
UC Irvine
ICS Technical Reports

Title
Parallelizing programs with recursive data structures

Permalink
https://escholarship.org/uc/item/2x55d5kb

Authors
Hendren, Laurie J.
Nicolau, Alexandru

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2x55d5kb
https://escholarship.org
http://www.cdlib.org/

JPARALLELIZING PROGRAMS WITH RECURSIVE
DATA STRUCTURES

Laurie J. Hendren

Alexandru Nicolau

Department of Information and Computer Science

University of California, Irvine

Irvine, California 92717

Technical Report No.89-33

Notice; This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

^•/^cfZ-fves
z

.

no. ^f'33

Parallelizing Programs with Recursive Data Structures

Laurie J. Hendren

Dept. of Computer Science

Upson Hall

Cornell University

Ithaca, NY

14853

(607) 255-5033

hendren@cornell.edu

Alexandra Nicolau

Dept. of Information and

Computer Science

University of California - Irvine

Irvine, CA

92717

(714) 856-4079

nicolau@uci.edu

Abstract

In this paper, we present a novel method for parallelizing imperative programs in the

presence of dynamic recursive data-structures. At the heart of parallelizing compilers are

the dependence-analysis and disambiguation mechanisms. We present a three-pronged

approach: (1) we augment an imperative language with easily parallelizable recursive

data-structures, (2) we develop tools for disambugation and interference analysis for

such structures, and (3) we present three methods for using information from the anal

ysis to parallelize programs. We illustrate these techniques with a concrete example

that has been processed by our system.

KEYWORDS: parallelizing, interference analysis, recursive data-structures

'This work was supported in part by NSF grant CCR 87-04367 and ONR grant N00014-86-K-0215

1 Introduction

Parallelizing and vectorizing compilers have made significant progress in the extraction
of parallelism from: ordinary sequential programs. The primary tool at the core of such

parallelizing compilers is the dependence-analysis and disambiguation (interference analysis)
mechanism. The ability to accurately disambiguate indirect memory references is critical in

determining precise data-dependencies between operations, and thus to the correctness and

applicability of any parallelizing transformations. While this sort of analysis is absolutely
essential for imperative languages, it is also necessary for the efficient implementation of
functional languages onexisting .machines, where the avoidance ofexcessive copying oflarge
data-structures is crucial.

In the context of relatively simple languages with scalar and array data-structures,
compile-time disambiguation techniques [Ban79a,Wol82,Nic84] have proved to be very suc
cessful in eliminating spurious aliases, thereby increasing the potential parallelism exposed
by the compiler. Disambiguation techniques are currently used by all parallelizing and
vectorizing compilers. However, current disambiguation techniques cannot, by themselves,
deal well with complex dereferencing patterns. Such patterns are not only encountered
in situations where complex data-structures and pointers are used, but also in many nu
merical applications involving recursive (and possibly overlapping) partitioning ofmatrices.
Furthermore, many of these programs modify the data-structures in non-trivial ways, re-
suiting in wide variations in the potential for parallelism at different points in the program
execution. In such situations, the information derivable automatically by the techniques
now in use is too weak to allow satisfactory parallelization of the code, particularly when

attempting to exploit the full potential of large scale parallel machines.

The above situation is only partially due to weaknesses of the disambiguation mech
anisms of parallelizing compilers. In restructuring programs for parallel execution, or in

designing new parallel algorithms from scratch, the programmer has at her disposal large
amounts of information about the original algorithm and the problem it attempts to solve,
as weU as knowledge about the structure of the data. Even when the user is coding in a
parallel programming language, much of the meta-information that could facilitate paral

lelization of the program is lost in the coding process. Once lost, this information is often

irretrievablefrom the actual code, so that a compiler, no matter howsophisticated, can not

recover it.

We propose an approach designed to facilitate the expression and detection of parallelism

in programs with complex data-structures. At the language level, we have developed new

data types which allow the natural expression of parallelism explicit in recursive data-

structures. For example, we provide a natural, recursive deliiution of trees, as well as

various recursive partitionings of matrices and arrays. The key advantage of providing such

data types is that they communicate to the compiler important properties of the structures

that are relevant in detecting parallelism. For example, the knowledge that a structure is a

tree implies that the children of a node are the roots of distinct subtrees.^

While a necessary starting point for effective and efficient disambiguation, providing

such recursive data types is not sufficient. The program may modify a data-structure quite

extensively; either explicitly in imperative languages, or as a desirable compiler optimization

in functional languages—to avoid copying. For example, a tree may be changed temporarily

into a DAG, as an intermediate step in swapping some nodes. Thus, to detect potential

parallelism, an analysis tool should also be capable of checking the preservation (or violation)

of critical properties of the data-structure across various parts of the program.

