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Breakthroughs in innovative technologies such as next-generation sequencing and wear-

able devices are producing flourishing data to facilitate deriving scientific insights. But they

also provoke substantial challenges in both statistical analyses and interpretations by bringing

forth data that is sparse and astronomically high-dimensional. Directly modeling such raw data

is not only laborious due to the untenable model assumption, but also suffers from multiple

testing and low power. Therefore, an emerging alternative is to first reduce the data dimension

at the outset by comparing two subjects’ sequences using a dissimilarity/distance metric, termed

“between-subject attributes”, for a pair. We refer to their classical counterparts that concern only
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one individual as “within-subject attributes.”

The method development of this dissertation is motivated by analyzing data from

microbiome studies. To drive insights into disease mechanisms, the human microbiome is

interrogated using high-throughput sequencing (e.g., 16s sequencing of gut microbiota). This

procedure generates taxonomic sequence counts (for each subject) that are sparse and high-

dimensional. Due to their inherent non-normality, the concept of diversity is introduced to

summarize the microbial community. In fact, in most applications, researchers start with the

community-level analysis of the microbiome diversity instead of directly tackling the individual-

level raw data that may suffer from weak signals. Specifically, a popular diversity metric

that naturally encompasses a between-subject nature is the Beta-diversity, defined by pairwise

distances of taxonomic counts between two individuals.

In the first part of this dissertation, we extend the mainstream ANOVA-based diversity

analyses tool to a semiparametric regression by modeling the Beta-diversity as the response

(dependent variable) in the functional response model (FRM). Its superiority over the existing

approach is demonstrated both in scalability and statistical power.

The versatility of the between-subject attributes is by no means confined to one discipline.

In fact, they serve as effective dimension reductions in various disciplines. In the second part,

by extending the classical generalized linear model (GLM) from within- to between-subject

attributes, we present a unified GLM-type semiparametric regression framework for distance

metrics, then unravel the intricate connections in high-dimensional sequences from microbiome

and wearables. This timely solution provides robust inference about relationships between

pairwise distances that are of interest in a mounting number of applications.

Despite the growing implementations of this new paradigm, the efficiency of their

estimators has not yet been studied carefully. But this is of fundamental importance for

semiparametric models due to the efficiency loss at the price of the minimum model assumptions

we posit. In the third part, leveraging the Hilbert-Space-based semiparametric efficiency theory,
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we show that estimators from a class of U-statistics-based generalized estimating equation

(UGEE) achieve the semiparametric efficiency bound. This semiparametric efficiency allows

sensitive signal detection in practice.

Therefore, such a distance-based semiparametric regression framework for between-

subject attributes harmonizes efficiency and robustness, which will be propelling growing

applications in biomedical, psychosocial, and related research to inform appropriate knowledge

discovery and decision-making.
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Chapter 1

Introduction

Breakthroughs in innovative technologies are generating flourishing data to facilitate

data-driven understandings. At the same time, data with astronomical dimensions also provoke

substantial challenges to statistical analyses. For example, it is daunting to find a few indi-

vidual culprits that are fully responsible for a disease of interest. Additionally, suitable data

interpretations are needed to inform appropriate knowledge discovery and decision-making.

Rooted in the high-dimensional data from real applications, the main objectives of this

dissertation are to develop new statistical methodologies to 1) overcome the challenges of

analyzing high-dimensional data through effective dimension reductions; 2) unify a framework

to fill the vital gaps in quantifying their effects by addressing the inherent correlations properly;

3) ground the implementations of the new method from a rigorous theoretical perspective.

To achieve these objectives, we first adopt pairwise distances to reduce data dimension

and propose a unified semiparametric regression framework for distance metrics that merit their

interest. Harmonizing robustness and efficiency, this new distance-based paradigm provides a

timely tool to tackle high-dimensional data and derive scientific insights.

Our method development is motivated by analyzing data from microbiome studies.

Fueled by technological revolutions such as next-generation sequencing, high-throughput data

play an increasing role in biomedical and other burgeoning research areas. Nowadays, the

human microbiome can be interrogated using high-throughput sequencing (e.g., 16s sequencing
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of gut microbiota). This procedure generates taxonomic sequence counts (for each subject)

that are sparse and astronomically high-dimensional. Directly modeling such sequences is not

only challenging due to untenable model assumptions but also suffers from multiple testing and

lower power. In most applications, researchers are more interested in the role of the microbiome

as a community but lack handy analytical techniques. Hence, an emerging alternative has been

adopted to reduce the data dimension at the outset first by comparing two subjects’ genome

sequences with dissimilarity/distance metrics, which we term the “between-subject attribute”

for a pair. Its classical counterpart concerning only one individual is termed the “within-subject

attribute.” For instance, a popular metric in the microbiome that naturally encompasses such

a between-subject nature is the Beta-diversity. Defined by pairwise distances of taxonomic

counts between individuals, it is recognized as a key indicator of human health (Durack and

Lynch, 2019a). To derive insights into disease mechanisms, various attempts have been made to

examine relationships between Beta-diversity and other phenotypic outcomes. Permutational

Multivariate Analysis of Variance (PERMANOVA) (McArdle and Anderson, 2001) is one of

the mainstream approaches with the ANOVA as a premise. However, it is inflexible to adjust

for covariates while also computationally demanding, due to the reliance on permutation for

the inference. Therefore, we propose to address such limitations by modeling Beta-diversity

in a regression through a class of semiparametric functional response models (FRM), which

is uniquely positioned to model between-subject attributes. This timely solution not only

disentangles sources of variation carried by Beta-diversity but also generates interpretable

results on both the direction and size of the effects, potentially shedding light on the disease

onset, progression, and treatment. We also develop a novel approach to non-parametrically

simulate life-like Beta-diversity outcomes to help demonstrate the performance of its asymptotic

inference.

While the versatility of the between-subject attributes is by no means confined to one

discipline, they serve as effective dimension reductions in various biomedical research (Moon
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et al., 2017). For example, in this burgeoning digital era for disease diagnosis and prevention,

data generated from mHealth studies can facilitate personalized interventions to improve patient

care. While to date, the analyses of such data are still in an embryonic stage dominated by de-

scriptive statistics. Even if modern methods such as (multilevel) functional principal component

analysis (FPCA) (Di et al., 2009), or penalized multi-band learning (Li et al., 2021) have been

proposed, they may be subjected to information loss due to the selected principal components

(PCs) or penalization. In some studies, in addition to inspecting population mean function over

time (with functional PCs), investigators also aim to capture the variability or heterogeneity of

activities among subgroups formed by clinical traits, such as the disease status.

Migrating the notion of between-subject attributes to the longitudinal sequences collected

from wearables, we found that pairwise distances compressed from high-dimensional sequences

can naturally capture the between-subject variability. For example, the mean of squared

Euclidean distance pertains to the variance. Hence, they further motivate us to expand the

previous work. By extending the classical generalized linear models (GLM) from within- to

between-subject attributes, we present a unified GLM-type semiparametric framework based

on distances that accommodate different data types. We also illustrate how to construct such

between-subject distances extensively, with motivating examples from the human microbiome

and mHealth that we encounter. By modeling several pairwise distances simultaneously, the

proposed approach can potentially shed light on a variety of fields. For instance, in microbiome

studies, to explore the complex interplay of diet, microbiome, and metabolome in disease

phenotypes; in mHealth and epidemiology studies, to connect disease status with sleep quality,

physical activity, and even social networks; in genetic studies, to investigate interactions between

genetic and environmental factors (G×E interaction) in disease development, etc.

Taken together, this new framework shatters barriers of the predominant paradigm to

unify a new class of distance-based semiparametric regression, confronting the challenges

of modeling high-dimensional data. Its semiparametric nature grants it robustness to model
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misspecifications by relaxing the stringent parametric assumptions. Despite their growing

applications, the efficiency of parameter estimators has not yet been studied carefully. But this is

of fundamental importance for semiparametric models due to the efficiency loss at the price of

the minimum model assumptions we posit. To further ground its implementations, our next goal

is to find the estimator(s) with the smallest asymptotic variance under weaker (semiparametric)

assumptions, namely, the ”semiparametric efficient estimator(s).”

By leveraging the Hilbert-Space-based semiparametric efficiency theory, we first extend

regular asymptotic linear estimators and influence functions from the classical within- to

between-subject attributes. In the Hilbert space, we introduce two inner products to identify

the asymptotic variances and connect them by establishing a “dual orthogonality” property.

We show that estimators from the U-statistics-based generalized estimating equation (UGEE)

deliver the smallest asymptotic variance for the semiparametric FRM. In a nutshell, akin to GEE

for semiparametric GLM, UGEE estimators are asymptotically efficient for the semiparametric

FRM, rendering the least efficiency loss to allow sensitive signal detection in practice. With

blooming implementations of between-subject attributes as effective dimension reduction tools,

the efficiency of UGEE estimators will propel growing applications of the distance-based

semiparametric FRM (and other related models) for high-dimensional data.

In summary, the major contributions of this unified paradigm for between-subject

attributes include reducing the astronomical data dimensions effectively, harmonizing robustness

and efficiency in statistical modeling to inform scientific insights, and being theoretically

grounded in statistical inference to accelerate blooming applications in biomedical, psychosocial,

and related research. This building block also provides a premise for extensions to longitudinal

data and causal effects in the future.

The dissertation is organized as follows. In Chapter 2, we first propose the class of

semiparametric functional response models (FRM) to model Beta-diversity. We then present a

unified GLM-type semiparametric regression framework designated for distance metrics accom-
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modating different data types in Chapter 3. To rigorously ground the application of this new

paradigm, in Chapter 4, we leverage the Hilbert-Space-based efficiency theory to demonstrate

that estimators from the UGEE deliver the smallest asymptotic variance for the semiparametric

FRM. In Chapter 5, we provide concluding remarks and several future directions.
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Chapter 2

A Semiparametric Model for Between-
Subject Attributes: Applications to Beta-
diversity of Microbiome Data

2.1 Introduction

This methodological development is motivated by the problem to test associations

between the microbiome diversity and clinical variables. The human microbiome refers to all

microorganisms on or in the human body, their genes, and surrounding environmental conditions

(National Academies of Sciences and Medicine, 2018). In recent years, a preponderance of

microbiome studies have implicated the role of the human microbiome in the pathogenesis of

complex diseases, including diabetes, alcoholic liver disease, and even cancers (Lang et al.,

2020; Holmes et al., 2011). Therefore, identifying potential biological or clinical variables

associated with the microbiome and defining their relationships not only enlighten the inherent

disease mechanisms but also enhance modulating microbiome compositions for therapeutic

purposes.

Fueled by the technological advancement of next-generation sequencing, the human

microbiome can be interrogated using high-throughput sequencing. For example, one strategy

amplifies and sequences the bacterial 16S ribosomal RNA gene (16S rRNA) for species iden-

tification. These sequences are further clustered into nearly identical Operational Taxonomic
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Units (OTUs) and compared with reference databases to produce OTU counts profiles based on

taxonomic assignments.

The OTU counts are often sparse and high-dimensional. Direct analysis of such data

with limited samples raises several statistical challenges, including modeling the skewed and

over-dispersed count data with a preponderance of zeros. Since the sequencing depth varies,

OTU counts are usually normalized into proportions within each subject to form the OTU

relative abundance. They can be further summarized at the microbial community level us-

ing diversity metrics, including the “within-subject” Alpha-diversity and “between-subject”

Beta-diversity. Unlike Alpha-diversity that consists of individual outcomes, or within-subject

attributes, Beta-diversity considers the number of shared taxa between subjects, thus represent-

ing their differences in OTU abundance profiles. Each Beta-diversity outcome is a pairwise

distance between two subjects, or between-subject attribute. The two major categories of

statistical analyses for the microbiome, i.e., the “individual” level effect of a single OTU and

the “community” level effect of microbiome composition with summary statistics of diversity,

complement each other.

Notably, a variety of disorders are shown to be associated with the loss of gut microbial

diversity (Durack and Lynch, 2019b). One common approach to evaluate such associations using

Beta-diversity is the Permutational Multivariate Analysis of Variance Using Distance Matrices

(PERMANOVA) (McArdle and Anderson, 2001). This approach partitions the Beta-diversity

into within- and between-group variations and implements a permutation test based on pseudo-F

statistics for inference. A major limitation is the difficulty to discern the sources of variation

when the null hypothesis is rejected. Also, it is unsuitable for between-subject covariates in

some applications, such as a dissimilarity measure describing the difference between subjects’

metabolites abundance profile. Additionally, it requires a large number of permutations to

ensure stable results (Dubitzky et al., 2013). All these limitations severely circumscribe its

applications in practice.
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In this chapter, we propose a new approach to address the aforementioned limitations of

PERMANOVA by utilizing the functional response models (FRM) (Kowalski and Tu, 2008a),

which are uniquely positioned to address between-subject attributes defining the Beta-diversity

in the current context. We provide a brief overview of the Beta-diversity and PERMANOVA

first.

2.2 Beta-diversity and PERMANOVA

2.2.1 Beta-diversity Measures

Beta-diversity captures within- and between-group differences by comparing individuals’

distributions of taxonomic units. For example, the Bray-Curtis distance (Sørensen, 1948) is a

quantitative measure based on OTU relative abundance. For a pair of subjects i and j, the Bray-

Curtis distance is defined by BCi j = 1− 2Ci j
Si+S j

, where Ci j indicates the sum of the OTU relative

abundance that the pair has in common and Si
(
S j
)

denotes the total number of OTU relative

abundance for the ith ( jth) subject. This measure ranges from 0 to 1, with 0 (1) indicating

exactly the same (completely different) taxonomic abundances. As Beta-diversity incorporates

taxa information into distances, its size is determined by the number of subjects rather than that

of taxonomic units for the high-dimensional OTUs.

Unlike the Euclidean distance, most Beta-diversity measures calculate weighted relative

differences, where each species’ contribution is weighted by the sum of the species’ abundance

in the two subjects being compared (Roberts, 2017). Some forms such as the Unifrac can

additionally account for the phylogenetic distances (Lozupone and Knight, 2005). Hence,

non-Euclidean Beta-diversity measures are widely adopted as the basis of statistical analyses

to detect a wider range of biologically relevant changes in the microbiome (Legendre and

Gallagher, 2001).
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2.2.2 PERMANOVA

Consider a sample of n subjects with microbiome profiles (counts) defined by m OTUs.

Let yi denote an m× 1 column vector of OTU relative abundance (after normalization) and

xi a vector of explanatory variables such as the status of a disease for the ith subject. Let

di = d (yi1,yi2) denote a Beta-diversity outcome for a pair of subjects i = (i1, i2) ∈Cn
2 , where Cn

q

denotes the set of q-combinations
(
i1, . . . , iq

)
from the integer set {1, . . . ,n}. We are interested

in testing the association between the Beta-diversity di and some clinical variables such as the

status of a disease or, more generally, a continuous explanatory variable such as bilirubin, an

indication of liver disease progression.

If xi is a categorical variable for groups, PERMANOVA can be used to compare Beta-

diversity across different groups, which adopts a pseudo-F statistic for inference (McArdle and

Anderson, 2001). We provide details and formulas in the Supporting Information.

PERMANOVA has several limitations. First, it does not provide coefficient estimators

for explanatory variables, which hinders generating interpretable results on both the direction

and size of the effects, or discerning sources of differences. Second, it describes relationships

of Beta-diversity (a between-subject attribute) with within-subject attributes only, not between-

subject attributes such as metabolites abundance profile. Also, it requires a large number of

permutations for stable results and thus carries more overheads in terms of the computational

burden. Additionally, it is quite difficult to extend PERMANOVA to longitudinal studies (with

missing data) that are potentially valuable given the dynamic and highly personalized nature of

the microbiome.

2.3 Functional Response Models for Beta-diversity

The aforementioned limitations of PERMANOVA result from a lack of ability to model

between-subject attributes under the predominant statistical paradigm. With a few exceptions

such as the Mann-Whitney-Wilcoxon rank-sum test (Wu et al., 2014a; Lin et al., 2021), all
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popular statistical models focus on relationships between variables from the same subject, or

within-subject attributes. As Beta-diversity measures the difference between a pair of subjects’

OTUs, conventional statistical models are not amenable to modeling such between-subject

attributes. In this section, we develop a regression framework to model Beta-diversity by

utilizing a class of functional response models (FRM).

