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RADIATIVE CORRECTIONS IN HYDROGEN-LIKE SYSTEMS

Peter J. Mohr
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

May 1L, 1973

ABSTRACT
The one-photon self-energy radiative level shift of the lS%
state of an electron in a Coulomb field is evaluated numerically for
values -of the nuclear charge Z = 10,20,---,110. The evaluation is
based on the known expressions for the Couldmb radial Green's functions
and not on a power series expansion in 2a. The errors in the values
obtained are estimated to be less than 0.1%. The results are compared

with the results of previous calculations.

_2-

I. INTRODUCTION

The lowest order radiative corrections to the energy levels in
a hydrogen-like system arise from the—electron self energy and the
vacuum polarization which correspond to the Feynman diagrams in Figs.
1.1(a) and 1.1(b), respectively.l In these figures, the douﬁle line‘
represents propagation of the electron in a static external Coulomb
field with nuclear charge number Z. We are concerned here with the
evaluation of the bound-state level shift associated with the electron
self energy, for Z in the range 10-110. The vacuum polarization
term has been considered in detail elsewhere.2

Theoretical evaluation of the radiative level shifts in
hydrogen~like systems with Z not small is of particular interest in
view of the recent advances in experiments performed with these
systems. Measurements of the Lamb shift in hydrogenic carbon C5+

3

and in hydrogenic oxygen O7+ have been made,” and the feasibility
of working with higher Z systems has been demonstrated by the
measurement of the lifetime of the 2S; state in hydrogenic sulphur

2
) .
+l5v +l7.+ The theoretical values of the

S and in hydroéenic argon Ar
radiative level shifts in a hydrogen-like system are also useful as an
approximation to the radiative level shifts of the innermost electrons
in heavy atoms.5 Values for the radiative level shift due to self
energy for a Coulomb potential are not expected to be applicable to
the lower levels in heavy muonic atoms, because of thé importance of.
the finite nuclear size in these systems.

- The self-energy radiative level shift was first-célculated
nonrelativisticaily to lowest order in Zo Dby Bethe.7, The lowest

order term was subsequently calculated relativistically, and evaluation

of successively higher order terms followed that. To display the
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results of these calculations, we express the level shift in the form

/E = %(Za)h F(za) mec2 s (1.1)

where

/

R(2) = Ay + Ay n(2)F + A () + Agy(2)°
: +'A61(za)2 on(20) 7 + Agy(z)® 0% (20)78 A7o(m)3 boeee L (1.2)

In Table 1.1, we have listed the values of the coefficients Aij for
the 18% state and the articles in which these values, or values for
other states, are given. Only the self-energy contribution is

included in that table. Values for F(Za) which result from evaluating
terms up to a given order in Za in the series in (1.2) are plotted

as. functions of Z in Fig. 1.2. These curves give an indication of
the nature of the convergence of the series in (1.2) as a function of

Z. The series represents the function poorly for Z near 20, and is
not a useful approximation for the function for larger Z.

Evaluations of the self-energy level shift for large Z have
been made. Brown and Mayers calculated the level shift for the lS%
state for Z = 8015 using a method developed by Brown, Langer, and
Schaefer16 which is valid for large Z. Desiderio and Johnson, working
with a generalization of that method, evaluated the level shift for the
lS% state in a Coulomb potential for Z = 70, 75, 80, 85, 90 and
evaluated.the level shift for the lS% state in a screened Coulomb
potential for Z = 70, 71, 72, ---, 90.5 Erickson has obtained an
expression for the radiative level shift which is valid (approximately)

for all Zo and agrees, by construction, with the small Za expan-

sion.12 The results of these calculations appear in Fig. 10.1.

e

Table 1.1. Values of the coefficients in Eq. (1.2)

for the 18, state.
2

Coefficient
= Bethe logarithm ~
L
= 3B+ éql; + %) ~ -2.87
. b
T3
11 1
= hx(1 + 58~ 5 fn2) ~ 9.29
L
= -3(19.3835 £ 0.5) = -25.8
28 21
= 3—5112-% ~ 5.h2
= -1

I

%n 9.56 ~ L0.0

-2.9841285558(3)

Reference

8

10

11,12

13,11

15,1k

12
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In the present calculation, we evaluate, to all orders in Za,
the self-energy radiative level shift of the lS% sﬁaté of an electron
in a Coulomb potential for Z in the‘range 10-110. The presentaﬁion
is arranged as follows. In Sec. II, the computﬁtional procedure,
including the procedure for mass renormalization, is formulated, and
some trivial preliminary integrations are éerformed. :The energy shift
is divided into three parts which we call the low-energy part AEL,
the high-en;rgy part AEH, and the mass renormalization counter termv
AEM. In Sec. III, some reasrangements are made in the expression for
AEL. The intggrations over aﬁgles in coordinate space in that
expression are performed in‘Sec. IV. The numerical evaluation of
AEL "is described in Sec. V.
parts AEHA and AEHB’ where AEHA is relatively easy to evaluate,

In Sec. VI, AEH is divided into two

and OB, is finite and of order a(za)h. The evaluation of AR,

including the isolation of terms to be cancelled by the mass renormal-

ization counter term, is described in Sec. VII. The integrations over

angles in coordinate space in AE are performed in Sec. VIII. In

HB
Sec. IX, the numerical evaluation of AEHB is described. The results

of the calculation are summarized in Sec. X.

The numerical calculations were done with the CDC 7600 computer

at the Lawrence Berkeley Laboratory.
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II. PRELIMINARY INTEGRATION
The energy shift of an electron, in a bound state ¢n’ due to

the virtual emission and reabsorption of one photon, is given by the

real part ofl7’18
MEy = i f a(t, - tl)d552d3§1¢n(x2)YpSFe(x2’xl)7u¢n(xl)DF(x2 - %)

- o [&26F (), (x) (21)

where ¢n(x) is the bound-state wave function in coordinate space

)

¥, (x) exp(-iE %) , (2.2)

and Wn(z) is a normalized solution of the time-independent Dirac

equation;

1]
o

lap +V(x) +p-E N (x)

~

. » (2.3)
v(x) = —-IZ%]- .

The bar over the wave function denotes the adjoint: B;(x) = ¢nT(x)¥o.
To keep the terms in the energy shift separately finite, we use the

19,20

covariant regulator method, where in momentum space the following

replacement is made for the photon propagator:

1 . 1

- = 1lim [ 5 -5 12. ] . (2.%)
k- + ie Ao [k + i€ k™ - A +ie :

The limit is to be taken after the integrals in Eq. (2.1) have been

evaluated. The photon propagator in coordinate space can then be

expressed as



1 i 4 e
5 DF(x2 xl) = —= [d'k exp( 1k(x2 xl)]
- (2q)
: 1 .
} P = -5 12 i . _(2'5)
k™ + ie K - A + ieJ
The free electron mass shift &m, computed using the regulated photon
prropagator, isl9
25 gn 42 4 2 2.6
Sm = ;(Eﬂn A+ '8) . ( )

e . .
The propagation kernel SF (xg,xl) is given by

z V(oW (%)) expl-1E (b, - £))] £, >t

1
i pos E
15 z i (2.7)
- 35p (xz,xl) = ] :
t""ﬂ
N
;

l- ,"‘ wm(fz)ﬂ_’m()f’l) exp['iEm(tz = tl)]. t2 < tl .
n

eg Em

An alternative expressibn for the propagation kernel is

. Z MENTHEN!
1 1 m'~2’ " m'~1 s _ )
-3 sFe(XE’xl) - 5 f dz — exp| 1.z(t2 tl)]
°F m (2.8)

The contour Cp, which appears in Fig. 2.1, extends from -« to 4w,

passing below the negative real axis and above the positive real axis.

v, (x) ¥ ()
Bz p2) - Z ) ¥y'0y)

(2.9)

lapp + V(%) +8 - 216(xpx,2) = 8(x, - x)) - -

We note that the Green's function G(ig’fl’z) is an analytic function
of z except possibly for points of the spectrum of the Dirac
Hamiltonian. The specﬁrum consists of the points on the real z-axis
in the intervals (-»,-1] and [+l,+m), and the bound-state eigen-
values which lie on the real z-axis in the interval (0,1).

The energy shift AEn is then the limit as A - o of

-

3, 43
a(ty - by )a"x,d7%) “’nT(52)a“j o

Cp

1
(2r)?

io
2B (A) = =

- h 3
X G(%QJfl)z)a“Wn(?sl) dk eXP[l}s' (?52 - )Sl)]

1 1 :
x - ) exp[-i(k, 1 z - B_)(t, - t,)]
<k2 rie Ko - A% 4 ie 0 nite 1

- tm djynf(g)a‘vn(gg) .o (2.10)

-

. In order to do the integration over t2 - tl first, we place in the
The sum in the infegrand in (2.8) is the Green's function for the time- -

integrand a convergence factor exp(—5|t2 - tl|), where & temporarily
independent Dirac equation satisfies the condition

5 > |Im(k0 +z -En)] . o (2.11)
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We shall eventually let & tend to zero. We now integrate over

a(t, - t,) exp[-i(ky + z - E )(t, - ;)] exp(-6|t2 - tl|)

i i

= — - - (2.12)
ko + 2z - En + 1i® ko + 2z - En ig
Equation (2.10) can be written
io 3 3
AR, = | dEd ?v‘l“’nT(’éz)o‘u dz G(fe’fl’z)ap‘”n(fl)lp
CF
- e | &xr T0sv, () (2.13)
where
i . 1
I = 1. dhk pr[i]"\(" ()‘(42 - }-51)} 5 1 - 5 5 - >
P (2r) k™ +1ie k - A7 +ie
1 - 1 ' j) . (2.14)
X (:ko +z - En + i8 kO + 2z - En - 1%

The integration over k in IP is done next. It is convenient to

integrate over ko first

[+
1 - 1 1
f dko( 2 12 e k 2 k2-A2+' \)(k +2-E +i% i k_ +z-E -16>
oo ko —k +ie o "k e 0 - ? n
3

N\
"\

. 1\\
- -2ﬂ1< S - s > (2.15)
(B, -2)" -k +ie (En -2)" -k - A +ie

n

~-10-

Then we perform the integration over k in IP and obtain

) s
. f 1
Ip = - 1 5 &’k explik-(x, - %l)]zi/ 5 5
(2n) \5 - (En - z) - ie
_ 1
52 + 22 - (En - z)2 - ie€)
= ET%E_:—%IT[EXP( b|§2 Ell) exp(-b |§2 fll)] (2.16)
where

s 1

b o= -il(E, - 2) +ielF ;5 v - -i(, - 2)® - A% 4 1)

(2.17)

The branches of the square roots are determined by the conditions

Re(b) > 0 ; Re(b') > 0O . (2.18)

The energy shift is now expressed as
{ .
. . io 5. 4 +
M=t 5 j Txpdxy) ¥ (),

dz G(xy,%,,2)0 (%))

Cp

1
X = [exp(-b|§ - x.|) - exp(-p'|x, - x,|)]
X5 51 2 X1 ~e ~1 s

- @y Toey, (x) - (2.19)

In order to facilitate the evaluation of (2.19), we change the

contour of integration C to a new contour, and divide the integral

F

into two parts which correspond to integrals over separate portions

CL and CH of the new contour. The integrand of the contour integral
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is an analytic function of =z, except for the singularities of
G(§2,§l,z) and the branch points of b and b'. These features of
the integrand are depicted in Fig. 2.1. 1In that figure, cuts are
drawn from Z =1 and z = -1 so that G(Eg’fl’z) is a single-valued
analytic function of 2z in the cut z-plane, except for the bound-stafe
poles. Also, branch cuts are drawn from the singularities of b and
b' in such a way that the conditions expressed in (2.18) are satisfied
everywhere in the cut z-plane. Beéause of the analyticify of the
;ntegraﬁd, we may deform the contour of integration to the one shown
in Fig. 2.2. |

We now identify three contributions to the energy shift AE, -
The first part AR which we shall call the "low-energy paft", is the
contribution to the integral in (2.19) from the integration along the

contour C The contour CL begins at Zq, passes around the square

L

root singularity, and ends at 2,- The second part is AE the "high-

H’
energy part", which comes from the integration along the contour Cy-
The contour CH consists of two parts. The first part begins at the
poiﬁt ~R - i0, extends along a quarter circle centered at the origin
to the point -iR, and continues up the negative imaginary axis to zZ)-
The second part begins at Zo, extends up the positive imaginary axis
to the poinf +iR, and continues along a quarter circle centered at

the origin to the point +R + i0. The third part of the energy shift

is the mass renormalization term AEM

Ay = -tm Jd3>~c wnf(z)&vn(g) . - (2.20)

The total energy shift is

=12~

0B = LB OB LV (2.21)

For these contributions, we are interested in the limit as
€ =0+, as 2y and Z5 approach zero from below and above the real

axis respectively, and as R - . This 1imit will be considered first ii

f
or AEL and then for AEH.
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III. THE LOW-ENERGY PART AEL

The low-energy part of the energy shift is

ia 3, 43 1
- o= -5 [TEA% WnT(fe) o, dz G(x,,%,,2) o ¥, (%))
v _ c
1 : .
« X = lexp(-blx, - x,{) - exp(-b'|x, - x,])] - (3.1)
. |§2 §l| 2 1 2

The contour ’CL is shown in Fig. 2.2. It extends around the

éingularity in b from the point 2 to the point 2z

1 2°

We examine the second term in the expression for AR

L
s(a) = %% d5§2d5§1wnT(52)0@- /’ dz G(fz’fl’z)apwn(il)
/CL
1
-b'ix. - x . 3.2
X 'Ei;jTEET exp( |~2 Nll) ( )

Tﬁe singularities of the integrand of the integral over 2z for this

portion of AE. are shown in Fig. 3.1. We now take the 1imit as

L

€ =0+ in S(A). If we require

. A > E. (3.3)

which is permissible since we are interested in the limit where

¥

A - o, the singularity at 2z = En - A lies on the negative real

z-axis. Hence, as z and 2z

1 2

C becomes a closed contour which contains no singularities, and thus

L

the value of the integral approaches zero;

s(p) = 0 for A>E . _ (3.4)

approach zero, the path of integration

-1h-

Henceforth we assume that A > En. We then have

m - _;_% dB’igdeanT(}ﬁE)au ’r dz G(zg,ggl,z)a“\lln(fl)
Cy,
1
R mab e 69)

We now consider the limits € -0+, and z,,2, »0 in Eq.
(3.5). In the limit e - O+, the singularity of b and the pole of
G(§2,§l,z) at z =E coincide. In order to avoid any ambiguity,
we temporarily add a small positive imaginary part to =z in
G(Ee’fl’z) which, in effect, displaces the singularities of
G(§2,§l,z) to below the real z-axis,

.G(Ee,fl,z) - lim G(52,§l,z +1is) . (3.6)
B— 0+

Figure 3.2(a) shows the singularities of the integrand in (3.5)

after the replacement indicated in (3.6) has been made. After the
limits e — O+, 24,25 ~a0,‘have been taken, the contour of integration
C; consists of two parts, as shown in Fig. 3.2(b): Cp below the

real axis, and C

A above the real axis. As a result of the condition

Re(b) > 0, stated in (2.18), we have

o
1l

-1(En - z) for z on Cp

(3.7)

o
li

+1(En - z) for z on €, .

. Making the appropriate substitutions from (3.7) for b, and deforming

the contours CA “and CB to line segments along the real axis, we

obtain
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E
n
me = S az [P0 \yn’r(ge)ozp Glxyx, 2 + 18)0MY (%))
0
sin[(E_ - z)|§ - x|]
X R (3-8)

‘52 - ~ll .

We consider the contribution = AE 0 which corresponds to

L
pe=0 in (3.8):
E, .
AELO = % az ;/ dB352‘1%1 ¥ T(xp) 6(xp0xp52 + 18) ¥, (x;)
sin[(E_ - 2z)|x, - %, []
X = S (3-9)
(%, - %
The equation
6(xyxy,2) = g (B(x, - X)) - (%) - B1 6lpxp,2))

n

(3.10)

follows from the differential equation satisfied by G(§2,§l,z):

[1(x,) - 2] Glxp% %) = 8% - X))

H(x,) -y, + V(%) +B - (3.11)

Substituting the right-hand side of (3.10) for G(ze,zl,z) in (3.9),

we obtain
En
! E -2
0 a n 3 1
AEL = ; dz ——————-——-———-E Tz - 1% d ?\(‘2 \l’n (?52)‘Vn(?52)
o n
E . .
y n N 5 sin[(E - 2)|x, - x |1
- = dz ———— a-"x.a"x _ T
1 E -2 -1ib ~2 ~l ‘§2 §1
o n

Equation (3.12) continued next page

=16~

Equation (3.12) continued
X WnT(ze)(-ig-ze +V(x,) fB - B ) G(x,%y,2 + i) (%)) . (5.12)

Integrating the term containing 22 by parts, and taking the

differential equation satisfied by IVT into account, we find "'

E
n
f az f P, @xv Tx)0d 6lx,x 02 + 18)y (1)
o |

0
AEL =

2R

En +

2R

4 sin[(E - z)|x, - §l|] ,
X (-1V2 ) (En ? Zjlfg ” El] . (3.13)

Note that & has been set equal to zero wherever doing so introduces

no ambiguity. We proceed in a similar manner making the substitution

Glxpo%y52) = i:;%z’ (8(x, - x)) - 6(x,x,,2) [ (x;) - £ 1)
' (3.14)

in (3.13). Again integrating by parts and taking the Dirac eguation

into account, we obtain

E
n
0  « a 3 3 J . 4
B = TB Yy dz [ d7xd 51wnT(52)’ G(xp,%) 2 + 18)o7V (%))
0 .
| 1 -
; sin[(E_ - z)|x, - x
2 ~2 ~]1

, 2
.(Er.1 = Z) |§2 - §l|

The remainder of AEL is
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E
n
0 a 3. 33 £ oo ‘
e A dz _/,d 107, T )0 602y 2+ 18)0 ()
0 4
v ~ sin[(g, - 2)[x, - x| |
X %] (3.16)
~2 ~1
"’7 ry
A In view of the equation
in[(E - z)|x, - x,]]
2 2, Sinl(E, Al 1
(v,” + (B, - 2)7] EAEEN = , (3.17)

we can express (3.16) as

n
0 a f 3. 33 J con A
- -2 dz | &xyd x¥ T, ) Glx,,% 52 + 18)Y_(x;)
0 J

sin((E - z)|x, - §l|]

. .18
X 8,97 (3.18)

2
(En - Z) |§2 - El]

We then have

E
n

2R
2R

j oy b
dz d5§2d3§anT(§2)aJG(zz,;El,z +18)ov (%))

ey

. sin{(En - z)|§2 - §l|]

J
(35,%°% - %'

(3.19)
21

b

2
(En - Z) I{g - Ell

In order to examine the integral in (3.19), it is useful to

make the substitution

-18-

‘ sin[(En - z)l)_s2 - §l|]

(3, V.-V - v
(En - Z)l%e - %l]

jese’l T Ve a

2

= i‘ﬂ a9 (85" - kik,) explik-(x, - x)I (3.20)

where k = |k| = E - z. We thus obtain

2R

o -

o TR LAY
En - =5 d’k E'bjl > d §2d X
i ok
; k< En

P .y .
x \anJf(gz)ot‘-j exp(ik-x,)6(x,,%, ,2 + i8)a exp(-ik-x W (%) . (3.21)

This equation can be written in the form

. ik -
ME. = 2g "_Ot_r & L Nlgae ™ "Iniulg g e In)
L -« 2] *x /. E -E +k- i
“k< B, m,A
(3.22)
where EX (A = 1,2) are polarization vectors perpendicular to k.

We note that except for the term aEn/n, AEL is exactly what oﬁe
would obtain using "old-fashioned” perturbation theory to calculate
the energy shift due to the interaction of the electron with the

transverse electromagnetic field, with the photon momentum cut off

at k = En' From the form of AE; given in (3.22), it is apparent

that we obtain the real part of AEL by taking the Cauchy principal

value of the integral over k.
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IV. INTEGRATION OVER ANCLES IN THE
EXPRESSION FOR THE LOW-ENERGY PART

We consider the matrix element which appears in the integrand

in Eq. (3.19);

. o s
M = d3§2d§§lwnT(§2)aJG(§2151’Z)a Wn(il)

. sin[(E. - z)|x, - x, |1 -
x (6,,9,v. -vdv’ n e 1 (4.1)
32 T V2™ E - 2l - x|
n ~2 ~1

The bound-state wave functions can be written as

Hy o
£, ()x, (%)
n
V(%) = ! , (%.2)

llf (x)x (x)\
L

vhere xnu(ﬁ) is the spin-angular function described in Appendix A,

and, fl(x) and f,(x) are the components of the radial wave function.

