inner linkage option) with 

80% subsampling was performed over 1000 iterations; and the final consensus matrix was 

clustered using average linkage. The Ward’s minimum variance method is specifically 

chosen for the hierarchical clustering within each iteration because this method tends to 

form compact spherical clusters and is less prone to yielding clusters with very few 

members. The final clustering of the consensus matrix uses average linkage, which is the 

default option. Applying consensus clustering to subset the 1373 squamous cancers based on 

~4000 pathway features with the highest (25%) variance, we observed 6 sub-groups with 

characteristics patterns of PARADIGM inferred pathway activation pattern. These are shown 

in Figure 5A. With the exception of the predominantly HNSC cluster C3, and the 

predominantly LUSC cluster C6, the other clusters are mixed in their tumor type 

composition. Amplifications, deletions and mutation frequencies between clusters are 

compared in “one vs. all others” comparisons using the Fisher Exact test with Benjamin-

Hochberg False Discovery Rate correction.

miRNA—Unsupervised consensus clustering of miRNA abundance was performed using 

miRNAs with RPM > 25 in at least 10% of the samples, after assessing k-means clustering 

metrics, heatmaps and dendrograms, and covariate tracks for clustering results from other 

platforms. The heatmap displays row-scaled, log10 abundance. MiRNAs with differential 

expression between PanSCC and all other TCGA samples were identified. Gene-target 
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associations were identified in miRTarBase V6.0 (Chou et al., 2016) and anti-correlations 

were identified (Spearman < −0.2, FDR < 0.05).

DNA Repair—Fanconi anemia (FA) pathway analysis was performed by the TCGA 

PanCanAtlas DNA Damage Repair Pathway working group. The FA pathway genes were 

manually curated. Gene alterations were called based on mutation, methylation, and deep 

copy number deletions from PanCan 33 dataset for 1409 Pan-SCC, and the top 10 are 

presented as an oncoprint, and compared with 8350 other cancers. The significance of the 

difference in FANCF observed in PanSCC versus PanCan 33 data was determined by 2-

sample test of the equality of proportions, and two-sided chi-square test p < P < 2.2e-16.

RPPA

RPPA experiments and data processing: Protein was extracted using RPPA lysis buffer 

(1% Triton X-100, 50 mmol/L HEPES (pH 7.4), 150 mmol/L NaCl, 1.5 mmol/L MgCl2, 1 

mmol/L EGTA, 100 mmol/L NaF, 10 mmol/L NaPPi, 10% glycerol, 1 mmol/L 

phenylmethylsulfonyl fluoride, 1 mmol/L Na3VO4, and aprotinin 10 ug/mL) from human 

tumors and RPPA was performed as described previously (Hennessy et al., 2007; Hu et al., 

2007; Liang et al., 2007; Tibes et al., 2006). Lysis buffer was used to lyse frozen tumors by 

Precellys’ homogenization. Tumor lysates were adjusted to 1 μg/μL concentration as 

assessed by bicinchoninic acid assay (BCA) and boiled with 1% SDS, and manually serial 

diluted in two-fold of 5 dilutions with lysis buffer. An Aushon Biosystems 2470 arrayer 

(Burlington, MA) printed 1,056 samples on nitrocellulose-coated slides (Grace Bio-Labs). 

Slides were probed with 217 validated primary antibodies followed by corresponding 

secondary antibodies (Goat anti-Rabbit IgG, Goat anti-Mouse IgG or Rabbit anti-Goat IgG). 

Signal was captured using a DakoCytomation-catalyzed system and DAB colorimetric 

reaction. Slides were scanned in a CanoScan 9000F. Spot intensities were analyzed and 

quantified using Array-Pro Analyzer (Media Cybernetics Washington DC) to generate spot 

signal intensities (Level 1 data). The software SuperCurveGUI (Hu et al., 2007) available at 

http://bioinformatics.mdanderson.org/Software/supercurve/, was used to estimate the EC50 

values of the proteins in each dilution series (in log2 scale). Briefly, a fitted curve 