2.3.1 Functional Response Models for Between-subject Attributes

Consider a class of semiparametric functional response models (FRM):

E
{

f
(
yi1, . . . ,yiq

)
| xi1 , . . . ,xiq

}
= h

(
xi1, . . . ,xiq;θ

)
, (2.1)(

i1, . . . , iq
)
∈Cn

q , 1 ≤ q, 1 ≤ i ≤ n,

where yi = (yi1, . . . ,yim)
⊤ ∈ Rm denotes the response vector from the ith subject, f(·) is some

vector-valued function, h(·) is some vector-valued smooth function (e.g., with continuous

derivatives up to the second order), θ is a vector of parameters, q is some positive integer. The

FRM in (2.1) extends the semiparametric generalized linear models (GLM) from within- to

between-subject attributes (Kowalski and Tu, 2008a). For example, when q = 1 and f (yi) = yi,

(2.1) immediately reduces to the restricted moment GLM. When q = 2 and set

fi = d (yi1,yi2) , hi (θ) = E {d (yi1 ,yi2)}= θ , (i1, i2) ∈Cn
2 , (2.2)

the FRM in (2.1) models the Beta-diversity distance d (yi1,yi2) and provides inference about the

mean distance θ .
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2.3.2 Functional Response Models for Beta-diversity with Covariates

Group Comparison

We start by comparing Beta-diversity across multiple groups. Consider K groups with

nk denoting the sample size of the kth group (1 ≤ k ≤ K), n = ∑
K
k=1 nk denoting the total sample

size of all K groups combined. Let xi denote a categorical variable indicating group membership

for subject i (1 ≤ xi ≤ K, 1 ≤ i ≤ n).

For each pair, we observe their OTU relative abundance outcomes yi = {yi1,yi2} (i =

(i1, i2) ∈Cn
2), along with the pairwise group indicators xi = {xi1,xi2} (1 ≤ xi1,xi2 ≤ K). Denote

all combinations of xi with a vector δ (xi) ∈ RK+CK
2 through a one-hot encoding function

δ : {1, ...,K}×{1, ...,K} 7→ {0,1}K+CK
2 such that for its kth (k = {k1,k2}) entry:

δk (xi) =

 1 if xi = {xi1,xi2}= {k1,k2} = k

0 otherwise
, i = (i1, i2) ∈Cn

2 , (2.3)

δ (xi) =
(
δ11 (xi) , . . . ,δ(K−1)K (xi) ,δKK (xi)

)⊤
, 1 ≤ k1 ≤ k2 ≤ K.

Let f (yi) = d (yi1,yi2) and define an FRM:

E { f (yi) | δ (xi)}= exp

{
∑

1≤k1≤k2≤K
τk1k2δk1k2 (xi)

}
= exp

{
θ
⊤

δ (xi)
}
, (2.4)

where exp(·) ensures that the right side of the equation is positive as f (yi) ≥ 0. The FRM

above is determined by the parameter vector θ =
(
τ11, . . . ,τ(K−1)K,τKK

)⊤.

Unlike conventional analysis for within-subject attributes, models for between-subject

attributes involve more complex parameters and interpretations. For the FRM in (2.4), exp(τkk)

is the mean of f (yi) when both subjects of the ith pair are from group k, and exp(τk1k2) is the

mean of f (yi) when one (the other) is from group k1 (k2). Thus, in addition to group means

as in conventional within-subject analysis, we now have (1) within-group means exp(τkk) and
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(2) between-group means exp(τk1k2). For two groups k1 and k2 with the same or similar OTU

distributions, their within- and between-group means are usually similar. However, if they have

different OTU distributions, they may still have similar within-group means (this can occur, for

example, if OTUs’ have similar variability within each group), but the between-group means

exp(τk1k2) can be different from within-group means exp(τk1k1) or exp(τk2k2).

Thus, under the FRM in (2.4), we are interested in three types of null hypotheses to

describe group differences in Beta-diversity:

(1) Within-group :
H01 : τkk = τk′k′ for any (k,k′),1 ≤ k < k′ ≤ K

Ha1 : τkk ̸= τk′k′ for some (k,k′)
, (2.5)

(2) Between-group :
H02 : τkl = τk′l′ for any (k, l,k′, l′),1 ≤ k,k′ < l, l′ ≤ K

Ha2 : τkl ̸= τk′l′ for some (k, l,k′, l′)
,

(3) Within- vs between-group :
H03 : τkk = τk′l′ for any (k,k′, l′),1 ≤ k ≤ K,1 ≤ k′ < l′ ≤ K

Ha3 : τkk ̸= τk′l′ for some (k,k′, l′)

Hypotheses (2) and (3) are unique to between-subject attributes, each revealing different

aspects. For example, if the patterns of OTU distribution are “flipped” across two groups, the

difference of Beta-diversity could be detected by the “within- vs. between-” instead of the

“within-” type of hypothesis.

For PERMANOVA, if we obtain an insignificant pseudo-F statistic, we conclude with

not enough evidence to reject the null. But, if this test is significant, it is unclear if the difference

occurs in within-group or between-group means or both. By partitioning sources of variation

and building formal hypotheses to depict the underlying differences of microbiome diversity

across groups, a formal regression model for between-subject attributes in (2.4) allows for

discerning sources of differences, potentially leading to more in-depth scientific findings.

All three types of hypotheses in (2.5) are readily tested using linear contrasts: H0 : Cθ =

0 vs. Ha : Cθ ̸= 0, where C is a matrix of known constants. For example, when comparing

12



Beta-diversity for three groups, we may use the following C matrices to test the hypotheses in

(2.5):

K = 3, θ = (τ11,τ22,τ33,τ12,τ13,τ23)
⊤ , (a) : C1 =

(
12, (−1) · I2, 02×3

)
; (2.6)

(b) : C2 =

(
02×3, 12, (−1) · I2

)
; (c) : C3 =

(
15, (−1) · I5

)
,

where 1n denotes a n×1 column vector of 1’s, and In denotes the n×n identity matrix.

Covariates for Confounders

As most human population studies of microbiome are observational due to cost, logistic,

and difficulties in experimental control, it is crucial to control for potential confounders that may

impact group differences, such as demographics (ethnicity, genetic background), biometrics

(medications, diet), molecular measures (microbial metabolites, gene expression), and environ-

mental exposures (National Academies of Sciences and Medicine, 2018). A more substantial

improvement over PERMANOVA is FRM’s ease to control for a broader range of confounders,

including between-subject attributes such as metabolites abundance profiles. This is achieved

by leveraging the regression feature of FRM to include either within- or between-subject

covariates.

As a motivating example for including a within-subject covariate, consider a linear

regression relating a continuous variable zi to a continuous response yi: yi = η0 +η1zi + εi,

εi ∼
(
0,σ2) , 1 ≤ i ≤ n, where

(
0,σ2) denotes some continuous distribution with mean zero

and variance σ2. Now consider the squared difference, f (yi) = (yi1 − yi2)
2. It follows that

E { f (yi) | zi1,zi2}= E (εi1 − εi2)
2 +η

2
1 (zi1 − zi2)

2 = 2σ
2 +η

2
1 (zi1 − zi2)

2 . (2.7)

Although Beta-diversity is more complex, we use the same rationale to control for

covariates by adding (zi1 − zi2)
2, or a more general non-negative transformation g(zi) of zi =
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{zi1,zi2} to the FRM in (2.4):

E { f (yi) | δ (xi) ,zi}= exp

{
∑

1≤k1≤k2≤K
τk1k2δk1k2 (xi)+ξ1g(zi)

}
, i = (i1, i2) ∈Cn

2 . (2.8)

For a categorical covariate, we can define a series of indicators akin to (3.8), i.e. for

the ith pair, we observe the pairwise indicators xli =
{

xli1,xli2
}

(1 ≤ xli1,xli2 ≤ Kl) for the

lth (1 ≤ l ≤ p) categorical covariate with Kl levels. We one-hot encode those p categorical

covariates into δ (xi) ∈ R1+∑
p
l=1(Kl+C

Kl
2 −1), with the encoding function defined similarly as in

(3.8), but designating a referent to obtain a similar form as in conventional regression.

Specifically, for the lth categorical covariate, we define δl : {1, ...,Kl}×{1, ...,Kl} 7→

{0,1}Kl+C
Kl
2 −1 (excluding the case where kl1 = kl2 = 1) such that for the kth

l (kl = {kl1,kl2})

entry of δ l(xli) :

δlk (xli) =

 1 if xli =
{

xli1 ,xli2
}
= {kl1,kl2} = kl

0 otherwise
, (2.9)

δ l(xli) =
(
δl12 (xli) , . . . ,δl(K−1)K (xli) ,δlKK (xli)

)⊤
, 1 ≤ l ≤ p,

δ (xi) =
(

1,δ 1(x1i)
⊤, . . . ,δ l(xli)

⊤, ...,δ p(xpi)
⊤
)⊤

,

i = (i1, i2) ∈Cn
2 , 1 ≤ kl1 ≤ kl2 ≤ Kl, 1 = kl1 ̸= kl2.

Thus, with p categorical covariates (including one for diagnostic groups), xli (1 ≤ l ≤ p),

and q continuous covariates, zmi (1 ≤ m ≤ q) for subject i, we can, after designating the first

group as the referent by including an intercept β0, express the FRM as:

E { f (yi) | xi,zi}= exp

{
β0 +

p

∑
l=1

(
1=kl1 ̸=kl2

∑
1≤kl1≤kl2≤Kl

βlk1k2δlk1k2 (xli)

)
+

q

∑
m=1

ξmgm (zmi)

}
,

= exp
{

β
⊤

δ (xi)+ξ
⊤g(zi)

}
, (2.10)
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where xli =
{

xli1 ,xli2
}

, zmi = {zmi1,zmi2}, g(zi) =
(
g1 (z1i) , . . . ,gq

(
zqi
))⊤ and Kl denotes the

levels of category of the lth categorical variable xli (1 ≤ l ≤ p). The FRM above is parameterized

by a vector θ ∈ R1+∑
p
l=1(Kl+C

Kl
2 −1)+q:

β l =
(
βl12...,βl(Kl−1)Kl

,βlKlKl

)⊤
, β =

(
β0,β

⊤
1 , . . . ,β

⊤
p

)⊤
, (2.11)

ξ =
(
ξ1, . . . ,ξq

)⊤
, θ =

(
β
⊤,ξ⊤

)⊤
.

Akin to (2.4), the parameters for the covariates possess more complex interpretations.

For a continuous covariate zmi, ξm represents change in the mean of log{ f (yi)} per unit change

in gm (zmi). For a categorical one, say gender, we now have male-male, female-female, or

male-female pairs. If we set male-male as the referent, coefficients for female-female and

male-female pairs represent differences in the log of mean Beta-diversity when comparing the

respective gender pair to the referent.

We illustrate this model with a relatively simple log-linear form in (2.10), yet the

applicability of FRM is far beyond the assumed simple relationship. Like any regression model

such as the GLM, more complex relationships such as higher-order terms and interactions can

be specified as deemed appropriate. The FRM in (2.10) looks like a conventional (log-linear)

regression model, except that i indexes pairs of, rather than, individual, subjects. This critical

difference precludes applications of standard inference methods for regression models as we

discuss next.

Inference

As the response function fi = f (yi) of the FRM-based regression for Beta-diversity in

(2.10) involves pairs of subjects, inferences about θ must address the interlocking dependence

of fi’s. Since this type of dependence structure is not addressed by standard methods such as the

Generalized Estimating Equations (GEE), we develop inferences using a class of U-statistics

based Generalized Estimating Equations (UGEE).
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U-statistics based Generalized Estimating Equations

Let

Si = fi −hi, Di =
∂

∂θ
hi, Vi =Var ( fi | xi,zi) , i = (i1, i2) ∈Cn

2 , (2.12)

in practice, Vi is generally unknown and substituted by a working variance such as Vi (hi) = hi,

as the form of FRM is similar to log-linear models for within-subject attributes. Thus, define

the UGEE:

Un (θ) = ∑
i∈Cn

2

Un,i = ∑
i∈Cn

2

DiV−1
i Si = 0, (2.13)

where the estimates θ̂ are obtained through the Newton-Raphson method (see the Supporting

Information for details).

Although similar in appearance, the UGEE above is not a sum of independent variables

as in GEE (Tang, He, and Tu, 2012a). Standard asymptotic methods such as the central limit

theorem cannot be applied directly, but the theory of U-statistics is useful for addressing such

interlocking dependence. For ease of reference, we summarize the asymptotic properties in the

theorem below and provide a sketch of proof in the Supporting Information.

Theorem 2.1. Let

vi1 = E
(

Un,i| yi1,xi1,zi1

)
, B = E

(
DiV−1

i D⊤
i

)
, (2.14)

ΣU = 4Var (vi1) , Σθ = B−1
ΣU B−1, i = (i1, i2) ∈Cn

2 .

Then under mild regularity conditions,

(a) θ̂ is consistent and asymptotically normal:

√
n
(

θ̂ −θ

)
→d N (0,Σθ ) , (2.15)
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where →d denotes convergence in distribution.

(b) A consistent estimate of Σθ is obtained by substituting consistent estimates of θ and

moments of the respective quantities in Σθ .

Theorem 1 above is readily applied to test any linear hypotheses concerning θ , such as

the linear contrasts in (2.6). Under the null, the Wald statistic has an asymptotic χ2 distribution:

Wn = n
(

Cθ̂

)⊤(
CΣ̂θ C⊤

)−1(
Cθ̂

)
→d χ

2
s , (2.16)

where s is the rank of C and χ2
s denotes a (central) χ2 distribution with s degrees of freedom.

For example, in testing the within-group difference H01 in (2.6), Wn →d χ2
2 under H01.

The Score Test

As Wald-type tests are typically anti-conservative, score statistics may be used as an

alternative to reduce such bias, especially for small to moderate samples (Kennedy, 2003). To

develop a score statistic based on the UGEE in (6.9), let θ =
(

θ
⊤
(1),θ

⊤
(2)

)⊤
, where θ (2) is the

parameter of interest, θ (1) ∈ Rp, θ (2) ∈ Rq. Consider testing the null H0 : θ (2) = θ (20), with

θ (20) a vector of known constants. We have the partition:

Di =

(
∂h(θ)
∂θ (1)

,
∂h(θ)
∂θ (2)

)⊤

=
(
Di(1),Di(2)

)⊤
, Un (θ) =

(
Un(1) (θ) ,Un(2) (θ)

)⊤
, (2.17)

let θ̃ (1) denote the estimate of θ (1) from solving the following reduced estimating equation

given θ (2) = θ (20):

Un(1)
(
θ (1),θ (20)

)
=

(
n
2

)−1

∑
i∈Cn

2

Di(1)V
−1
i Si = 0. (2.18)
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To define the score statistic, let

θ̃ =
(

θ̃ (1),θ (20)

)⊤
, B = E

(
DiV−1

i D⊤
i

)
=

 B11 B12

B⊤
12 B22

 , (2.19)

G =

(
−B21B−1

11 , Iq

)
, Σ(2) = GΣU G⊤,

where Iq denotes the q×q identity matrix, B11 ∈ Rp×p, B12 ∈ Rp×q, and B22 ∈ Rq×q denote

the respective submatrices from partitioning the matrix B ∈ R(p+q)×(p+q), and ΣU is defined in

(2.14). Let

Ũn(2) = Un(2)

(
θ̃ (1),θ (20)

)
, Σ̃

−1
(2) = Σ

−1
(2)

(
θ̃ (1),θ (20)

)
, (2.20)

i.e., the quantities of Un(2) and Σ(2) with θ substituted by θ̃ . The theorem below summarizes

the asymptotic properties of the score statistic.

Theorem 2.2. Under mild regularity conditions and H0 : θ (2) = θ (20), the score test

statistic Sn

(
θ̃ (1),θ (20)

)
has an asymptotic χ2

q distribution with q degrees of freedom, i.e.,

Sn

(
θ̃ (1),θ (20)

)
= nŨ⊤

n(2)Σ̃
−1
(2)Ũn(2) →d χ

2
q . (2.21)

A sketch of proof is provided in the Supporting Information.

2.4 Applications

We first investigated the performance of this FRM approach and compared it with

the PERMANOVA, then applied it to a study on alcoholic liver disease (ALD). For Monte

Carlo (MC) simulations, we set M = 1,000 for MC iterations, two-sided type I error rate

α = 0.05, and sample size (per group) nk = 50, 100, 500 (k = 1,2) for two groups. All analyses

were performed within the R software platform (Team, 2017), with code optimized using

Rcpp (Eddelbuettel et al., 2011) for run-time improvement, which is available as Supporting
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Information.