The Green's function G(x,,x.,z can be written as a sum over
. ~2’~l’ g

eigenfunctions of the operator K as described in Appendix A;

G(X2J lJZ)

ll A ~
"’ GK (xg:xl:z)ﬂn(xg)xl) (Xe’xlxz)lc X (xgaxl)

Y"‘ !
L.

[

22 ~ A~
(xg’xl)z)ﬂ_n(xgixl)

21 NN
i G (XpoXy,2)ig Xom (35,%)) Gy
L
(4.3)

We then have

20~

- 3. 32 )
Moo= | OXREE
K
w T : K
11 2y d TR 0 « BV
X (fe(xg)GK (x2,xl’z)f2(xl)x—in(x2)o ﬂn(x2’x1)0 X-Kn(xl)

.i_
A A A p'n ~
+ fg(xa)G (x2,xl,z)f (xl)x (x2)0 g- x -K(XE’xl)U Xnn(xl) .
T
' 21 I T T IR Jia ‘WP
+ fl(xa)GK (x2,xl,z)f2(xl))gKn (xe)ng.xgnK(xg,xl)c x_Kn(xl)
+ £ (500 22 (% ,2) 2 (%)) #“T@? Yodx_, (% )5 K P ()
NI U LS B U e Tl
., sin[(E - z)|x, - x ]
X (89,9 - V,99,%) a : (4.1)
502 T V21 E - 22l - x|
n ~e2 ~1
Let .
sin[(En - z)pl
o) - ——B (1.5)
(B, - 2)7p
where
po= ey - x| | (k.6)
We consider the integrals ) o
1 T A
AT (xyx)) = | dg, dQl)g (xa)cﬂﬂ (x2,xl)o X 'n (x ) o
X (85,9, - 9,79, F)2(p)

Equation (4.7) continued next page
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Equation (%.7) continued

1 b T 3 2 Hq
12 n ™ 'A A A ~
A, (x2,xl) Z//dQEdQIX'Kn(XE)O o4 Xeﬂ_K(xe,Xl)U xKn(xl)

_ g dg #
X (85,90 - V"9 )T(p)

) s ’S A A~ ¥ p'n A~
21 | 'R yod
AT (rpmy) = andagn (K)o g ¥, (Eprxy )0k ()
X (5,90 - 9,59, )1(p)
e~ V2™

T
22(x2,xl) = / ao dle (x2)c " (XE’Xl)c X (xl)
J
, 5o 8
x (85,79 = Vo9 )T(e)
The derivatives of T(p) in (4.7) are

2
= B, - T
532 7pY; o) szz(En z)" T(p) »

and

19 _ J -
v I 1) = vy, S5 TR) - (k- %) 0 - xy)

Therefore, we write the equations

j ~ A YA _ A A I K
o nn(xg,xl)c le “K(XE’Xl) o P|K+%l‘%(g)

Equation (4.10) continued next page

.

Equation (4.10) continued
N N Y Y S-S
O Lt I R ¢ I DA C N SO MY

2 x|
N (p = %)" 5 Pleag| (8

o“ o (x2,§l)c 3 = -0 §2H—K(§2’§l)

oJo (%,5,%,)07 (%, - %, )9(x, - X )z -(x, - x )20-2 (%5,%,)
~ 271 1 1’ = 2 T oMo\ 2 %L

+(o%, - ¢ ~l) o (X PlK 1)1 () - le]m+%|-%(§)] s (k.10)

~ A

where & = x,-x,. The expressions on the right in (+.10) are obtained
with the aid of the expression for ﬂK(§2,§l) given in (4.10). 1In
obtaining the last line in (4.10), we took into account the Legendre

polynomial identity in (A.15). From (4.8), (4.9), and (4.10), we

find

- v.dy fyp(s
o (Xg,xl)ﬁ (85,9 = V"9, )T(p)

= TGy b X, - 27 250 100

5

+ E-nK(§2,§l) +‘%§l PI ]-3 1(8)] o == 8

DII—'

g; T(p)

Equation (4.11) continued next page
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Equation {4.11) continued
g.% (% )c (6,,9,-9, =V, g l)T(p)
0T X \Xos Xy a2 Xl T Ve 1

i T(p)

[ ST )

L1
) 55

b | %~ o p %
(&.11)
Taking the trace of Eq. (4.9), we obtain
2 9 1 o L.lo Lo 1o
(B, - 2)" (o) +o 55555 o) = - 3555 1) - (4.12)
Hence
o (%,,%,) ol(ﬁ Y59 - Y Jv IT(p)
Te\tor™y j& ~2 <1
o (¢) (5, - 2)° (o)
- ks3] -3) (B P
ey - e 23
+[“n<x2’xl) &;l P|n+%| é(g)] 5 % (o)
(4.13)

j A A A 2 . _
0" Xpn_ (%%, )07 (85, Yo'y %%9,") 2()

LA A A 2 a - .
= g'xgﬂ_K(lexl) 6 a? T(p) + (g'?\c’e g 251)

aQ

' lia 1¢
X 2: {X2P|K-%[-.é_(§) - XlPlK%l_%(g)J -5 ?p ‘_3. % (o) .

ol

In view of Egs. (A.6), (A.12), and {A.14), we have

1 n
ll(Xg:Xl) = |xf . de {P,K+%'_%(E)P’Kn_%,_%(é)(En - 2)2 ()
S
2
- E%;(l -¢7)P |K+;f 1(§)P 1’ 1(5) o o T(p j

1
AKlQ(Xg:Xl) = |kl ag {[PIK-%I-%(E)PIKH+%I-%(§)
-1 Lt
- ;%;(1 . ;2)P]K_%,_%(E)P;Kn+%,_%(§)} 2 S 2(p)
1
PP el 48 NP e (8]
P . ] 19 1¢ [
| . 13 19 o0
X ixQPlKn+%l-%(§) lean'%l-%(g)J p o p dp T(O)I - 1)

. ) . 21 22
The corresponding expressions for AK (x2,xl) and AK (x2,xl) can

be obtained by taking advantage of the symmetry

12

n K (X2’xl) = A—n,-nn(x2’xl) _ '
(4.15) -

22 11
An,nn(XE’xl) = A-n,-nn(XE’xl) : v

We now specialize to the case of an §; state. For this case
2

k. = -1, and the expressions for the AK(xz,xl) are
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1 where jz is the spherical Bessel function, and
1 ] 5 _ .
(xgixl) = | |[ ag {gplm%l_%(g)(En - Z) T(p)
-1 o = (B - 2)% 3 v, = (B, -2)x . (4.18)
1 2\, 19 . s .
1.1 order to ] ' p (+.10),
+ E(l - £ )Pjn+§¢ 2(5) 5 5% T(p) In order to deal with the derivatives of T(p) in (4.16), we note
that A
Blagr) = - [ adr 5 0) 23 n0) 1O ap) = -2 S () (4.19)
2771 l -—2-| P P dp e - X2Xl SE e ’
and
10 129
"0 g ) TP g ) B - G5 5 5 ) [N T I BV I S EPT (1.20)
(xp - x8) 555 5 35 Tle) = S, poop 10 .
t We thus obtai
21 1 a e us ontalin
AT (xp5x)) = -|n|[ ag {PIK'%l‘%(E) 5% T(p) |
-1 1 r
2
; \ . AKll(XE’Xl) = |K'| [ ag \llgpln%t_%(g)(En = Z) T(p)
- 10 19 -1
+ [x2 [r+d | -3 1(8) - [ _%l_%(E)][ng ] ° % 5 5% T(D)} ) .
1 2 . 1 9
. 1 : . - E(l - &%) PlK+%l_%(§) X X T(O)}
o) = Inl [ @t P 6@, - 0P re) L (ha6)
-1
1 En -z 2
- 21 : = Il % m[([KJrZI 2 Py )ap®)
In arriving at the above expression for A (xe,xl), we have taken ' -1
the identity in (A.15) into account. We expand T(p), which occurs
in (4.16), in a Legendre series in ¢, and then integrate over . +(k+i] -5 N 5(5)] K + l |K+_‘ L(8)Y (o)
. o |-
We have l 2l 2
(& ( sin[(B) - 2)x, - %] = - z) k| |K .y [(!K + 3] + %)j|mi1+1—(y2)
LT z) T(p) = (En ~ Z)Tgé - 51] _ F , 2|13

i 1 -1
X J]K%i%(yl) + ([Ic + 2| .2)3 mi|-%(y2)

- Y e 7, 3,050 3,0) e
£=0 Equation (4.21) continued next page
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Equation (4.21) continued .
. k+1.
x 3 5 sl - ygy Jlm_l_l(yz)alm_l 10ry)
k313
= 2(En - z)lKllj]n+%|-%(y2) j}n+§|-%(yl)

ng -1

y2yl IK,‘_I__(yg) J!K_‘_l l(yl)] (’4.21)
and

1 r
|
AKl2(x2,Xl) = —|K|[ 13 IPIK’% _%(E)
-1

d L1
+ [ 2F |- _] a(8) - lelK+_| 1(5)-l 5;5 5 %— (p)
[l 113
= —,K‘.l Jl dag = [XEPI ___|_1(§) - l'“’ll 1(5)} ESET((\)
1
= |n|[ at g-—!(x XQE)P'K‘F—I-I(E)- 201 g)Ple| 1(§)]
/-1
X %g-p"l‘(p)
fl 3 . 5]
Sy o 5 [ P a®) + 2R - I 40 | 76
-1
Yooy
x| dga—gf\x k|- 1<g)+——— o2 1(5) (o)
-1

Equation (4.22) continued next page
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Equation (4.22) continued

- Z)IKI 33; jlx+%l-%(y2)

X

) . ]
[3‘“ ]K+_l_1(yl) + L JIK+%I_%(yl?] ’

= 2(En -z) K 'j"K%[-%(yE) le-—é—'-%(yl) . (k.22)

The corresponding expression for Amel(xg,xl) is easily obtained by

observing that

12(

xyoxy) = (4.23)

We also find

22(X2,Xl) = E(En - Z)lKl jI |_l(y2) JIK-lI-l(yl) (u'eu)

Hence, for an arbitrary §8; state, we have
2

T A

oo dxy %y
Jo Jo ék‘*

j 11 B . : ,
1f2(X2)GK (x2’xl’z)f2(xl)IK[[J]K%I-%(YE) J'll,ﬁé_,_%(yl) -
e Lz dy (v,) (v,) d

Ypy 'K+;l 1 Y2 J,K+;| 1 yl -

12 . .
+ fz(xz)GK (xe)leZ) fl(xl) R'JIK%I % y2) J’K"%I"é‘(yl)

Equation (4.25) continued next page
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Equation (L4.25) continued
v £,(x,) 6 2N (x,,%,,2) (%) K W) 3% 1 a(v;)
1727 Te T2 T2 [e-3]-327 |k |-31

+ £ (x)) 6.2 (xx,52) £ (%)) 119 peet -3052) 3 ey -3 0)

(&.25)
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V. NUMERICAL EVALUATION OF THE LOW-ENERGY PART AEL

The real part of the low-energy part of the energy shift is

[0
Re(AEL) = =

E -

R P dz M , (5-1)

where M is defined in (4.1), and given for S% states in (L4.25).
We consider only the special case of the IS% state. In this case,
specification of the principal. value of the integral over z is not
necessary, because there is no bound-state pole in the integrand in

the interval (O,En). We have

E
n 0 0
: 3-28 /’
o o 27
e A dz(En'z)rZB-%Sj N S
0 0 Jo
~Y(ay4x, ) 25\ 1 11
x xexl) /. }(l - En) G, (xg,xl;z)|nl
koL
x [31 (v,) 3 (y)+ﬁ#ij (v,) 3 (y,)
[ Ted | -3VY T Ty I e 3R el -4
-1 6 P (x,x,2) K § (v,) i (v;)
ko ML [e+d [-327 9 [e-3 -3V
- 16 (xp,xp,2) K ] (,) 3' (¥)
K 2%y |k-%]-527 <5 -3V L
1
+ (1 +E) G Px,,x,,2) |3 (v,) 3 (v,)}
n) G (%p0%p52) ] [k=3]-2"727 < |r-3|-3"717{
J
(5.2)

where
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1-(1-72)%

-
]
g
o
i

y2 (En = Z)XE 5 yl = (En - Z)xl . (55)

The expression which appears in (5.2) is in a form suitable
for‘direct numerical evaluation by a computer. We shall first briefly
‘outline the method we use, and then give a detailed description of
each step. The triple integral which appears in (5.2) is evaluated,
after a change of variables, by Gaussian quadrature. For each value
of Za, the multiple integral is evaluated several times. In each
successive évaluation, the number of integration points in each
dimension is increased. In tﬁis way, a convergent sequence of values
for the integral is obtained. The integrand is in the form of an -
infinite sum over k. This sum is evaluated for cach set of values
of the integration variables. The most significant contribution to
the sum comes from terms for which [nl <y, vhere y 1is the smaller
of the arguments'of the spherical Bessel functions. For |k 3 y, the
terms in the sum approach zero rapidly as |x| increases. The
spherical Bessel functions'and radial Green's functions which appear
in the individual terms in the sum are evaluated by algorithms which
are described in Appendices B and C.

We introduce new variables of integration in the expression

(5.2):
2
Yy = Erxl 5 T o= ;I for Xy <Xy
z
t o= 1.2 (5.%)
n X
¥y = 27x2 3T = for Xy > Xy

-30-
Employing these variables, and noting that the integrand is symmetric

under interchange of X, and Xy, we have

8
o . ['l at LY 1 ;
B = —AE jo dy | dr s(r,y,t,r)f (5-5)
. 0 0 0

where
2 )
2E_“(27)
S(r,y,t,7) = - DB 4r2d y5—26 Y e—%(l-r)y
r(3 - 2s)
n’ Tk 2y’ 2y’ L1\
- *5!2\2Y
v
y /7
x §h i1 K_ -1) _121)___ d rYEnt‘x
3|2 e R AN
YE t
ry Y TYE ¢
x Iy
+—~< > (G B me D e (G
ST e I re (L, L ﬂyE"t\’
[s-3|-3\ 27 « \Zr oy B Q1 - t)”‘] [e-1]-1 “\zr /

3 yEnt 22 fry y_
X — —J
[e+2 -5\ 27 v+ + E) G 2y oy E (1 - E)

) ryE t yE t
K
B e-g -\ 27 / S\ 2r (5-6)

We next examine the sum over k to establish the nature of

its convergence. ILet Tn(r,y,t,r) be the quantity in curly brackets

in (5.6) summed over both signs of k. We then have
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, 2En2(2r)_3 26 525 -y A-r)y V
S(r}y’t)r) = - l'! 3 - 25 y5 2 T (r}y}t Y)
K:l
5.7

The asymptotic behavior of TK(r,y,t,Y) as k —»» is found from the

asymptotic behavior of the radial Green's functions shown in (A.30)

and from the asymptotic behavior of jﬂ and jk when £ — w3

2! 4!

. Y/ . £ £
3, ~ T )~ f o) - (58)
The asymptotic form, when Kk - o, is

T.(r,¥y,t,7) ~ (1 - En)[v + (1 +E - Enwg—,] y—Y>

N 2K
sy 12 [ B try -
X (E t) -4 2r(;,{5! .il ( nY / . (5.9)

We obtain an indication of the rate of convergence of the sum over «

in (5.7), for k large, by estimating the remainder
Ry = > A (5.10)
k=N+1

where AK is the asymptotic form of TK given in the right side of

(5.9). We have

2m
B N+ 1+m\ (N +1 +m)!(2N + 2)! ]2 B try A
ANiiem = N+ 1 (N ¥ 1)1(2N + 2 + 2m)!| T N+L

(5.11)

and therefore
2m

A < /N +1 +m \2 Entry A (5 12)
N+l+m — K N+1 J (on + 372rj N+ :

-34 -
One can easily show that
2 2
E: (N +1 +m) mo (W+1) l) 3 (5.13)
m=0 (l_x)

2
0 <x <1 N>1.
Hence, if N is 21, and so large that

E try
n

v +3)5y < 1 o - (5.1h)

we find

AN+l

v < = . (5.15)
Entry 2 !5 . :
2N + 3)2r );

-

We conclude that for large enough N, RN approaches zero quite

rapidly as N increases. More precisely, we have

Py

lim ———————anr = ¢ (5.16)
\ 2N :
No w e Ent* y
2N 2r
where C 1is a constant independent of N.

The above discussion indicates the nature of the convergence

of the partial sums

N
Z T, (5.17)

k=1

when ‘N is so large that the terms Tn’ K > N, are well approximated

by the asymptotic forms AK. . Actually, the partial sums are often
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close to the limit before N is sufficiently large for the asymptotic
form to be a good approximation. The rapid decrease of TK arises as
follows. Consider the Bessel function and its derivative which contain
the smaller argument in TK. For & greater than the smaller argument,
the asymptotic forms in (5.8) are good approximations for these
functions. For such k, it is evident from the asymptotic forms that
these functions decrease rapidly as k increases. On the other hand,
the other factors in TK are relatively slowly varying as k
increases. Therefore, for k greater than the smaller of the arguments
of.the Bessel functions, Tn decreases rapidly as k 1increases, and
the partial sums SN converge rapidly. The behavior of Tn as a
function of «k, for some values of the other parameters, is illustrated
in Fig. 5.1. In the numerical computation of §(r,y,t,v), we terminate
the sum over x at & = N when both of the following conditions are
met:

ryEnt

N
|Tgay! < 1o'l5|z Tl N> (5.18)
k=1

We now describe the procedure we use for evaluating S(r,y,t,7).
The evaluation is performed by a subroutine which, given a value for
each of the arguments r, y, t, and Y, computes the value of
s(r,y,t,v). First, a number L

ryEnt

L = —~— +3 (5.19)

is computed. We find empirically that this number is always larger,
and not excessively larger, than the smallest N which satisfies

(5.18). The Bessel functions and their derivatives, which appear in

-36-

(5.6), with indices in the range O to L, are computed with the method
described in Appendix B, and stored in arrays. Then, the sum over &
is performed. The radial Green's functions are evaluated as described
in Appendix C. The summation over k 1is terminated at «k = N, where
N is the smallest number wﬁich satisfies the conditions in (5.18).
Finally, the sum is multiplied by the remaining factors which appear
in (5.7). The evaluation of the gamma function is described in
Appendix D.

With values for s(r,y,t,r) available, we numerically evaluate
the integrals which appear in (5.5). The integrals are done by
repeated one-dimensional Gaussian quadrature with new variables of
integration which are defined in subsequent discussion. Integrals
evaluated numerically over the interval (0,1) afe done, with the
appropriate linear mapping to the interval (-1,1), by Gauss-Legendre
quadrature; integrals evaluated nuperically over the interval (0,w)
are done by Gauss-Laguerre quadrature.el We design the integration
scheme to give the result correctly to 11 significant figures when
Z = 10. The corresponding accuracy in the physically interesting part
of the result is much less, for the following reason. The low-energy
part OB is of order «a (see Appendix E), while the renormalized
self energy. is well known to be of order aC&x)h. Hence, in the
worst case that we consider here, 1i.e., Z = 10, the physically
interesting part of the number we compute is smaller than the number
itself by a factor of order (lOa)h ~ 30X 107,

In order to motivate the choice of variables used in the r
and y integrations, we consider a simple function which exhibits
the qualitative features of the dependence of S(r,y,t,Y)v on its

variables. To find such a function, we recall that the main
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contribution to the sum 8(r,y,t,Y) comes from values of k for
which

ryE t
n
'KI < 2T ’

Iy
27°

the sum is qualitatively reproduced by the expression obtained if the

and hence, for IK| < Therefore, we expect that the behavior of

radial Green's functions are replaced by their asymptotic forms, for
2Y >> |k|, which appear in (A4.28). Taking the last term in (5.6) as a

typical term in the sum, and making the above-mentioned replacement

for the radial Green's functions,we obtain

2

E“(L+E)

- 1 - 1-8- 25 -

s(r)YJt)Y) ~ 2 = 2YCZ tr 8-v YB 8 € y

r{3 - 2s)

]
-(FD -y ryE_ t VE

e Z BT E‘Y/ 523

(b 20)

1
where c¢ = (1 - z2)2 and z = En(l - t). Here, the symbol ~ means
the functions on either side are qualitatively similar in their
dependence on the variables. We perform the sum over «, and replace

the relatively slowly varying factors by 1. The result is

D sin| 220 y
~5(z-1 -r sin -r
S(r,y,t,7) ~ eVe o ' (ir 1) . (5.21)

The factor (% - 1) in the exponent is positive for the range of
values of the energy .z under consideration.