(“supercurve”) was plotted with the signal intensities on the y axis and the relative log2 

concentration of each protein on the x axis using the non-parametric, monotone increasing 

B-spline model (Tibes et al., 2006). During the process, the raw spot intensity data were 

adjusted to correct spatial bias before model fitting. A QC metric was returned for each slide 

to help determine the quality of the slide: if the score was less than 0.8 on a 0–1 scale, the 

slide was dropped. In most cases, the staining was repeated to obtain a high quality score. If 

more than one slide was stained for an antibody, the slide with the highest QC score was 

used for analysis (Level 2 data). Protein measurements were corrected for loading as 

described (Gonzalez-Angulo et al., 2011; Hu et al., 2007) using median centering across 

antibodies (level 3 data). Final selection of antibodies was also driven by the availability of 

high quality antibodies that consistently passed a strict validation process as previously 

described (Hennessy et al., 2010). These antibodies were assessed for specificity, 

quantification and sensitivity (dynamic range) in their application for protein extracts from 

cultured cells or tumor tissue. Antibodies were labeled as validated and use with caution 
based on degree of validation by criteria previously described (Hennessy et al., 2010).
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Data normalization: Median centering was performed across all the antibodies for each 

sample to correct for sample loading differences. These differences could arise because 

protein concentrations are not uniformly distributed per unit volume of lysate due to several 

factors such as differences in protein concentrations of large and small cells, differences in 

the amount of proteins per cell, or heterogeneity of the cells comprising the samples. The 

expression levels across many different proteins in a sample could be used to estimate 

differences in the total amount of protein in that sample versus other samples. Further, 

subtracting the median protein expression level forces the median value to become zero, 

allowing for a comparison of protein expressions across samples. These median-centered 

data were used for the analysis of all samples. Following this normalization, nine antibodies 

were removed from the dataset since they showed a large number of incomplete values (over 

20%), for a total of 189 antibodies.

Surprisingly, processing similar sets of samples on different slides of the same antibody may 

result in datasets that have very different means and variances. Neely et al. (Neeley et al., 

2009) processed clinically similar ALL samples in two batches and observed differences in 

their protein data distributions. There were additive and multiplicative effects in the data that 

could not be accounted by biological or sample loading differences. We observed similar 

effects in our batches of data as well. A new algorithm, replicates-based normalization 

(RBN), was therefore developed using replicate samples run across multiple batches to 

adjust the data for batch effects. The underlying hypothesis is that any observed variation 

between replicates in different batches is primarily due to linear batch effects plus a 

component due to random noise. Given a sufficiently large number of replicates, the random 

noise is expected to cancel out (mean = zero by definition). Remaining differences are 

treated as systematic batch effects. We can compute those effects for each antibody and 

subtract them out. Many samples were run in both batches. One batch was arbitrarily 

designated the “anchor” batch and was to remain unchanged. We then computed the means 

and standard deviations of the common samples in the anchor batch, as well as the other 

batch. The difference between the means of each antibody in the two batches and the ratio of 

the standard deviations provided an estimate of the systematic effects between the batches 

for that antibody (both location-wise and scale-wise). Each data point in the non-anchor 

batch was adjusted by subtracting the difference in means and multiplying by the inverse 

ratio of the standard deviations to cancel out those systematic differences. Our normalization 

procedure significantly reduced technical effects, thereby allowing us to merge the datasets 

from different batches.

Cluster Analysis: The proteins versus samples data matrix was bi-directionally median 

centered, then hierarchical clustering was performed with 1-Pearson’s correlation coefficient 

as the dissimilarity measure and Ward’s linkage. Selection of cluster number was made after 

considering k-means clustering metrics, including elbow, Silhouette width, and Gap statistic. 

Elbow and gap both gave monotonically increasing curves that were noninformative. 