2.4.1 Simulation Study

Beta-diversity is a feature summarization for the high-dimensional and zero-inflated

counts of taxonomic units extracted from sequence data. Hence, our approach is to first

generate those taxonomic abundances, and then compute Beta-diversity distances from the

normalized taxonomic abundances. Also, as microbial abundances for each taxonomic unit

are usually not independent, common approaches to generate taxonomic abundances from

parametric distributions fail to produce life-like microbiome data (Zhang et al., 2017). We thus

develop an approach to generate data that resemble real taxonomic abundances based on their

empirical cumulative distribution function (eCDF) and copula (See the Supporting Information

for details). As this procedure does not involve analytical distributional models, population-level

characteristics such as the mean are estimated by Monte Carlo simulation with a large MC size

of 5,000.

Simulation Settings

We generated Beta-diversity outcomes from eCDFs of OTU counts in a study on

alcoholic liver disease (Lang et al., 2020). Chronic alcohol consumption increases intestinal

permeability and changes the intestinal microbiota composition, which contributes to the

progression of alcohol-related liver disease (ALD). In this study, n = 85 subjects including

59 alcoholic hepatitis (AH) patients, 15 alcohol user disorder (AUD) patients, and 11 healthy

controls (HC) were enrolled. Fungal ITS sequencing and analysis were conducted using the

Illumina MiSeq V3 platform specific for the fungal ITS1 region, resulting in p = 81 detected

genera. Beta-diversity were computed from the OTU relative abundance vector Y85×81 =

[y1,y2, . . . ,y85]
⊤. For space consideration, we reported results using the Bray-Curtis distance.

Shown in the left-most panel of Figure 1 are eCDFs of Beta-diversity in the three

diagnostic groups. The eCDFs are considerably different between the AH and HC as well as
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Figure 2.1. Empirical cumulative distribution functions (eCDF) of OTU relative abundances
for (1) real data of alcoholic hepatitis (AH) patients, alcohol user disorder (AUD) patients, and
non-alcoholic controls (HC) (left) (2) real data of combined diseased (AH and AUD patients)
group and non-alcoholic controls (HC) (middle), and (3) simulated data of combined diseased
(AH and AUD patients) group and non-alcoholic controls (HC) (right).

AUD and HC group, but less so between the AUD and AH. To illustrate, we combined the

AH and AUD patients and simulated OTUs from this combined disease (D) and HC group.

Shown in the center of Figure 1 are the eCDFs of observed Beta-diversity for the D and HC

group, and in the right-most panel are those of the simulated Beta-diversity for a sample

size of nk = 500, which are nearly identical to their original counterparts. The Supporting

Figure 1 provides Principal Coordinates Analysis (PCoA) plot, a popular visualizing tool for

Beta-diversity (Kruskal and Wish, 1978), which also reveals similar patterns.

To assess whether the data generating procedure retains the important feature of zero-

inflated OTUs, we evaluated the average percentage of zero counts in real (93.93%) and

simulated OTUs, which are 93.34% (sd = .004) for nk = 50; 93.55% (sd = .003) for nk = 100;

and 94.10% (sd = .001) for nk = 500, indicating that the simulated OTUs do reflect the zero-

inflated nature of the real OTUs.
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Group Comparison

We first considered group comparisons without any covariate, where the FRM parame-

terized with an intercept is given by:

E { f (yi) | xi}= h(xi,θ) = exp{β0 +β22δ22 (xi)+β12δ12 (xi)} , (2.22)

i = (i1, i2) ∈Cn
2 , θ = (β0,β22,β12)

⊤ ,

where n = n1 +n2 with nk denoting the sample size of group k and f (yi) = di1,i2 denoting the

Beta-diversity outcome for pair i = (i1, i2) ∈Cn
2 . The three types of hypotheses are:

Within-group : H01 : β22 = 0, vs. Ha1 : β22 ̸= 0, (2.23)

Between-group : H02 : β12 = 0, vs. Ha2 : β12 ̸= 0,

Within- vs. between- group : H03 : β22 = β12, vs. Ha3 : β22 ̸= β12.

To assess the performance of the proposed approach for varying sample sizes, we

simulated OTUs from a single group based on the eCDF of group D using the copula approach.

In this case, all three null hypotheses in (2.23) hold.

Let θ̂
(m)

denote the estimator of θ and Σ̂
(m)
θ

the asymptotic variance from the mth MC

iteration, θ̂ and Σ̂
(asymp)
θ

denote the sample mean of θ̂
(m)

and Σ̂
(m)
θ

, respectively, and let Σ̂
(emp)
θ

denote the sample variance of θ̂
(m)

. Let W (m)
n denote the Wald statistic in (2.16) for testing a

hypothesis at the mth MC iteration. The type I error rate based on the asymptotic variance is

given by α̂W = (1/M)∑
M
m=1 I

(
W (m)

n ≥ qs,0.95

)
, where qs,0.95 denotes the 95th percentile of a

central χ2 distribution with s degrees of freedom. The score type I error rate α̂s was computed

similarly by replacing W (m)
n with the score statistic in (2.21) at the mth iteration.

We assess the asymptotic performance by comparing asymptotic and empirical standard

errors from Σ̂
(asymp)
θ

and Σ̂
(emp)
θ

, and by comparing α̂W (α̂s) and α = 0.05.
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Table 2.1. MC estimates, standard errors (asymptotic and empirical) for FRM under the null
hypotheses, averaged over MC M = 1,000 iterations.

Under Null Hypotheses
Parameter Est. Std. err

Asymptotic Empirical
nk = 50

β0 -.438 .091 .093
β22 .003 .128 .133
β12 .004 .066 .068

nk = 100
β0 -.452 .066 .065
β22 .0003 .093 .096
β12 .002 .048 .049

nk = 500
β0 -.458 .030 .031
β22 .0007 .043 .043
β12 .0006 .021 .021

Shown in Table 2.1 are estimates (Est.) of θ , asymptotic and empirical standard errors.

β̂22 and β̂12 were quite close to 0 (true value). The true β0 = −0.4595 was obtained by the

sample mean of Beta-diversity for a large MC sample size of 5,000. The estimated β̂0’s were

close to the truth for all three sample sizes. The asymptotic standard errors were close to their

empirical counterparts. As expected, discrepancies became smaller as the sample size increased.

But estimates and asymptotic standard errors of θ were still good for nk = 50.

Shown in Table 2.2 are type I errors of FRM for the three nulls in (2.23) and PER-

MANOVA for the overall group difference. For the FRM, although exhibiting a small upward

bias for nk = 50, the Wald type I errors were close to α = 0.05 in all three cases. The score

tests worked well to reduce bias for nk = 50 and 100 with nearly identical type I errors as the

Wald for large sample sizes. PERMANOVA also performed well, albeit with a small downward

bias for nk = 50 and 100, which often occurs for small sample sizes (Hemerik et al., 2018).
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Table 2.2. Comparison of type I error rates between FRM (based on Wald and Score tests) and
PERMANOVA (based on permutation).

FRM: Type of Hypothesis PERMANOVA
Sample size Within-: Between- Within- vs. Between-

nk H01 : β22 = 0 H02 : β12 = 0 H03 : β22 = β12

Type I Error Rates (Wald)
50 .045 .081 .087

100 .046 .063 .071
500 .047 .053 .057

Type I Error Rates (Score) Type I Error Rates
50 .038 .048 .054 .043

100 .044 .047 .054 .048
500 .047 .051 .053 .051

Group Comparison Accounting for Covariates

We illustrate with one continuous and one binary covariate, with the same two diagnostic

groups as in (2.22), the FRM becomes:

E { f (yi) | xi,zi}= h(xi,zi;θ) = exp
(

u⊤
i θ

)
, (2.24)

u⊤
i θ = β0 +β

d
22δ

d
22

(
xd

i

)
+β

d
12δ

d
12

(
xd

i

)
+β

g
22δ

g
22
(
xg

i
)
+β

g
12δ

g
12
(
xg

i
)
+ξ

aga (za
i ) ,

θ =
(

β0,β
d
22,β

d
12,β

g
22,β

g
12,ξ

a
)⊤

, i = (i1, i2) ∈Cn
2 ,

where xd
i , xg

i and za
i denote the diagnostic group, binary and continuous covariates for each

pair i ∈ Cn
2 . In addition to the three null hypotheses comparing diagnostic groups, two new

hypotheses can be tested with H04a : ξ a = 0 for the continuous and H04b : β
g
22 = β

g
12 = 0 for the

binary covariate. Simulation details are provided in the Supporting Information.

Shown in Table 2.3 are estimates and results for testing the nulls. Again, all estimates

were close to their respective true values, and asymptotic standard errors were close to their
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Table 2.3. MC estimates, standard errors (asymptotic and empirical), and type I error rates
(Wald and Score) of FRM controlling for covariates under the null hypotheses, averaged over
MC M = 1,000 iterations.

Categorical Covariate: Gender (β g), Continuous Covariate: Age (ξ a)
Parameter Est. Std. err Type I Error

Asymptotic Empirical Wald Score
nk = 50

β0 -.442 .127 .135 .087 .048
β d

22 .003 .130 .139 .059 .055
β d

12 .004 .068 .072 .074 .045
β

g
22 .497 .129 .133 .047 .039

β
g
12 .501 .066 .069 .084 .056

ξ a .500 .098 .097 .050 .037
nk = 100

β0 -.456 .085 .083 .057 .046
β d

22 .0005 .094 .097 .060 .055
β d

12 .002 .048 .049 .076 .059
β

g
22 .502 .094 .094 .046 .044

β
g
12 .502 .048 .048 .064 .046

ξ a .500 .056 .055 .048 .044
nk = 500

β0 -.456 .039 .041 .057 .056
β d

22 .0003 .043 .044 .050 .050
β d

12 .0004 .022 .022 .049 .046
β

g
22 .498 .043 .045 .055 .056

β
g
12 .499 .021 .022 .061 .057

ξ a .500 .029 .029 .049 .050
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empirical counterparts. Wald and score type I errors were also close to the nominal value, albeit

a bit inflated for the Wald with nk = 50. The gaps between Wald and score type I errors became

negligible with large sample sizes.

Power Comparison with the Existing Approach

We then compared the power and computational time of the proposed FRM with

PERMANOVA to highlight its advantages.

Specifically, we compared hypotheses: (1) “Between-group” difference with PER-

MANOVA and (2) “Within-group” difference with ‘betadisper’ function in ‘vegan’ (Oksanen

et al., 2013) as a proxy, since PERMANOVA does not directly test this hypothesis. Since it

is not straightforward for PERMANOVA to test (3) “Within- vs. Between-group” difference,

we did not include this comparison. The simulation details are provided in the Supporting

Information. Both permutation-based PERMANOVA and ‘betadisper’ were conducted with the

number of permutations set to 99, 299, 499, and 999, respectively.

Shown in Table 2.4 are group size, effect size, power, and elapsed time (of one iteration)

for comparison. In detecting between-group differences (i.e., location), FRM outperformed

PERMANOVA in both power and scalability. Not only did FRM attain much higher power, but it

also required far less computing time. For within-group differences (i.e., dispersion), FRM still

surpassed ‘betadisper’ in scalability and achieved slightly higher power. For both PERMANOVA

and ‘betadisper’, the computational time increased dramatically with the increased number of

permutations.

2.4.2 Real Data Analyses

We also applied the proposed FRM to the alcoholic liver disease study (Lang et al.,

2020) to compare Beta-diversity among the original three diagnostic groups. Our goal was to

identify the association between the microbiome diversity and diagnostic groups, controlling
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Table 2.4. Comparisons of power and computational time between FRM and PERMANOVA
as well as ‘betadisper’, with the number of permutations set to 99, 299, 499, and 999 for both
permutation-based approaches.

“Between-group” difference (location): FRM vs. PERMANOVA
nk Eff. Size Power Time for one iteration (s)

FRM PERMANOVA (#) FRM PERMANOVA (#)
99 299 499 999 99 299 499 999

50 .322 .637 .152 .168 .172 .176 .009 .017 .051 .079 .180
100 .346 .905 .383 .423 .431 .441 .024 .078 .238 .408 .878
200 .346 .994 .892 .927 .922 .921 .108 .332 1.051 1.929 3.642

“Within-group” difference (dispersion): FRM vs. ‘betadisper’
nk Eff. Size Power Time for one iteration (s)

FRM Betadisper (#) FRM Betadisper (#)
99 299 499 999 99 299 499 999

50 .352 .698 .662 .698 .697 .691 .009 .015 .040 .062 .121
100 .366 .956 .914 .922 .928 .925 .024 .015 .041 .064 .126
200 .362 1.000 .996 1.000 .999 .998 .108 .020 .049 .075 .153

for demographics. The FRM for diagnostic groups and two covariates of gender and age is:

E { f (yi) | xi,zi}= h(xi,zi;θ) = exp
(

u⊤
i θ

)
, (2.25)
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where β0 represents the log of mean within-group Beta-diversity for the reference AH group,

β d
kk represent the log of mean within-group Beta-diversity differences for AUD (k = 2) and HC

(k = 3) with the AH (k = 1), and β d
kl represent the log of mean differences of the respective

between-group Beta-diversity of AH and AUD
(
β d

12
)
, AH and HC

(
β d

13
)
, AUD and HC

(
β d

23
)

compared with the AH, β
g
22 (β g

12) represents the log of mean difference of Beta-diversity

comparing female-female (male-female) and the reference male-male pairs, and ξ a represents
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the change in the log of mean Beta-diversity per unit increase in age difference (measured by

Euclidean distance). Given the relatively small sample sizes for AUD and HC, we report both

Wald and score results, as well as Bootstrap results (based on 5,000 Bootstrap samples) to

assess the accuracy of asymptotic results.

The top of Table 5 shows estimates, standard errors (asymptotic under “A. SE” and

Bootstrap under “B. SE”), test statistics and p-values (Wald under “W. p”, score under “S. p”,

Bootstrap Wald under “B.W. p” and Bootstrap score under “B.S. p”) for the nulls. All Bootstrap

standard errors were close to their asymptotic counterparts. For each hypothesis, the test results

were consistent, except for a noticeable discrepancy of the score test for β d
33 due to the small

sample size of HC group (n3 = 11).

AUD had no significant within-group difference in mean diversity compared with the

AH (β̂ d
22 = .226, p-values range [.419, .662]), but HC had a significantly higher within-group

diversity than the AH from Wald test (β̂ d
33 = .572, W. p = .002), which is consistent with Figure

1. While the score test for β d
33 revealed that more evidence needed to be collected to reject

the null (S. p = .130), this discrepancy may be due to the small sample size of HC. However,

after Bootstrapping, both Wald and score were consistently significant for β d
33 (B.W. p = .007,

B.S. p < .0001). All the above results reveal the scientific finding that alcoholic liver disease

is associated with reduced microbial diversity. For covariates, age had a positive effect with

ξ̂ a = .006, both female-female (β̂ g
22 = .125) and male-female (β̂ g

12 = .072) pairs had higher

mean diversity than male-male pairs. None of the covariates were significant.

The bottom of Table 2.5 includes statistics and p-values. The null of no within-group

difference (H01 : β d
22 = β d

33 = 0) was rejected consistently by Wald (W. p = .007) and two

bootstrap tests (B.W. p = .017, B.S. p < .0001), while the score test was close to being signifi-

cant with S. p = .071, suggesting a larger sample size may be needed to confirm significance.

The null of no between-group difference (H02 : β d
12 = β d

13 = β d
23) across the three groups was

rejected by all tests with the p-values ranging in (.0001, .001].
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Table 2.5. Estimates, asymptotic standard errors (A. SE), Bootstrap standard errors (B. SE)
based on B = 5,000 Bootstrap samples, Wald statistics, Score statistics, Wald p-valules (W. p),
Score p-values (S. p), Bootstrap Wald p-valules (B.W. p) and Bootstrap Score p-valules (B.S. p)
for the real study data using FRM, including covariates.