We now consider the integral

-38-

Sl(y,t,Y) = dr S(TJY;tJY) . (5'22)

We note that the qualitative r dependence, from (5.21), of the

integrand.is

-a(1-r) sin[6gq(1 - r)]

Q( ) [lQ_ = (5_25)
where

0<g<w

fle]
il
rof =

(-1

0 < © (:; — Y

For Z <110, we have & < y. For g large, the sine function in

(5.24)

(5.23) oscillates rapidly as r varies, but the oscillations are
strongly damped by the exponential. ‘To numerically evaluate the integ-

ral in (5.22), we employ the following prescription:

for 0<gq <10

1
2
s, (v,t,7) = ax 2x 8(x%,y,t,7) N=1[al +9
0
for 10 < q < 30
1
Sl(Y;t:Y) = dx S(X}y)t)Y) N = min([o‘hq] + 8:18)
0

Equation (5.25) continued next page
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Equation (5.25) continued
for 30 <q <100
1
0 ..

5, (¥,t,7) = dx 2— s<1 - 2—0 x,y,t,a + e N - 18

for gq.> 100
- )
1l = b4 Y
sl(yytyr) = dx a S<l - aJY)t;Y> N=28
o]
(5.25)

where N is the number of integration points used to evaluate the

integral, 5 is given by

s(r,y,t, )

§(r)YJtJY) = (526)

and ¢ 1is given by

a_ .
30 .
e = ax 2 s(1 -2 x,y,,r
) 3 q
1

\Nluﬂ
(@]

ax e eV o 3 x1070 eV | - (5.27)

1
We arrived at the above prescription in the following way. We
examined the integral numerically for ¥ = 10 and sample values of
y and t which cover the range of values given for these variables
vwhen the integrals over y and t are evaluated. For each fixed

’

value of y and t, we tried various variables of integration in the

=40-

integral over r, and for each variable of integration, we tried
various numbers of points in the integration formula. A choice of
integration variable and number of integration points was cénsidered
acceptable if the resulting value for the integfal was corrgct to

11 places beyond the decimal point, and the rate of convergence was
good. The correctness of the result was judged by varying the number

of points in the integration formula and observing the degree of

stability of the resulting values for the integral. By good rate of

convergence, we mean one for which increasing the number of integration
points by two, decreases the error in the result by approximately
a factor of 10.

We next consider the integral

dy 8, (v,%,7) - (5-28)
0 .

5,(t,7) =

The dominant y dependence of the integrand is simply

eV . . (5.29)

The method we use to numerically evaluate the integral in (5.28) is

as follows:

Sp(t,1) = S5 (8,7) + 8u(t,7) + 8y5(t,7)
1
sel(t,r) = ax Sl(x,t,Y) : N = 1k
0
1 .
Son(t,1) = dx hsl(l + bx,t,7) N =12
o .

Equation (5.30) continued next page

A,

ot
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Equation (5.30) continued

[-.]

dx sl(5 + %t,Y) N=6. (5.30)

1l

SEB(t’Y) =

0
The number N is the number of integration points used to evaluate
the integral. We arrived at this method of evaluatiqn by examining
the numerical behavior of the integral in (5.28) for ¥ = 100 and
vsample values for t. For each value of t, we tried various
variébles of integration and numbers of integration points to evaluate
the integral. In choosing a method, we applied the same criterion of
acceptability as in the integration over r.

We finally consider the integral over 1

1 :
s}(r) = {‘ at s,(t,7) - (5.31)
Jo

The most significant feature of the integrand in (5.51) is the
.presence of the bound-state poles near t = 0. This integral is

numerically evaluated as follows:

55(r) = 85 (1) + 855(1)
. L
L2 3 ~
SBI(Y) = dx 0.3x 82(0.1x 57) N = 1k
0
1
2 3
= ax 2.7x~ 8,(0.1 + 0.9x7,71 N = 10 .

The number N is again the number of integration points used in the
numerical evaluation of each integral. We arrived at this method by

using the same approach as was used in the preceding integrations.

lo-

For Z = 10, 20, 30, 50, 70, 90, and 110, we numerically
evaluate the integrals in (5.5) three times, employing the variables
displayed in Eqs. (5.25), (5.30), and (5.32). 1In the first evaluaticn,
the number of integration points used to evaluate each integral is
two less than the value given for N for that integral. In the
second evaluation, the number of integration points used to evaluate
each integral is equal to the value given for N for that integral.’
In the third evaluation, the number of integration points is two
greater than the value given for N. For Z = 40, 60, 80, and 100,
the integrals are evaluated once with the number of integration points
equal to the values given for N. The results of these evaluations
are listed in Table 5.1.

As we noted earlier, the physically interesting part of the
energy shift is of order a(Za)h. Terms of lower order in Za cancel
when all contributions to the energy shift are combined. The lower
order tgrms in the low-energy part are calculated in Appendix E. Taking
into consideration the result of that calculation, we isolate the
significént portion of the low-energy part in a function fL(Za),

defined by

1

e, - %[ig-mn r F, " £y | (5:53)

The values for fL(Zu) corresponding to the numbers obtained for
SB(Za) are listed in Table 5.1.

If, in the sets of three values for SB(Za) obtained for
2 = 10, 20, 30, 50, 70, 90, and 110, the dif?erence between the
;econd and third numbers is taken as an approximate measure of the

error in the second number, then the order of magnitude of that error
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Table 5.1. is a fairly slowly varying function of Z. 1In view of this, one can
infer the magnitude of error in the values of 85(21) for 2 .= 40, 60,
2 33(53) fL(Za) 80, and 100 by interpolation. We note that the errors, as defined

10 - 0.492604558261 5.885057461 above, in the values for Sa(Za) increase as Z increases. This is
0.1492604558212 5.885055755 : to be expected as the integration scheme is designed for Z = 10. On
0.1492604558219 5.885055985 . the other hand, the errorsin the values for fL(Za) decrease as Z

20 0.471522661337 4. 399376065 increases because ?he effect in fL(Za) of the error in SE(ZQ)
0.1471522662028 4.399377589 becomes relatively less important.

0.471522662053 L. 399377644 As a test against errors in algebra or programming in the

30 0.438918124592 3.635616766 ' evaluation of the low-energy part, we check the behavior of the
0.438918122718 3.635615950 numbers in Table 5,1 in the limit Za — 0. From (E.14), we find
0.4389181.22834 .635616000

59 3 3:6% lin §,(20) = % . (5.34)

Lo 0.397217582472 3.157389794 Zo—~ 0 -

50 0.348910859260 - 2.832339685 This condition, which is not very stringent, appears to be satisfied.
0.348910857608 2.832339592 The behavior of fL(Zu) provideé a hetter test. It folloﬁs from
0.348910857653 2.83233959h known results and subsequent work that

60 0.29647304L488 2.604438382 ’ -

! £(m) = () - 15k + Slam) (5-35)

70 0.242325295399 2. 446696882

[This relation is obtained by combining the known series in (1.2)
0.242325282906 2. 446696699 _
0242325282216 2 hGE96E89 with Eqs. (10.3), (7.39), and (F.14).] We check for this behavior
by plotting values of the function

80 0.188809276812 2.34678665h

90 0.138167108750 2.302805682 fL(za) . % gn(Za)-z (5.36)
0.138167073328 2.3%02805492 .
0.138167073750 250280549k and the limit point in Fig. 5.2. The calculated points in this figure

100 0.092524835161 2.325000983 are consistent with the 1limit point. We note that a deviation of
110 0.053885535012 2 447660167 1070 in the value for Sj(Za) at Z = 10 would produce a deviation
0.053885561168 R hh7660250 of 0.35 ‘in“)fL(Za) which is enough to destroy the consistency in
. 5 . :

ig. 5.2.
0.053885562857 2.447660234 Fig. 5

L2
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VI. THE HIGH-ENERGY PART AEH

The high-energy part of the energy shift is given by

ME, = J d5 ‘/’d x, ¥ T(fg) a, dz G(x,,%,,2) oM v, (%)
o

H

1 p
X -5 lexp(-blx, - %, |) - exp(-d' [x, - %, )] - (6.1)

The contour CH is described in Sec. II, and pictured in Fig. 2.2.

In order to display some features of the expression in (6.1), we

restore the integral over k which appears in (2.16). Ve then have

~
o 3 3 3 /. 1
LBy - == jd’x d-x dz | d”k
~! ~ ~ 4% .2 2
)4-,(3 2‘/ lj;H [ \15 _ (En - z)° -

1 \ k-x?
) 2 (X ) a e ) G(?SE’?\(,]_’Z)
K+ A - (En - z) - 1e/

For fixed A, the integrand in (6.2) falls off so rapidly, as |z |
and Ikl — w, that the integral-over the portions of the contour CH

which are quarter circles of radius R vanishes as R —=. Therefore,

L6
in (6.2), we replace the contour Cy by the contour Cg which is
just theportion of Cy along the imaginary z-axis (see Fig. 2.2).

In order to deal with the part of AEH of order lower than
4
a(za)”, and the part which becomes infinite when A - w,we isolate
a portion of AEH which has these features and which is relatively

easy to evaluate. To do this, we take advantage of the identity

1 1
Qp-2k+V+p-z T ap-ak+p-z
- 1 v 1
@R -Qk+B -2z Qp-ekK+p-z
+ 1 v 1 v 1
ap-ak+p-z p-qgk+V+p-z ap-ok+p-z
(6.3)

We substitute (6.3) into (6.2), and consider the contribution of the

last term in (6.3) to T

”a—B f f< -<E-z>

\
n} . (6.4)

A count of powers in the integrand shows that the convergence of the

integrals over z and k is uniform in A. Hence the term containing

A gives no contribution in the limit A = ». Furthermore, the
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expression in (6.4) is of order a(Za)h (see Appendix F). Hence,
the part of AEH which we wish to isolate arises from the terms

(

1 1 .
+B -2z - op-ak+p-2 v Q-p - Q'E ¥ B-2 (6.5)

19

Ml L

LR -

in (6.3). For the second term in (6.5), we write

1 v 1 _ 1
%R_%.E+B-z QE—Q.§+B-Z - (P-k)2+l-z2
1 I 1
+2z(p +2z)V + 2z(p + z)[
[(E - 5)2 + 1 - 22]2 (E'- 5)2 + 1 - z2,

1 2z(g-p - a-k)

(p - 5)2 +1 -2z

v 21 5
(p-k) +1-2"

x > P

+
(R-K)7+1 -2

QR - gk Btz N

.
(E - 5)2 +1-~-2

- [a-p,V (6.6)
(E - 5)2 +1 - z2 - 2

The contribution of the last three terms in (6.6) to By is

3 1
fdzfdk<2-(E-z)2-ie
Cﬁ ~ n

1
K+ A° - (Erl - 2)2'- ie

i/,
h

X a{ 2z(p + z) | 21 2,V] 21 5
s L(E -k) +1 -z (p-k)+1-2
2z(q-p - a°'k) 1
+ v
(E - E)E +1 - z2 (R - E)z +1 - 22

Equation (6.7) continued next page

!

\'A

]

N\
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" Equation (6.7) continued

Yp-gk+prz
> [Q’R,V]

1 oM \\
@-0Fr1-2) |/

-7 ) (6.7)
(p-X)"+#1l-2
Again, a count of powers in the integrand of the integrals over =z

and k shows that we may ignore the term which contains A. This is
more easily seen, in the case of the first of the three terms, with
the aid of the identity
1 1
5 Vo=
(p-k)+1-2

(6.8)
The expression in (6.7) is of order a(za)h. This is shown explicitly
in Appendix F. .

We now write

MEy = MRy, + AR (6.9)
where
/ -~
Fyp = 'g‘&“ f dz dj‘i(p 5 5
b N S 'K - (B, - 2)" - ie
H
i 1 (’( 1
a5y -2 mae ) M\ERTEETR

1
-V ; - 2z v o
(p-K)°+1-2 e [(2-15)2+l-z2]2>

(6.10)

”
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and AE., is equal to the sum of the expressions in (6.4) and (6.7).
The term AEHA is just thé part of AEH described in the beginning
of the preceding paragraph. It is evaluated in Sec. VII.

The remainder of the high-energy part AEHB is evaluated in
coordinate space. The separation of AR, given by (6.9) and (6.10)
corresponds to the separation of the (abstract) Green's function G(z)

into two parts GA(Z) and GB(z) where

6(z) = G,(z) + Gy(z) , | ‘ (6.11)

and

l H
Gy (2) = TEiE-: 2 V:—g-——-—*gj-z(ﬁ’rZ)

X ¢ Vs : (6.12)
(p” +1 -27]
The curly brackets in (6.12) denote the symmetrie product:
{A,B} = AB + BA. The symmetrization is introduced merely for
convenience, and does not affect the result. This is easily scen by

considering a typical term in (6.10):

4

<n (a“)T< an,

1 B
nia V d o {n
H Qk(p-§)2+l-ze

x 21 5 T VT(otu)T n = <(n a o,
(p-K" +1-z N
= o 6
b4 ( 2 1 22V n . (6.13)
p -k -

-50-

The first equality in (6.13) holds because the expectation value is

real. The coordinate-space representation of GA(Z) is
. . 1{r T
Gy (x55%y,2) = |-i@V, +B +z + 5@; + o

el
_ﬁﬁ__za i
X = /) E—T————jZT (6-1&)

o 1
where Y =2x and c = (1 - z )2 Re{c) > 0. With the aid of the

expansion
~c|xymx, | —
2™
e A . (1) . A a
= - h
CIEAEEY ; LK I weg)-gliexd Bl glien) « (%)

(6.15)

in which x_ = min(xg,xl), X, = max(xz,xl), Jg 1is the spherical
Bessel function,and hgl) is the spherical Hankel function of the

first kind [“m appears in (A.11)], #nd with the aid of the identities

. A~ 1 a ~ Q.EE +1

—l~'~2 = —_I.g XP ;— W2 X? + 19"){2 %
2

(E'Eg + l)ﬂn(erXl) = =K HK(XE’xi) » (6‘16)

we obtain
Gy (x5,%,52)
11 A A 12 . ~ A A
— GA,K(XE’xl’Z)nK(XQ’xl) GA,K(X2’X1’Z)lg'XEﬂ—n(xe’Xl)

K 21 .oA A A 22 A A ’
tgA,K(XZ’Xl’Z) 19-X5 “K(xg’xl) GA K( g:x :Z)ﬂ (XQ’Xl) i

(6.17)
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where
C X+t X
11 11 Y 2 1 11
GA,K(XE’XI’Z) = F, (x2,xl,z) ty % {(1 + 2kz) F (xg,xl,z)
X X, C
271
21, 12
- z(z + 1) [xF, (xe,xl,z) + X F (xz,xl,z)])
12 12
Gy, (X %02) = B (xp:%),2)
(6.18)
21 21
GA,K(X2’xl’z) = F, (x2,xl,z)
’ X, + X
22 22 Yy 2 1 22
GA,K(xe,xl,z) = F, (xg,xl,z) o {(1 + 2«z) F, (xe,xl,z)
XX, ¢ -

12 21
- z(z - l)[xan (xg,xl,z) + xF (xa,xl,z)]}

The F's in (6.18) are elements of the free radial Green's functions,
and are given explicitly in (A.32). The expression in (6.17) is the
analog of the expression in (A.25) for the Coulomb Green's function,

and there exists a corresponding expression for GB(ze,gl,z) in which

©ij ij _ aid s 4o
GB,K(XQ’XI’Z) = GK (xg:lez) GA,K(XE’xl’Z) i,j =1,2.
(6.19)

That expression for GB(§2,§1,Z) is the basis for our numerical

evaluation of AEHB in which we employ

ia 3, 3
MByg = "5 ]d X | X “’nT(fe) a | dz Gy(xp02152) @ ¥, (x))

1 } ) 0) -
X ng—:—gIT exp( b|§2 51[) . (6.20)

Upon rationalizing the denominator and summing over

_52_

VII. NUMERICAL EVALUATION OF AEHA

(6.10), we obtain

/ .
AEHA = = igg n dz d35 ) 1 5
2n o kW -~ (B - 2)" - ie
~ n
: H :
1 (ep-gk+2 -2
N 2 2. 2 2
k™ + AT - (En - z)" - ie K\fg -k +1-2

+ Y 1 - 22(28 - 2) V L

(-6 +1-2

2

[(p - K)° +1-2°0°

in

n

(7-1)

The integrals over k are performed with the aid of the following

identities, valid for Re(b) > 0 and Re(c) > 0:

H
i

[.

&x

@k

~

&k

~

o0
1 1 B ,,2," 4 1
2 2 < e ¢ dh 2
K- +b (p-k) +c¢ 1o p+(n+b+c)
. ® r
J i H 2
1 k 2 i P -
2.2 55 = % | dil s+ =
K- +b" (p - k) +c Io { (n+b+c)
pJ

=

2

(7-2)



_53_

Taking these identities and the equation satisfied by (n] into

account, we have

/

ig 2 _ 2.,
fBy, = ;Q az3(s°,b) - 3(2%,0))] n (7.3)
C’
where
2 . b° - oo
J(p~,b) = an {48 -2z + (3 + ——— ) (B - E)
o (n+b+c)
2 2
- 2
+{1+2 ¢ 5 1 V] 1 5 - ?é(EB -~ z)
(n+b+c) Vi pT+(n+1b +¢e)
X Vgt (7.4)
p_ + (b + ¢)
and where
2 1
b = -i[(En -2)" +ie]? Re(b) >0
l _
b' = -i[(En - z)2 G ie]? Re(b') >0 (7.5)
2 '
¢c = (1-2%)° Re(e) > ©
For the terms containing pg, we make the substitution
2 .
2 2 = 1_2 -2 g 2 ) (7.6)
a™(p” +a”)

p +a a
In the resulting expression, the integral over n can be performed
easily in the terms corresponding to the first term on the right side
in (7.6). In the terms corresponding to the second term on the right

in (7.6), the integrands in the integrals over z and 7 fall off

~54-

sufficiently rapidly as fz[ and 1 - o that there is no contribution

from the terms containing A when A - w, We thus have
- AE. Y uoaE, 24 g (7.7)
ABya ma * Afha
where
1 ; \
AR = - ;_a n az[3(0,b) - J(0,b")] n/ (7.8)
. .
Cy
and where

4 - 22
J(0,0) = — +{% L -% C 42 j’v

VY BV . (7-9)

We consider AEHAZ subsequently.
We now consider the integral over z in (7.8). We shall
evaluate one of the terms in detail to display the method used, and

just list the values for the remaining terms. The term we examine is

1 1 1
I = I[ dz zcb_—-.+ = - o c> . (7.10)
C’
i

The integral is written as the sum of two terms corresponding to =z
on the negative imaginary axis and z on the positive imaginary
axis. The limits € -0 and Zq5%5 — 0, prescribed at the end of
Sec., II, are taken in each integral. The appropriate branches of the
functions b and b' are taken in each case. In terms of the

variable y = -iz, we have
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1

T
2

I =1 dy ¥ D -
e LT+y)2 -y - iE
1

- Py
5 2
1+ y2)2 + (A + y2 +2iyE - E

n

0
1
+ 1 2% X
o (1 +y)2+y+iE
| 1 N
- T T |
(1 o+ y2)2 + (A? + y2 + 2iyE - Ena)i//
o0
-2m| ay e
o) (l+y)2+y_iEn

1 \ - (7.11)

- 5% 2 5 . 2%
(L +y7)2 + (& +y - PiyE - B )4//

1
Introducing a new variable of integration t = (1 + y2)2 -y into

the integral in (7.11) gives

1 2 22 1 _12 1L _ .3 2 2\E}
(1 +t7) + (t°A *E'? +3t - 1B (¢ - t7) - tE7)

(7.12)

For fixed A, the integral in (7.12) is well defined. The first term

i . =2 1
in the integrand is infinite at t = O, and behaves like t

Subtracting this function from the first term in the integrand and

+ 1Ent .
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adding it to the second leads to two well-defined integrals. The

first of these is easily evaluated:

1 .
SR B S e 1 1, lEn\i
2 2 1-1EB% 2 v
0 S
E_ 1 '-Ene 1 -EnLL ' 2] ,
= -2l = m@+8 5. (7.13)
n n

To order A—l, the second integral is equal to

1 . 1
Im dt s }1 +iE t - —r
2 n 1 22 1 . 3

o t 5+ (t°A° + I 1Ent)

(7-1)

aoli o

The terms which have been ignored in arriving at the integral in.(7.1h)

give no contribution in the limit A — . A typical correction is

of the form

1 . 1

1 : 1
at < at
1 22 1 _ . 42| ° 52 1
o [5 + (%0 4 g - 186)?) o (e
A ..
1 1 -1
= 7 (™) (7.15)

d_x-—-__-__
o (x2 + %)

The integral in (7.14) is evaluated with the aid of the expansion

1 1
1 22 1 % T 1 2.2 1,5
5 + (t AT+ g lEnt) 5 + (t A+ H)

S iE t
n

+ T I
D) - )2

$oeee C(7.16)
[% + (tzAE

+

N
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Terms beyond the second in this expansion give no contribution to the Equation (7.18) continued
integral in the limit A — . Substituting (7.16) into (7.14) and : . >
2.2 1,4 1 1 1 1-E 1 ]
introducing the new variable of integration u = (A"t + H\Z -5, we = dz ————— = 1+ ———x5-—3 fn(l +E 7)
-1 oy c(b + ¢) 1+E E,
obtain to order A CH g
1
E -
n 1 r -
= dt = -
2 t 1 1 20 1 %‘2 20 1 % .1—- .’r dz ___Z______2 = :EI:—'— 1- ~l—2— n(l + Eng)% (718)
0 2[5 + (8547 + ) I (" + ) Jcﬁ c(b + ¢) n | E |
A 1
En b o+ 5y + 2u En 51 In order to express the part of ASTN ‘ of order lower than
= H— du —-—————3— = E— in A §J L(»
0 (1 + u) (7.17) v a(zZa)” in terms of the expectation values (B >n = (n|g|n) and

(V)n = (n|Vin), we take into account the relations
In this way, we obtain the following integrals: .