Silhouette width provided two peaks, one at k = 2 which was too broad, and a smaller one at 

k = 7 that split the second cluster from the left into two. Based on the dendrograms of the 

heatmaps, the height of the tree for the second and fourth clusters from the left were almost 

the same, so there was a limited difference between splitting the dendrogram at k = 7 versus 
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k = 8. Therefore, we selected k = 6 because (i) it is close to the silhouette width result of k = 

7, (ii) it produces clusters that aren’t too small or too large, (iii) there was a noticeable 

difference in the dendrogram split point between k = 6 and k = 7, but negligible difference 

between k = 7 and k = 8. The 6 clusters obtained showed clusters enriched for distinct and 

shared molecular signatures highlighted in Figure S6A and the Results.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification methods and statistical analysis methods for each of the various data 

platforms and for integrated analyses are described and referenced in their respective STAR 

Methods subsections.

DATA AND SOFTWARE AVAILABILITY

The raw data for TCGA PanCanSCC samples, including clinical data, DNA exome 

sequence, RNA expression sequence, miRNA expression sequence, DNA methylation beta 

values, SNP Array (copy number data), and RPPA proteomics data are archived and publicly 

available in the Genomic Data Commons (https://gdc.cancer.gov). Analysis results from 

other data platforms are provided in the supplemental tables.

Software used for the analyses for each of the data platforms and integrated analyses are 

described and referenced in the individual Method Details subsections and listed in the Key 

Resources Table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• SCCs show chromosome or methylation alterations affecting multiple related 

genes

• These regulate squamous stemness, differentiation, growth, survival, and 

inflammation

• Copy-quiet SCCs have hypermethylated (FANCF, TET1) or mutated 

(CASP8, MAPK-RAS) genes

• Potential targets include ΔNp63, WEE1, IAPs, PI3K-mTOR/MAPK, and 

immune responses
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Figure 1. TumorMap and iCluster of Squamous Cancers from PanCancer-33 Analysis
(A) TumorMap analysis visualizing close mapping of LUSC, HNSC, ESCA, CESC, and 

BLCA among 28 PanCancer-33 islands.

(B) Higher resolution view of TM islands and distribution of SCC from 5 sites.

(C) HPV status showing the majority of HPV(+) CESC and HNSC map around a distinct 

island.

(D) Smoking history of SCC. Each spot in the map represents a sample. The colors of the 

sample spots represent attributes as described for each panel.

(E–I) Summary of iCluster analysis (E), DNA copy-number (F), methylation (G), mRNA 

(H), and miRNA (I) expression. PanCancer-33 SCC and other tumors and Pan-SCC from 5 

sites identified by histopathologic diagnosis cluster within iC10, iC25, and iC27. Annotation 

bars show cancer type and HPV status, and keys show an increase (red) or decrease (blue) in 
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features as indicated: DNA copy number, copy-number log ratio (tumor versus normal); 

DNA methylation, normalized beta values; miRNA expression, normalized log expression 

counts; miRNA expression, normalized log expression counts.
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Figure 2. Correlation between DNA Copy Number of Chromosomal Regions and Expression of 
Multiple Genes, and Predominant Expression of ΔNp63 Isoforms of TP63 Gene for 5 Pan-SCC 
Tumor Sites
The MVisAGe R-package was used to compute and plot gene-level Pearson correlation 

coefficients (ρ values) based on quantitative measurements of DNA copy number (CN) and 

log2(RSEM + 1) gene expression measurements for Pan-SCC data.

(A) Smoothed ρ values plotted for all chromosomes, with arrows highlighting regions of 

peak correlation between CN and expression for HPV(−) (black) and (+) (red) SCC.
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(B–G) Smoothed ρ values and selected genes with individual unsmoothed ρ > 0.6 plotted 

based on genomic positions in selected regions of chr3q (B), 5p (C), 8p (D), 11q13/q22 (E), 

14q (F), and 19 (G).

(H) TP63 isoform mRNA abundance (RSEM) for full transactivating (TA) domain or 

alternatively transcribed N-terminally truncated (ΔN) isoforms in Pan-SCC tumors. ΔNp63α 
(uc003fsc.2) and other ΔN isoforms are preferentially expressed compared to TA isoforms. 