Categorical Covariate: Gender (β g), Continuous Covariate: Age (ξ a)
Param. Est. Std. err Statistic p-value

A. SE B. SE Wald Score W. p S. p B.W. p B.S. p
β0 -1.04 .215 .23 23.49 13.63 <.001 .0002 <.001 <.001
β d

22 .226 .302 .290 .560 .442 .454 .506 .419 .662
β d

33 .572 .186 .201 .416 2.29 .002 .130 .007 <.001
β d

12 .114 .193 .174 .350 .331 .554 .565 .519 .674
β d

13 .634 .173 .183 13.41 7.46 <.001 .006 .002 <.001
β d

23 .672 .180 .190 14.00 5.41 <.001 .020 .001 <.001
β

g
22 .125 .189 .175 .436 .399 .509 .528 .477 .613

β
g
12 .072 .121 .111 .357 .356 .550 .551 .511 .583

ξ a .006 .005 .005 1.72 1.48 .189 .224 .184 .348

Hypothesis Statistic p-value
Wald Score W. p S. p B.W. p B.S. p

Within H01 : β d
22 = β d

33 = 0 9.86 5.30 .007 .071 .017 <.001
Between H02 : β d

12 = β d
13 = β d

23 19.01 28.48 <.001 <.001 .001 <.001
Within vs H(1)

03 : β d
12 = 0 .350 .331 .554 .565 .519 .674

Between H(2)
03 : β d

13 = 0 13.41 7.46 <.001 .006 .002 <.001
H(3)

03 : β d
23 = 0 14.00 5.41 <.001 .020 .001 <.001

H04a : ξ a = 0 1.72 1.48 .189 .224 .184 .613
Covariate H(1)

04b : β
g
22 = 0 .436 .399 .509 .528 .477 .583

H(2)
04b : β

g
12 = 0 .357 .356 .550 .551 .511 .348

H04b : β
g
22 = β

g
12 = 0 .621 .241 .733 .886 .732 1.00
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The between- vs. within-group differences were significant for between-group variability

of D-HC and within-group variability of AH-AH pairs: with p-values ranging in (.0001, .006]

for H(2)
03 : β d

13 = 0 (AH-HC vs. AH-AH) and (.0001, .020] for H(3)
03 : β d

23 = 0 (AUD-HC vs.

AH-AH). However, there was no evidence to reject H(1)
03 : β d

12 = 0 concerning the between-group

variability of AUD-AH vs. within-group variability of AH-AH pairs. There was no significant

difference across the three gender pair groups (p-values range in [.732, 1]).

The results above were not corrected for multiple comparisons. We also provide FDR

corrected results in the Supporting Information by applying the Benjamini-Hochberg procedure

(Benjamini and Hochberg, 1995) to control the family-wise FDR at 5%, where major conclusions

remained unchanged except for H(3)
03 : β d

23 = 0 (AUD-HC vs. AH-AH), the score test p-value (S.

p) was .020 before and .060 after correction.

In summary, both within- and between-group hypotheses detected group differences,

driven by the fact that the HC group was rather distinct from the two disease groups. While

the within- vs. between-group hypotheses enabled a more comprehensive comparison, the

difference between AH-AH and AUD-AUD pairs was not as pronounced, yet any pair involving

one subject from HC was significantly different from AH-AH pairs. These specific conclusions

underscore the advantages of partitioning the sources of variation under the FRM.

2.5 Discussion

We developed a new approach to model Beta-diversity utilizing the functional response

models (FRM). Unlike conventional approaches such as the PERMANOVA, the proposed FRM

can disentangle information carried by Beta-diversity flexibly with the unique interpretations of

“mean within-group diversity” for each group and the “mean between-group diversity” between

any two groups. This regression approach also provides coefficient estimators for explanatory

variables, generating interpretable results on both the direction and size of the effects and

leading to more in-depth scientific findings.
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In addition, the proposed approach carries far fewer overheads than PERMANOVA in

terms of the computational burden. Also, the semiparametric nature of the model enables valid

inferences without any parametric assumption on the correlated and non-negative Beta-diversity.

Lastly, the approach to simulate life-like OTUs and Beta-diversity allows one to relate simulation

study results directly to the performance of the proposed and other statistical models for such

data in real studies.

Comparing with other methods for multivariate responses to improve inference of the

mean response such as the covariance regression model (Hoff and Niu, 2012), the proposed

approach aims to directly model the relationships between Beta-diversity, a complex yet bio-

logically meaningful between-subject attribute, and a set of explanatory variables, which can

be within-, between-subject or both, as deemed appropriate by content experts. Also, FRM’s

ability to control for between-subject confounders, such as a dissimilarity measure comparing

subjects’ metabolites abundance profile, makes it particularly useful in certain circumstances

involving such confounders. Given some recent discussions (Morton et al., 2019) regarding the

confounding of sequencing depth, one potential issue in most compositional data analysis is the

stochastic nature of sampling reads due to technical variation, yielding a potential confounding

effect. If this is the case in some applications, we can alleviate it by modeling Beta-diversity

from the absolute abundance (instead of relative abundance) and including the sampling depth

as an offset term in the proposed model.

In practice, we suggest conducting both score and Wald tests in applying the proposed

model. If the sample size for some groups is relatively small (for example, nk < 50), an

additional Bootstrap procedure is recommended. One major limitation of the approach is that it

only applies to cross-sectional data. Currently, leveraging semiparametric regression models for

longitudinal data, we are working on extending the approach to facilitate analyses of such data.

Chapter 2, in full, is a reprint of the material as it appears in Biometrics 2021. The

dissertation author was the primary investigator and author of this paper. The co-authors include
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Zhang, X, Chen, T, Wu, T, Lin, T, Jiang, L, Lang, S, Liu, L, Natarajan, L, Tu, JX, Kosciolek, T,

Morton, J, Nguyen, TT, Schnabl, B, Knight, R, Feng, C, Zhong, Y, and Tu, XM.
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Chapter 3

A Distance-based Semiparametric Regres-
sion Framework for Between-subject at-
tributes: Applications to High-dimensional
Sequences of Microbiome and Wearables

3.1 Introduction

Breakthroughs in innovative technologies such as next-generation sequencing are pro-

ducing flourishing high-throughput data, which have evolved into the center stage of biomedical

and other burgeoning research areas. This procedure brings forth data that is sparse and astro-

nomically high-dimensional. For example, sequenced genomes range from hundreds to tens of

thousands in human microbiome studies to determine their role in the pathogenesis of complex

diseases (Nguyen et al., 2021a). Other pioneering technologies also originate high-dimensional

sequences such as real-time measurements from wearables, which monitor patients’ health

objectively to a minute-by-minute frequency. Nevertheless, the sheer volume of such data also

brings enormous statistical challenges, including modeling the astronomical dimensionality and

the hard-to-track within- and between-subject variability.

Directly modeling such raw data is not only laborious due to the untenable model

assumption and high dimensionality, but also suffers from multiple testing and low power.

Although regularizations such as the least absolute shrinkage and selection operator (lasso) may
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be applied (Tibshirani, 2011), it is quite daunting to find a few individual genomes that are fully

responsible for the phenotype of a disease. In many situations, such individual culprits may

simply not exist on the conceptual grounds (Chabris et al., 2013). Moreover, in most applications,

researchers are intrigued by the overall effect of high-dimensional outcomes but lack a handy

analytical tool. Therefore, an emerging alternative is to first reduce the data dimension at the

outset by comparing two subjects’ sequences using a dissimilarity/distance metric, termed

“between-subject attributes”, for a pair. We refer to their classical counterparts that concern only

one individual as “within-subject attributes.” Such distances are gaining popularity as effective

dimension reductions and have been widely applied in various biomedical research such as

single-cell RNA sequencing (Moon et al., 2017).

For statistical modeling, the fundamental framework pertains to the generalized linear

model (GLM) for within-subject attributes. It encompasses non-normal and noncontinuous re-

sponses (dependent variables) to present a unified paradigm for different response types (Nelder

and Wedderburn, 1972; Agresti, 2003a). By further removing the distributional assumption,

the semiparametric GLM enables valid inference where the correct parametric inference is

difficult, such as handling heteroscedastic error terms or over-dispersed counts. Despite its

broad applicability, this GLM paradigm predominantly focuses on the relationships within the

same subject from the raw data. But in the growing applications, of major interest are outcomes

defined by a pair of subjects or the between-subject attributes.

Modeling such between-subject attributes has only recently become a central focus

with the impetus from high-dimensional data (Liu et al., 2021). For example, methods have

been proposed to compare the means of between-subject outcomes across different groups in

microbiome diversity, such as the PERMANOVA (Aldous et al., 2012). Additionally, Mantel’s

test (Mantel, 1967) has been developed to determine the correlation between two matrices,

extensions including multiple regression on distance matrices (MRM) can handle more than

two matrices (Lichstein, 2007). However, limitations of these existing approaches include (1)
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lacking a unified framework to accommodate different modeling goals; (2) inflexibility to adjust

link functions confronting different data types; (3) tediousness and uncleared documentation to

include factors as explanatory variables with the existing R package (Goslee and Urban, 2007);

(4) the prevailing permutation-based inference is not only computational burdensome but also

extremely difficult to implement, especially for distances entailing a dendrogram/tree structure.

Essentially, we aim to address these limitations by extending the classical GLM from

within- to between-subject attributes to present a unified GLM-type regression framework for

distance metrics. Akin to other analyses of distances, this timely solution provides inference

about relationships between pairwise distances, instead of the raw data. We illustrate how to

construct such between-subject distances with the motivating data from the human microbiome

and mHealth.

3.2 Motivating Data

3.2.1 Human Microbiome

The human microbiota consists of the 10-100 trillion symbiotic microbial cells harbored

by each person, primarily bacteria in the gut; the human microbiome consists of the genes these

cells harbor (Turnbaugh et al., 2007). Recent studies have linked dysfunctions of the human

microbiota to complex diseases ranging from diabetes to cancers, and even psychiatric disorders

(Cho and Blaser, 2012; Nguyen et al., 2019).

Fueled by technological advances such as next-generation sequencing, the human

microbiome can be interrogated using high-throughput sequencing (e.g., 16s sequencing of gut

microbiota) to drive insights into disease mechanisms. This procedure generates taxonomic

sequence counts (for each subject) that are sparse and astronomically high-dimensional (e.g.,

in our data application, the dimension m = 12,131). Due to their additional sparsity and non-

normality, “diversity” is introduced to further summarize the microbial at a community level. In

fact, most researchers start with the community-level microbiome diversity analysis instead of
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directly tackling the raw data that often suffers from weak signals.

This biologically-relevant microbiome diversity is a critical indicator of human health

(Durack and Lynch, 2019a). For example, a popular metric that naturally encompasses a

between-subject nature is the Beta-diversity, defined by pairwise distances of taxonomic counts.

For example, consider a sample of n subjects, let xi ∈ Rm denote a column vector of relative

abundance (proportions) of taxonomic units for the i-th subject, the Aitchison Beta-diversity

(Aitchison, 1989) between any pair (i1, i2) ∈Cn
2 is

dA(xi1,xi2) =

[
m

∑
k=1

{
log

xi1k

g(xi1)
− log

xi2k

g(xi2)

}2
]1/2

, g(xi) =

(
m

∏
k=1

xik

)1/m

, (3.1)

where Cn
q denotes the set of q-combinations

(
i1, . . . , iq

)
from the integer set {1, . . . ,n}, g(xi) is

the geometric mean of xi.

By integrating information from high-dimensional omics data for each individual, Beta-

diversity represents a totality measure of dissimilarity between two subjects across all (or a

proportion of) the sequenced genomes, which merits its interest.

3.2.2 mHealth Studies

The versatility of the between-subject attributes is by no means confined to one dis-

cipline; in fact, the notion of pairwise distances can be migrated to the blooming real-time

longitudinal sequences collected from wearables.

In the digital era for disease diagnosis, treatment, and prevention, valuable data generated

from mHealth studies can facilitate personalized interventions to improve patient care. While to

date, the data analyses are still in an embryonic stage dominated by descriptive statistics. Even

if modern methods such as (multilevel) functional principal component analysis (FPCA) (Di

et al., 2009) or penalized multi-band learning (Li et al., 2021) have been proposed, they may be

subjected to information loss due to the selected principal components or penalization.

In some studies, in addition to inspecting population mean function over time (as
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achieved with functional PCs), investigators also aim to capture the variability or heterogeneity

of activities among subgroups. Pairwise distances of the high-dimensional sequences can

naturally capture the between-subject variability. For example, the mean of squared Euclidean

distance pertains to the variance. Hence, they can potentially help unravel the intricate connec-

tions among sleep, physical activity, and mental traits.

3.3 Semiparametric Regression for Distances

3.3.1 Functional Response Models

Consider a study with n subjects, let yi denote a response, xi ∈ Rp a column vector of

explanatory variables for the i-th subject. As a motivating example, the semiparametric GLM

characterizing the relationship between yi and xi is:

E (yi | xi) = h(xi;β ), 1 ≤ i ≤ n, (3.2)

where h(·) is the inverse of some link functions (Tang et al., 2012a). Compared with the

classical parametric GLM, (3.2) is more flexible as it removes the distributional assumption on

yi thus yields valid inference even when the data deviate from such an assumption.

Under suitable regularity conditions, the “sandwich” estimators from the generalized

estimating equations (GEE) are consistent and asymptotically normal. They have also been

shown to achieve the semiparametric efficiency bound (Tsiatis, 2007). This semiparametric

efficiency allows a sensitive signal-detection in practice while simultaneously harmonizing

robustness to model misspecification.

However, one limitation is that it does not apply to the between-subject, or pairwise,

distances that are of interest in a mounting number of applications. Hence, we adopt an

alternative paradigm involving a functional response of multiple (q) subjects, and develop the
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semiparametric framework of functional response models (FRM) (Kowalski and Tu, 2008a):

E
{

f
(
yi1, . . . ,yiq

)
| xi1, . . . ,xiq

}
= h

(
xi1 , . . . ,xiq;β

)
, (3.3)(

i1, . . . , iq
)
∈Cn

q , i1 < .. . < iq, q ≥ 1,

where f(·) is some vector-valued function, h(·) is some vector-valued smooth function (e.g.

with continuous derivatives up to the second-order), β is a vector of parameters, q is a positive

integer. Akin to (3.2), the above is also semiparametric without any distributional assumption

on the response function f
(
yi1, . . . ,yiq

)
.

We now readily implement (3.3) to model the pairwise distances. For notational consis-

tency, we use i to index a subject and i = (i1, i2) ∈Cn
2 to index a pair in what follows.

For a sample of size n, we observe raw data (y⊤i ,x⊤i ), where yi(xi) ∈ Rs(Rl) (s, l ≥ 1)

is a column vector of multivariate response (explanatory variable) for the i-th subject. To

address the high-dimensionality of yi(xi), we can, at the outset, compact their information by

constructing respective pairwise distances. Specifically, we create dy
i = d (yi1 ,yi2) termed the

“pairwise response”, and dx
i = d (xi1,xi2) as the “pairwise explanatory variable”. Now with dy

i

and dx
i the new modeling units, we take q = 2 in (3.3) and characterize the relationship between

dy
i and dx

i with

E
(
dy

i | dx
i
)
= h(dx

i ;β ) , i ∈Cn
2 . (3.4)

Now (3.4) extends the classical GLM from within- to between-subject attributes using

pairwise distances that are generally tricky to model. It not only achieves effective dimension-

reduction but also establishes a complementing angle to reveal unexplored scientific findings,

especially for data entailing an intrinsic between-subject nature.

Note again that the primary interest is to delineate the relationships between distance

metrics (dy
i ,d

x
i ) that receive growing attentions, instead of between the raw data (y⊤i ,x⊤i ). Next,

we illustrate how to construct such between-subject distances. The applicability of this paradigm
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far surpasses the limited settings we demonstrate, but our goal is to unify this framework to

enlighten further constructive implementations.

3.3.2 Constructing Pairwise Response dy
i

Univariate Outcome yi

Continuous Data

Consider a motivating linear regression for yi and xi that are both continuous. By

defining “difference indices” dy
i = yi1 − yi2 , dx

i = xi1 − xi2, we obtain E (yi1 − yi2 | xi1,xi2) =

β (xi1 − xi2) , (i1, i2) ∈Cn
2 .

In real data applications with intrinsic between-subject explanatory variables dx
i , such a

construction evaluates the association between dy
i and dx

i , in a form of “differential response.”

For instance, let dx
i = d(xi1,xi2) denote the microbiome Beta-diversity for the i-th pair, if we are

interested in its effect on dy
i = yi1 − yi2 (such as BMI difference), we have

E
(
dy

i | dx
i
)
= βdx

i , i = (i1, i2) ∈Cn
2 . (3.5)

One glitch is that while the Beta-diversity dx
i is non-negative, dy

i here can be positive or negative.