Another way the analysis tools presented in this paper may be used is in debugging

parallel programs. By checking explicit parallel and synchronization constructs against

data-structure specifications and manipulation, the system could detect inconsistencies and

non-deterministic behavior that may be otherwise very hard to detect for a human user.

We have designed and implemented both recursive data types and associated analysis

tools within the framework of a small imperative language, SIL. We have also developed

a parallelization tool that uses the information derived by the analysis to determine (at

compile-time) what parts of the code could be safely executed in parallel.

In this paper we describe the three components of our prototype system: (1) the defi

nition of recursive data types, (2) tools for interference and structural verification analysis,

and (3) methods for using the results of the analysis to parallelize programs. In the sec

tion on parallelization, we present concrete examples illustrating the effectiveness of our

approach. While this paper examines only the case of trees and DAGs, similar techniques

apply to recursively partitioned matrices and arrays.

^Note that this information would be irretrievably lost in a program written in languages such as C,
Pascal, Lisp, where no means exist for differentiating a tree from a linked-list, DAG, or cyclic graph.

2 Related Work

Various approaches have been suggested for interference analysis in the presence of dynamic

data structures and pointers.

Lucassen and Giiford have proposed an approach whereby a programming language is
defined that encorporates an effect system as well as a typesystem [Luc87,LG88]. The effect
of a computation is a summary of the observable side-effects of the computation. Although
the effect system effectively differentiates between totally disjoint Linked structures, their
method does not provide a way of distinguishing between different parts of a large data
structure. For example, even though the left and right sub-trees of a binary tree do not

share any storage, the effect system forces both sub-trees to be associated with the same

region. This lack of fine-grain information based on the recursive structure of the object
results in an overly conservative interference analysis.

Another approach to static analysis for dynamic structureshasbeen proposed by:Neirynck
[Nei88]. This method uses abstract interpretation techniques to provide information about
aliasing and side effects in a higher-order expression language. Within this framework, dy
namic data structures are handled by estimating each linked structure in ajn abstract store.

Each call to a recursive function which creates a linked data structure is approximated by
one entry in the abstract store. As with the previous method, this method fails to give
fine-grain analysis for recursive data-structures.

Jones and Muchnick [JM81,JM82] have proposed a general purpose framework for data
flow analysis on programs with recursive data structures. This method uses tokens to

designate the points in a program where recursive data structures are created or modified.

A retrieval function is then defined to finitely represent the relationshipsamong tokens and

data-values. By varying the choice of token sets and approximation lattices, a wide range
of analysis can be expressed in this framework. Although flexible, the method is mostly of

theoretical interest and is potentially expensive.

The most recent approach has been suggested by Larus and Hilfinger [LH88]. Their
approach is designed to handle objects composed of structures. A structure is defined as

a memory-resident object composed of a collection of named fields where each field may

contain either a pointer to a structure or a non-pointer value. The analysis uses alias

graphs to estimate the relation between variables, structures and pointers. In order to

handle general purpose structures, the alias graphs are complex and operations on alias

graphs are potentially expensive.

Rather than develop a general method that encompasses all dynamic linked structures,

our approach is to focus on methods for regular, recursive data structures that are widely

used in practice. By restricting our method, we can exploit the regularities of the data struc

ture in order to obtain an efficient solution which yields more useful and accurate results

than would be possible otherwise. Our overall strategy is to focus on recursive data struc

tures with regular access properties, to develop analysis methods and parallelization tools

for such data structures, to implement the method with a prototype language, and to test
the method on a set of representative programs. In developing and implementing the anal
ysis and parallelization methods, we placed particular emphasis on reducing the run-time
complexity by exploiting the regidarities of the data structure and on chosing an abstract

representation of the data structure which provides useful information for parallelization.