Boxplots show median values and the 25th to 75th percentile range in the data, i.e. the 

interquartile range (IQR). Whisker bars extend 1.5 times the IQR.
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Figure 3. Common, Unique, and Heterogeneous Genomic Alterations in Squamous Cell 
Carcinomas
(A) Unsupervised clustering of CNAs in 1,386 squamous cell carcinomas revealed five 

distinct clusters, with higher recurrent amplifications or deletions or with few focal 

alterations. Color bars at the left indicate the 5 tumor types (HNSCs, LUSCs, ESCAs, 

CESCs, and BLCAs), HPV status, and CNA cluster. Red indicates copy gain, blue indicates 

copy loss, and white indicates copy-number neutrality.
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(B) 63 genes were significantly mutated in one or more of 5 tumors in the Pan-SCC cohort 

(MutSig2CV analysis; FDR q-value < 0.1), and the mutation frequencies of 17 of the genes 

that were correlated with CNA cluster are indicated.

(C and D) The q-values for (C) recurrent amplifications and (D) deletions in the Pan-SCC 

cohort (y axis) are plotted against q-values for the same gene in the cohort of 27 non-SCC 

tumor types (x axis). Genes in the top left and bottom right quadrants are significantly 

altered exclusively in the Pan-SCC and non-SCC cohorts, respectively; genes in the top right 

are significantly altered in both.

(E) The best q-value for each significantly mutated gene across all SCC types (x axis) is 

plotted against the best q-value for the same gene in the 27 other tumor types (y axis). Point 

size is proportional to the frequency of mutations in the gene in the Pan-SCC cohort. Point 

color indicates enrichment for mutation clustering defined by MutSig2CV (–log10 pCL) 

and/or enrichment for gain- or loss-of-function mutations (–log10 p value; Fisher’s exact 

test) in the Pan-SCC cohort. Black circles in the lower quadrant indicate genes more 

significant in another cancer type, compared to SCC tumor types.
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Figure 4. DNA Methylation Consensus Clusters with Distinct Mutation and HPV Profiles, and 
Unique DNA Damage and Repair Genes in Squamous Cell Carcinomas
(A) MethylMix identified 905 abnormally methylated genes inversely associated mRNA 

expression, and that formed five DNA methylation consensus clusters presented in the 

heatmap. Top bars indicate DNA methylation clusters, cancer types, HPV status, mutations 

in genes, and other platform clusters that are significantly differentially distributed between 

DNA methylation clusters. Brown, hypermethylation; blue, hypomethylation.
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(B) Variability in the percentage of patients within each DNA methylation cluster that are 

HPV positive. Bar colors indicate the portion of different cancer types among HPV-positive 

patients within each methylation cluster.

(C and D) Genes that are hypermethylated (C) or hypomethylated (D) and anti-correlated 

with mRNA expression in SCC, and annotated in COSMIC. The number and portion of 

tumors from 5 SCC sites displaying abnormal methylation and expression within each DNA 

methylation cluster are shown on the Y axes.

(E) Dysregulations of Fanconi Anemia (FA) and DNA repair pathways across squamous cell 

carcinomas. Oncoprint representation of frequency of mutation, deep deletion, and 

methylation for FA and DNA damage response pathway genes.

(F) The percentage of cancer samples with altered FA and DNA damage response genes in 

the Pan-SCC cohort (x axis) are plotted against for the same genes in the PanCan-33 tumor 

cohort (y axis). FANCF in the right lower region is significantly altered more frequently in 

the Pan-SCC cohort (2-sample test for equality of proportions, chi-square = 84.5, p < 2.2E–

16).
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Figure 5. mRNA Expression Subtypes in Squamous Cell Carcinomas
(A) Consensus unsupervised clustering analysis of 1,867 functionally defined cancer genes 

resulted in the identification of six gene expression-based clusters/subtypes from the five 

types of squamous cell carcinomas, visualized via clustered heatmap. The cancer types, 

HPV status, and clusters are indicated by the annotation bars on the top. Differentially 

clustered oncogenes, tumor suppressor, and immune gene signatures are highlighted on the 

right side.
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(B) The relative mRNA expression levels of genes significantly differentially expressed 

across Pan-SCC mRNA subtypes. Mean mRNA expression with bars representing 95% 

confidence intervals are shown.
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Figure 6. PARADIGM Analysis Revealed Specific Signatures Enriched in Squamous Cell 
Carcinomas
(A) Consensus clustering of SCC based on top varying PARADIGM inferred pathway levels 