This is readily fixed by setting dx
i to dx

i sign(i), where sign(i) denotes the sign function with

sign(i) = 1 if i1− i2 > 0, sign(i) =−1 if i1− i2 < 0, and sign(i) = 0 otherwise. For conciseness,

we continue to denote dx
i sign(i) by dx

i in what follows.

Now for (3.5), |β | represents the differential response dy
i per unit difference in the

Beta-diversity dx
i for the i-th pair, its sign does not yield a meaningful interpretation. Although

positing the sign function is not the only way to handle this, its advantage surfaces when

including additional continuous explanatory variables (see Section 3.3.3).

Binary Data

Let yi denote a binary response such as a disease indicator, where yi = 1 (0) if diseased

(otherwise). For the i-th pair, four pairwise responses exist: yi1 = yi2 = 1 (both diseased),
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yi1 = yi2 = 0 (both healthy), and yi1 = 0(1), yi2 = 1(0) (discordant). It is easily deduced from

the independence (among individuals) that only discordant response pairs are associated with

the differences in their explanatory variables. Hence, by only considering this subset of pairs,

we construct a new binary pairwise response dy
i = 1 if yi1 = 1, yi2 = 0, and dy

i = 0 otherwise.

Then define an FRM that relates dx
i to dy

i :

E
(
dy

i | dx
i
)
= h(βdx

i ) = expit(βdx
i ) , i = (i1, i2) ∈Cn

2 , (3.6)

where expit(ρ) = exp(ρ)/{1+ exp(ρ)}, |β | is the log odds ratio of dy
i = 1 to dy

i = 0 per unit

difference in dx
i . Akin to the continuous case, its sign has no meaningful interpretation.

The reason for considering the subset in (3.6) is similar to modeling paired binary

outcomes in McNemar’s test and conditional logistic regression (Agresti, 2003a). In essence,

(3.6) is motivated by dx
i indexing distances/differences, pairs with concordant responses provide

no information for the relationship of interest. But under more general settings outside of the

difference representations (e.g., dx
i = xi1 + xi2), the FRM can be adapted case-by-case.

Count Data

The semiparametric GLM for a count yi adopts the log-linear form to ensure that

E (yi | xi) falls in the appropriate range between 0 and ∞. Now consider the difference index

dy
i = yi1 − yi2 with the range (−∞,∞), unlike the original yi, here dy

i no longer has the range

restriction. Therefore, we can continue to model dy
i with the identity link as in the continuous

case with (3.5).

Multivariate Outcome yi

One merit of extending from within- to between-subject regression is that the distanced-

based FRM handles multivariate outcomes yi in a neat but inclusive way.

In mHealth studies, multiple intensive longitudinal measurements are recorded, along

with some clinical phenotypes. Consider a sample of size n, for each subject i, we mon-
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itor P explanatory variables over a period of T measurements. Denote this raw data by

(y⊤i ,x1⊤
i , ...,xP⊤

i )⊤, where yi(xp
i )∈RT is the outcome (p-th explanatory variable) (p = 1, ...,P).

The dimension of the observed (3-D) raw data is n×P×T, either P or T can be huge, provoking

enormous challenges to demystify scientific findings. We now illustrate a feasible solution to

first reduce the time dimension T .

For each pair i, we integrate the information from each individual into pairwise measures

to achieve the first-layer dimension reduction. Particularly, we can construct the pairwise

responses dy
i = d(yi1,yi2) and respective explanatory distances dxp

i = d(xp
i1 ,x

p
i2) for each xp

i (p =

1, ...,P). It works out favorably to reduced the data to a 2-D dimension of n×P. If P is still large,

further reductions may be needed. Fortunately, this unified GLM-type regression framework

facilitates selecting predictors: either forward, backward, or stepwise selection is straightforward.

A modern penalization-based approach is also suitable with special constructions during the

inference (Kowalski et al., 2018).

Now the FRM depicting the relationship between dy
i and dxp

i (p = 1, ...,P) is

E
(
dy

i | dx
i
)

= h
(

β
⊤dx

i

)
= exp(β⊤dx

i ), i = (i1, i2) ∈Cn
2 , (3.7)

where dx
i =

(
dx1

i , ...,dxP
i
)⊤

, β = (β1, ...,βP)
⊤, exp(·) is adopted since dy

i is non-negative. In

(3.7), βp is the difference in dy
i per unit difference in dxp

i . Interactions or non-linear effects such

as quadratic terms can also be added to h(·) .

For selecting the distance metric, we suggest scrutinizing features of raw data and

involving content experts, some distances accounting for the phylogenetic structure (Lozupone

et al., 2011) may be deemed appropriate. As a starting point, the squared Euclidean distance can

naturally capture the variability since E
{
(yi1 − yi2)

2
}
= 2σ2 if yi ∼ N(µ,σ2). Other distances

such as Wasserstein (Lin et al., 2021) also receive increasing attentions.

In a nutshell, by modeling several pairwise distances simultaneously, our proposed

framework can potentially shed light on a variety of fields. For instance, in microbiome studies,
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to explore the complex interplay of diet, microbiome, and metabolome in disease phenotypes;

in mHealth and epidemiology studies, to connect disease status with sleep quality, physical

activity, and even social networks; in genetic studies, to investigate interactions between genetic

and environmental factors (G×E interaction) in disease development, etc.

3.3.3 Constructing Pairwise Explanatory Variable dx
i

Univariate xi

Continuous or Count Type

Continuous or count xi can be approached similarly as in Section 3.3.2, for example,

by creating dx
i = xi1 − xi2 . Moreover, if we also adopt dy

i = yi1 − yi2 as the pairwise response,

the coefficient β in the FRM represents the directional difference between yi1 and yi2 per unit

difference between xi1 and xi2 .

Now consider again the model in (3.5) with a non-directional dx1
i but appended with

a sign function sign(i), then adding more continuous pairwise covariates dxp
i = xp

i1 − xp
i2 (p =

2, ...,P) will appreciably preserve the sign interpretations for βp.

Categorical Type

For many studies, the major interest is to compare characteristics of dy
i among subgroups,

where FRM is desirable to discern sources of variation. We start with a categorical variable wi

with K levels. To transform wi to a between-subject attribute for the i-th pair, we define a set

of pairwise indicators (or dummy variables) for wi = {wi1,wi2} through the one-hot encoding

function δ (·) : {1, ...,K}×{1, ...,K} 7→ {0,1}K+CK
2 :

δk1k2 (wi) =

 1, if wi = {wi1 ,wi2}= {k1,k2} ,

0, otherwise.
(3.8)

δ (wi) =
(
δ11 (wi) , . . . ,δ(K−1)K (wi) ,δKK (wi)

)⊤
, 1 ≤ k1 ≤ k2 ≤ K.
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where the vector δ (wi) ∈ RK+CK
2 denotes all combinations. Thus, δk1k2 (wi) indicates the pair

with the same kth concordant (k1 = k2 = k) or discordant (k1 < k2) levels for wi.

For example, if wi is gender, we form δ (wi) = (δFF (wi) ,δMM (wi) ,δMF (wi))
⊤ , where

δFF (wi) and δMM (wi) index female-female and male-male pairs, and δMF (wi) represents the

mixed male-female pairs. By selecting one as the reference, we can add other levels to the

linear predictors of the FRM in (3.7). The sign function can again resolve the situation when we

choose a response dy
i that is directional.

The coefficients of the dummy variables now reveal the heterogeneity in dy
i among

different groups defined by δ (wi). Such a pairwise one-hot encode also facilitates disentagling

different types of heterogeneity (such as “location” or “scale” difference) (Liu et al., 2021),

which is laborious or not even feasible using existing approaches such as PERMANOVA.

Multivariate xi or Inherent Between-subject dx
i

In addition to adjusting for covariates constructed from univariate xi, FRM surpasses

other comparable methods by its ease to incorporate multivariate xi or inherent dx
i . Consider a

distance dx
i for the i-th pair, either directly observed (such as the adjacency matrix of a social

network) or constructed. We can readily add it to (3.7) to evaluate its effect on dy
i , or add

more complex non-linear terms. For example, in microbiome studies, it is key to control for

covariates such as dissimilarities comparing subjects’ metabolites abundance profile. In studies

investigating their interplay with the microbiome on a disease phenotype, FRM is even more

suitable (e.g., E
(
dy

i | dx1
i ,dx2

i
)
= exp(β1dx1

i +β2dx2
i +β12dx1

i ·dx2
i )).

With blooming implementations of the between-subject attributes as effective dimension-

reduction tools, this unified FRM framework will propel growing data-driven understandings.

Nevertheless, the next challenge is to properly address the dependencies among pairs.
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3.3.4 Inference

As the response function dy
i in (3.7) involves pairs, we must address their interlocking

dependent relationships for the inference of β . Classical asymptotic properties such as the

central limit theorem (CLT) rely heavily on the assumption of independence, which precludes

direct implementations to our correlated functional responses. Instead, we adopt a class of U-

statistics-based generalized estimating equations (UGEE) (Kowalski and Tu, 2008a) to address

such correlations. For a distance-based FRM in (3.7), let

Si(β ) = dy
i −hi(β ), Di =

∂

∂β
hi(β ), Vi =Var

(
dy

i | dx
i
)
,

Un,i(β ) = DiV−1
i Si(β ), i = (i1, i2) ∈Cn

2 . (3.9)

In practice, the unknown Vi is substituted by a working variance.

Despite (3.9) a comparable form as a previous discussion on inference for extending

ANOVA to semiparametric regression for microbiome Beta-diversity in Chapter 2, special

adjustments are needed here to accommodate the directional issue. Particularly, by symmetrizing

Un,i(β ) for the pair i = (i1, i2) using its mirror pair ĩ = (i2, i1), we obtain

Ũn,i(β ) =
1
2

{
Un,i (i1, i2)+Un,̃i (i2, i1)

}
, (3.10)

and the estimating equations summing over all Cn
2 pairs are

Un (β ) = ∑
i∈Cn

2

Ũn,i (β ) = 0. (3.11)

Given β , Un (β ) is a multivariate U-statistic that enjoys asymptotic normality under mild

regularity conditions, (3.11) is hence a set of U-statistics-based generalized estimating equations

(UGEE) that are uniquely-identified. Although similar in appearance, they generalize beyond

the conventional GEE, as it is no longer a sum of independent random vectors. For example, for
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pairs i = (i1, i2) and i′ = (i1, i3), i2 ̸= i3, Ũn,i and Ũn,i′ are not independent, since both involve

the same observations from subject i1.

Now the inference follows with the projection of U-statistics. Let β̂ denote the estimator

from solving (3.11), its asymptotic properties are summarized below.

Theorem 3.1 Let

vi1 = E
{

Ũn,i (β ) |yi1,xi1

}
, B = E

(
DiV−1

i D⊤
i

)
, (3.12)

ΣU = 4var (vi1) , Σβ = B−1
ΣU B−1, i = (i1, i2) ∈Cn

2 .

Under mild regularity conditions,

(a) β̂ is consistent and asymptotically normal:
√

n
(

β̂ −β

)
→d N

(
0,Σβ

)
, where →d

denotes convergence in distribution.

(b) A consistent estimator of Σβ is obtained by substituting consistent estimators of β

and moments of the respective quantities in Σβ .

Paralleling the robustness of GEE, UGEE also yields correct inference without explicitly

specifying the sparse correlations among pairs. The added complexity of UGEE for pairs

is readily addressed by leveraging the nice large-sample behaviors of U-statistics. Although

Ũn,i (β ) are correlated, by projecting each onto a single subject i1, we obtain the Hajek projection

(Van der Vaart, 2000) vi1 (β ) that are now independent. And ∑
n
i1=1 vi1 (β ) yields the same

asymptotic distribution as Un (β ) (Kowalski and Tu, 2008a), enabling CLT to be applied.

Theorem 1 readily permits testing the Neyman-Pearson-type hypotheses (Perezgonzalez,

2015) concerning β with the linear contrasts: H0 : Cβ = 0 vs. Ha : Cβ ̸= 0, where C is a matrix

of known constants. Under the null, the Wald statistic has an asymptotic χ2 distribution:

Wn = n
(

Cβ̂

)⊤(
CΣβ C⊤

)−1(
Cβ̂

)
→d χ

2
s (0) , (3.13)

where s is the rank of C, χ2
s (0) denotes a central χ2 distribution with s degrees of freedom.
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3.4 Simulation Study

Our extensive simulation studies aim to demonstrate the asymptotic normality of the

proposed semiparametric UGEE estimators, by comparing the discrepancy between asymptotic

and empirical standard errors, along with correct type I error (or coverage) under the null.

It is quite often that between-subject attributes are sparsely correlated, where those pairs

sharing at least one subject are correlated but other pairs are independent. Therefore, directly

generating such pairwise outcomes is difficult, since it will not only break the interlocking

correlation structure but also fail to resemble the real data.

Hence, we adopted an approach based on the empirical cumulative distribution func-

tion (eCDF) and copula (Liu et al., 2021), first generated xi resembling the real microbiome

taxonomic counts in Lang et al. (2020) and then computed Beta-diversity dx
i .

Without loss of generality, we set up the FRM regression under the null by including dx
i

as the main explanatory variable, but additionally control for a continuous zi ∼ N(µz,σ
2
z ) and

a binary wi ∼ Bernoulli(pw)
(
i ∈Cn

1
)
. We then created their between-subject counterparts dz

i

and δ12 (wi). We set µz = 5, σ2
z = 5, pw = 0.75 below. For Monte Carlo (MC) simulations, we

set iterations M = 1,000, two-sided type I error rate α = 0.05, and sample sizes n = 150, 200,

500. All analyses are performed with the R software platform, with code optimized using Rcpp

(Eddelbuettel et al., 2011) for run-time improvement.

3.4.1 Continuous Univariate Outcome yi

We start with a continuous univariate yi. The proposed FRM becomes:

E
(
dy

i | dx
i ,d

z
i ,wi;β

)
= hi = βxdx

i +βzdz
i +βwδ12 (wi) . (3.14)

To generate dy
i , we first simulated the within-subject error term εi ∼ N(µε ,σ

2
ε ) and created their

difference dε
i = εi1 − εi2 . The regression is hence created by setting dy

i = hi + dε
i . To further
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evaluate its robustness to misspecification of data distributions, we also simulated the error

terms from a centered Chi-square with εi ∼
(
χ2

d −d
)(

σ2
ε /2
)1/2, where χ2

d denotes a Chi-square

with d degrees of freedom.

We specified the parameters under the null β 0 as µε = 0, σ2
ε = 1, d = 1, β 0 =(

β 0
x ,β

0
z ,β

0
w
)⊤

= (1,0.5,0.5)⊤. For the mth MC iteration, let β̂
(m)

and Σ̂
(m)
β

denote the estimator

and its asymptotic variance, β̂ and Σ̂
(asymp)
β

denote their respective sample means. The sample

variance of β̂
(m)

is denoted by Σ̂
(emp)
β

. Let W (m)
n denote the Wald statistic in (3.13) for a

hypothesis at the mth iteration. The Wald type I error is α̂W = (1/M)∑
M
m=1 I

(
W (m)

n ≥ qs,0.95

)
,

where qs,0.95 denotes the 95th percentile of a central χ2
s distribution with s degrees of freedom.

We then assess the asymptotic performance by comparing asymptotic (Σ̂(asymp)
β

) and

empirical variances (Σ̂(emp)
β

), also by comparing α̂W (α̂s) with the nominal level α = 0.05.

Shown in the top of Table 3.1 are results with normal errors: estimates were close to the

truth, the asymptotic and empirical standard errors were close, and Type I error rates were close

to the nominal values. The second panel of Table 3.1 are results with Chi-square error terms.

Proper asymptotic performance was also observed, indicating that the UGEE approach worked

quite well for both normal and non-normal data, thanks to its semiparametric nature.

3.4.2 Binary Univariate Outcome yi

The FRM for a binary yi can be specified by setting

dy
i = I(yi1 = 1, yi2 = 0), h(β ) = logit−1{

βxdx
i +βzdz

i +βwδ12 (wi)
}
.

We simulated dy
i for the pair i = (i1, i2) ∈Cn

2 by dy
i ∼ Bernoulli(h(β 0)) under the null, where

β 0 =
(
β 0

x ,β
0
z ,β

0
w
)⊤

= (1,0.5,0.5)⊤.

Shown in Table 3.2 are results for binary response that also demonstrate decent perfor-

mances: all estimates were close to the truth, the asymptotic and empirical standard errors were

close. Type I errors were also close to the nominal value.
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Table 3.1. FRM with continuous responses (Normal and Chi-square residuals) under the null
hypotheses, averaged over MC M = 1,000 iterations.