(E,-8), = O
r - 1.2 1
1 1 1 1 2 n 2
1 jc. o o I 1 e | (s, - o)), = ()"
n
i .
. & ‘ 1- En2 = ‘<‘3V);1 . (7.19)
[_ o ' We then find
2 E 1 -
1 1 1 n 2 1 n
i dzz[‘n+c b'+cl"5—‘AznA+—2—- E - 17
-’cﬁ L n = %[ ElnA -g> (5) ( zn?-rg-/‘ (V)n
Losy ( )1‘ Gt
+ n(l + E [ A 1
A n )l v ()" fHA1<za)j (7.20)
5 5 where
. (3-E")1-E")
1 ! c c -} 1 2 1 n n 2 4
= dz | - = n A - = 2 2
P ; 2 I 5 2 z 1-E°)3 +2E°) L -9E " + 3E
Y o Lo +c)® (o + o)) . E, (1 +E") ‘ (z0)" (m)z[—( n ) n o Llmo- ST
H ' BT 2) . LE
2 2) - n n n
(3+E 7)1 -E -
. R m@+rd) | - G0 [ 5 ? 17
En % in(1 +E_ )J(v) 2 - —— m(1 +E_ 2 ]\ Q-\\V
, : E °
n J

Equation (7.18) continued next page (7.21)
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The above formula is valid for any bound state. For the 1S; state,
2

we have
B - 1. ()
() = —E (7.22)
[1-(z)°1? :
- v> -0
<< Els) 18

Numerical values for fHAl(Za) are listed in Table 7.1. We note that

. 1 71
lim £, (20) = -35-Fén 2 . (7-.23)
Z’OHA 12 " &

We now consider AEHAQ given by

* : 2 2\

ia n dz an uEn_gz + 5+.._b_._-i__,§}

e o o {(n+b + c)//
H _

b2 - 02 1
x (p-E)+ {1+ v
T (n+p+e)’) | (ned+e)
2 ' p2
P ) o
5 5 - _i_E 2B z2 v 5 5 n> . (7-28)
p +(n+b+e) (b +¢) P+ (b +¢c) |

In the integral over =z, we introduce the variable of integration

¥ = -iz. We then have
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i
dz A(z,b,¢) = dy A(iy,-y - iE, (1 + y2)2>
cl oo

-

. . 2.1\
+ dyAéy,erlEn, (1 +y7)%,
0

[+
1
= 2 Re ‘dy A(Eiy,y - iE, (1 + y2){>

° (7.25)

valid for A*(z,b,c) = A(z*,b¥,c) which is the case in (7.24). We

. ) 1
next introduce the variable of integration s = (1 + y2)2 +y, and
then shift the variable of integration 7 by an amount -s: N =7 - s.

The resulting expression is

R N ® .
AEHAe = - %;-<2 Re | ds 3(1 + s'2) -dnl&En + i(s - s'l)
\ Jl l s .
2 . SN
1+E° +iE (s - s )1
5 - n n - E
* TN )(a - E,)
fl 1+E° +4E (s - s )\Vﬂé b’
N (- ) J(n-m) p° + (n - iE)°
2 ]
+i(1 - 859 hp v a(s - s )v > P Q}n\ . (7.26)
(s - iE ) + (s - 1iE )" //

The form of the double integral over 1 and s, which appears in

(7.26), is modified with the replacement
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o o0 oo S
j ds [ an B(s,n) —)f ds] an B(n,s) .
1 Js 1 1

The integration over 7

a - -5 ()

(7. 27)

is easily performed. We obtain

J[. ds(s -'s-l) bE + %(s - s_l)

+5 S E (s -5 )\\ ( )
- E
‘// p

-1 ] .
vV + his_lBV>

| J
)

is elementary (the algebra is somewhat

(s - iE )

+ % En(s - s

(s - 1E )

2
1 p

23
iE )" p

(s -

: 2
+ (s - 1En)

The integration over s

lengthy).v The result is expressed as
' 2 o
5,2 - 2 <n
+va, (57) + B va, (57) 16%|n ) (7.29)
) E N / _
where
2 <

Q(»7) = Bj(p) + By(-p) J =1,2,3,4 (7.30)

and where.

(7.28).

+ p)?)

2
~ 1 [BEn
16EnHkEn + p) P

(1 + By )

B5(p)

il

2
(3-E,

)2E,

2

16E p

’|

1 .
Y ETTS p/n[1 + (B

2 ; 2E p

1Zn[l + (B L

2
v 9)°) -~y
L+ hn

3+ h’ 2E P

3(1 + E )

243

2 n
(il + (B + p)7) -
16E % 3 1f ° 1+ En2

2

1 [1+(En+P)Wz 1 (15 7 ]
- fn + S - e

L 2 2 L P E +p

PE_'D 1+E 16E (E  + 7)Yy n
{ :
2

x m[1+ (B + p)°] - = ol + (B +p)7) - ()

8E 3(E +p)° L

Equation (7.31) contlnued next page

+

p)
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@+e2?f ». 2D  (3-E°)Ep
n n n n
B,(p) = — nfl+ (B +p)] - 5+ 533
16Enp 1+E 3(1 + E )
-1 - En2 5 2Enp N 1 p [l N (E . )21
+ 5 {1 + (B, +p)l - TS o P
8Enp 1+ E n
~
a2 f .. 2ED  (3-E°)eEp
n _ n n n
B (p) = - 5 <zn[l + (En + p)7] 5 + 5
l6Enp L 1+E, 3(1 + E, )
sg ¥ 4882 -1 p.  2ED
n 5n3 sl + (En +p)7] - 5
16E “p 1 +E
o~
(1 - Eng)(BEnz - 1) 1+ (8, +p)° |
+ T 5 Zn P l
8En h) 1+ E,

L WG > S
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Equation (7.31) continued In (7.33), the symbol ~ means equal to order (Za)g. We then

) ] define four functions h,, Jj = 1,2,3, and 4, by the equations
1+ En - 2Enp s : J
B) = - gl s (g, 9 - g
n 2
2Enp l+En ( o, 2 ) 1 ) )uh(
J n|E @ (27)p%n) = - 35V), + (z2)" hy(20)
2
1+ (E_ +0p) v
1 n 2, 2 1 k
+ " 2p2 in . 5 (n[BQQ(p )p In) = (%5 -5 /n 2)(V)n + (2o1) he(ﬂl)
n n
2 L
(nlva,(0%)p%[n) = ()" by(z0)
1 3 1 2 : .
- 2 ml + (E +p)°] . (7.31)
2En2(En +p)|? By *P n - .
' (n|Bva, (07)0[n) = (22)" by, (z2) (7.34)
n .

We note that each Qj, J =1,2,3, and 4, approaches a constant in the

2 The h's are evaluated by evaluating the corresponding matrix elements
limit p~ —» 0. 1In order to obtain a convenient way of expressing the

in (7.34). To do this, we take into account the form of the momentum-
contribution of each term in (7.29) to the net energy shift, we isolate

I space wave function given in (G.1) and the form of the function given
the contribution of order lower than «a(Zn) in terms proportional to

in (G.6), and arrive at the following expressions:

(V)n. The lower order contributions, which come from the terms .
containing Ql and Q, in (7.29), are identified by replacing Ql(pa) L 1 ro " ” ) »
: za)" h = = a g (p)” -
and Q,(p°) by the Limits . (7o) By (20) = 75{V), + Epjo P2 lg(p)" +e,y(p)"1 @ (¢")
) 2 1 . 2 1 : .

lim Ql(p ) = 15 and lim Qg(p ) = 5 fn 2 - %5 . " . . { o »
p° 0 P20 (7.32) (20)" hoy(z) = (542 -5)(V) + | doplg(r)” - ey(p)"]
En—)l En_)l v J 0

2
X
We obtain (%)
2y 2 1 2 1 " %, '
. : 2
(nl5,Q (29)p%|n) ~ 15 (lz7ln) ~ - 75 (a]Vin) ()" hy(20) = | b ey (p)Vey(p) + Ey(p)Ve,()1R5(p%)
) ‘ 40
(nlpay(2°)p2ln) ~ (5 4n 2 - L) (nlpp®(n) o
-1 ¢ h : 2
()" h (z2) = B, ! i dvp (e (p)ve (o) - g,(P)Ve,(p)1Q, (»7)
~ ~(3m 2 - L)a|v]n) . (7.33) | /o

(7.35)
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where, for the 1S; state, the g's and Vg's are given explicitly
2
in (G.5) and (G.7). The integrals which appear in (7.35) are evaluated
by Gaussian quadrature with new variables of integration x given by

1l - x2

2
b4

(2a)

Lol
]

in hl,h2

(7.36)

1 - x5
5

X

(za)

Qg
It

in hB’hh

We use a 60-point Gauss-Legendre formula. The numerical error in the
h's with this method of evaluation, as determined by observing the

convergence in the values for the integrals as the number of integration

points is increased, is of the order of 10-12' or less for

10 < Z £ 110. The results of this evaluation are listed in Table 7.1.

The total value of AEHA is then given by

g, = GG an 2 - Pley, - Hv, @0 1, (20)) (7.37)

where
Th_‘
1
fHA.(Za)‘ = fo (Zx) + hi(za) . - (7.38)

1=

Values for 7Za) are listed in Table 7.1. From (7.23) and the

fHA(
results in (F.20), we have

lim £ (2a) = % -24m2 . (7.39)

(
700 A
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1

Table 7:1. The results of numerical evaluation of T > By Dy
hg, hy, and the total £.,. All figures shown are correct.
2 flm)  n(m)  ny(m) b)) m(m)  g,(m)
10 -0.759762 0.061029 -0.235254 0.041051 -0.308422 -1.201358
20 -0.769348  0.047569 -0.219782 0.045286 -0.303368 -1.1996L43
30 -0.78587h  0.03%33259 -0.208071 0.050676 -0.301391 -1.211k01
4o -0.810250 - 0.017768 -~0.198607 0.057061 -0.301606 =-1.23563k4
50 -0.843934  0.0007k2 -0.190326 0.064314 -0.30%269 -1.272&75
60 -0.889193 ~0.018187 -0.182321 0.072286 -0.305666 -1..323081
70 -0.949575 -0.039426 -0.173684 0.080762 -0.308012 -1.3899%6
80 -1.03%0831 -0.063Lk71 -0.163550 0.089399 -0.309339 -1.l77591
90 -1.142851 -0.091023 -0.149890 0.097638 -0.308314 -1.5944ho
100 -1.304%09 -0.127%20% -0.1431106 0.1054522 -0.302901 -1.757100
110° -1.555971 -0.16%0%2  -0.103036 0.108286 -0.289584 -2.00%337
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VIII. INTEGRATION OVER ANGLES IN THE EXPRESSION FOR AEHB
We now perform the integration over angles in the matrix

element which appears in Eq. (6:20):

M = } d % | 3 1 Yy (x2) a, G (xe,xl,z) oM v, (x l)
p J
1
X oo mT exp(-b[x, - %, 1) . (8.1)

The integration is similar to the integration in Sec. IV. We draw on
results obtained in that section. For convenience, we omit the
subscript B from GB(§2,§l,z) in the rest of this section.

We consider separately two portions Ml and M2 of M

corresponding respectively to u =0 and u = 1,2, and 3 in (8.1).

We have -
E
Moo= X5 j & X ¥y (x2) G(xg,xl,z) ¥ (xl) = (8.2)
where
p = |§2 - 51' . o (8.3)

Employing the forms given in (4.2) and (%.3), we obtain

f d3x

M o= j &x, } A
P K

+
[fl(xz) G, (xz,xl,z) fl(xl) x (xe) 5 (x2, ) x (x )

.
- £ (xy) 6 (xg,xl,Z)f(xl)x (3,) 9%, n_ (RpRy) 0 Gy

Equation (8.4) continued next page
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Equation (8.4) continued

-1 (x) 6 P (xm0z) £y (x) AE (B) 08, 1 (R,8) L P@
o\¥p) G AXp0Xy,2) 118Xy X-nn Xy) 3%y m (%5,%)) lnn(xl)

T b0
+ fg(xz) G (xe)xl’z) f (X ) X- (xg) (xg,xl) )( (X )] -

(8.4)

All of the integrals over angles in (8.4) are of the form

e"bp
A (x5,%) = as, J( (xg) 1o (%55%;) x (x ) &— .(8.5)

In view of Eq. (A.1k), we have

1
L
An(xg,xl) = 3 dg[P|Rn+%|_%(§) P|K+%l'%(g)
-b
1 2 1 r " e F
—(1 - P — .
+ KRn( £”) l‘n+%l‘%(§) P|K+%|_%(§)] 5 s (8.6)
and in the special case of §; states
2
1 -bp
Ao = L[ ey ) e (8.7)
-1

where £ = X in both formulas. With the aid of the Legendre

2 l

series expansion

exp(-blx, - %, |) = o ..
F '221] 1. - b ;g; (22 + 1) (&) j,(ivx ) h§ )(1bx>)

(8.8).
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in which x_= min(xe,xl), X, = max(xg,xl), j, 1is the spherical whe%'e

Bessel function, and hl(&l) is the spherical Hankel function of the bo

i

1 { LLnTA i Aoy i Mnoa e
A (xe,xl) dgzjdgl x—nn(x2) g ”'K(xz’xl) ° X-Kn(xl) 8

first kind, we obtain

he(xpx)) = =le] 03 gy 5 (10x) h&l‘%l_%(ibg) (8.9)

2Q

A~ A A i K. ~
Ry w_ (Rp%)) o Xnn(xl)
. n

_ | ;
12 L N i
AT (xpox)) = dﬂa[dnl X-I;n(xe) o

for S states. Hence
3 -

-] o
2 2 11
Moo= -bf dxgxgj dx, X Z |K|(fl(x2) G (%% ,2) £(x;)
0 0 K

e

*

21 . un ~ i ~ A A i P«n ~
AK (XE’X]_) = j dﬂg[dgl X.K:n (XE) 01 g'xe T\'R(ngxl) o X’-K.n(xl)

12 21 )
+ £1(x5) G 7 (xp5%,2) £5(%p) + £5(x5) 6,7 (x5,%,2) £(x;) N 50
. _ , =
22 . . 1) . r
+ £,(x,) 6.7 (x5,%y,2) £5(x0)) 3, 1 a(@bx ) bty 1(ibx)) [ w t ; ) -bp .
o\¥p) G \XpsXy,2) To8X I} J e | V0% Bl |14V 22 _ n'oay i oA n,a e
el e = e AT (xpox)) = famy famy xS (Rp) o ox_ (Rp%p) o x (%) 5
(8.10) : n n
The portion M, of M is given by v . (8.12)
With the aid of the appropriate relations in (4.10), (A.12), and (A.1lk),
) . . -bp
v i i e .
M2 = -[dB’)\{'e /’d;zl ‘l!nT(§2) [0 G(§2’§l’z) a \Vn(?sl) _—p— we Obtaln
_ | 1
-] © 11 K
2 : 2 (“"‘ ll AK‘. (x2,xl) = 2 [ d§[§P|K+ll_l(§) PlK' __1_]_;(5)
= - dx, X, dx, %, Z. {f2(x2) G, (xz,xl,z) f2(xl) 1 har-2h- | W22
40 0 K
-bp .
1 2 1 €
+ == (1 - &%) Py aga(8) PY 1y a(E)] —— (8.13)
11 12 12 ki k+i]-1 & -3|-% 5 ,
X AL (xg,xl)‘+ fg(xg) G, (x2,xl,z) fl(xl) A, (xe,xl) n |e+k| -3 l n 2172
. and
21 . 21 22 1
+ £ (%) G (%% ,2) £o(x) AT (%%, ) + £.(x,) G (x,,%,,2) v
1\%p) G \XpsXy,2) Tpi%y ) B WHps®y ) w57 B 0Ty 12 el
. - A X, X = P P §
. | o Opr) = T | B 8) Py gyl
22 ' :
X fl(xl) A, (xg,xl)] (8.11) N
- _l_ - 2 1 : 1 ] € 8 1)4
e, (380 Pl (8) Pl g1 4T (8.24)
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In the special case of §S; states, we have

2
1
11
Ay (XQ’XJ_) = g‘l"'[ dg Pln-— -1
. ~1

1 . . 1 .
At (%5%) = -3 [x] bJIK_%,_%(le<) h%tcz%|-—%(lbx>)

; n(1)
5(1bx<) ek | 5(1bx>)

2k + 1 1
1 N 515
-2 | - £8) B (8) =
TeT |k+3]-3
B ) an | 22050 AL (105)
ek [ ke [
. 1
~bp
2 1
Anl (x2’x1) = 35 lKI[ at P|K——é‘l-%(§) ep
-1 ' : 2x,x,) = - |&] b] (ibx_) hfl) (ibx.)
2™ 6o 301050 Bl (00w
1 | .
-bo
21 1 e
= 3 £ - 2
(x2,xl) 2 [«] [.1 dg P|m-%|-%_(§) ) ARQI(X2,xl) = Anl (xz,xl)
' . 22 . . (1) . .
0o ) ; 1 b | A (xa,xl) = -3 |« bJ]K-%]-%(lbx<) hl“‘%l‘%(lbx>) . (8.17)
A (xg,xl) = §| | dag PIK 1 1(8) - (8.15) .

We thus have

The last two relations in (8.15) follow from Eqs. (8.13) and (8.1k)

© © ’
2 2 11, . .
and the fact that M, = b[ ax,x,, f ax, %X Z [e]Q035,(%5) 6 (x,5%p52) £ (x;)
‘ 0 0 K
Ailn (xe,xl) = A}i _K(xe,xl)
o oo £,(x5) 6P 0ny0%,52) £,0x)) + 1) (x,) 67K ) £,(x,)
T ip\Kp) G Xy Xyp2) B Xy 11%2) G Xpoxy,2)0 150
(8.16) :
22 11
An,wn(x?xl) = A-K,-K.n(x2’xl) : 3fl(x2) G (xe,xl,z) fl(xl)] J,K 1]-1 _a(ibx ) h? 1)1 1(1bx\)
Integration over ¢ in (8.15) yields . s 1 (
- f2(X2) G (XE,Xl,Z) f (x m‘. l l 5(1bx )

1
x hil)ll 3(1b)$) - JIR+_| 1(1bx ) h}m—lé(lbg)]‘? (8.18)

+
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IX. NUMERICAL EVALUATION OF AEHB

The quentity AEHB is given by

ME . = e dz M{z,b) (9.1)
Cq
where M’ is defined in (8.1). Introducing the variable of integration
u into (9.1), where 2z = iu on the positive imaginary z-axis and
z = -iu on the negative imaginary z-axis, and choosing the appropriate

branch of b 1in each case, we obtain

LByn = 5= du(M(iw,u + iE ) + M(-iu,u - iE )]

2 fw du Re @(iu,'u + iEnD . £9-9)
Jo |

Because AEHB is of order (Za)h, it is convenient to introduce the

function fHB(Za) defined by

MB = %(ZOz)LL £.(20) . , (9.3)

In terms of the new variable of integration %, where u = %(t-l - t),

we have

1

(M = 3 7 e e we @(%(t'l - t), 3(t7H - ) + iErD.