3 Trees and SIL Programs

In this section we will introduce our definition of the TREE and DAG data types and
present our prototype language, SIL. SIL should be considered a subset of a more complete

programming language. Currently, we are using SIL as a test-bed for experiments with

various analysis tools. By limiting the language we can focus on the relevant constructs.

3.1 Trees and Dags

The basic building blocks of binary trees are nodes. Each node consists of one or more scalar

values, a left pointer to a node, and a right pointer to a node. In general, objects built by

linking such nodes together are directed graphs. We classify two special types of directed

graphs: (1) a TREE is a directed graph in which each node has at most one parent, and
(2) a DAG is a directed graph in which some node has more than oneparent and the graph
does not contain a directed cycle.

The potential for parallelism in programs that use binary trees arises from the following

observation. If a program builds linked structures that are of type TREE, then the left

and right sub-trees, Tieji and Tright, of tree T are guaranteed to share no common storage.

Thus, a computation on Ti^jt or 3'ny sub-tree of Ti^ft will not interfere with a computation
on Tright or any sub-tree of Trigkt- In addition, for both TREE and DAG data-structures,
we can make the following observation: if node a is above node b, then node a can never be

accessed starting at b.

Using these observations, we conclude that a useful interference analysis tool wotdd: (1)
check that the linked structures created by a program are guaranteed to be of type TREE
or DAG and (2) recognize the relative position of named nodes in the structure.

3.2 SIL

A SIL program consists ofa parameterless procedure main and a set ofauxiliary procedures
and functions. The auxiliary procedures and functions may be recursive. The language is
statically scoped and has call-by-value semantics. That is, a procedure invocation passes
integer and handle values to the called procedure. Note that this does not imply that the
entire structure is copied, only the handle value in copied.

Two types are supported: integers and handles. A handle can be thought of as a
name of a binary tree node. The recursive type for handles can be expressed as follows:

type handle = Nil | {value: int; left: handle; right: handle) .

SIL provides a built-in function new - each invocation of new allocates a new node in

the store. The return value from an invocation of new must be assigned to a variable with
type handle. A skeleton of the abstract syntax of SIL is given in figure 1 and an example
program is presented in figure 7.

The statements of particular interest for interference analysis are those that access or

modify the data-structures through the use of handles. Given that a and b are handle

variables and x is an integer variable, the basic handle statements are of the form: a :=

nil, a := new(), a := b, a := b.left, a := b.right, a.left := b, a.right := b, x := a.value,
and a.value := x. Note that more complex statements such as a.left.right b.right are
easily translated into a sequence of basic handle statements {tl := a.left; t2 := b.right;
tl.right := t2).

<Prograin> ::= program <programJd> <ProcedureFunctionList>

<Procedure> procedure <procJd> (<ParamList>)
<LocalList>
<Block>

<Function> ::= function <funcJd> (<ParamList>) <reiumJype>
<LocalList>
<Block> —> return (<returnJd>)

<Block> begin <StmtList> end

<Arg> ::= <IntegerExpr> \ <ffandleName>
<Stmt> ::= <ScalarAssignment>

<BasicHandleStatement>
if <Expr> then <Stmt> [else <Stmt>]
while <Expr> do <Stmt>
<Block>
<ProcedureName> (<ArgList>)
<id> := <FunctionName> (<ArgLisi>)

Figure 1: Abstract Syntax of SIL

4 Interference Analysis Tools - Computing Path Matrices

The critical information needed for interference analysis ofprograms containing basic handle
statements is the relative positionof handles at each point in the program. ^ A point refers
to a position between two statementsin the program. A handle his live at a point p if there
is some execution path starting at p that uses h. The structure of the analysis is illustrated
as follows.

1
Statement

>'i

Given r, an estimate of the relationships among all handles live at point p, we wish to
compute r', an estimate of the relationships among all handles live at point p'.

The estimate of relationships among handles captures the relative position of handles
within a tree (or forest). Relative information can be used to detect if a statement creates a

^For a more complete discussion ofthese tools see [Hen88].

data structure that is possibly not a TREEoi a DAG. Forexample, if node a, is a descendent
ofnode b, then the statement a.left := bwill create a cycle and the structure can no longer
be considered a TREE oi a DAG. Relative information may also be used to determine if

two handles refer to disjoint sub-trees. If node a is not a descendent of node b and node b

is not a descendent of node a, then a and h refer to disjoint sub-trees and a computation
on a cannot interfere with a computation on b.