Normal residuals: Under Null Hypotheses
Para. Est. Std. err Type I Error

Asymp. Emp. Wald
n = 150

βx 0.9994 0.2835 0.2867 0.0500
βz 0.5022 0.1606 0.1631 0.0540
βw 0.5010 0.2528 0.2496 0.0510

n = 200
βx 0.9973 0.2642 0.2648 0.0490
βz 0.4986 0.1493 0.1500 0.0560
βw 0.4996 0.2339 0.2280 0.0440

n = 500
βx 1.0000 0.2102 0.2126 0.0520
βz 0.5004 0.1187 0.1166 0.0430
βw 0.4999 0.1849 0.1849 0.0550
Chi-square residuals: Under Null Hypotheses

Para. Est. Std. err Type I Error
Asymp. Emp. Wald

n = 150
β 0.9974 0.3362 0.3336 0.0470
ξ1 0.4973 0.1905 0.1934 0.0600
η12 0.5004 0.3002 0.2982 0.0420

n = 200
β 1.0024 0.3142 0.3192 0.0470
ξ1 0.5035 0.1780 0.1783 0.0440
η12 0.4981 0.2780 0.2778 0.0440

n = 500
β 1.0031 0.2496 0.2500 0.0450
ξ1 0.5003 0.1414 0.1404 0.0530
η12 0.5005 0.2205 0.2216 0.0400
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Table 3.2. MC estimates, standard errors (asymptotic and empirical) for FRM with binary
responses under the null hypotheses, averaged over MC M = 1,000 iterations.

Binary outcomes: Under Null Hypotheses
Para. Est. Std. err Type I Error

Asymp. Emp. Wald
n = 150

βx 1.0015 0.1952 0.1987 0.0670
βz 0.4999 0.0714 0.0707 0.0410
βw 0.5011 0.1386 0.1364 0.0480

n = 200
βx 0.9996 0.1673 0.1676 0.0440
βz 0.4999 0.0616 0.0616 0.0410
βw 0.4897 0.1196 0.1200 0.0580

n = 500
βx 1.0005 0.1044 0.1049 0.0530
βz 0.5000 0.0387 0.0400 0.0550
βw 0.5001 0.0755 0.0762 0.0620

3.4.3 Multivariate Outcome yi

Now consider multivariate yi ∈ Rm. Specifically, we chose m = 10 and generated yi

using the multivariate normal, then constructed dy
i = d(yi1,yi2) with the Euclidean distance.

The proposed distance-based FRM under the null is

E
(
dy

i | dx
i ,d

z
i ,wi

)
= h(β 0) = exp

{
β

0
0 +β

0
w1δ22 (wi)+β

0
w2δ12 (wi)+β

0
x dx

i +β
0
z dz

i
}
, (3.15)

where δ11 (wi) is designated as the reference level. We include the additional level δ22 (wi) to

accommodate that the response is a Euclidean distance dy
i concatenated from m dimensions.

The coefficient β 0
w1 can further discern concordant pairs in terms of dy

i .

***************** Table 3 goes about here *****************

The asymptotic behaviors are demonstrated in Table ??. Again, all estimates were close

to the truth β 0 = (2.2618,0.5,0.5,0.5,0.5)⊤, the asymptotic and empirical standard errors were

close. Type I errors were also close to the nominal level.
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3.5 Real Data Analyses

3.5.1 Microbiome Diversity

Recent studies suggest that the gut microbiome plays a major role in the development

and functioning of the central nervous system via the “microbiome-gut-brain-axis” (Carabotti

et al., 2015). In a recent study (Nguyen et al., 2021a), 184 participants across the lifespan (ages

20-100 years) provided fecal samples. DNA extraction and 16S rRNA amplicon sequencing

were completed using the Earth Microbiome Project standard protocols, the dimension of the

microbiome taxonomic units was quite high (m = 12,131). Instead of searching for individual

signals accountable for the diseases of interest, investigators of the study were interested in

the relationships between gut microbiome diversity and various psychological traits and social

factors. We aim to investigate the role of Beta-diversity on clinical outcomes: (1) physical

health, (2) mental health, and (3) positive states (traits) with the proposed FRM.

Continuous Univariate Outcome yi

(1) and (2) were assessed by the self-administered standardized instruments based on

the component scores from the Medical Outcomes Survey - Short Form 36 (SF-36) (Ware Jr

and Sherbourne, 1992). Both are continuous with higher values indexing a better physical

(mental) health condition. The FRM with Beta-diversity dx
i , Alpha-diversity difference dz1

i ,

age difference dz2
i , and gender wi is E

(
dy

i | dx
i ,d

z1
i ,dz2

i ,wi;β
)
= hi = βxdx

i +βz1dz1
i +βz2dz2

i +

βwδ12 (wi), where dy
i = yi1 − yi2 denotes the difference of physical (mental) health for the i-th

pair.

Shown at the top of Table 3.4 are results of (1). The mean difference between physical

health was β̂x = 0.214 (p = 0.018) per unit difference in the Beta-diversity. The mean difference

comparing physical health of male-female and homogeneous gender (male-male and female-

female) pairs was
∣∣∣β̂w

∣∣∣ = 0.005 (p = 0.835). The mean (directional) difference between

physical health was β̂z1 =−0.057 per unit difference in their Alpha-diversity, but not significant
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Table 3.3. Estimates, asymptotic standard errors (Std. Error), Wald statistics, p-valules for the
microbiome data using FRM, including continuous and categorical covariates.

Continuous outcome (Physical Health)
Parameter Est. Std. Error Statistic p-value

Wald Wald
βx 0.2135 0.0905 5.5636 0.0183
βz1 0.0575 0.0696 0.6823 0.4088
βz2 -0.2300 0.0708 10.5571 0.0012
βw -0.0052 0.0254 0.0431 0.8355

Composite outcome (Positive traits/states)
Parameter Est. Std. Error Statistic p-value

Wald Wald
βx 2.1210 0.1575 181.3488 <0.0001

βw1 -0.1912 0.1762 1.1775 0.2779
βw2 -0.1095 0.0815 1.8043 0.1792
βz1 0.0292 0.0384 0.5804 0.4461
βz2 0.1185 0.0618 3.6775 0.0552

(p = 0.409). Per unit age difference was significantly associated with β̂z2 =−0.230 unit change

in the mean physical health difference (p = 0.001).

Results for (2) mental health are in the Supplement, which also revealed an interesting

finding that unlike physical health, mental health difference presented a significantly positive

association with age difference (p < 0.0001).

Multivariate Outcome yi

In mental health studies, some traits are evaluated as a composite. For example, re-

silience, optimism, mental well-being, and wisdom are all (4) positive states (traits) measured by

respective instruments (CD-RISC, LOTR, SF-36 and SD-WISE) in this dataset. The content ex-

perts intended to link such a multivariate outcome with microbiome, where the distanced-based

FRM shines as it ideally handles the multivariate yi. For the ease of illustration, we constructed

the composite outcome using the Euclidean distance dy
i =

{
4
∑

k=1

(
yk

i1 − yk
i2

)2
}1/2

, and modified
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dz1
i , dz2

i using Euclidean distances to reflect variability, then adopted the FRM similar as (3.15)

to elucidate their relationships.

The bottom of Table 3.4 are results of (4). The mean distance (variability) in positive

states was significantly associated with microbiome Beta-diversity (β̂x = 2.12, p < 0.00001);

but not so with the variability in Alpha-diversity (β̂z1 = 0.029, p = 0.446). Age distance

(variability) effect was only marginally significant on positive states (β̂z2 = 0.118, p = 0.055).

The mean distance (variability) in positive states comparing male-male was 0.191 unit lower

than female-female pairs (p = 0.278); male-female pairs was also 0.110 unit lower than female-

female pairs (p = 0.179), but neither effect was significant.

These scientific insights uniquely driven by the proposed FRM may further lead to novel

microbiota-related intervention strategies to improve mental health.

3.5.2 Sleep and Physical Activity in mHealth

In an mHealth study on population aging comparing schizophrenia (SZ) and health

controls (HC), the investigators assessed objective sleep measures with a wrist-worn actigraph

device (Actisleep-BT; Actigraph, Pensacola, FL).

For illustration purposes, we took the total sleep time (TST) as the outcome of interest.

Our initial analysis revealed that the two groups have similar mean TST (HC: 366.12 vs.

SZ: 367.81, p = 0.96), while the SZ group has significantly higher variability (HC: 78.52 vs.

SZ: 136.59, p = 0.0084, see Figure 3.1). In view of this, we aim to to characterize such a

heterogeneity across groups. The raw sequence for each person of each variable has m = 19,751

measurements. To reduce the dimension, we created respective pairwise explanatory variables

for four variables: disease status (SZ vs. HC), gender, sleep efficiency, and total steps counts.

We then fit the distance-based FRM to derive insights.

Our distance-based regression identified that the mean TST distance for SZ-SZ pairs

was e0.4062 = 1.5 times of that for the reference HC-HC pairs, revealing the larger “dispersion”

(variability) in the SZ group. The significant comparison of HC-SZ vs. HC-HC pairs (p = 0.02)
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Figure 3.1. Comparison of total sleep time (TST) for raw data between 2 groups.

 d = 0.1 

 HC 
 SZ 

Figure 3.2. PCoA plot of total sleep time (TST) for between-subject distances of 2 groups.
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Table 3.4. Results for the wearables data using FRM, MRM and PERMANOVA with composite
outcome (Total Sleep Time).

FRM
Parameter Est. Std. Error Statistic p-value

Wald Wald
β0 -2.5021 0.1989 158.2489 <0.0001

β 22
w1 0.4062 0.1758 5.3398 0.0208

β 12
w1 0.2822 0.1244 5.1466 0.0233

β 22
w2 0.0076 0.1591 0.0023 0.9621

β 12
w2 -0.0088 0.0938 0.0088 0.9254

βz1 4.6944 1.6170 8.4285 0.0037
βz2 0.1827 0.2793 0.4280 0.5130

MRM
Parameter Est. p-value

Permutation #: 999
ξ0 271.9212 0.8639
ξz1 4.1268 0.0010
ξz2 0.0639 0.0040

PERMANOVA
Parameter Df. Sums of Sqs. Mean Sqs. Statistic R2 p-value

Pseudo-F Permutation #: 999
τw1 1 0.0374 0.0374 2.1985 0.0353 0.0750
τw2 1 0.0019 0.0019 0.1112 0.0018 0.9540

Residuals 60 1.0199 0.0170 0.9629
Total 62 1.0592 1.0000
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also uncovers the “location” difference of the two groups. Since if HC and SZ are close in

location, the mean distance between HC-SZ and HC-HC pairs should be small. In addition,

FRM indicated significant associations between the variabilities in total sleep time and sleep

efficiency (p = 0.004), but not so with total step counts (p = 0.513).

Comparing with existing approaches, MRM with only continuous distance of sleep effi-

ciency (p = 0.001) and steps counts (p = 0.004) revealed that both are significantly associated

with the distance of TST, but fails to include the most important disease indicator or control

for gender. In comparison, PERMANOVA fails to include continuous distances as predictors

but only uncovered the relationships between TST and factors of disease indicator (p = 0.075)

and gender (p = 0.954). But the proposed FRM accommodates both types to derive more

in-depth scientific findings. It successfully delineated the little-known relationships between the

heterogeneity (beyond the mean) of sleep and activity with schizophrenia, which could further

lead to personalized disease interventions.

3.6 Discussion

This chapter extended a unified semiparametric GLM-type regression paradigm for

distances. In this era confronting high-dimensional data burgeoning from various disciplines,

our proposed framework fills a critical gap in statistical modeling by leveraging the pairwise

distances to achieve effective dimension reduction. By tackling the high dimensionality from an

alternative angle, it complements regularization-based approaches (such as lasso). It may help

reveal new scientific insights with the preserved dendrogram/tree structure of some specific

distances.

Usually, after detecting a significant overall effect of the raw sequence on a clinical

phenotype, further interest is to pinpoint the segment that drives such an effect. To do so, one

can further create segmentation-based distances to locate such segment sequences.

In addition, as most clustering algorithms involve the distance of raw data, one can
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repurpose the distance-based FRM to determine the optimal number of clusters. For instance,

by specifying a certain number of clusters to a dataset such as k-mean, we can assign subjects

to specific clusters. We then one-hot encode this clustering index as explanatory variables to fit

the FRM. By evaluating test statistics such as the overall significance of the clustering index for

each regression (with the specified cluster number), we can choose an optimal one.

Last but not least, by virtue of the semiparametric inference, UGEE estimators enjoy

not only computational scalability but also robust asymptotic properties. Moreover, we will

demonstrate in the next Chapter that akin to GEE for within-subject attributes (Tsiatis, 2007),

the proposed estimators are highly efficient as well, reaching the semiparametric efficiency

bound when the variance is specified correctly.

One major limitation is that it only focuses on cross-sectional data. Future extensions

include distance-based regression for general clustered or longitudinal data with missingness.

With this unified framework as a building block, those further developments will shed light on

abundant research disciplines by disentangling the intricate interplays from data with astronomi-

cal dimensions. Chapter 3, in part is currently being prepared for submission for publication of

the material. The dissertation author was the primary investigator and author of this material.

The co-authors include Zhang, X., Zhong, Y., Lin, T., Chen, T., Wu, T., Nguyen, T.T, Jeste, D.

V. and Tu, XM.
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Chapter 4

On Semiparametric Efficiency of an Emerg-
ing Class of Distance-based Regression
Models for Between-subject Attributes

4.1 Introduction

As a popular class of regression models, generalized linear models (GLM) encompass a

wide variety of nonnormal and noncontinuous responses (or dependent variables) as a unified

theory in modeling different types of responses (Agresti, 2003b). The maximum likelihood esti-

mators (MLE) for GLM enjoy consistency and asymptotic normality (CAN) if both the random

and systematic components, as well as the link function, are correctly specified. Estimators

whose (asymptotic) variances achieve the Cramér-Rao bound are (asymptotically) efficient;

MLEs are examples of efficient estimators for parametric models.

By relaxing the distributional assumption in the random component, the semiparametric

GLM, also referred to as the restricted moment models (RMM) (Tsiatis, 2006), enable statistical

inference for a broader class. Under suitable regularity conditions, estimators from the general-

ized estimating equations (GEE) are not only consistent and asymptotically normal (Liang and

Zeger, 1986) but also achieve the semiparametric efficiency bound (Tsiatis, 2006).

Despite their broad applicability, the semiparametric GLM, or even the predominant

regression paradigm, characterizes the relationship within the same subject from the raw data,
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termed the “within-subject attributes” (Liu et al., 2021). But in the growing applications, of

major interest are outcomes defined by a pair of subjects, or the “between-subject attributes” (Liu

et al., 2021). The probability index Pr(Yi1 < Yi2), (i1, i2) ∈Cn
2 in the Mann-Whitney-Wilcoxon

(MWW) rank-sum test is a classical example (Chen et al., 2016). Modern examples include

pairwise dissimilarity/similarity summarizing data with astronomical dimensions fueled by

gene-sequencing, wearable technology, etc (Nguyen et al., 2021b; Martinato et al., 2021).

Modeling between-subject attributes is challenging due to their complex correlation

structures among pairwise observations. To address this, a class of semiparametric functional

response models (FRM) have been proposed, as natural extensions of the semiparametric GLM.

The FRM have been applied to model pairwise between-subject attributes in various settings,

such as the microbiome Beta-diversity (Liu et al., 2021), reliability coefficients (Lu et al., 2014),

causal inference for the MWW rank-sum test (Wu et al., 2014b; Lin et al., 2021), and rank-based

robust regression for longitudinal data (Chen et al., 2014, 2016). Estimators of FRM regression

based on a class of U-statistics-based generalized estimating equations (UGEE) also enjoy nice

asymptotic properties just like their GEE counterparts of the semiparametric GLM.

Nevertheless, the efficiency of UGEE-based estimators for semiparametric FRM has

not yet been thoroughly studied to the best of our knowledge. As in the study of estimators

for within-subject attributes, the goal is to find the estimator(s) with the smallest asymptotic

variance, termed the semiparametric efficient estimator(s). To this end, one first needs to extend

key concepts such as influence functions and asymptotic linearity from the classical within-

subject settings and then develop a coherent theory tailored for between-subject attributes in the

context of FRM regression. In this paper, we leverage the Hilbert-space-based semiparametric

efficiency theory to demonstrate that UGEE estimators achieve the semiparametric efficiency

bound, just like GEE estimators for the semiparametric GLM. Harmonizing the efficiency and

semiparametric robustness, the FRM provide an effective approach for modeling between-

subject attributes, facilitate understandings of fundamental scientific questions that call for such
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models, and inform new knowledge discovery and decision making.