0
(9.4)

In the expression for M which is the sum of Ml and M2 in (8.10)

and (8.18), we introduce new variables of integration:

-7h-
X
T2
= 2 : - =
y Yxl H r % for Xy <X
(9-5)
X
; - L
Yy = 2Yx2 ; r = % for X, > Xy

Taking into account the fact that the integrand in that expression is

symmetric under interchange of X, and x5 specializing to 18-
2
state wave functions, and substituting the expression for M into

(9.4), we obtain

1 o 1
fp(V) = f dt[ dy f ar s(r,y,t,r) (9.6)
0 .40 0
where

-7 _
s(r,y,t,7) = %2__&2_5)_ (€24 1) 278 526 -y H(1-r)y

o0

-
) 4 éia TK(r,y,t,Y) (9-7)
=1
and wvhere
T.(r,¥,t,7) = - | [5] Re//[u +iE (L +E) oit - ret?
& &\ n- n B,k B,k
signs
of =«
21 : 22 (1) 11 12
- + 1 - - - -
et )0l S g)g Mgy T DO B G- 8
-t 22 . . (1) ' 11
YGB,K + 3+ En)GB,K] JIK-Li'l h|n-%|'% - En) GB;K

K+ 1 ) (1) . (1)
Xhmh{ni|-5h|ml 37 1|1h| i”) - (9.8)

2 ) “%'2
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The functions G, are defined in (6.19). The arguments of the

functions G J, and h(l) are given by

BJ

R
n{t) _ (1) (Kiu - E) %7:>

1,.-1
u = §(t - t)

The numerical evaluation of AEH is similar to the evaluation

B
of AEL. The integrations in (9.6) are performed by Gaussian

quadrature. The function §(r,y,t v) is computed with the aid of
(9.7); the truncation of the sum over k 1is discussed below. The
numerical evaluation of the spherical Bessel functions and radial -
" Green's functions which appear in (9.8) is described in Appendices H
-and I.V

We now examine the convergence of the sum over ® in (9.7).

For &k -+ 4w, we have

#=1

G (zy,y,2) = S5 [Fr - 1) ¢+ I
’ 2Ky
n-i
G (2) = T [TR)]
21 Pl 2 1
GB K(YYJy;Z) = 5 > [272(1 - I’)Y -Y 4nr+ (9‘(?)]
2’ Ky

Equation (9.10) continued next page

Equation (9.10) continued

k=1

G vowa) = o -h) v )
’ 2ky o
1 k=1
G, (v,v,2) = 5 -+ @)
2Ky
‘12 1 2 :
Gp o(TVo¥52) = - [2rz(l - r)y - ¥ s r + (@)
’ 2Ky e
21 L | 1
Og, - (7V,¥,2) = — (&)
22 g 1
G (yys2) = v - r) + &1 (9.10)
2Ky :
and
) :
3 aMw) = Eene O (9.11)

Hence, for fixed r, y, t, and 7,

L r2n-2
Tn(r,y,t,‘r) = 27 3
. Ky

(1-r)

2 L .
X [(1 +E) 1 ; L+ - E)) 1_:_2r_ - 27‘2_ nor o+ @’(%)] " (9.12)

r

as Kk = o. We define a function PK(r,y,t,Y) by writing

r2n'
e Pn(r:Y;t;Y) . . (915)

TK(T;YJt; )
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In order to obtain an approximation for the remainder RN which is
left if the sum over x in (9.7) is truncated at k = N, we assume
that for k >1.5 5%, vhere c = (L + w®)2  and Re(c) >0, the
function PK, as a function of «k, is sufficiently slowly varying

compared to (ren)/n that the following approximation is justified:

Ry i k Pys1 i r_i_" : . | (9.14)

K=N+1 k=N+1

1}
=]

This assumption is suggested by the form of the expression in (9.12)
together with a numerical examination of the terms in the sum in (9.7)

for various values of the parameters. From (9.14), we obtain

IR | < l—f—;wmll : (5:15)
The sum over x in (9.7) is thus truncated at k = N, where N is
the smallest number which is greater than 3, greater than or equal
to 1.5.cy/2Y, and large enough that the magnitude of the absolute
contribution of the remainder, as estimated by (9.15), to the sum §
is less‘than 10-l+ The validity of this error approximation was
testea by evaluating the sum 8§ with the cutoff described above, and
then re-evaluating the sum with the error bound of 1o'h replaced by
an error bound of 10_6. The two values for the sum were then
compared. The evaluation and comparison was made for all combinations
of the values r = 0.1, 0.5, 0.9, y =0.1, 1, 10, t =0.1, 0.5,
0.9, and 7 = 10/137, 110/137, and for the values
(r,y,%,7) = (0.99, 10, 0.1, 110/137), (0.999, 10, 0.1, 110/137),
(0.99, 1, 0.1, 10/137), (0.999,_1, 0.1, 10/137), (0.99, 10, 0.9,

10/137), and (0.999, 10, 0.9, 10/137). 1In all cases, the magnitude
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of the difference between the two values for § was less than 10 ".
The validity of the error approximation is further tested by reducing
the error bound in some of the final evaluations of AEHB.

In the evaluation of the sum §, the products of Bessel

functions which appéar in (9.8) are evaluated recursively, as

- described in Appendix H, before the sum over k in (9.7) is performed.

Therefore, we need a preliminary moderate over-estimate N for the

0
number of Bessel functions which are needed to evaluate the sum to
the desired accuracy. The value we employ for this purpose, for

specified values of r, y, t, and 71, is given by

Ny, = max(Nl,Ne,B) +1 (9.16)
where
No= 15 _%] o (9.17)
and )
in
10 BP,
N, = (9.18)

where B is the coefficient of the sum over & in (9.7). If it is

found, in a particular evaluation of §, that N, is too small, then

o]
the value of NO is increased by 10 and the evaluation of § is
begun again.

A crude approximation for the function §(r,y,t,¥), which
serves to motivate our choice of variables of integration in the

numerical evaluation of the integrals in (9.6), is obtained by

replacing the radial Green's functions in (9.8) by their asymptotic
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forms for large argument which appear in (A.28). Taking the first
term in the curly brackets in (9.8) as a typical term, replacing the
radial Green's functions in that term by the first terms in the
corresponding asymptotic expansions, and performing the sum over «,
we obtain
L Aa-y

s(r,y,t,y) ~ e e . (9.19)
In arriving at the expression in (9.19), we have set relatively slowly
varying factors equal to 1. Two singular factors t™2 and (1 - r)-l
which have been set equal to 1 in arriving at (9.19) are the result
of the crude nature of the approximation. The behavior of S near
t = 0 corresponds to the behavior af the integrand in (9.1) for large .
|z|. The considerations of Sec. VI show that § is integrable in
this region. That S is integrable near r = 1 1is seen by inspection
of (9.12).

We next give the_method that we use to numerically evaluate

the integrals in (9.6). The Gaussian integration férmulas mentioned

in Sec. V afe used here. We employ the notation

1
S]_(Y;t)r) = dr 8(r,y,t,r)
[¢]
2
Sel(t)r) = dy Sl(y)t:r)
0
0
Szz(t,Y)_ = QV Sl(}':t:Y)
2

Equation (9.20) continued next page
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Equation (9.20) continued
1
551(7?‘ = at s,, (t,7) i=1,2
0
1,1
q =‘ E(ﬁ - l)y . (9‘20)

Four regions, A, B, C, and D, in the space of the parameters r, y, t,

and 1 are defined by

A: y <2, Z<60

" (9.21)

D: y>2, Z3>60

In the following, NA, NB’ Nb, and.ND are the number 6f integration
points used in the evaluation of the integrals with which they appear .
when the parameters are in the corresponding regions. The integral

over r in (9.6) is evaluated as follows:

8,(y,t,7) = f ax 2x s(x S¥st,7) 0<qg=<1
s,(¥,t,7) = f ax s(x,y,t,7) l<gqggl2
1
12 12
Sl(y:t:T) = dx q_ s(1 - a X,¥,t,7) + ¢€ q>12

(9-22)
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where for all three integrals

{ 6 for t >0.2
NA = NC = ND = 5, NB =
8 for t < 0.2
(9.23)
and where
9_
12
12
¢ = ax = 8(1 - Elléx,y,t,r) (9.24)

1

The contribution of € to the value of the integral is neglected.

In view of (9.19), an approximate over estimate for € is given by

.
12
-19x -
e =~ AQL - %g,y,t,T) ax e 12X Y
1
~ 1 12
> —l~2 S(l - '(I_ onth)Y) (9'25)

where A(r,y,t,r) is the ratio of s(r,y,t,r) to the term on the
right side in (9.19), and Xo is the largest value assigned to x in
the numerical evaluation represented by the third equation in (9.22).
We examined the corresponding values for § which occurred in the
numerical integrations and found, based on the estimate in (9.25), that
the magnitude of ¢ - was always less than 4 X lO-u, and in most cases
it was much less than that value. We evaluate the integral over ¥

in (9.6) in the following way:

S5, (t,7)

=
1]
=
1t

The intégral over t
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~1
- J ax bx 5, (2x7,t,7)
(0]

[ 10 for t >0.5 8 for
¥
= NB = 10 for
12 for t < 0.5 12 for
<]
= dx Sl(2 + X,t,Y)
0

L for t > 0.5

[
|
1-5 for t <0.5

in (9.6) is evaluated as follows:

1 .
351(” = dx 2x 55, (1 - x7,7) N, =6
0
1 i=1;
Sji(Y) = dx Szi(X,Y)
0 ' i=2;

D

(9.26)

The chqices of variables of integration and numbers of integration

points in the preceding discussion are the results of an effort to

obtain a numerical value for the integrals in (9.6) with an error less

than 5 % 107"

computer time.

in magnitude and with the use of a minimum amount of

We arrived at the above scheme with an approach
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analogous to the one used in the numerical evaluation of the low-

energy part. The values for N,, NB’ N,, and N_ were determined by

A c D
an examination of the integrals at the values 2Z = 30, 110, 50, and
110 respectively.

The results of the nuﬁerical integrations are given in Table
9.1. 1In that table, where three values are given for a single point,
the middle value is the result obtained with the above described method
of integration; the upper value is the result of evaluating(the inte-
bgralswitha.number of integration points in each integral which is one
less than the number of integration points specified for that integral
in the above method; the lower value is the result obtained with one
extra integration point in each integral. The single values in that
table are the results of evaluating the integrals with the method of
integration described above, except that the value for 832 at Z = hd
is obtained with one extra integration point in each integral. Values
for fHB’ obtained by adding the corresponding values for 551 and
852, are also listed in Table 9.1. We have given error limits yith
each value for fHB' These are subjective estimates of.the_maximum
uncertainty in the values, haséd on an examination of thé behavior of
the numbers within the groups of three values obtained for 831 and
852 for e given Z. TFor values of Z for which only one evaluation
was made, the error limit.was obtained by interpolating between the
error li@its for neighﬁoring values of Z. The numbers marked with an
asterisk in Table 9.1 afe the values obtained by evaluating the inte-
grals with the intégration method described above, and with the error

. bound employed in truncating the sum over « ‘reduced to 10-5.

Comparison of these values with the corresponding unstarred values in

-8l
Table 9.1
pA ssl(Za) 352(Za) £, (20)
10 -0.00709k4 -0.027008
-0.007685 -0.020876
-0.007650 -0.022085 -0.030(2)
20 0.070k51 ~ -0.02hh65 0.046(1)
30 0.155291 -0.025616
0.154183 -0.026785
0.154438 -0.026712 0.1277(5)
Lo 0.252596 -0.039257 0.2133(7)
50 0.359596  -0.052991 '
0.358150 40.05h137
0.357949 -0.053430 0.3045(8)
60 0.158530 -0.055898 - 0.402k (k)
70 0.552628 -0.041619
0.552438 -0.041645
0.552314 -0.041598 0.5107(4)
80 0.646615 - -0.012562 © 0.6341(6)
90 0.752997 0.026850
0.752544 0.027536
0.752223 0.0274k42 0.7797(7) _
100 0.888973 0.074809 0.9638(8)
110 1.092590 0.124257
1.091980 . 0.125498
1.091547 0.125506 1.2171(8)
30 | 0.154205* -0.026737*
110

1.092001* 0.125555%
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the table indicates that the method used to attain the desired accuracy
in the sum over k is effective.

As a check against errors in algebra or programming in the
numerical evaluation of fHB’ we plot, in Fig. 9.1, the calﬁulated
values for fHB(Za) for Z = 10, 20,.50, 40, and 50 and the limit
point fHB(o) = -0.093457 given in (F.14). The calculated points

appear to be consistent with the limit point.
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X. CONCLUSION
The total value for the self-energy radiative level shift is

obtained by adding the constituent parts:

0E| = LB+ OB, + (B + OB, (10.1)

The terms on the right in (lO.i) appear in Egs. (5.33), (7.37), (9.3),
and (2.20) respectively. The terms of order lower than ”a(Za)h add

up to zero, as they should, and we are left with

/B = % ()" F(za) mec2 (10.2)

where
F(zo) = £(20) + £ () + fHB(Za)'. (10.3)

Values for F(Zx) for the 1S; state are given in Table 10.1. The
2
numbers in parentheses in that table are error limits associated with

fHB’ and are discussed at the end of Sec. IX. The calculated values
for F(Za) along with values for F(Za) obtained from the results of
previous calculations are shown in Fig. 10.1.

For Z 1in the range 70-90, we compare the results of this
calculation with the results, for a Coulomb potential, of Desiderio

5

and Johnson. In Table 10.2, we list the values they give (in
Rydbergs), the corresponding values for F(Zx), and the values that
we obtain for F(Zx). The agreement is good.

To compare our calculated values for F(Zx) to the coefficients

in Table 1.1, we consider the function
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Values for F(Za)
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obtained in this calculation.

Z F(zo)
10 L.654(2)
20 3.246(1)
30 2.5519(5)
ko 2.1351(7)
50 1.8644(8)
60 -1.6838(4)
70 1.5675(%)
80 1.5032(6)
90 1.4880(7)

100 1.5317(8)
110 1.6614(8)
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Table 10.2. The results of the Desiderio and Johnson calcéulation for
a Coulomb potential and the results of this calculation. The
numbers in the third column are the Desiderio and Johnson results
converted to our units and rounded to three figures. The numbers

in the fourth column are our results rounded to three figures.

Desiderio . R .
Desiderio This
and Johnson5 and Johnson calculation

z m(Ry) - F(w) P(z0)

70 9.1 1.53% - 1.57

) 11.9 1.52

80 15.0 1.48 1.50

85 19.1 1.48

90 23.5 1.45 : : 1.&9‘
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) -2 ‘
' - 2 2, -2
- Agy (z)® n(z) ™ - Ay (20)° n®(20) 7] . (10.4)

In view of Eq. (1.2), we have

lim  o(zZa) = Agy - (10.5)

0~ 0
If there were a significant inconsistency between the values for F(Zx)
and the coefficients which appear in (10.L4), except possibly for Agys
then G(Zo) would increase rapidly in magnitude as Zo —» 0. We have
plotted the values of G(Zx), corresponding to6 the calculated values

of F(Za), in Fig. 10.2. Inspection of the points in that figure

suggests that G(Za) approaches a constant as 2o — 0. In fact, the

‘value of the constant is approximately the value of A6O which appears

in Table 1.1.

It is of interest to estimate the value of A6O which
corresponds to the points in Fig. 10.2. 1In order to do this, it is
necéssary to make some assumption concerning the behavior of G(Za)
as Zx - 0. Ve make an estimate based on the assumption that G(Zx)

is of the form
) g) .
G(za) = A60 + A7O(Za) + A71(Za) in(za) © + C7(321) (10.6)

where @QmF) is meant to include terms of the form

(Za)2 Znn(Zd)-e. There is some theoretical motivation for making this

assumption. We fit the function

GA(Za) = K6o + KYO(Zu) + KVl(Za) zn(Za)'2 (10.7)

-90-

to the calculated values for G(Za) at the points % = 10, 20, and 30.

and K,

The resulting values for Kéo, K%O’ 71 are
A6O = =31. % 1.
A70 = 25. 2. (20.8)
A?l = 6.7 + 0.8 .

We also fit the function GA(Za) to the calculated values for G(za)
at the points 2 = 20, %0, and 40, and at the points g = 30, 40, and
50. The difference between the values for the Als corresponding to
the different fits is less than the uncertainties listed in (10.8).
The uncertainties in (10.8) are based on the stability of the A&'s
with respect to varying the set of points used in meking the fit
rather than on the maximum uncertainties of the individuel points.
Erickson and Yenniell and Ericksonlg'have given the following

estimates for A6O:

Apy = - % (19.08 £ ) ~ -25.h ¢ 6.7 Ref. 11

(10.9)
Agg = - % (19.3435 + 0.5) ~ =25.79 £ 0.67 Ref. 12 .

i

Our value for Kéo is consistent with the value for A6O given by
Erickson and Yennie.

In conclusion, we wish to say that we see no reason why the
method of calculating the self-energy radiative level shift which has
been presented here could not easily be extended to calculate the level

shifts for the bound states with principal guantum number n = 2.
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APPENDIX A
In this appendix, we discuss some relevant properties of the
Dirac wave functions and Green's functions for the case of a Coulomb

potential. The Dirac Hamiltonian is given by

H(x) = gRp +igRpE+V(x) g, (1)@
where .
.19
px = =1 X g}-{- X ) (A.2)
and
K = (oL +1) . - (a.3)

A wave function which is a simultaneous eigenstate of H, K (with
eigenvalue -k), and third component of angular momentum Jz (with

eigenvalue p), is written as?

£1(x) 1 M(R) |
) - , (a.4)

if,(x) x_ (%)

where fl ‘and fg are the components of the radial wave function
(corresponding to g and f in Ref. 22), and xKu "is a two-

component spin-angular function explicitly given by

1k
K+ = - 5 : .
i [ et o
Ll(x) = L o (a.5)
® + -]2-- + U |2 U.‘fl A' i
i 26 + 1 J LT
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The spin-angular functions have the property
ox x M(x) = -x_K“(Q) . (a.6)

The functions are orthonormal

(a.7)

d ugT(”) ul(A)
QX X)X X o]
*2 1 Rpafy Hasky

and they are complete

LN
Z 1l (R) k(X)) =1 8(8, - 4)) B(cos 8, - cos ©,) .
s (A.8)

i

The summation in (A.8) extends over values of u and k given by

(W[

W= =d,-d +1,-0,3 - 1,3 i=|«l -
(4.9)

K o= 21,22,#3, 0,40 ,

and © and ¢ are the polar and azimuthal angles associated with 2;
I is the -2 x 2 identity matrix. The addition theorem for the spin-

angular functions is

< A T ~ 1. ~ A~
L R kM E) = H—L (1P ) 4 (8) + § 12 By X %)
v

X Pin+%|_%(§)} ) (4.10)

where ?E is the fth Legendre polynomial, & = Q?'Ql’ and Pé is

the derivative of P, with respect to its argument. We shall use the

£

notation

n(Rp%) = 2 X (%) XKHT(Ql) . (A.11)
A\ Li,‘—

-9k~

For any'integrable function h, we have

: “QT ~ SN
da, {40, h(t) an (x5) xnl(xl)

= erd 8 de n(e) P . A4.12)
Rpofy Mpoky ¢ nit) l*fg*%:l-%(g) (4.12)

This formula is easily derived if h(E) can be expanded in a Legendre
series. In that case, we express the Legendre polynomials in that

series in terms of the spin-angular functions by observing that

L], A A~ A A
Pz(g) = E—E:[’_l[ﬂ@(xg’xl) + ﬂ_z_l(xa’xl)] s (A-lﬁ)

and then perform the integrations over angles in (A.12) with the aid

of the equation in (A.7). We also have

r

’én do, h ar 2.5 LMR
J 2] Ql (g) )(‘K'g (Xe) HK(XQ’X]_) I"Kl(xl)

1
= B o) lgl de h(g)[PIK2+%“%(€) P|“+%|'%(§)

fprfiy Moty
1 2y o1 ) ' '
— (1 - P P . J1h
"y 078 Pl Fleg| )] (a-14)

Equation (A.14) is obtained from (A.12), (A.6), and the Legendre

polynomial identity

. N . v
PIK‘%I'%(E) - §P|K+%|_%(§) - E(l -£7) ?|“+%I-%(§) = 0 . (a.19)



-95-

The radial wave function's components f. and f2, which

1
appear in (A.4), satisfy the radial differential equation

A b
1+ v(x) - E - % %; X + £ ] ( fl(x)‘
|
! l = 0 , (a.16)
2 2 R I O)

where En is the energy. We are interested in the case where the

potential is the Coulomb potential: V(x) = -Zo/x. For the 18;
2

(r = -1) state, the normalized solution is given by
2,0 X
fl(x) = N2(1 +E ) x e
L o -
£.(x) = Q- E )F x% e (4.17)
-28
1 2 3
Y = 2 =(1 - 7?)2 8=1-E; N-= en)” 7

or(s - 28s)