The relationship between two handles a and 6, denoted by r[a,6], is specified by a set
ofpaths. Apath is denoted either by S (meaning that two handles refer to the same node)
or by a path expression which describes the directed path between two nodes. A path
expression is non-empty sequence of links. A link is one of: E - i left edges, L+ - one or
more left edges, R^ - i right edges, R+ - one or more right edges, D^ - i down edges, or D+ -
one or more down edges. Each path is classified as definite, the path is guaranteed to exist,
or possible, the path may or may not exist. The relationships among a set of handles are
described by a path matrix. Each entry in the matrix describes the relationship between
two handles.

The structure of the analysis can now be more precisely stated. For each kind of state

ment, an analysis function is defined that takes as input an instance of a statement s and a

path matrix p and produces as output a new path matrix p'. The basic analysis functions
are those for handle assignments and handle updates.

Figure 2 illustrates the application of the simple analysis function for statements of the

form a := b.f. Figure 2(a) illustrates an initial path matrix representing the relationships
between the handles a, b, and c. Note that two sorts of approximation are encoded in the

path matrix: length approximation and direction approximation. The path EL+ between
handles a and billustrates a path with an exact direction (left), but an approximate length
(3 or more links). The path R}D^ between handles a and c has approximate direction (D
links can be either right or left) and an approximate length (1 link right followed by 1 or
more links down). Figure 2(b) shows the path matrix that would result from the statement

d := a.right and 2(c) illustrates the resulting path matrix after the statement e := d.left.
Note that although the path matrices in 2(a) and 2(b) have only definite paths, the path
matrix in 2(c) contains some possible paths (denoted by ?). Since the exact length of the
path between handles d and a is not known, the path between of handles e and c is either

SI (e and c may be handles to the same node) or /)+? (c is one or more edges below e).

O'

(a) Initial path matrix

+

6 =

a b c

a S L^L+L^ B}D+

b S

c S

(b) After statement : d := a.right

a

a b c d

a S L^L+L^ R^D+

b S

c S

d D+ S

(c) After statement : e := d.left

JK

+ i
i i

a b c d e

a S LH+L^ R^D+ R^ R^L^

b S

c S 5?

d D+ S

e Sl^D+l SQb 6 6

Figure 2: An example of handle assignments

h I

h S s

I S s

Po

/:= h;

while I.left nil do

/ := Uefi

h I

h S L'

I S

Pi

h I

h S L+

I S

P2

h I

h S L+

I S

P3 = P+

Figure 3: Iterative approximation for a simple while loop

Analysis statements are also defined for conditional statements, while statements, pro
cedure calls and function calls. The analysis for while loops and recursive function and

procedures makes use of an iterative approximation scheme. Figure 3 illustrates the ap
proximationfor a simple while loop, where po represents the path matrix resultingfrom zero
iterations of the loop, and p+ represents the approximation for one or more iterations of

the loop. The iterativeapproximation scheme makes use of efficient operations for merging
and equality testing of path matrices.

5 Interference Analysis and Parallelization

In the previous section we presented a method for computing path matrices for each point
in a program. In this section, we use path matrices in developing methods for interference

analysis and parallelization.

5.1 Interference between Basic Statements

The first interference analysis method is used to determine if n basic handle statements

interfere. As illustrated by figure 4, we can use such an interference analysis method to de

termine if several sequential statements can be transformed into a single parallel statement.

We will first consider interference between two statements. More precisely, given two

10

handle statements s,- and sj, and a path matrix p, we want to determine if one statement

writes to a location that the other statement reads or writes. We will then extend this

method to handle n statements.

1
•Sl

52

T

-L

?
5l I I ^2 I I • • • II Sn

Figure 4: Transforming sequential statements to a parallel statement

For this analysis, we define the following abstraction for a location. A locationis denoted

by a pair (name, kind), where name is the name of a variable and kind is one of: var - a

variable, left - the left field of a node, right - the right field of a node, or value - the value

field of a node.