4.2 Between-subject Regression

4.2.1 Semiparametric GLM and Functional Response Model

Here we consider a class of semiparametric functional response models (FRM):

E [ f (Yi1, . . . ,Yis) | Xi1, . . . ,Xis] = h(Xi1, . . . ,Xis;β ) , (i1, . . . , is) ∈Cn
s , s ≥ 1, (4.1)

where f (·) is some scalar-valued function, h(·) is some smooth function (e.g., with continuous

derivatives up to the second order), β is a vector of parameters, s is a positive integer. Akin to

(3.2), (4.1) is also semiparametric with no distributional assumption imposed for the response.

In practice, this is particularly appealing due to the increased difficulty to specify such an

assumption for multi-subject based response function f (Yi1, . . . ,Yis) to resemble real study data.

As a special case when s = 1 and f (Yi) =Yi, (4.1) reduces to the SPGLM in (3.2). Like SPGLM,

the FRM is also readily extended to model a vector-valued response function (see Supplement

and Example 3 in Section 4.2.2).

For many studies involving endogenous or exogenous pairwise outcomes, s = 2, fi =

f (Yi1,Yi2) and Xi =
(

X⊤
i1 ,X

⊤
i2

)⊤
. The FRM below models the between-subject attributes fi as a

function of Xi:

E ( fi | Xi) = h(Xi;β ) , i = (i1, i2) ∈Cn
2 , (4.2)

where Cn
2 denotes the set of combinations (i1, i2) from the integer set {1, . . . ,n}. When research

interests involve exogenous or endogenous between-subject attributes, semiparametric FRM

uniquely positions itself to facilitate data-driven knowledge discoveries, which could other-

wise be hindered by the predominant paradigm of merely modeling within-subject attributes.

We highlight the versatility of semiparametric FRM with some additional examples. More

applications can be found in the references of Introduction Section.
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4.2.2 Examples of Functional Response Models

Example 1: The Beta-diversity for High-throughput Data in Microbiome

In microbiome studies, our major interest lies in the association between Beta-diversity

and certain clinical outcomes, such as disease status. Hence, if we could construct appropriate

between-subject clinical variables such as a pairwise group indicator, (4.2) can be readily

applied to reveal whether the mean Beta-diversity is higher, say, in the healthy than the diseased

population.

Now the challenge is to convert the conventional within-subject group indicator to a

between-subject attribute. Specifically, we consider K total disease groups with nk denoting

the sample size of the k-th group (1 ≤ k ≤ K), and n = ∑
K
k=1 nk is the total sample size. Let

Xi denote the group membership for the i-th subject (1 ≤ Xi ≤ K, 1 ≤ i ≤ n). For each pair i

(= (i1, i2) ∈Cn
2), we observe a pairwise group indicator Xi = {Xi1 ,Xi2} (1 ≤ Xi1,Xi2 ≤ K). We

can include all different combinations of Xi in a vector δ (Xi) ∈ {0,1}K+CK
2 through a one-hot

encoding function δ : {1, ...,K}×{1, ...,K} 7→ {0,1} such that for k = {k1,k2} (1 ≤ k1 ≤ k2 ≤

K):

δk(Xi) =

 1, if Xi = {Xi1,Xi2}= {k1,k2}= k,

0, otherwise.
(4.3)

Let fi denote the Beta-diversity for the i-th pair such as the Aichison distance in (2.2), we can

model its mean among different groups with the FRM:

E ( fi | Xi) = exp
[
β
⊤

δ (Xi)
]
, β = (τ11, . . . ,τKK)

⊤ , δ (Xi) = (δ11 (Xi) , . . . ,δKK (Xi))
⊤ ,

(4.4)

where exp(·) is adopted to ensure that the response is non-negative. We can also include either

between- or within-subject attributes as covariates in (4.4). For between-subject covariates, it

is straightforward. For within-subject attributes, we can readily create their between-subject

counterparts as shown above and in (Liu et al., 2021).
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Example 2: Mann-Whitney-Wilcoxon Rank-sum Test and Rank Regression

Let Yi (1≤ i≤ n) denote a univariate continuous within-subject response. In the presence

of outliers, the Mann-Whitney-Wilcoxon rank-sum test provides an alternative to the two-sample

t-test when comparing the centers of two distributions (?). To extend the rank-sum test into a

regression, let Xi denote a vector of explanatory variables for subject i and consider the FRM:

E ( fi | Xi) = h(Xi;β ) = Φ

[
−β

⊤(Xi1 −Xi2)
]
, fi = f (Yi1 ,Yi2) = I (Yi1 ≤ Yi2) , (4.5)

where i= (i1, i2)∈Cn
2 , Xi =

(
X⊤

i1 ,X
⊤
i2

)⊤
, and Φ(·) denotes the cumulative distribution function

(CDF) of the standard normal distribution. The model above has a parameter β that preserves its

interpretation in a linear model by regressing the within-subject Yi on Xi but addresses outliers

in Yi. Unlike Example 1, the response and explanatory variables here are both exogenous, and

research interest lies in the relationship between the within-subject Yi and Xi. An extension

of (4.5) to longitudinal settings with missing values is discussed by Chen et al. (2016). More

examples for such probability index models can be found in Thas et al. (2012).

Example 3: Intraclass Correlations for Rater Agreement

Consider a study of n subjects in which each subject is rated by K judges. Let Yik denote

the rating for the i-th subject by the k-th judge (1 ≤ i ≤ n, 1 ≤ k ≤ K), which is commonly

characterized by a two-way mixed-effects model:

Yik = µ +βi + γk +(βγ)ik + εik, εik ∼ N
(
0,σ2

ε

)
, (4.6)

βi ∼ N
(

0,σ2
β

)
,

K

∑
k=1

γk = 0, (βγ)ik ∼ N
(

0,σ2
βγ

)
,

K

∑
k=1

(βγ)ik = 0,

where N
(
0,σ2) denotes a normal distribution with mean 0 and variance σ2. The intraclass

correlation (ICC), ρ =
[
σ2

β
−σ2

βγ
/(K −1)

]
/
(

σ2
β
+σ2

βγ
+σ2

)
, is a widely applied index of

agreement among K judges (Shrout and Fleiss, 1979; McGraw and Wong, 1996). However, the

major issue of the above model is the difficulty to validate multiple normal assumptions in (4.6)
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(especially for random effects due to their latent nature), rendering likelihood-based approaches

prone to invalid inference under non-normal rating data.

Now consider a semiparametric alternative. For i = (i1, i2) ∈Cn
2 , let

Y i· =
1
K

K

∑
k=1

Yik, gi =
1
2
(
Y i1·−Y i2·

)2
, gik =

1
2
(Yi1k −Yi2k)

2 ,

fi1 = gi, fi2 =
1
K

K

∑
k=1

gik, hi1 =
[1+(K −1)ρ]τ2

K
, hi2 = τ

2,

we construct the following (multivariate) FRM:

E (fi) = hi (θ) , fi = ( fi1, fi2)
⊤ , hi = (hi1,hi2)

⊤ , θ =
(
τ

2,ρ
)⊤

. (4.7)

The ρ in (4.7) is exactly the ICC (Lu et al., 2014). In addition to its robustness, this model also

allows for an immediate extension to longitudinal settings.

4.2.3 Inference for the U-statistics and UGEE

The FRM reinvigorates regression by extending within- to between-subject attributes.

However, popular asymptotic methods, such as the law of large numbers and central limit

theorem (CLT), rely on the pivotal assumption of independence and as such are not directly

applicable to FRM due to complex correlation structures of functional responses. We address

such challenges by leveraging theory of U-statistics (Hoeffding and Robbins, 1948).

Asymptotic Properties of U-statistics

Most statistics from classical models of within-subject attributes are in the form of a sum-

mation of i.i.d. elements, such as the score and estimating equations. However, statistics formed

by between-subject attributes from FRM are correlated hence prohibiting direct applications of

the CLT for inference. To resolve this issue, a class of U-statistics-based generalized estimating

equations (UGEE) have been developed to facilitate inference. We first give a brief review of
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the U-statistics, which play an instrumental role in studying multi-subject-based statistics. More

details and examples can be found in Kowalski and Tu (2008b) and the references in Section

??.

Definition Consider a sample of i.i.d. random vectors Yi ∈ Rm (1 ≤ i ≤ n). Let

fd×1 (Y1, . . . ,Ys) be a d-dimensional symmetric function with s arguments, or input vectors,

i.e., f(Y1, . . . ,Ys) = f(Yi1, . . . ,Yis) for any permutation (i1, . . . , is) of (1, . . . ,s). A d-variate,

one-sample, s-argument U-statistic is

Un =

(
n
s

)−1

∑
(i1,...,is)∈Cn

s

f(Yi1, . . . ,Yis) , s ≥ 1, (4.8)

where Cn
s = {(i1, . . . , is) ;1≤ i1 < .. . < is ≤ n} denotes the set of all distinct s-combinations from

the integer set {1, . . . ,n}. Let θ = E [f(Yi1, . . . ,Yis)], then it can be checked that E (Un) = θ ,

i.e., Un is an unbiased estimator of θ .

Since f(Yi1, . . . ,Yis) (also termed the kernel function) involves multiple rather than a

single subject, dependencies between any two kernel functions arise when they share at least

one common subject (e.g., f (Yi1,Yi2) and f (Yi1,Yi3) are correlated as they share Yi1). This

dependency is tackled through the Há jek projection Ũn (Hájek, 1968):

Ũn =
s
n

n

∑
i1=1

E [f(Y1, . . . ,Ys) | Yi] . (4.9)

The conditional expectations of f(Y1, . . . ,Ys) given each Yiof the i.i.d. sample are i.i.d., permit-

ting applications of conventional asymptotic techniques (Kowalski and Tu, 2008b). As shown

below, the U-statistic and its projection have the same asymptotic distribution.

Theorem 4.1. Let

ṽ1 (Y1) = E [f(Y1, . . . ,Ys) | Y1]−θ , en =
√

n
(

Un − Ũn

)
, Σv =Var [ṽ1 (Y1)] . (4.10)
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Under mild regularity conditions (see Supplement for details), en →p 0 and thus,

(i) Un is consistent, i.e., Un →p θ .

(ii) Un is asymptotically (multivariate) normal:

√
n(Un −θ)→d N

(
0,ΣU = s2

Σv
)
, (4.11)

where →p (d) denotes convergence in probability (distribution).

U-statistics-based Generalized Estimating Equations

As between-subject outcomes in most applications, including all in this paper, involve

pairs of subjects, we will focus on pairwise outcomes for notational brevity. Extensions to

between-subject outcomes involving more than two subjects are straightforward.

For pairwise outcomes, inference for β must address their interlocking dependent

relationships. We tackle this based on a class of U-statistics-based Generalized Estimating

Equations (UGEE) (Kowalski and Tu, 2008b) defined by

Un (β ) = ∑
i∈Cn

2

Un,i (β ) = ∑
i∈Cn

2

D⊤
i V−1

i Si (β ) = 0, i = (i1, i2) ∈Cn
2 , (4.12)

Si (β ) = fi −hi (Xi;β ) , Di =
∂

∂β
⊤hi(Xi;β ), Vi =Var ( fi | Xi) .

In practice, Vi is unknown and substituted by a working variance. Estimators β̂ ugee of β are

readily obtained by solving (4.12) numerically such as with the Newton-Raphson method.

Although similar in appearance to GEE (Tang et al., 2012b), UGEE is not a sum of independent

variables. But β̂ ugee is asymptotically normal as shown below, which is readily proved using

Theorem 1 (see the Appendix).

Theorem 4.2. Let

ṽi1 = 2E
(
Un,i | Yi1 ,Xi1

)
, B = E

(
D⊤

i V−1
i Di

)
, ΣU =Var (ṽi1) , Σ

ugee
β

= B−1
ΣU B−1. (4.13)
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Under mild regularity conditions (see Supplements for details), β̂ ugee is a consistent and

asymptotically normal (CAN) estimator of β in (4.2):

√
n
(

β̂ ugee −β

)
→d N

(
0,Σugee

β

)
.

A consistent estimator of Σ
ugee
β

can be obtained by substituting consistent estimators of β and

moment estimators of the respective quantities in (4.13). Conforming to the appealing features

of its within-subject counterpart GEE, UGEE also yields valid inference without explicitly

delineating the potentially more complex correlation structures.

4.3 Asymptotic Linearity and Influence Function

To study semiparametric efficiency for between-subject attributes, we first need to extend

concepts such as asymptotic linearity and influence functions (Bickel et al., 1998; Hampel, 1974),

of those classical within-subject attributes Z1, ...,Zn ∼i.i.d. {p(Zi;θ) ; θ ∈ Ω}, where p(Zi;θ)

is a probability density or distribution function characterized by parameter θ . In what follows,

we assume θ =
(

β
⊤,η

)⊤
(i.e., β and η are variationally independent with no overlapping

components), where β is a q×1 vector of parameters of interest and η is the nuisance parameter.

Here the only component that differentiates parametric from semiparametric models is the

dimension of η ; a finite-dimensional vector η yields the parametric while an infinite-dimensional

nuisance parameter, denoted by η(·), encompasses the semiparametric representation (Tsiatis,

2006).

For classical within-subject attributes, an estimator of β̂ is asymptotically linear (AL)

if there exists an expansion n1/2
(

β̂ −β 0

)
= n−1/2

∑
n
i=1 φ(Zi;θ 0)+op (1) , where φ(Zi;θ 0) is

termed the influence function (I.F.) for the i-th observation with θ 0 denoting the truth. The

I.F. has mean zero and finite and nonsingular E
(
φφ

⊤), its name reflects the influence of an

observation unit on the estimator (Ichimura and Newey, 2015). The asymptotic normality can
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be readily derived from this expansion by CLT, n1/2
(

β̂ −β 0

)
→d N

(
0,E

(
φφ⊤)) , i.e., the

asymptotic variance of β̂ is determined by its I.F., hence, φ (Zi) defines the efficiency of Zi

(Tsiatis, 2006).

Those Zi’s induce a sequence of i.d. (identically distributed but not necessarily indepen-

dent) random vectors, Zi =
(

Z⊤
i1 ,Z

⊤
i2

)⊤
∼ {p(Zi;θ) ; θ ∈ Ω} for i = (i1, i2) ∈Cn

2 . For Zi, we

consider two classes of models, either parametric or semiparametric, and associated estimators

and I.F.s.

4.3.1 Non-overlap Model Class 1

We first discuss constructing likelihood or estimating equations based on i.i.d. pairs

Zi j , 1 ≤ j ≤ ⌊n/2⌋= m, where ⌊·⌋ denotes the floor function. Namely, we reorganize the data

into independent non-overlapping pairs. This reorganization is not unique, and without loss of

generality, we choose one of them. For example, when n = 4, we can choose {Zi1,Zi2} and

{Zi3 ,Zi4} to form two independent pairs i1 = (i1, i2) and i2 = (i3, i4). It removes the hurdle of

dependencies originated from overlapping pairs, providing results in parallel with the classical

within-subject case.

Definition. β̃ is an asymptotically linear (AL) estimator of between-subject attributes

for the non-overlap model class 1 if it belongs to

Ω
β

1 =

{
β̃ (Zi j) :

√
m
(

β̃ −β 0

)
=
√

m
1
m

m

∑
j=1

ψ
(
Zi j ;θ 0

)
+op(1)

}
, (4.14)

where ψq×1 (Zi;θ 0) is a measurable function with mean zero, finite and nonsingular E
(
ψψ⊤),

defined as the non-overlap influence function 1 for the i-th pair at the truth. The set of all such

I.F.s is denoted by ΓI.F.
1 .

Under mild regularity conditions, CLT yields
√

m
(

β̃ −β 0

)
→d N (0,Σ1) ,

Σ1 = E
[
ψ
(
Zi j

)
ψ⊤ (Zi j

)]
. Hence, the asymptotic variance for β̃ ∈ Ω

β

1 is determined by its

I.F., and the efficient estimator in Ω
β

1 should have minimum variance.
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In practice, we do not fit data with between-subject attributes using model class 1, since

they only deploy part of the data. But this class of conceptual models will help determine the

efficient estimator for the FRM, termed model class 2, which we now introduce.