The Dirac Green's function G(§2’§1’z)’ which satisfies the

equation

(i) - 2] 6lxpxyp2) = B(xp - %) (8.18)

2,23

can be written as an expansion in eigenfunctions of K:

1.
11 ~ ~
(xprxp52) X (R) 12 (R))

G(?EQ,E]_’Z) =

K c~ 2L o Ta
o+ lGK (x2,x1,z) x-nu(x2) xnu (xl)

R 2 VI oo
- 16 (% ,2) X MR xR
,(A.19)
22
(x

. ~ [TLIPEN
0% 52) x_nu(xe) Xy (xl)

-9€-

where the summation extends over all possible values of #« and [V
i4
The G, J(xe,xl,z) are the elements of the radial Green's functions,

and they satisfy the equation

) 19 k1,11 12
1+ V(x2) -z ;; 5;; X, + ;;E th (xe,xl,z) G, (xz,xl,z)
Ei
19 LB Lol 22
2 5}; X5 X -1+ V(xe) -z iiGK (xe,xl,z) G, (xz,xl,z)
et 4L
-1 zlz— 8(x, - x) . (A.20)
%1 . o

For X > Xss the radial Green's functions for the Coulomb potential

are given by the following expressions:

11(x2,xl,z) = (L +z)Ql(x-v) Mv_%’k(2cx2) - (% - g)

.
XM, (Bexp) J[(s + W5 (Bexy) + W (2ex))]

le(xg’xl,z) = cQl(n - v) Mv-%,k(zcx2) - (& - ) Mo (2cx )]
x[(n+g)w (%x) -V (%x)
21,
GH. (xz,xl,z) = CQ{(X = V) M 1 )\(?CXE)+ (K = ) MV+— )\(?CXE)]

‘x [(x + g)'w (ch ) + W o, (?cx )]

Equation (A.21) continued next page

=
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Equation (A.21) continued

6,2 (kpnpp2) = (1= 2) QLGN - v) Mg (2exy) ¢ (5 - D)

T. -
X Mv+%)x(20x2)] [(x + E) Wv_%,x(Ecxl) Wv+%,x(29xl)] s

where

1
2

c=(1-29% Re(c)>0;5 A= (s - 1)

1 r(n - v)

(y30)2 (5, %) r{1+2n)

24
+ and x) are the Whittaker functions. For
and Nb,s(x) an WJ:B( )

X, > xl,

the symmetry conditions

Gnll<xl’x2’z) = Gnll(xz’xl’z)
Gnlz(xl’xe’z) = Gngl(xe’xl’z)
GKZI(XI’XE’Z) = Gnlg(xz’xl’z)
Gn22(x1’xe’z) = Gngz(xe’xl’z)

2

)
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a v 1), N
= X Mv+%’x(x) (:x 5 Mv+§,k(x) S x Mv_%’x(x)
d ;3 1 _v\,3 AtV %
(a.21) & * oMy, - (lg )% M, NO R M55 ()
2 2
a -3 v L1\ - v A~ -
ax * Wv+%,x(x) = (:g §:>x wv+%,x(x) * x W&-E,x(x)
Y = I
a -1 ~ (;} zf) -1 1 -1
(a.22) = X wv_2’x(X) = G- x)* Wv—%,x(x) <X WV+%’K(X)

(A.24)

Because the radial Green's functions are independent of the quantum

number i, we can .write

the radial Green's functions can be obtained from (A.21) and

ll ~ ~
( . Gﬂ (xg,xl,z) ﬂn(xg’xl)
G(%Q}il)z) = Zid
K ~

21 PO
|G (poxp52) 10:%, i (X5,%))

12 RPN A A
(A.23) G, (xg,xl,z) ig-x, n_K(xz,xl)
(a.25)

GK (erxl)Z) “-R(XQ’xl)

We next give asymptotic forms for the radial Green's functions.

The radial Green's functions are described extensively in Ref. 2.

Properties of the radial Green's functions can readily be established

with the aid of the identities

We shall restrict our attention to the case in which X5 < xl in

GKlJ(xg,xl,z). We give the asymptotic behavior in terms of new

variables defined by
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Equation (A.28) continued

X

2
y = X 3 r = —. (A.26) o0 [ 1 o 0 21
17 X _ - _ +ry _l-r _ X
1 GK (ry,y,2) = (z 1) sl Sery © Zery {K'(K 1) c2 j
The first limit of interest is for x, and x >> |e]. The . 6’(:&\‘
. ’ 2
Whittaker functions have the following asymptotic forms, for a,B ¥ j
fixed, B >0, x> 0,
x 1 1 s = _1”_._2 o (1-T)ey (A.28) =
r(l +2p) 2 - (B+§+OL)(B-§-G) ol 2ery
M, (x) = T e” x ll- +u(—2-)
S R ) L x X
The symbols v, Y, and c¢ are defined in (A.22).
~ The second limit of interest is for Inl >> x, >x,. For
2.0 eri-E-3+0) '» o
W, B(X) - e 2 e {1 N 2 2 + 6(}_2_” (a.27) a,x fixed, x > 0, the Whittaker functions have the following
’ X .
asymptotic form526
as X —»w. By xia, we mean eﬂln X, in x real. From these 1 (x)2 x 3
v +% 7 \s) ~%3 1N\ !
expressions, we find M, B(X) = B 14 + C?'(-?>i
B B -
, ¢ 21 :
: . | "
11 : / l+ry _Ll-r [ 1 ,x,2 x ‘
G (ry,y,z) = (z +1)s8{1+ L r('c+l)-— . Al (5" -az
% (Y;YJ ) ( 2¢cry ¢ 2cry L CZJ wa E’(x) _ I 21 xB+§ 1 - L \2 2 + 6( J(A 29)
’ r(g +5 - a) B
1 7
o)
¥y as P - ». From these expressions, we obtain the asymptotic forms of
the Green's functions for IKI — . We list the cases for positive
2 r 1L+r l1-r}2 )_f( T and negative subscripts separately.
(ry,y,2) = =cS 11 - ey " " Pory [n 1+ i
K
~0( 3 -
11
(ry,¥y,2) = TE)!
Q'W
21 1+r 1-r |2 7 _ N
GK. (ry,y,z) = eS¢l + 2cry k- 2cery lK + c 1 c/
12
) 1 GK (ry,y,2) =
+ =
(%)
y

: : ti .30 ti d next
Equation (A.28) continued next page : Equation (A.30) continued next page
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Equation (A.30) continued For x; > x,:

21
GK (ry,y,2)

22
G (ry,y,z)

S 1
G_ (ry,¥,2)

12
G_K(rY;y:z)

21
6- (ry,y,2)

22 '
G_K(rnyJz)

i

k-1 11
r 1 o . 2o _ . . 1 .
2Ky2 2 - Yoo+ oyz(1 - r)y - §(l - r)cy F (Xngl:Z) = -(z +1) c3|n+%|_%(1cx2) himi%|—%(lcxl)
1
+ & @1 12 v
" L2 K . (1) '
F Xn5X,,2 = -ic i
| o Gomp) TT ez -3 e%e) By yten)
k-1 (A.32)
r 1
slr + (2 - L)y + ()] F 0k ,2) = -1c® g ) (1) )
ey S S O L A
. 22 (1) ’
ko1 F ""(x,,%,,2) = -(z -1) cj (icx,) h (iex,)
1 ko \ForXy kedi|-283C%5 Y .
rs (z + 1)y + C??E)] |k-3{-3 [~3]-3 1
2Ky
In (A.32), J, 1s the spherical Bessel function, and hgl) is the
k-1 spherical Hankel functi f the fi i i .
r 2[2K i 72 s 2 - 1)y - %(l ) r2)c2y2 ion o e first kind. For this case, the sum
2Ky . over & 1s known, and is just
1
+ (5’(—15)] (' \ ) -‘ -cx
c 1 R e
F(x,,%;,2) = %(,; + ;5/; ig-x +p o+ zJ rymea (4.33)
r'c_l 1
2Ky
X = %% x = |x| .
k-1
L lr+(z-1ry+ @] (A.30)
ary

The free electron Dirac Green's function F(§2,§l,z) can also

be written in the form given in (A.25) with the G's replaced by

F's, where

i . ij
F, j(xg,xl,z) = lim G, J(xg,xl,z)

Y0



-103-

APPENDIX B
For the computatioﬁ of the low-energy part, we give a method
by which, for a given value of x, O < x < 500, and a given value
of L, we can evaluate jj(x) and jk(x) for 0 <4 < L. If the
values of the jl(x) are known, the values of the jk(x) are easily

obtained from

Jo() = -3,(x)
(B.1)

R 4+ 1
Jl'l(x) = X

3y (x) 3, () L40.

To evaluate the Bessel functions, it is convenient to first compute

the values of the function

24 + 3 341 (%)

rz(x) = = 3, (B.2)

at the'point x for £ in the range O < £ <L. From the recurrence

relation

(22 +1) 3,00 = x13,_ (x) +3,,, ()], (8.3)
" we find
r, (%) = 2 . (B.14)

- e ™

In view of the asymptotic form of jz(x), we have

lim r,(x) = 1 . (B.5)

£— o

~10k-

The recursion relation in (B.4) is numerically unstable for increasing
£, and stable for decreasing £. We gompute the rz(x) recursively,
with the aid of (B.4), in the direction of decreasing £. To obtain
the initial value rL(x), we use a variation of the method of J. C. P.
Miller.27 We begin the computation with the approximation rN(x) =1,

for some N > L. The actual value of rN(x) is

rN(x) = 1l+e , (B.6).

where |€| << 1, if N is sufficiently large. Substituting rN(x) =1

into (B.4), we obtain the following approximate value for rN_l(x):

1
2

1- X
(an + 1)(2N + 3)

o -
1« x2 (L +¢)+ X
-~ N + 1)(2N + 3) TN FI)(eN ¥ 5)

exa 2 egxh
) - EE e ey Pea ™ (57(:T§K'
| (B.7)
The error in the value for rN;l(x) is much less than the efror in
the value for rﬁ(x), for large gnough N. We next compute, with the
aid of (B.4), an approximate value for rN_g(x) ffom the appfoximate
value for rﬁ_l(x), and so on until we obtaig a value for fL(x). By
starting with a large enough N,'ﬁe obtain a value for .ri(x) which
is correct to approximately 12 significant figures. Thé value we use

for N is given by

-
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N = max(L,Ly) + [15 + 0.1x] (B.8)

where L = [x].28 ‘The function [15 + 0.1x] was determined
empirically by examining the convergence in the seguence of valués
for rLo(x) corresponding to a_sequehce of increasing values of N.
From the value for rL(x), values for the rz(x), 0<% <L, are
calculated. The jﬂ(x) are then computed with the aid of

sin x
X

11

3o(x)

(8.9)

j,@+l(x) E[—_}:_5 rz(x) jz(x)

Values for jz(x) and jk(x) obtained by using the above

method were tested by numerically evaluating the following sums:

ZE: (22 + 1)vj£(ry) 3, = Sinl X T ; :
=0

=

8

(26 + 1) £(£ +1) j,(ry) 3,(y)

>
[l
O

_ grye rsin[(l - r)yl] _cos((l - r)yl
i -0’y Q-0

s

S (py) A _ sin[(1 - r)y] _cos[(1 - r)y]
326 (26 + 1) §y(ry) 3,(v) PRSI @)y
<” N . <y - cos[(1 - r)y] _ sin[(1 - r)y]
f;6 (22 Al) 3 (ry) 3;(v) @ oy S

(B.10)
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These sums were evaluated for all combinations of the values

r = O.2,0.4,---,l.0v and y = 0.061,0.005,0.01,0.05,---,500. In each
case, the sum was truncated at .Z = N, where N is the smallest
nunber for which the magnitﬁde of the ratio of the Nth term to the
sum of the first N terms is less than 10_12. The results are

consistent with 12 significant figures being correct in the values for

the spherical Bessel functions.
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APPENDIX C . : We consider the sum which appears in (C.3)
The method given here for numerically evaluating the radial -
Green's functions Gn(x2’xl’Z) is valid for the range of parameters s = Zia T(n) , (c.5)
involved in the computation of the low-energy part: n=0
where
|s| < 500
n
. o _In+p+3-a)r(+1) x
X5,%, real; 0 <x, <x <250 ?(n) = e ri-a)Throp+ 1) TasL) ° ) (c.6)
Z real;. 0<z < E1 s (c.1) We have
where E is the 1s% ‘bound-state energy. We refer to Eq. (A.21) : T70) = 1

in which the radial Green's functions are given in terms of Whittaker

. . . .
functions and gamma functions. . P(n +1) = nn++25 : 2 na+xl T(n) . . (c.7)

We first evaluate

' The terms in the sum in (C.5), which are all non-negétive, are easily

My (2exy) (c.2) | |
e’ ‘ computed numerically with the aid of (C.7). If the first N terms

The following series expansion is used:a9 are used to approximate th? sum, the error E 1is

E - Z T(n).. - (c.8)

1 _L = 1 _ 2. 1 nb
My a(X) = B£r2 72X Z -"%‘I@f; a) r(ep +1) x_

I ( Y)T(n +28 +1) na? ° . n=N+1
n=0
(c.3) o
A simple estimate for E can be given. We find
In our case, the parameters in (C.3) obey the restrictions
1 3 ' In+1l+p+3-a) _ (n+p+t3i-a) In+tprts-0
G real; -z<as<s3 M{n+1+23 +1) (n+2p +1) r'(n +28 + 1)
B real; 0 <pB <500 n+p +2 -a) ,
’ ‘ S T+ +1) (c.o) |

X real; 0 <x <500

yhich gives
B + Las>o0 . (c.b)

2
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00 oo
n o -ix
I(N+1+p+2-0a)r(ep +1) X x e 2 B-1-a t\B-3+ -t
E S fe+I-o)r(m+1+28 +1) a1y °  (€-10) Y,6%) = TEEIoa 9t 1+ 2 e (c.13)
n=N+1 0 .
We also find
larg x| < x5  Re(p+3-a) > 0
SN . N4l TEL S n with the expansion
\ X < X \ X j)
Z__I‘Zn+1$ I‘3N+25[___,<N+2 ,
n=N+1 . n=0 £ p-tur N rs L, d) 1t
' I3 - é i3 1 (Eyn
1+ x) - r(g +3 +a-n) n! (x) * Ry - (c.1k)
n=0
N+1
X N+ 2
= for N+2>x. c.11
rv+2) N+2-x ( ) Integrating term by term, we find
. . . _ o -ix
The resulting estimate is » wa B(x) = x- e 2 gt
b4
&
N+2 ) :
E < mT(N+l) for N+2>x . (c.12) . st = L‘T'(n) +E, (c.15)
n=0
With the aid of (C.12), the sum in (C.5) can be calculated to a where , ot
preassigned accuracy. The number of terms necessary is not excessive,
: i 1 1 ‘
because for N > x, T(N) approaches zero rapidly as N increases. T'(n) = LB EBAS-C rp +z +a 1 . (c.16)
) I’B+§—Ot FB"'E*‘Q'H r(n+l)xn
Our goal is to obtain 12 significant figure accuracy in the evaluation
of the radial Green's functions. . The T'(n) satisfy
We next evaluate Wd B(x). The range of the variables is
) ]
T'(0) = 1
given in (C.4). Two methods of evaluation are used. The choice of
method depends on the magnitude of x.
. P € T'(n + l) - (n + B +% - a)g_ﬁ -451' +a - nl Tl(n) . (C-l7)
For x > 30, we use the large-x asymptotic expansion. This (n+ I)x

30

asymptotic expansion can be obtained from the integral representation .
In order to obtain an estimate for the error E' in (C.15), we employ

Legrange's form for the remainder in (C.lh)51
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This can be written

_ r(g +2 +a) 1 T N+l t s—lw;N—l :
RN‘ﬂﬁs+%+§.—N-l) (v +1)t (7@ re e {2 ig -1y
Wy,e(x) = Re_é'?‘? x2 7 e 27U + 15) , (c.23)
0 <6 <1 . (c.18) where
We note 0 = 2B r(p +2 - a) r(-2p)
- r(zg) r(-g +3 - a)
: Lo
|(x +o %)5'2+a N l| <1 “for N+1>p-3+a . (C.19)

P sinlx(p+3+a)]l P(+I-a)T(p+2+a)
sin(x2B) ) r(2s) r(2s + 1) ’

Combining (C.18) and (C.19) in the bound for E'

- (c.2k)
o : the term § is the same as in (¢.5), and the term U is given by
1 1 ’ 'B——%--a -t . .
'l < mevz—ay | @ 7 IRyle (c.20) .
0 o : v : _
v U = Z V(n) » (C.25)
yields ) : ) ; n=0 .
' ' 1 where
e} < |T"(v +1)] for N+1>p-%2+a . (c.21)
n ‘
The value of W_ _(x) is then obtained by performing the sum in o _ IMn-p+3-a)r(-2p +1) X
ST e - - O - MBI e D) MR (c.26)
(c.15). The value for N is determined by requiring that '
N+1>8 -4 +q, and that the ratio of the error, as given by (C.21), The V{(n) are computed from
to the value of the sum be less than 10-12 in magnitude. For
. 0 - !
X > 30, we find empirically that such an accuracy can always be v( ) 1
achieved. (@ X ) : :
: n-pg+32-0)x
Vin + 1 = 2. . .
For x <30, W, ﬁ’(x) is computed with .the aid 0f? ( ) {n -2 +1)(n + 1) V(n) (c.27)
= R ,
: o The error which.'results from truncating the sum in (C.25) after N
Wo.(x) = ri2 M, (x) + -(—PKLE-Q)——S M, (x) (c.22) .
a,B reg+s-a »=B M-g+z-a »B terms is
) ’ [T
3 _" °
larg x| < 513 28 # integer. ' E- = . v(n) . , (c.28).
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An estimate for E" can be made by considering

fn+1-p+3-a) _(n-p+d-a) ro-p+d-0a)
P{n +1 -28+1) (n-28+1) I(n - 2p +1)

< (N+1éjs+j—a)rgn-g+—§—ag
= W+1-22+1) T(n-2p+1
‘ : (c.29)
for n>N>238 - 2 3 p-32-a>0,
and
rm+1-g+1-0)  TI(n-p+d-0a)
E i -5 +1) = Ta-3+D) (c.30)
for n >2p ; B-2-0<0.
If we let
rgm ; 1L-g+1-a) 1
e = mxlTN+l'EBil) ,lj s (c.31)

then it follows from (C.29) and (C.30) that

g < |EN+1-pr3-0a)r(-2s+1)}" n gn-N-1
= (p+Z-a)r{mn+1-28+1)
‘ n=N+1

for N>2p -1.

With the aid of the bound in (C.11), we find

\ N +2
E"l < g5 o V(¥ + 1) (c.33)
for N>28 - 13 N+2>6ex .

e (©2)
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Guided by the estimates in (C.33) and (C.l?), one can evaluate
the individual terms U and S numerically to any ﬁreassigned
precision. However, the expression in (C.23) is numerically unsafe
when X 1is large and B is small. This can be seen by considering
the large-x asymptotic forms for M}}B(x) and WJ,B(X) given in

Eq. (A.27). We find that for x e

r(1 - 2 B-2-0 X
U ~ R—.JB-—_'_—IZ_—'%LG—)-X 2 e (C.}h)

wo~ U (e.35)

and

U+ ~ DS =0 Boda , (C.36)

Hence in the worst case, which occurs when x = 30, the sum is

roughly 6-50 times the individual terms, which corresponds to a loss

of approximately 13 significant figures. We have studied this

cancellation numerically, and find that by using double precision
arithmetic, which gives approximately 27 significant figure accuracy,
we can achieve better than 12 significant figure accuracy in the
evaluation of the sum U + 7S.

For x = 30, we compared the two values obtained fér Wa’B(x)
using the two methods described aﬁove. The comparison was made for
various combinations of the remaining parameters. 1In all cases, thé
two values agreed to épproximately 12 significant figures.

The method that we use for evaluating the gamma function is

given in Appendix D.
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We not; that care is required in handling potenﬁially very
large or very small quantities in the evaluation of the radial Green's
functions. Qﬁantities such aé xB or I{2B) can be greater than
lOlOOO for the range of values of x and B wunder consideration.
Such magnitudes are out of the range for real constants in the

computer. The allowed range is given by
102" < || < 10022 (c.37)

In,order to avoid this problem, we coﬁpute the logarithm of quantities
with extreme magnitudes. We find that when all such factors have been
combined, thé result is of moderate magnitude and can be safely
exponentiated. TFor the parameters which occur in the low;energj
evaluation of the radial Green's functions, the range of magnitude of
the terms in the sums in (C.5), (C.15), and (C.25) is within the
allowed limits.