(IPLs). The heatmap shows scaled PARADIGM IPLs of key regulatory nodes with >15 

downstream targets also showing differential inferred activation. Column color annotation 

shows consensus cluster membership, tumor type, PanCancer-33 cluster membership, and 

HPV status. Row color annotation on the right side highlights groups of regulatory nodes 

potentially implicating the same pathway categories or biological processes.
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(B–E) Cytoscape plot of pathway features with differential PARADIGM IPLs connected by 

regulatory interactions through nodes with >15 differential downstream targets. Subnetwork 

neighborhoods centered around (B) ERK/MAPK1/JUN/FOS, (C) RELA/p50 and STAT 

Immune related, (D) p63/DNA damage, and (E) proliferation/mitosis. IPL level (red, higher 

in SCC; blue, lower in SCC) and node shape reflect feature type (circle, genes; diamond, 

complexes; V, abstract processes; square, protein family or miRNA). Edge color and type 

represent interaction type (activating, purple arrow; green T, inhibitory). Proteins and 

selected complexes are labeled, and regulatory nodes with >15 downstream targets are 

highlighted in bold.
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Figure 7. miRNAs Associated with EMT and Hypomethylation and Expression of ΔNp63 
Isoforms of TP63 in SCC
(A) Abundance of the most differentially expressed miRNAs miR-205-5p and miR-944 with 

the highest median expression across the TCGA cancer types (Figure S7). Dots represent 

Pan-SCC tumors (red), non-squamous TCGA tumors (gray), and normal tissues (blue). 

Boxplots show median values and the 25th to 75th percentile range in the data, i.e. the 

interquartile range (IQR). Whisker bars extend 1.5 times the IQR.

(B) Potential gene targets that are significantly anti-correlated to miR-205-5p and miR-944 

(Spearman < −0.2, FDR < 0.05) and that have functional validation evidence for direct 
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targeting in miRTarBase v.6.0. Solid versus dotted lines indicate strong versus weaker 

functional evidence. Numbers on network edges show Spearman correlations between a 

miRNA and gene.

(C) Heatmap of log10 abundance of miRNAs associated with EMT mRNAs across 

squamous tumors (n = 1,381). Samples are ordered by the sum of the Z scores across the 

EMT-associated miRNAs.

(D) Top, Genome view of TAp63, ΔNp63 isoforms, and MIR-944, with PROmiRNA 

experimentally supported transcriptional start sites (TSSs) for MIR944 (Marsico et al., 2013) 

that overlap the TSS of alternatively transcribed ΔNp63 isoforms. Bottom, Illumina 450k 

probes for CpG sites in region of TP63 corresponding to TSSs and coding portion of TAp63, 

ΔNp63, and MIR944 (blue box).

(E) TP63 isoform mRNA abundance (RSEM) for full transactivating (TA) domain or 

alternatively transcribed N-terminally truncated (ΔN) isoforms in Pan-SCC tumors (n = 

1,403). The ΔN/TAp63 median ratio difference is 212.8-fold. Boxplots show median values 

and the 25th to 75th percentile range in the data, i.e. the interquartile range (IQR). Whisker 

bars extend 1.5 times the IQR.

(F) Across Pan-SCC data, miR-944 has largest positive Spearman correlation coefficient for 

expressed TP63 isoforms.

(G and H) Comparison of coefficients of correlation for copy number (CN), methylation 

(Meth), and rho-squared (R2) for Illumina 450k probes for CpG sites from (D), with 

expression of TP63 (G), and MIR944 (H). The blue box corresponds to probes at TSS for 

ΔNp63 and the TSS for MIR944, which show relatively lower CN and negative Meth 

coefficients, that most highly correlate with expression of TP63 (for cg06520450 R2 = 0.36, 

p = 7.4E–106) and MIR944 (cg06520450 R2 = 0.39, p = 1.2E–112).
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