We also define an alias function, A{a,f,p). Given a name a, a field kind /, and a path

matrix p, the alias function returns the set of locations that may be aliased to location

(a,/). Location (a;,/) is an element of A{a,f,p) iff the path matrix entry p[a,x\ contains
the regular expression 5? or S. Note that the regular expression S indicates that locations

(x, /) and (a, /) are definite aliases, while the regular expression SI indicates that locations

{x,f) and (a,/) are possible aliases.

Foreachkind ofhandle statement, we have defined functions TZ{s,p) and W(s,p). Given
a statement s and a path matrix p, TZ{s,p) defines a set of locations possibly read by s.

Similarly, yV(s,p) defines a set of locations possibly written by s. These functions are

presented in figure 5.

The interference set, J(si,Sj,p), is defined as the set of locations through which state

ments Si and Sj may interfere when executed at a program point with path matrix p. If

I[si,Sj,p) = {}, then there is no interference between s,- and Sj and it is safe to execute s,-

11

Statement - s Read Set - TZ(s,p) Write Set - W{s,p)

a := nil {} {{a,var)}
a := newQ {} {(a, var)}
a := b {(6,var)} {{a,var)}
a := b.f {(6,var)}\JA{bJ,p) {{a,var)}
a.f := b {{a,var), {b,var)} A{aJ,p)

Figure 5: Functions for read and write sets ofstatement s relative to path matrixp.

and Sj in parallel.

I{si,sj,p) =[w(5,-,p)n(n{sj,p)\JW{sj,p))] U[W(s,-,p)n(7^(si,p)U>V(s^,p))]

Three examples of interfering statements are given in figure 6. The first example illus
trates variable interference; the statement x := a.left writes variable x, while the statement

y := Xreads variable x. The second example illustrates two statements that interfere by
accessing the left field of the same node. Since a and b are handles to the same node, the
statement x := a.left reads the same location that statement b.left := nil writes. The

third example illustrates the conservative nature of the interference analysis. Note that
handles c and d may be handles to the same node, or handle d may be some number of
right links below handle c. In the first case, the statements n := d.value and c.value 0

would interfere on the value field. However, in the second case c and d refer to different

nodes and the statements would not interfere. Thus, uncertainty in the path matrix results

in a conservative approximation of interference.

We can generalize this method to determine if n basic statements [si,..., s„] interfere.

y^m and In are defined as follows.

^n([5i,...,5„],p) = IJ n{si,p)
i=l ,n

>V„([si,...,s„],p)= y W(si,p)
i=l,n

12

c,d?|

A tree and corresponding path matrix

a,b

a b c d

a S S D+

b S S D+

c S S1,R+1

d 5? S

Example 1

Statement n{si,p) W{si,p} Asi,S2,p)

Si X := a.left {(a,var),(a,left),(b4eft)} {(x,var)} {(x,var)}

S2 y := X {(x,var)} {(y,var)}

Example 2

Statement 7e(s.-,p) W{si,p) Asi,S2,p)

Si X := a.left {(a,var), (a,left),(b,left)} {(x,var)} {(a,left),(b,left)}

S2 b.left := nil {(b,var)} {(b,left),(a,left)}

Example 3

Statement nisi,p) W(s,-,p) ^iSi,S2,p)

Si n := d.value {(d,var),(d,value),(c,value)} {(n,var)} {(c,value),

(d,value)}S2 c.value := 0 {(c,var)} {(c,value),(d,value)}

Figure 6: Examples of interfering statements

13

>v„([5,-,...,5„],p)n(n^j,p){jyv{sj,p))] u
>v(5i,p)n(7^n(h,...,5„],p)uw„([5l,p))j

Statements [sj,..., s„] do not interfere at a program point with path matrix p if

(U 2:„([5i,.. .,3.],s,.,.i,p) I={}.

Note that we can incrementally build the set of statements that can be executed in
parallel by first computing the interference set for Sj and S2. If this set is empty, then
we can schedule 5i and S2 in parallel. We can continue to add statements to the parallel
schedule until we reach a statement that results in a non-empty interference set.

5.2 Interference between Procedure Calls

In the previous section we outlined a fine-grain analysis that is used to detect interference
among single statements. In this section we outline a coarse-grain approach to interfer
ence analysis between procedure: calls. Given two procedure calls f{xi,X2,...,Xm) and
5(2/1,2/2, •••,2/n) at a program point with path matrixp, we wish to determine if the calls
to / and g interfere.