An additional consideraﬁiod’which we should mention is the
roundoff error which occurs for values of 2z near E,. In computing

1

AEL, we evaluate GK(x z) for values of El-z which are quite

20Xy
small. This results in the loss of significant figures in the evalua-
tion of GK(xz,xl,z), through error in the computation of \-v, when

lKl =1:

lim  (n - v) T~ 5 for |k| =1 . (c.38)

z—oE{

The quantities » and v appear in (C.2). However, this error is
not serious in the context of this calculation. We are interested in

the integral over z of an expression which contains GK(xe,xl,z) as
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a factor. The integrand is proportional to El-z for z near E

ﬁhich effectively suppresses the effect éf the roundoff error.

lJ

As a check that the numerical evaluation of the radial Green's

‘functions was programmed correctly, we computed the expectation value

of the Dirac Green's function in various bound states. From the

representation

o(z) = g5 - Z |m) =2 (u] (c.39)
m

m

and the orthogonality of the state vectors, wé have

(na(z)[n) = =— . (c.40)
n | |

This is equivalent to the identity
) _ [ ' )
2_ 2 '
G Z)f d"z[ axy X" %70 (%) G]E;Ll(xe”&’z) £,05)
¢] 0

) 12 g 21
f fl(xe) Gnn(xz,xl,z) fe(xl) + fg(xg) Gﬂn(xz,xl,z) fl(xl)

22, . .
+ fg(xg) Gnn(xg,xl,g) fe(xl)} =1, (c.k1)

where Kn is the angular quentum number pf.the bouﬁd state ln). The
integrals in (C.hl) were dohe numerically with essentially thé same
techniques as those described in the section on numerical evaluation
of the low-energy part. The evaluation was made for.a;l stéteé with
principal quantum number 1 or 2, for nuclear charges of 10 and 110,
and for energies 2z = 0.1E1,0.2El,---,0t9E1. In ail cases, the error

in the result is less than 10 T.
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APPENDIX‘D

Qur numerical evaluation of the gamma function 1is based on

33

Stirling's asymptotic series

1 1 1 1
mry) = (y-3)iny-y+35m2q) + 55z - —<
Y 2 5 12y " Sg0y?
R S | 1 69
10607 1680y 1188y° 360560y
1 3611 +R (D.1)

+ -
156y*> 122400y
for |argy| < % -5 .

The relation between the remainder R and the value of the
argument y is particularly simple if y 1is positive real. In this
case, the remainder R has a value between zero and the first

33

omitted term in Stirling's series

. 4386 1
0 < R < —Z-E’-IT%S —17 . (D.Q)

y

Two sets of values which we consider are

14

0 < R < 107 for y> 17

(p.3)

28 for y > L6

0 < R < 107
The second set of values is relevént to doublé precision evaluation of
the gamma function. From the relations in (D.3), it follows that for

sufficiently large y, we obtain an accurate value for the gamma

function by evaluating the series in (D.1). To evaluate the gamma
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function of argument x, where x 1is too small to satisfy the

apprépriate condition in (D.3), we take advantage of the relation

n-1 }
1 }
+

r(x) - 1’ -(mjr(x +n) . : (D.4)
i=0

In (D.4), we choose n large enough that y = x + n is greater than
the appropriate number in (D.3). We then evaiuate r{y) with the
series in (D.1), and obtain [I(x) with the aid of' (D.4). The
relative error in this value for TI'(x) is then just R.

In the case where ¥y 1is complex and satisfies the condition
Iarg yl < % 1, we have the slightly weaker bound on the remainder R

in (D.l):55
43867 1 .
le| < 22&1%8 M _ (p.5)

Thus, for max(}, Re(xi) > IIm(x)I, we employ the preceding method to

evaluate I'(x), choosing n in (D.4) large enough that Re(x + n) > 7.
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APPENDIX E
In this section, we compute the contributions to the low-energy

part of order 1 and (Za)z. The low-energy part is

ik.x
.2 o 3 1" - 1
as o= TE )2 dlﬁk[\:(n‘ixge H-E +k-ib
n k< E A

_iE‘?\{'
X Qe |n) . (E.1)
The exponentials are eliminated by writing
e 1 Jex
H - En +k - id

k% -gex ]
= (e lgop+V+pg-E +k- isle
-1

= lgp-ak+V+p-B +k-is] (.2)

We note that for a bound state n
w, = A = O(@?);
1-8 - @) . = &3

Therefore, we might expect to find the leading behavior of AEL, for
small Zx, by expanding the expression in (E.2) in powers of p, V,

34
and 1 - En'

To second order in Zx, such an expansion is, in fact,
valid. However, if we were to try to carry the expansion farther, two
difficulties would arise. The first difficulty is that the expectation

values of operators such as V5 and p6 are infinite for S states.

The second difficulty is_that the integral over k would diverge for

=120~
k near O in some of the higher order terms.

We first note the identity

1 ' 1
ap-ak+V+p-E +k-1ib = Qp-ak+p-E +k-ib

1 1 :
R-QEYP-E +E-I8'gp-GEFVIP-E, +E-ip

Q

(B.%)
In the first term on the right side in (E.4), we rationalize the

denominator and find

n
-
ok -k pkok-8+E -k
~ ~ ~ ~ o~ n
= 25 5 (E.5)
P -2pk+1- E~ +2E k - i3

We now expand the denominator in (E.5) in powers of %, guided by the
behavior indicated in (E.3). We drop terms which have an expectation
value of order higher than (Za)g. Terms odd in k, which vanish on

integration over angles of '5, are also dropped. We obtain

N e 1 -
[N -ak+p -E, +k-is A%
A .
~ K2 .k p-k - k;5 ok p-k + (E -.5 - k)
Z-E R X a2 R n
1
{ 1 P2 *1- En2 -3 2
X g2 e TR? . (£.6)
L n 2k .
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The contribution from the term proportional to E -B is of order

(Za)u because

(n](E, - B)ln)

1l
o

Q
g
N

(nl (g, - 8)p°|n) (£.7)

We then have

k<En A
E
n .
~ Uy dkk[%g-p-—k'lgg-En'l+%kl(p2+l—Enz)-%le
o .
1 -1 1.2 1 2
~ -hn[g P +5 En -3 p - §(1 - En )l . (£.8)

This expression can be simplified by noting that to order (Zot)2 the
expectation values of a-p, p2, 1 - Ene, and -V are equal. Hence,
to the desired order, the contribution from (E.8) is the same as that

from
iz B+ 2 V) ) (£.9)

The second term on the right side in (E.4) is already of
order (Za)zl due to the factor V, so we drop the terms V and Q-p

in the denominators. We find
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and

In obtaining the

5, and took into

{n|v(p -

Thus,

ok g+, - k|
2 i v Ex'%
-E° + 2Bk |
ak-p+E -k1°
vV o~ -V

2
1- En

+ 2Enk } »

(E.11)

second relation in (E.11l), we dropped terms odd in

account

E,)(n)

the fact that

. ((éa)“)

Q
F2o)

-ak+p8 - En + k - 18

~

iy

E

n

Ap-QE+V+p-E +k- 16w

dk kV ~ ,-hn%v

(E.12)

(E-13)
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Combining the results in (E.9) and (E.13), we obtain APPENDIX F

In this appendix, we first calculate AEHB to lowest order in

Zo., The quantity A o is the sum of the expressions in (6.4) and
(6.7).

. %@ ®), +§ v, + R) . (B.14)

The remainder R can be written by collecting the exact

’ ] We seek the lowest order contribution of
remainders in the above expansions. For example, one contribution

comes from the term

ig 3 1 1
_ . _ === {(n dz | d’k Q
E o : b <: ' K - (B, -z)° -ic PER-¥k+p -z
n E . - C ~ n
n " 8 ) H .
2 dk k{(n 5 5 in .
- o | p +1 f En + 2Enk . . _ _
) 1 1 .
B | X VIR TR TR e g gk Eo ] (£-2)
n N P2 1 - En2 ‘ ‘ _
= 2 dk k{n (En -B) K 5 5 n :
0 ' : n 2Enk(p +1 - En + EEnk) / to AEHB. To obtain that contribution, we replace the potential v

which appears in the denominator in (F.i) by zero. This is done because

p2 +1-E 2 p2 +14+E 2 \ V 1is of order (Za)z, in the sense ‘that (V)n = @'«Za)z) . There
(n|(g, - 8)In) - (n|(&, - B) = In 2o iin L

2 2
2En p +1- En

1

is no danger of introducing a small denominator in making this'réplacé-

ment, because the new rationalized denominator is bounded below:

0+ O‘Qza)“ m(z)?) : . S =)

There are many terms in R. Rather than listing them, we describe

1
(p - g)g +1 -z

5 < 1 for z on Cf . I (F.2)

their relevant features: The terms are all in the form of an integral We also replace p everywhere by zero, because (Ipl)n = C??zy).' In

over the vector k. TFor fixed k, after integration over angles of Kk, the new expression, we rationalize the denominators, perform the sum

the integrands are all of order (Za)h. In some cases, as in (E.15), over u

_dropping higher order terﬁs which appear with k in the denominator

' al-ak+8+2zP o = (b - 20-k) (K2 + 1 + 32°)
leads to a divergent integral over k. In these cases, the higher H ~ ~o :

da ‘ tb tained and one obtains a contribution of order ’ -
order terms mus e retair } 6z(k2-+ 1) - 225 , (F.3)
(Za)h zn(za)z. In the rest of the terms, dropping the higher order

terms leaves a convergent integral over k. These terms are of order

(z0)".
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and integrate over angles of k. We take into account the>factrthat
to lowest order in Zo, the expectation values of 6V2 and V2 are
equal. We thus find that the lowest order contribution of the quantity

in (F.1) is equal to the lowest order part of
3
- dz ak k° 1
e Ko - (& - z)2 - ie
" Cﬁ 0 n

h - 62 1622 - 82”0
+ ), . (F.1)
+1-22° Ko +1-2°9 n

[k°

Integrating over k, we obtain

L 2 3
_ia 0 [ 2= 32 (225 - 22)(b + m] ) -
2n o i {c(b + c)2 ’ c5(b + c)3 ( n (¥-2)
H
b = -i[(En - z)2 + ie]% s Re(b) >0
c = (1- 22)% s Re(c) >0 .

Finally, the integration over =z is performed as described in Sec.

VII. . Retaining only the lowest order part (En = 1), we have

g@ in 2 - g) <v2>N_R | (F.6)

where NR denotes the non-relativistic limit of the expectation value
in the state n.

We now find the lowest order contribution of

igg n dz d5k
L"JT c 1
' H
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X au 2z(p + z) [

2z(a-p
. R

- a-K)

,V
(R-K°+1-2° ](2—5)2

(p - g)g

LR -LE+P

+

(=)

+ Z

) (2 - E)e +1 -

z

1

\'
- 2° (p - 3)2 +1 -2z

2

The following identities are relevant here:

1

1

o 2z{p + z) [

Rk ,v]

,V
(@ - 5)2 +1 - 22 .] (p - 5)

2

2

+1 -2z

1

aIJ.

hz(2p - z) [
§2 +1 - 22

(22-5)2

22 + 52 +1 -2 ] R? +'52 +1-2°

1

\
5 BE-R,Y] oo k)2 T2 o f/) . (F.7)

+ -
{(22 + ka +1 - z2)[(g~- 5)2 +1-z

7] ’V]

Rk

@-©° 12

2

»V -
2 } (22 + 52,+ 1- ze)[(g - E)? +1 - z2]

1

]
2 - %)

+1 -2z

2

(F.8a)



2z(a-p - a-k) 1 "
2 2 a
H (p-k)"+1-2 (p - 5)2 +1 -8
hzg-g 1 bhzo-k
= v - it
2 2
(p-K)"+1-2 (p - k)2 +1 - 22 p o+ §2 +1-32
x v 21 3
Rtk +1-2
hzg.li 2p-k 1
T TE T3 5 v 3

Ll.ui‘-}’s . QE.k

- - v 3 (F.8b)
2 bl

P+ g? +1-2° (E? + g? +1 - ze)[(E)- k)2 +1 - z2}

2p-Qk+p+z 1 u
< fe-p,V] o
”(E-k)2+1-z2 (B—k)2+ 1-2°
(us, . - eolad)pt 1
- ij J
= 2 5 [p%,V] 2 5
(p-k)"+1-2 (p-k) +1-2
i iy
i (hsij 200 a” )k [pj,V] 1
22 + §2 + 1 - 22 22 + §2 +1 - z2
(4o, - 2o’ )k” 2pek .' 1
ST 3 5 2 5= [0, V] 5 5
(" +X +1-27)[(p-k) +1-2"] (p-k)"+1-z2

Equation (F.8c) continued next page
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Equation (F.8¢c) continued

4]

(bs, . - 2orad)kt : 2p'k
1J J ~
p o+ kW +1 -2z

~

(B +K +1-2)(p-k)F +1 -7

- 2z )
(R - E)E +1-2

1
(-0 +1-2

5 [2-p,V] 5 - (F.8¢)

We substitute Eqs. (F.8) into (F.7), and consider the non-relativistic
limit of the expectation value. 1In this limit, the large (upper)
component of the wave function is replaced by |n)s, the two-component
Pauli-Schrodinger wave function, and the small (lower) component is
replaced by % g-gln)s. For terms which connect large componénts to
large components and sgall components to small components, only the
contribution of the large components is retained. We then replace VE
by zero wherever it appears in a denominator. All the terms which
survive the integration over angles of 5 are separately of order
(Zu)u, i.e., they have one factor V and either two factors of 1%
or one factor of p and one factor pf a. The expectation value of

each such combination is of order (Zm)h. The lowest order contribu-

tion of (F.7) is then given, after integration over angles of E, by

K - (En - z)2 - ie (k2 +1 - 22)

o
. 2 2.
lg/dzj ax k _% 2(2 - z)k
b t

cy 0 |

Ly 16 zk2 i

o, [p°,v1D) [ -2
x (e NR+(k2+1-22)2 5" 41 - 2R

Equation (F.9) continued next page
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Equation (F.9) continued
2 1
x (pV - glo-p, [0-p,VIDp

1 i i
+ 2;5-:f;f:-;§3§ (Q[Pv’[p V11 - [9-p, [0, VI

k2

)y
+—-————-——'
> f 41 - 2R

(lop, lopVl] - LN VIDG ) - (F.9)

Integration over k yields

o [ 22 Py - L*Z_ ([6p,[0p,V]])
5 L 3(b + 0)5 NR 6(b " C)3 ~ RtI°R NR
H

2 2 2 2 . .
+ g.c_.jﬁb___tzrb_- + (l - 22) E._;.ltg}_)_i_%_ ([Pl;[pl,V]]>NR/K ’
6c(c + b) 12¢”{c + b) :

{
. J

(F.10)
where b and ¢ are defined in (F.5). We integrate over z in

(F.10), keeping only the terms of lowest order in Zm, and obtain
o ) 2 1
; i(‘gn 2 - %)(p V>NR + (% = = £n 2)([9:'2: [g‘g;v:’])m

+ Gan 2- S DL, VID ) - (F.11)

Combining the results in (F.6) and (F.11), we have

AR

Sy -

+ (% - % £n 2)([g-g[g-g,V]])NR +.(% 2 -
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x ([pi,[pi,v}J>NR + Cﬂ?@;a)i>

For the 18 state
2

P = 20"

(pgv)NR = -3(z:>z)LL

([g-g,[g-g,v]]>NR' - bzt
<[pi,'[p'i,m>NR - )t

and hence

1
=)

r .
ﬂ(% fn 2 - ,‘i-)(v2>NR + (#n 2 - 2)<p2V>NR

(15 = 216G 2 - @'+ I )

The limits as o -0

h), which are defined in (7.34), are now considered.

limits, we examine the behavior of Ql’ QQ, Q

in (7.30), near p2 =0 and E

n

of the functions

= 13

51

h h

1’ 2)

and Qh’

(r.12)

(F.13)

(F.1k)

h5, and

Tq obtain these

defined
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We take the non-relativistic limit of the expectation values in {F.17),

2y 1 ( ) ) _ ,
Ql(p ) = 15 a 3E p * Ey 1 E ) and then replace Ql and Q2 by the first three terms in the
'-2 i corresponding expansion which appears in (F.15). We obtain
4 S’Ql-En)p)+ 6" ,
-4 fo3 L 2 '
| | n(0) = (m) {135@ v * 3500 Vg * %([g-g,[g-g,V]_DNR}
2 1 4 2 ’
Q0 = lzne-_+(2na- 2@ -E) + (Fn 2 - 2ol | - (F.18)

(20) ™ {G2 - § #n 2) (0 ) + G5 - am 2)6%W)

+ %1 - En)2> + @’((l - En)P2> . @'(p”) h,(0)

+ (é fn 2 - gﬁ)([g-g, [g-g,V]])NR}

o067 = E-3me+ Fu-x) - TG

The 1limits as Z0 - 0 of h3 and hh are obtained by taking the

non-relativistic limit of the corresponding expectation values in

%(Pz) L ¢n 2 -A% « da - E,) + d(pz) . (F.15)

(7.5&) and then replaeing Q5 and Qh by the leading term in the

corresponding expansion which appears in (F.15). We have
We also note the identities .

: ' -y 31 g2
(0% +EV +Qp V) = O | ny(0) = ()7 (§5 - 3 4n 2) V) o
' v (F.16) ’ . (F.19)
2 i ,
(8% +VrpapV), = O | m(0) = (@7 & m2 - Hetg
which combined with the first two equations in (7.34) yield In the case of the 13%, state, the limits are
. A 51
- h. (0) =
h () = () ) {%5 (L - BV, - 5 Bylap V), 1 k20
5 118
+ <En[Ql(p2) _ %]p2>n} h2(0) = E in 2 ~ i-og
C(r17) o (F.20)
- . ] .
A )71 h,(0) = 94n2-2=
ha(Za) = (Za) {}55 -3 m 2){g a'p V)n p)
+ (play(e®) - (F m 2 - ganp?>n} : m(0) = 8-124n2
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AFPPENDIX G
In this section, we list some'formulas related to the‘Fourier

transforms of the Dirac wave functions for a Coulomb field. The
- momentum-space wave function is written in the form
| o) ® )
£l = o : o - (e)

R o

g,(») % M(F)

where x,K“ -is the two-component spin-angular function described in

 Appendix A. The ¢n are defined by

. -g -ip.x . ' .
B = 02 [Pxe v (®) . (6.2)

From the expansion

i l m
e = M Zid( -i) J| crd| - 1(pX) X (B) % (%)
. (6.3)
and the orthogonality of the x M's, we obtain .
-]
N T P -0 ¥ 2 . : R
a@ = (RG] el 60 0
C{G.4)
. Lo °
= (- |K'2‘ 2 3 2 .
ge(P) = ( i) (ﬂ) dx x J]n-%‘-%(Px) fg(x)

Qhere fl and f2‘ are the compénents of the coordinate-space radial

wave functions, and jz is the spherical Bessel function. For the

1s state, we have

nj-

» ;ljh—

51n[(2 - 8) tan” (p)]

N2(1 +E ) ]2(2 =)

il

g, (p)
. p[r +p

(©:5)
sin[(1 - &) tan'l(B)]

(1 - 5)p [ + p° ]2(1—7

i
2

g,(p). wQ - E)

cosf(2 - 8) tan-l(%)]
P R

- \3-28
ey s _ 2% . 2 _(2r)>7%8
Y =20 ; En—(l-T) 3 8=1-E ; N =T(2 - 8) (5 = 28)

We also give the expression for the Coulomb potential acting

‘on the wave function in moméntum space Vg (p). It is obtained by

taking the Fourier transform of - V(x) wn(z). Because of the spherical
symmetry of the potential, the calculation ié similar_tdvthat for the’
wave function, the only difference being the presence of a factor

V(x) in the integrand in Eq. (G.4). We find

ve, () 1 M(B) o
() = | , - (G-6)

[ vey(e) x_HH)

where
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1 . - -1 p
] 1 sin[(1 - 8) tan " (3)]
e = - E, . plr° + 212 10)
(6.7)
VN% 1| sin[8 tan_l(%)] cos[(1 - B) tan'l(%)]1
L - > - _ .
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APPENDIX H
We describe here the méthod used to evaluate the products of
spherical Bessel and Hankel functions jﬂ(x) hgl)(y) vhich arise in
The relevant ranges for the

the numerical evaluation of AEHB.

parameters x, y, and £ are given by

0 < Re(y) < 200 ; 0 < Im(y) < 20,000 (H.1)

0 < 4 < 20,000 .

The evaluation is done by a subroutine in which for a éiven value of
X, ¥, and I, 1<L<20,000, the set of values ,(x) hgl)(y),
0 < £ <L, is computed.