A first approximation of the analysis can be obtained by examining the relationship
between the handle arguments of / and the handle arguments ofg at the program point
just beforethe procedure call. The onlynodes that a procedure can access are those accessed

via a path from a handle argument. Recall :that data structures of type TREE have the
property that if two handles h,- and hj are unrelated, then all of the nodes accessed from

are unrelated to those accessed from hj. Thus, ifall handle arguments a:,- ofthe call, to / are
unrelated to all of the handle arguments yj of the call to g, we can conclude that the two
procedure calls do not interfere. Since the path matrix at the point before the procedure
calls is guaranteed to contain allpossible relationships among handles, we can conclude that
handles Xi and yj are unrelated if p[a:,-, pj] = p[pj,x,] = {}.

As an example of using this method, consider the program presented in figure 7. This
program adds 1 to the left sub-tree, adds -1 to the right sub-tree and then reverses the

14

program add-andjreverse

procedure main{) .
root, Lside, r^ide: handle; i: int

begin
{ ... build a tree at root ... }
lside := root.left:
rside := rooi.rtght;
{ •^= PROGRAM POINT A —path matrix pA }
add.n{lside,l);
add-n{rside,^l);
reverse(root)

end;

procedure ai(l_n(A:handle; n: int)
l,r: handle

begin
S h ^ nil then

begin
Rvalue := h.value + n;
I := h.left:
r:= h.rigkt;
{ •^= PROGRAM POINT B —path matrixpB ^
add-n{l,n)-,
add-n(r,n)

end
end;

procedure ret;erse(A:handle)
I, r: handle

begin
S h ^ nil then

begin
r:= h.left:
r := h.rigkt;
{ ^ PROGRAM POINT C }
reverse{l)',
reverse (r);
h.left := r;
h.right := I

end
end;

root lside rside

root S R'
lside S

rside

Pa

h * '2 h * *2 h I r

h*2 S D+ £>+. D+L^ D+R'
h * *2 S S . L' R'
h S S R'
I S
r B

Pb

Figure 7: Example Program

15

whole tree. Note that the procedure addjn updates the nodes of a tree and veveTse actually
changes the structure of the tree. The three critical program points for parallelization of
procedure calls occur at program points A, B, and C. First, consider the path matrix
at program point A. By examining pA we can determine that handles l^ide and r^ide

are not related (jpA\l-side,r^ide\ = pA\T^ide^ljside\ = {}). Therefore, the procedure calls
addjn[lside, 1) and addjn{rside, —1) may be executed in parallel.

A more interesting sort ofparallelism is exhibited at program points B and C. Consider
the path matrix pg at program point B. The handles in pg can be divided into three
groups: (1) h*2 is used as a symbolic name for the calling procedure's argument handle
(in this case root from procedure main), (2)/i**2 is used as a symbolic name that collects
information on all possible handle arguments from stacked recursive invocations ofaddjn, ,
and (3) h, I, and v contain information about the handles local to the current invocation
of addsi. The path matrix pg summarizes all possible relationships between handles for
the recursive calls of addjn. Since handles I and r are not related in pg, it is always safe
to execute the recursive calls addjn{l, n) and addjn(r, n) in parallel. A similar result is
obtainedfor the recursive calls to reverse at program point C.

A more accurate analysis ofprocedure call interference can be performed by utilizing
further information about how handle arguments to a procedure are used in the body of
the procedure. With the previous method, we assumed that nodes accessed through a
handle argument may be updated. This is an overly conservative assumption, since some
procedures may only read nodes. By adding further analysis it can be determined that a
handle argument is either a read-only argument or an update argument. Handle argument
Xi is read-only if all nodes accessed through Xi are read and not written, otherwise Xi
is an update argument. The interference analysis can now be restricted to checking for
interference due to update arguments. Let Update be the set of update arguments of the.
call f{xi,..., Xm) and Qupdate be the set of update arguments of the call g{yi,..., y„). The
calls to / and g will not interfere if all handles in Update unrelated to all arguments of
g and all handles in gupdate are unrelated to all arguments of /.

Using the technique for detecting basic statement interference presented in the previous .
section and the technique for detecting procedure call interference presented in this section,
the example program of figure 7 can be transformed into the parallel program shown in
figure 8.