It is gonvenienf to first compute the set of values. rz(x)
defined in Egq. (B.2). We use the method described in Appendix B to
compute these values, except #hat here we replace the number N

defined in (B.8) by the number W'
N' = max(L,Ly) + [15 + 0.1 Re(x)] , - (H.2)

where Lé = [|x|]. This expression for N' was arrived at with the
method analogous to the one described in Appendix B for finding N.

-We also compute the set of values tz(y), where

. (1)
h=/(y) :
t(y) = L £ , (H.3)
! Yl ~

at the point y for £ in the range O < £ < L. Because the

function »hgl)(y) satisfies the recurrence relation
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v +2Mey .

(24 + 1) hél)(y) 241

i}

we have

1

—5
"I 1%(2z'+'37 t, ()

tz+l(y)

=

We also have

|
—

lim t (y)

f—> @

(H.4)

(5.5)

(H.6)

" The values tz(y), 0 < £ <L, are computed recursively, with (H.5),

ih the direction of increasing £. The initial value is given by

1

%) = 1Ty

(H.7)

The products jﬂ(x) hél)(y), 0 < £ <L, are then computed

recursively with the aid of

. eiy
5o n$(y) - Hnx e
and
a0t - ST E ;—1~7 3,60 v0)

We tested the subroutine which computes the products

jl(x) hﬁl)(y) by numerically evaluating the following sums:

(1.8)

(H.9)
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o0

Y‘ , (l) eiY(l‘r)
p (2¢ + 1) jz(rY) h, (v) = TE -
=0

(1.10)

D e s 1) 5,0 0P

£=0

_ 2r(1y) I 1 ;- 1_ 5 Jv(l-r)
Uwu-rn Ty - 1))

The evaluation was made for all combinations of the values
Re(y) = 0.01,0.02,0.1,0.2,--+,100,200, Im(y) = 0.01,0.02,0.1,0.2,-..,
100,200, r = 0.2,0.4,0.6,0.8, and for all combinations of the .
values Re(y) = o.01,oioe,o.1,p.2,---,100,200, Im(y) = 1000,2000,
10000,20000, and r = 0.99. In each case, the sum over £ in
(H.lQ) was terminated when the ratio.of the last term in the partial

sum to the partial sum was less than lO-lb in magnitude. The

valués of the sums agree with the corresponding expressions on the

right side in (H.10) to more than 11 significant figures.
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APPENDIX I
In this appendix, we give the method used to evaluate the
Coulomb radial Green's functions GK(ke,xl,z) for the range of
parameters encountered in the numerical evaluation of AEHB' The

range is given by
|k] < 20,000

XX real ;

5%y 0 < x, < %, < 200

5 < % ’_(1.1)

Re(z) = 0 0 < Im(z) < 100 .

We first consider the evaluation of M, (x) for the following

B
range of variables:

Re(a) = + % H 0 < Im(a) <1

0 < g < 20,000

(1.2)

0 < x < L0,000 .

Two methods of evaluation are used. The choice of method depends on
i
the relative magnitude of x and B. For x < 20 B2, we employ the
power series for M, B(x) obtained by expanding the exponential
s » X

function in the integfal representation

1

F(l + gﬁ) XB+% dat tB-%*u(l - t)ﬁ-%+o

M X
) F(g+3-a)r(p+3+a)

a,p

0
x e(t-%)x
(1.3)

1
Re(p +3 2 a) > O |arg x| < =&
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in powers of x. The resulting series is

0 (x)n

| X

M, o (x) = £ I(n) —2 (1.4)
B L n!
n=0
where
51
1 1
I(n) = (1 +2p) at P72 - g)P2C

rp+3-a) e +z+a)

x (2t - )" . (1.5)

It is convenient to consider the corresponding expansions

+

(1.6)

v N . )\% S].\I‘ (cx2 )n
M1 (Bomp) T M (Bexy) = (2exy) /. 1,(n) ot
. n=0 )

where Ei(N) are the remainders. The functions It satisfy the

equations )
I(n+1) = I (n)- & (n)
+ - n+l1+2\"+
(1.7)
n+1 ,
I(n+1) = =75 2 I,(n) .

These relations together with the initial values I (0) =2 and

I (0) = 0 provide a simple (and safe) method for numerically evaluating

the series in (I.6). We obtain approximate values for the errors E,

in (I.6), which arise from truncating the sum over n at n = N, by

estimating these_errors to lowest order in v. Let

+ E (N

)
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-1° ' N + 1) (ex,)VH
tl»mo 1,0) = 1,°(n) _ | 20 < 2(eexy)™ LT+ 3) F(e + 1) (exy)
(1.8) - 1“(-2-) r(n + 5 N +1) (¥ +1)!
lim E,(N) = £ (W) .
v=0 - (2 + N + 2)(N + 3) 5 (1.12)
™ ‘ (en + N + 2)(N + 3) - (cx2)
en R
for
r(r +3) D n + D)
n even
P(-é-) r(x + % n + %) _ . (en + N+ 2)(N +3) > (cx2)2 s : (1.13)
I+9(n) = (1.9) where N is odd. We then have
0 . ' n odd
3 ()™ (on s w e 2)(n+3)
ant | _ [B,(W)] < (2ex )21 (N + Ul (2x + N + 2)(W + 3) - (exy)
: 1 1 2m
, & r(a+3) Tm+3) (ex)
°m = 2(2cx2)ME Z T 2 12 2 . N odd | u
o Cn T@ Thv+m+3)  (2m) ' x 1+ @dvdl (1.1%)
M= .
¢ (1.10) ~ valid when N is odd and satisfies (1.13). The corresponding
Because - ' ) ‘ expression for E_ is
r(n + %)(cxz)em (cx2)2 A | [E_(W)] < (2ex, )“2[1 (N + 1)'(———” 2)1;“1 (A + N + 3)(N + 2) 5
. - + 1 ]
T(n 4 m o+ S)(2m) @+ W+ 2)(W +3) (A + N+ 3)(N + 2) - (cx,)
1 N+l | - s L+ DI, (1.15)
X TGN+ 1)(exp) (1.11)

1 '
r(xn + 5 N +1)(w + 1) valid when N 1is even and satisfies

for m>% (N +1), we have @n+N+3)M+2) > (ex)? . (1.16)

In the numerical evaluation of (I.6), the value of N .is taken to
be the smallest value for which both (I.16) is satisfied and the

" errors E_ corresponding to N and N-1, as estimated in (I.14) and
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(I.15), are less than 1072 times the corresponding partial sums in
magnitude.
n .
The numerical evaluation of M, B(x) for x > 202 is done
> . .

with the aid of the expansion in (C.3). 1In this case, the summation

is begun at n = Ny where n, is approximately the value n " for

which the magnitude of T(n), defined in (C.6), has its maximum value.

In view of (C.7), it is apparent that we obtain an approximﬁte value

for n, by solving for u in

u + B)x
u + 28)u

The relevant solution is

2 x° : - -
u'=<5 +I’:—> +-)25_-a, (1.18)
and we let
ny = [ul. . » . | (;.19)

We then evaluate §, where

'_ o0 Nl no-l

) o 'zz: T(n) _;‘_ - T(n) + T(n) + E, + E2‘ © . (1.20)

n=0 'n=no . L > )

and
T(no) = 1
(1.21)
1
Tn +1) = (o rp g T(n) .

(n +28 +1)(n +1)

1. | _ '(1.17)

-1hh-

-The'value that we use for Ni is determined:by making an estimate of

the error E , where

E, = }E: T(n) . (z.22)

n=Nl+1
For Nl >0,
[T, +1+m)| < &"|T(, +1)] ' (1.23)
o 2o -a
o = «
W, + 2 7 I, )|

and hence for Nl large enough that © <>l, wé have

1 = _ ' :
g, < T 1T +1)| . S (1.2k4)

We perform the first sum over n on the right in (I.20), testing the
value of the error as each term is added, and terminafing the sum
vhen the magnitude of the ratio of the error, as given in (I.24), to

the partial sum is less than lO-ll.

The second sum on the right in
(I.EO) is then performed in the direction of decreasing n. This sum
is terminated when the same conditioh on the error is satisfied. 1In

this case, the estimate for the error is given by

N2-l

g, = Z T(n)| < N,|T(N, - 1)] (1)
n= ) . .

for N, smeller than the value of n for which |T(n)] is at the

maximum. The value of the Whittaker function is then
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%z,ﬁ(x) = x6+% e—%x T(n,) s .

From the coefficient of S in (1.26), we store separately the complex

logarithm of

1 ‘ 1
I(ng +8 +5 - a) I‘(B +§-Re(a)> . :
T - T (1.27)
P(éo +B+3 - Re(ai) rp +3-a)
and the double precision logarithm of
1
1 NaH+s
{n, +p +% - Re(@)) (2 +1)x 1
<O 2 ) e 2* | (1.28)

r( + 3 - Re(@)) I(n, + 28 + 1) I(ny + 1)

Storing the double precision logarithm of (I.28) is necessary because of

the loss of significant figureé which occurs when the logarithm of
a quantity with a very large magnitude is added to the logarithm of a
duéntitylwith é very small ﬁagnitude.

,‘As a test of the programminé of the two methods'of evaluation
of qz’ﬂ(x) gijen above, we compared the two values obtained for this

. 1
function with these methods for x = 2082 and o and f given a

large number of sample values which cover the range for these parameters

relevant to the evaluation of AEHB. In all cases, the relative
magnitude of the difference of the two values was_less than 10_11.

In the numerica} evaluation of wa’a(x), the choice of method
of evaluation depends, as in Appendix C, on whether x isrless than
or greater than 30. The two methods used here are basicélly the same
as those described in Appendix C, except for some modifications

necessary to accommodate the large range of parameters and complex

numbers which occur here.

(11265 _‘
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For x > 30,we evaluate Wy B(x) with the aid of the
b
asymptotic expansion given by Egs. (C.15) and (C.16). The summation

over n in (C.15) is begun at n = né, where né is approximately

the value of n for which the magnitude of T'(n) is at its first

relative maximum encountered as the -value of n increases from zero.

An approximate value for né is obtained by solving for u. in

1. (1.29)

The solution of interest is

2 2 %
= (B +§—> -3 (1.30)
and we set
ny = [u] . (1.31)

The sum S' is then formed where

t
. n, N2 . ]
- 1 -— —
8! = T'Sn') = ZE: T'(n) + T'(n) + Ei + Eé s (1.32)
0 —y o) .
. n_Nl n_no+l
and
T'(n . S
T'(n) = & Ry - (1.33)

- The first sum on the right in (1.52) is performed in the direction of

decreasing n. The error which results from truncating this portion .

of the sum at n = N!

1 is estimated by
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Ni-l

| Z T| < BT - 1)
L o

for N smaller than the value n for which [T'(n)| .is at its

first ma.ximﬁm. The second sum on the right in (I.32) is then performed

A

! 5 (T.34)

in the direction of increasing n. An estimate for the error which
results from truncating the sum at n = Né is made by considering the

exact expreséion for the remainder RN in (C.1k)

I‘(B + %_ +a) 1 . }N+1 1 . . B-—g-+a-N
Ry = T (;) av(l - v) lL+2v
/0

r(g -3 +a-N) N

(1.35)
which leads té '
r(s + % +a) | (‘t)Nf’l ,
IRyl < e l.am w07 \x o (1.36)
for N +1 > Re(p - % +a) .
Then from
- N, _ . -
lesl - 5" - gi; T'(n)| < .IT'(né)_F(B o, at .

x tRe(B'%*")|RN;é|e't , | (1.37)

we obtain

-148-
M (Re (! + +~3—-a
- <l (N, +B +5 i)
I‘(Né+s+%-a)

|E!

Al IT* (W} + 1)

for N; +1 > Re(p —%+a)
And because

1

I'(R e(w) - e(w)-
, I‘e(ww5 ‘ N ]I‘é{ §m%w) 1DT as ") 2@ -

oEDl

I‘ii Im(w) + 1)

for Re(w) > 1,

we have
N .
23] < 1=y T 0 + 1)
for N! +1 > Re(p -l+a)
2 Z 7 va) -
We also have
. 1 _
lesl < [M + szi—:“;yT} |T* (N} + )]

for Nj +1 < Re(B-§+q),

(1.38)

s )iIm(w) *

(1.39)

(I.hOj

(1.41)

where M = [Re(p - % +a - Né)]. The relation in (I.41) follows from

the fact that |T'(n)| decreases as n increases for

Nl

5+1 < n < Re(p+ % + @), where N} is large enough to take
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with the aid of (C.25) and (C.27).
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into account the approximate nature of the choice of né. The sums

on the right in (I.32) are truncated at values of Ni and Né for .
which the magﬁitude of the ratio of. the error, as given by the '
appropriate estimate (I.34), (I:40), or (I.4L), to the partial sum is

11

less than 10~ The value of the Whittaker function is then just

. a -lx , .. - . -
Wd,g(x) = x e 2" 1'(ny) S' . - (z.42)

The coefficient of §' in (1;42) is factorized into & complex factor
with a magﬁitude of order 1 vhose complex logarithm is stored, and
a rea; factor whose double précisiqn logarithm is stored, in analogy
with the separation shown in (I.27) and (I.28).

For x < 30, we employ the method described in Appendix C,

beginning with Eq. (C.22), to evaluate W, (x). It is necessary to

P
have double precision accuracy in that method. This is accomplished
here by explicitly progrsmming the complex arithmetic operations in

terms of separate double precision real and imaginary parts for the

' variables involved. The term S, which appears in (C.23), is

evaluated with the aid of (c.5) and (C.7). 4n estimate for the error

which results from truncating the sum over n at a finite value N

.is easilyvobtained with "the appropriate modification of the discussion

leading to (I.24). The term U, which appears in {C.23), is evaluated
The error which results from
truncating the sum over n in (C.25) at n = N is estimated by

observing that

(n -8+ % - a)x

(1.43)
(n -28 +1)(n + 1)
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: . . 2
is <1 and decreases as n increases for n > [5 + g + (@2 + %— +

end n > 2, which implies

| - V)| < v + 1) (1.44)
n=N+1 .
for N +1 > [B + g + (?2 + %- + %)5] and N 2 1

where

(-8 + % - a)x
0 = v . _ (1.45)
(w-28 +2)(W +2)

In eveluating W, B(x), we first evaluate U, truncating the sum over
2 .
n in (C.25) when the magnitude of the ratio of the remeinder of the

sum to the partial sum is less than 10-26.

We then form the sum S
and truncate the sum over n in (C.5) at the value n = N ‘when the

magnitude of the ratio of the remainder of the sum to the combined

~ partial sum

N
vany

n=0

is less than lO-ll.

In evaluating wa‘g(x)- with the preceding method, we need
2

the full double precision accuracy for certain combinations of the

parameters in W. The worst case, where the full accuracy is require

is for |k| =1 and x near 30. We explored other regions in the

sample values of the parameters. On the basis of this study, we foun

D%

(1.46)

d,

parameter space_by examining the numerical behavior of the series for

d
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‘that some time-saving modifications in the method of evaluation could
be made in certain regions of the parameter space. For B < 140
and x 5‘% (B - 6), single precision arithmetic is used. For g > Lo,

the contributlon of the term 1S in (C.23) is negligible and the term

U 1is evaluated w1th 51ngle precision arithmetic; in thls case, the

contrlbutlon to the sum in (C.25) from terms with n > p is negligible.

To check the programming of the two methods of evaluation of

(x) descrlbed above, we compared the two values obtained with the

Yo B

two methods for x = 30 and sample values for the remaining parameters.

This was done for a large number of sample values, and in 8ll cases,
_the.agreemcnt between the two values for w (x) was satisfactory.
We now briefly descrlbe the method used to evaluate the free
radlal Green's functions F (xe,xl,z) ‘for the range of parameters
grven in (I.l). - The free Green's fumctions are given in terms of
spherical Bessel and Hankel functions of imaginary argument in (A.32).
We first comsider the evaluation.of jz(ix). We employ the

- power series

(1x) ) <1x> Z I‘(3) }T<?2£fn -» (1.47)

r(n + 2+ —)

The summation over n in (i.h?) is’begun at n = n,, vhere

ng = [%(12 +Ix2)% - % z], which is near the value of n. for which the
mcgnitu&ebof the terms io the_sum is a maximum. The swmmation is
performedvfirst in the direction of decreaéing n, and then in the
direction of increasing n from n,. In each case, we terminate the
sum when the magnitude of the ratio of the remainder to the partial

sum is less than 1ofll. Estimates for the remainders are easily
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obtained as in the Coulomb case. The sum over n is normalized by

extracting the noth term as an overall factor.

To evaluate hgl)(ix), we employ the series

F(Z -n +1) I'(n +1)
=0

, , |
hgl)(ix) . -(eix)? g;_ }Z: r(2¢ +1 -n)(ex)® (1.48)

The method we use for evaluating the sum is the analog of that used in

~ the evaluation of jz(ix); in this case we have

=[s+x- (32 + x2)%].

| As a check on the programming of the Coulomb radial Green's
function algorithm, we numerically evaluated expectation values of the
Green's function. The relevant formulas appear in (C.39), (C.k0),
and (C.4t1l). The evaluation was made for the state with n.= 2, K=-2,
with 2 = 110, and for the state with n =2, k= -1, ﬁith Z=
In both cases, evaluations were made for values of the»eneréy given by
2z = iu, where u = 1,51,101,151, and 201. In all cases, the result
was correct to at least 11 s1gniflcant figures. As a check on the
programming of the free radial Green's function algorlthm, we

numerically perfbrmed the sum over k in the 1,1 element of the free

‘Green's function, in the form given in (A.25), for the case 22'= §l'

The sum over .k was terminated at |k| = N ' when the magnitude of the
ratio of the Nth term of the sum to the partial sum was less than
10-15. The result was compared numerically to the value for the sum

obtainéd from the expression in (A.33). " The comparison was made for

.8all combinations of the values xa/xl = 0.2,0.8, X ='O.1,1,10,

1
and z = 0.79i, and for the values x,/x; = 0.95, X =0.1,1,10, and

=197i. In all caéés, there was agreement to at least 12 significant
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figures. TFurther checks were performed on both the Coulomb and free
radial Green's function programs. We checked numerically that the
functions satisfied the appropriate differential equation. We also

examined numerically the asymptotic behavior of the functions in the

" limit |n| — o, with the remaining parameters fixed, and in.the limit

xlv-sw, with x_2/xl and ﬁhe remaining parameters~fixed: The asymptotic

values were compared with the values obtained from Eqs. (A.28) and

- (A.30). The results were in satisfaqtory agreement.
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FIGURE CAPTIONS .
The Feynman diagrams corresponding to the lowest order
radiative corrections . to the energy levels in a hydrogenf
like system. The diagrams in (a) and (b) correspond £§ the
electron self energy and the vacuum polarization respec-
tively. v
The curves labeled (%), (5), (6), and (7) are the successive
approximations to F(Zx) which result from evaluating known
terms of order up to Lth, 5th, 6th, and 7th in the series
in Bq. (1.2). '
The contour CF and the singularities of the intégrand in
the complex z-plane. The points to the lefﬁ of z = +1
represent the bound-state poles.v En is the ground-state
energy in this diagram.
The new contour in the complex z-plane.

The complex z-plane with the singularities of the integrahd

in Eq. (3.2).

" The complex z-plane with the singularities of the integrand

in Eq. (3.5). 1In the upper diagram, the branch points of

1
b are at En + (-ie)2. As « f90+, the branch points meet

at En' In the lower diagram, the cuts; which are drawn to
insure Re(b) > O; meet at E_ and extend along the real
z-axisi In fhis diagram vzl =25 = 0.

In this graph, ﬁe‘have plotted loglO[TK(r,y,t,Y)[ as a
function of k, for various values of r, ¥y, t, and 7.

The vertical line on each curvé gives the value, on the
same scale as Kk, of the smaller argument of the ﬁessel

functions.
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The points in this graph are the calculated values of

£ (201) - % m(2a)™® for gz =10, 20, 30, ko, and 50.

The point at 2 = 0 is the limit as Zo — 0, of the same
function and is obtained by an iﬁdependent method.
Numerically calculated values for fHB(Zz) for Z>= 10, 20,
30, 40, and 50 and the value of the limit point fHB(O)
which is calcﬁlated.in Appendix F. .

Values for the function FP(Z0) obtained in this calcula-
tion and values for F(Zx) based on the resﬁlts of
previous calculations. The curve with the error estimates
is based on the graph given in Ref. 12. According to
Desiderio and Johnson, there is an error in algebra in the
work leading to the result of Brown and Mayers.

Calculated values for G(Za). The error limits on the

point at Z = 10 correspond to the error limits of F(Zx)

‘at 2 = 10. The dashed line shows the function GA(Za)

fitted to G(Za) at Z = 10, 20, and 30.
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