16

program add^and.reverse

procedure main{)
root, Iside, rside: h?mdle; i: int

begin
{ ... build a tree at root ... }
Lside := root.left || r^ide := root.right\
add^n(Lside,l) || add-n{r-side,—l)-,
reverse{root)

end;

procedure a(f(f.7i(A:handIe; n: int)
t,r: handle

begin
if k ^ nil then

begin
h.value := Lvalue + n || / := h.left || r ;= Lright;
add-n(l,n) || addjn.{r,n)

end
end;

procedure reverse(A:handle)
I, r: handle

begin
if A^ nil then

begin
I := h.left 11 r := h.right;
reverse(l) || reverse(r);
h.left := r || h.right := I

end

end;

Figure 8: Parallel Version of Example Program

5.3 Interference between Statement Sequences

In this section we examine the problem ofdetermining if two statement sequences interfere.
As illustrated in figure 9, we want to determine if it is safe to execute statements sequences
Uand Vin parallel (given thesame initial program point). More precisely, given statement
sequences U = [uj,..., u,,,] and V = at an initial program point with path
matrix p, we want to determine if one statement sequence writes to a location that the

other statement sequence reads. This sort of analysis is useful both in checking that the
parallel specification of 17 ||V is safe and in determining that the statement sequence U; V
can be transformed into the parallel statement U || V.

For this analysis we require a new notion of location. Let £ be the set of handles that

are used before they are defined in either [/" or V. All nodes that can be accessed in both

U and V must be accessed along some path from a handle in £ Therefore, we will

®For ease of presentation, we will assume that the handles in C are not redefined in U or V. This

17

p = P\ = qi

Figure 9: Initial path matrix p with two parallel statement sequences U and V

refer to locations by their access path from handles in C. A relative location is a triple
{name,fieldJype,access.path) where name is the name of a handle in L, fieldJype is one of
var, left, right, or value, and accessjpath is a set of path expressions describing the path
from name to the node which is being read or updated.

Statement - s 'R£{s,p) >V^(5,p)
a nil {} {{a, var, 5)}
a := newif) {} {(q, var, S)}
a b {{b,var,S)} {(a, var, 5"}
a := b.f {{b,var,S)}l} A'{b,f,C,p) {(a, var, 5")}

II

{(a, var, S),{b,var, 5)} A''{a,f,C,p)

Figure 10: Relative read and write sets given path matrix p.and live handles £.

The relative read and write functions >V''(s,p, C) and W{s,p,C) are defined as in figure
10. In these rules we use the relative alias function . Given a handle h, a field name /, a

restriction can be lifted by automatic renaming of variables.

18

set of live handles £, and a path matrix p, A^{h, f,C,p) returns the set of relative locations

which are possibly aliased to the location referred to by h.f. A'̂ {h, f,C,p) contains the

relative location iff I is one of the handles in C and the path matrix entry p[l,h]
contains the path expression r.

We define 7^J^([si,.. [pi,.. to be the relative read set.for statement se

quence [si,..Sn] and W^([5i,.. .,s„], [pi,... ,Pn,/l]) to be the relative write set for state

ment sequence [si,..., s„].

•7^n([-si,---,5„],[pi,...,p„],£)= [J TV{si,pi,£)
i=l,n

>v;([si,...,5„],[pi,...,p„],£) = (J yv''{si,pi,c)
1=1,n

Let P = [pi,..., pra] be the sequence of path matrices cissociated with the statements u,-

of U, and Q = [gi,. .., q„] be the sequence of path matrices associated with the statements

Vj ofV (as illustrated in figure 9. The relative interference set, J^(U,P,V,Q,C),is defined
as follows.

r{u,p,v,Q,q = W'iu, P,P) nfTZ'(V, Q,C)\J W'iV,Q,C))j U
>w(F,g,£)n(n^iu,p,c)[jy^^iu,p,£))j

K the data structure is a TREE at the program point just before U || V, then U and

V do not interfere if I'^{U,P,V,Q,C) = {}. The proof of this observation is an induction

on the height of the tree. This result does not hold if the data-structure is a DAG or an

arbitrary graph. For these structures a more complex interference analysis method must be

used.

6 Conclusions and Further Work

In this paper, we have presented a new approach to parallelizing programs with dynamic

recursive data-structures. By focusing our approach on data-structures with regular (recur

sive) properties, we were able to develop efficient and effective tools for interference analysis

19

and parallelization. We illustrated our approach will a small example. A more demanding
example, the adapative bitonic sort in [BN86], has also been analyzed resulting insignificant
parallelism detection.

We plan to extend the parallelization techniques to detect fine-grain parallelism such as
is achieved bypartial overlapping and pipelining ofprocedure calls. In addition, we plan to
extend the use ofour analysis to include program transformations that expose parallelism.
Finally, we plan use the analysis in developing debugging tools for more sophisticated par
allel and synchronization constructs.

20

References

[Baii79a] U. Banerjee. Speedup of Ordinary Programs. PhD thesis, University ofIllinois at
Urbana-Champaign, October 1979. Dept. of Computer Science Rpt. 79-989.

[Ban79b] J. P. Banning. An efficient way to find the side effects of procedure calls, and
the aliases of variables. In 6th ACM Symposium on Principles of Programming
Languages, 1979.

[Bar78] J. Barth. A practical interprocedural data flow analysis algorithm. CACM,
21:724-736,1978.

[BC86] M. Burke and R. Cytron. Interprocedural dependence analysis and paralleliza-
tion. In ACM Sigplan Notices, Vol 21,7, 1986.

[BN86] G. Bilardi and A. Nicolau. Adaptive bitonic sorting: An optimal parallel algo
rithm for shared memory machines. Technical Report TR86-769, Cornell Univer
sity, 1986.

[GL86] D.K. Gifford and J.M. Lucassen. Integrating functional and imperative program
ming. In Proceedings of 1986 ACM Conference on Lisp and Functional Program
ming, 1986.

[Hen88] Laurie J. Hendren. Recusive data structures and parallelism detection. Technical
Report TR 88-924, Cornell University, June 1988.

[Hud86] P. Hudak. Asemantic model ofreference counting and its abstraction. In Proceed
ings of the 1986 ACM Conference on Lisp and Functional Programming, 1986.

[JM81] N. D. Jones and S. 8. Muchnick. Flow Analysis and Optimization of LLSP-like
Structures, chapter 4, pages 102 - 131. Prentice-Hall, 1981.

[JM82] N. D. Jones and S. Muchnick. A flexible approach to interprocedural data flow
analysis and programs with recursive data structures. In 9th ACM Symposium
on Principles of Programming Languages, pages 66-74, 1982.

[LG88] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proceedings
15th POPL, pages 47-57, 1988.

[LH88] James R. Larus and Paul N. Hilfinger. Detecting conflicts between structure
accesses. In Proceedings of the SIGPLAN '88 - Conference on Programming Lan
guage Design and Implementation, pages 21-34, 1988.

[Luc87] J. M. Lucassen. Types and Effects: Towards the Integration of Functional and
Imperative Programming. PhD thesis, MIT, 1987.

[Nei88] A. Neirynck. Static Analysis of Aliasing and Side Effects in Higher-Order Lan
guages. PhD thesis, Cornell University, January 1988.

21

[Nic84] A. Nicolau. Parallelism, Memory Anti-Aliasing, and Correctness for Trace
Scheduling Compilers. PhD thesis, Yale University, 1984.

[NPD87] A. Neirynck, P. Panangaden, and A.J. Demers. Computation ofaliases and sup
port sets. In 14th ACM Symposium of Principles of Programming languages,
1987.

[PA72] J.R. PhiUips and H.C. Adams. Dynamic partitioning for axray languages. CACM,
15:1023-1032, 1972.

[Rey78] J. C. Reynolds. Syntactic control of interference. In 5th ACM Symposium on
Principles of Programming Languages, 1978.

[RM88] C. Ruggieri and T. P. Murtagh. Lifetime analysis of dynamically allocated ob
jects. In Proceedings 15th POPL, pages 285-293, 1988.

[Ten83] R. D. Tennent. Semantics of interference control. Theoretical Computer Science,
27:297-310, 1983.

[Wei80] W. Weihl. Interprocedural data flow analysis in the presence of pointers, pro
cedure variables, and label variables. In 7th ACM Symposium on Principles of
Programming Languages, 1980.

[W0I82] M.J.Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis. Uni
versity of Illinois at Urbana-Champaign, October 1982.

22