4.3.2 Enumerated Model Class 2

If making the inference based on all possible pairs of Zi, i = (i1, i2) ∈ Cn
2 , including

those with overlapping subjects, we reimpose the dependencies and form a class of enumerated

models. The FRM in (4.2) that engage all possible pairs is an example of this class.

Definition. β̂ is an AL estimator of between-subject attributes for the enumerated model

2 if it belongs to

Ω
β

2 =

{
β̂ (Zi) : n1/2

(
β̂ −β 0

)
=
√

n
(

n
2

)−1

∑
i∈Cn

2

ϕ (Zi;θ 0)+op (1)

}
, (4.15)

where the measurable function ϕq×1 (Zi;θ 0) with mean zero and finite and nonsingular E
(
ϕϕ⊤)

is defined as the enumerated influence function 2 for the i-th pair at the truth. Denote the set of

all such ϕ (Zi;θ 0) by ΓI.F.
2 .

As (4.15) involves the summation of dependent ϕ (Zi), we apply (4.10) to obtain:

√
n
(

β̂ −β 0

)
=
√

n
1
n

n

∑
i1=1

2E [ϕ (Zi;θ 0) | Zi1]+op (1)→d N (0,Σ2) ,

Σ2 =Var{2E [ϕ (Zi;θ 0) | Zi1]}= E
{

2E [ϕ (Zi;θ 0) | Zi1 ] ·2E
[
ϕ
⊤ (Zi;θ 0) | Zi1

]}
.

(4.16)

Hence, for enumerated model class 2, the asymptotic variance Σ2 of β̂ ∈ Ω
β

2 is also determined

by its I.F., which apparently differs from Σ1 for the model class 1, since Σ2 involves an additional

step of mapping from a function of between-subject attribute Zi to a function of within-subject

attribute Zi1.

66



4.3.3 Relationships between I.F.s for the Two Model Classes

As mentioned, the influence function is key to studying efficiency. We now discuss the

relationships between influence functions for the two classes of models.

Equivalence of Two Classes of AL estimators

For AL estimators of between-subject attributes, the I.F.s for model class 1 are equivalent

to I.F.s for class 2. Namely, for any ψ (Zi;θ 0) ∈ ΓI.F.
1 and associated AL estimator β̃ ∈ Ω

β

1 , we

can construct another estimator β̂ = β 0 +
(n

2

)−1
∑i∈Cn

2
ψ (Zi;θ 0) . It is readily shown that this

estimator belongs to the class of estimators defined by (4.15), indicating that β̂ is AL for the

enumerated class 2.

Conversely, for any ϕ (Zi;θ 0)∈ ΓI.F.
2 and corresponding AL estimator β̂ ∈Ω

β

2 satisfying

(4.15), we define an estimator β̃ = β 0 +m−1
∑

m
j=1 ϕ

(
Zi j ;θ 0

)
. It is again readily shown that

this estimator satisfies (4.14), indicating that β̃ ∈ Ω
β

1 and ϕ (Zi;θ 0) ∈ ΓI.F.
1 , i.e., ϕ (Zi;θ 0) is

also an I.F. for model class 1.

Equivalence of Two Classes of Regular and AL estimators

As in the literature, to avoid estimators with undesirable local properties such as super-

efficiency (LeCam, 1953), we restrict considerations to regular estimators by considering a

local data generating process (LDGP). Suppose the underlying within-subject attributes are

generated from Zin ∼i.i.d. {p(Zin;θ n)} for each θ n, and n1/2 (θ n −θ ∗) converges to a constant

where θ ∗ denote some fixed parameter. Let θ̂(Zin) denote an estimator of θ n based on the

between-subject attributes, where Zin = (Z⊤
i1n,Z⊤

i2n)
⊤, i =(i1, i2)∈Cn

2 . Then θ̂(Zin) is regular if,

for some fixed θ ∗, the limiting distribution of n1/2
(

θ̂(Zin)−θ n

)
does not depend on the LDGP

(or θ n). More details with an example violating the LDGP (i.e., a super-efficient θ̂(Zin)) are

discussed in the Supplements. In what follows, we focus on regular and asymptotically linear

(RAL) estimators unless stated otherwise. The theorem below further declares the equivalence

between the two classes of I.F.s for RAL estimators. A proof is deferred to the Appendix.

Theorem 4.3 For RAL estimators of between-subject attributes, the I.F.s in the set ΓI.F.
1
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for model class 1 are equivalent to I.F.s in ΓI.F.
2 for model class 2, i.e., ΓI.F.

1 = ΓI.F.
2 .

Although our goal is to find the efficient I.F. for the FRM in model class 2, it is much

more difficult to directly work with this class of models due to the added complexity in the

asymptotic variance of their estimators. Accordingly, Theorem 3 is critical by allowing us to

achieve our goal by virtue of the simplicity of model class 1.

4.4 Hilbert Space and Projection

In this section, we start with a brief review of Hilbert space (Walter, 1987) and its

application to the classical within-subject attributes and then extend such considerations to their

between-subject counterparts. More details can be found in the Supplement.

4.4.1 Within-subject Attributes

Let (L ,A ,P) be a probability space (where L is the sample space, A is the σ -algebra,

and P is the probability measure). Consider a q-dimensional measurable function Z : L → Rq.

Suppose we observe i.i.d. within-subject attributes Z1, ...,Zn, where Zi is the random vector for

subject i. We denote by Hw the Hilbert space consisting of all q-dimensional functions of Zi,

h : L → Rq, that are measurable with mean zero and finite second-order moments, associated

with an inner product and a norm induced by this inner product (we emphasize quantities of

within-subject attributes with a subscript w) :

⟨h1 (Zi) ,h2 (Zi)⟩w = E
[
h⊤

1 (Zi)h2 (Zi)
]
, ∥h(Zi)∥w = ⟨h,h⟩1/2

w = E1/2
[
h⊤ (Zi)h(Zi)

]
.

(4.17)

Let v(Zi)= (v1 (Zi) , ...,vr (Zi))
⊤ be an r-dimensional random function with E [v(Zi)]=

0 and ⟨v,v⟩w < ∞. For the linear subspace spanned by v(Zi):

Uw = {Bv(Zi) ; for an arbitrary matrix Bq×r of real numbers},
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the projection of hq×1 (Zi) ∈ Hw onto Uw is unique by the closest point theorem (Sehgal et al.,

1987):

Πw {h(Zi) | Uw}= E
[
h(Zi)v(Zi)

⊤
]

E−1
[
v(Zi)v(Zi)

⊤
]

v(Zi) . (4.18)

4.4.2 Between-subject Attributes

For the induced pairwise observations Zi = (Z⊤
i1 ,Z

⊤
i2 )

⊤, i = (i1, i2) ∈ Cn
2 , we con-

sider the Hilbert space Hb (with a subscript b reflecting between-subject attributes) of all

q-dimensional symmetric measurable functions h(Zi) = h(Zi1,Zi2) with mean zero and finite

E
[
h(Zi)h⊤ (Zi)

]
. We consider two inner products and associated norms for Hb.

Definition. The non-overlap inner product 1 and associated norm b1 are defined as

⟨h1 (Zi) ,h2 (Zi)⟩b1 = E
[
h⊤

1 (Zi)h2 (Zi)
]
, (4.19)

∥h(Zi)∥b1 = ⟨h(Zi) ,h(Zi)⟩
1/2
b1 = E1/2

[
h⊤ (Zi)h(Zi)

]
.

For the linear span of v(Zi) = (v1 (Zi) , ...,vr (Zi))
⊤ (as a function of Zi for the i-th pair):

Ub1 = {Bv(Zi); for an arbitrary matrix Bq×r of real numbers},

the projection of hq×1 (Zi) ∈ Hb onto Ub1 is:

Πb1 {h(Zi) | Ub1}= E
[
h(Zi)v(Zi)

⊤
]

E−1
[
v(Zi)v(Zi)

⊤
]

v(Zi) . (4.20)

It follows from the Pythagorean triangle inequality that

∥h(Zi)∥2
b1 = ∥Πb1 {h | Ub1}∥2

b1 +∥h−Πb1 {h | Ub1}∥2
b1 ≥ ∥Πb1 {h(Zi) | Ub1}∥2

b1 , (4.21)

i.e., the norm b1 of any element h(Zi) is always larger than or equal to that of its projection

onto the subspace Ub1.
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Under the q-replicating linear spaces that we consider (See Supplement for details), the

multivariate Pythagoras holds: the orthogonality between h(Zi) and Ub1 is equivalent to the un-

correlatedness between h(Zi) and v(Zi) (i.e., E
[
h⊤ (Zi)v(Zi)

]
= 0 implies E

[
h(Zi)v⊤ (Zi)

]
=

0). Thus (6.17) shows that the variance (matrix) of the element h(Zi) ∈ Hb also satisfies

Var [h(Zi)] =Var [Πb1 {h | Ub1}]+Var [h−Πb1 {h | Ub1}]≥Var [Πb1 {h(Zi) | Ub1}] .

(4.22)

Hence, the variance of any element h(Zi) is larger than or equal to its projection Πb1 {h | Ub1}

onto a subspace, i.e., their difference is non-negative definite. This will inspire the construction

of the efficient estimator using the projection later.

As the norm b1 for Hb does not yield the asymptotic variance for the UGEE estimator,

we now introduce another inner product motivated by the form of asymptotic variance based on

the I.F.s for the enumerated model class 2.

Definition. The enumerated inner product 2 and norm b2 are defined as

⟨h1 (Zi) ,h2 (Zi)⟩b2 = E
{

2E
[
h⊤

1 (Zi) | Zi1

]
·2E [h2 (Zi) | Zi1]

}
, (4.23)

∥h(Zi)∥b2 = ⟨h(Zi) ,h(Zi)⟩
1/2
b2 = E1/2

{
2E
[
h⊤ (Zi) | Zi1

]
·2E [h(Zi) | Zi1 ]

}
.

Definition. Define a projection mapping (Luenberger, 1997), M : Hb→ H w, referred

to as the U-statistics, or Hajek, projection, such that for h(Zi) ∈ Hb,

M [h(Zi)] = 2E [h(Zi) | Zi1] ∈ Hw. (4.24)

Now consider a linear subspace of Hw spanned by M [Bq×r v(Zi)] = BE [v(Zi) | Zi1],

Ub2 = M (Ub1) = {BE [v(Zi) | Zi1] ; for an arbitrary matrix Bq×r of real numbers}.
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Projecting any h(Zi)∈Hb onto Ub2 involves two steps: we first map h(Zi) to M [h(Zi)]∈Hw

and then project it onto Ub2 with the projection theorem for within-subject attributes in (4.18),

i.e.:

Πb2 {h(Zi) | Ub2}= Πw {M [h(Zi)] | Ub2} . (4.25)

Similarly, the norm b2 of any element h(Zi) is always larger than or equal to that of its projection

onto Ub2, which by (4.25), equals the squared norm of the mapped element M [h(Zi)] , i.e.,

∥h(Zi)∥2
b2 ≥ ∥Πb2 {h(Zi) | Ub2}∥2

b2 = ∥Πw {M [h(Zi)] | Ub2}∥2
w . (4.26)

Accordingly, the variance of any M [h(Zi)] is larger than or equal to its projection

Πw {M [h(Zi)] | Ub2} by the multivariate Pythagoras:

Var{M [h(Zi)]} ≥Var [Πw {M [h(Zi)] | Ub2}] =Var [Πb2 {h(Zi) | Ub2}] . (4.27)

The above links norm b2 with the asymptotic variance of the UGEE estimator. We now define

equivalence classes within each norm and discuss the relationship between the two.

Definition. For a given norm, any two functions h1 (Zi) and h2 (Zi) are considered

equivalent, if the norm of their difference is zero. The equivalence class of h(Zi) under norm

b1 includes all q-dimensional measurable functions g(Zi) ∈ Hb that equal h(Zi) almost surely

(a.s.), denoted by:

Γ
h
b1 = {g(Zi) ∈ Hb : g(Zi) = h(Zi) a.s.} .

The equivalence class under norm b2 contains all functions g(Zi) ∈ Hb whose U-statistics

projection mapping are equal to that of h(Zi) a.s.:

Γ
h
b2 = {g(Zi) ∈ Hb : M [g(Zi)] = M [h(Zi)] a.s.} .
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The projections onto subspaces, Πb1 {h(Zi) | Ub1} and Πb2 {h(Zi) | Ub2} , are unique

up to their respective equivalence classes Γh
b1 and Γh

b2. Since all estimators in the same equiva-

lence class deliver the same asymptotic variance (or efficiency) under the respective norm, it

suffices to find one of them. Since the projection mapping M is many-to-one, i.e., different

elements in Hb can be mapped to the same element in Hw, the origin of Hb under inner

product 2 is not the equivalence class of h(Zi) with h(Zi) = 0 a.s., but a larger one consisting

of functions h(Zi) such that M [h(Zi)] = 0 a.s. (see Supplement for an example of h(Zi) ̸= 0,

but M [h(Zi)] = 0 a.s.).

Akin to the classical theory for within-subject attributes (Tsiatis, 2007), for model class

1, the I.F. ψ (Zi;θ 0) is an element in Hb, whose norm b1 is always larger than or equal to its

projection onto a subspace Ub1, hence, this projection Πb1 {ψ (Zi;θ 0) | Ub1} yields an RAL

estimator with the minimum variance within class 1. Likewise, for model class 2, the projection

of an I.F. onto Ub2, Πb2 {ϕ (Zi;θ 0) | Ub2} , has the smallest norm b2 thus also yields the

efficient RAL estimator for class 2. And both Πb1 {ψ (Zi;θ 0) | Ub1} and Πb2 {ϕ (Zi;θ 0) | Ub2}

are unique up to their respective equivalence classes.

4.5 Tangent Space and Dual Geometric Interpretation

The Hilbert space repositions the search for the efficient estimator to the efficient

influence function with the smallest norm. Another important tool we implement is a “bridge”

between parametric and semiparametric models, termed “parametric submodels” (Newey, 1990).

We extend this idea to help find the semiparametric efficient estimator for between-subject

attributes.
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4.5.1 Parametric Submodels

The distribution of pairwise observations Zi =
(

Z⊤
i1 ,Z

⊤
i2

)⊤
can be characterized by

pZ (Zi) that belongs to

P = {pZ (Zi;β ,η (·)) ; β ∈ Rq and η (·) is infinite-dimensional.} (4.28)

Let p0 (Zi;θ 0) = pZ (Zi;β 0,η0(·)) denote the truth, where β and η (·) are variationally inde-

pendent as indicated previously. The infinite-dimensional nuisance parameter η (·) makes P a

class of semiparametric models.

Now consider as if the data were generated from a conceptual class of parametric models,

referred to as the parametric submodels (Newey, 1990):

Psub
γ = {pZ (Zi;β ,γ) ; β ∈ Rq, γ ∈ Rr} ⊂ P , (4.29)

where pZ (Zi;β 0,γ0) = p0 (Zi;θ 0) = pZ (Zi;β 0,η0(·)) for some γ0 ∈ Rr. Thus the parametric

submodels Psub
γ of P are described by a finite-dimensional nuisance parameter vector γ ∈ Rr

that contains the truth generating the data. Let θ sub=
(

β
⊤,γ⊤

)⊤
∈ Rp denote the parameter

vector for the submodel with p = q+ r.

Distinct from usual parametric models that can be used to describe real study data (by

estimating model parameters), a parametric submodel cannot be applied to fit data since it

involves the true but unknown parameter η0(·).

An RAL estimator of β for a semiparametric model is an RAL estimator for every

parametric submodel in Psub
γ (Tsiatis, 2006). Unlike semiparametric models involving the

infinite-dimensional η(·), parametric submodels are granted the well-defined score vectors at

the truth θ 0:

Sp×1
θ

sub (Zi;θ 0) =
(

S⊤
β
(Zi;θ 0) ,S⊤

γ (Zi;θ 0)
)⊤

, (4.30)
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where S
θ

sub (Zi;θ 0) = ∂ log p0(Zi;θ 0)/∂θ
sub⊤, for θ

sub (or β ,γ).

4.5.2 Tangent Spaces

Consider again Hb that consists of all measurable functions of hq×1 (Zi) with mean

zero and finite variances, equipped with both inner product 1: ⟨h1(Zi),h2(Zi)⟩b1 = E
(
h⊤

1 h2
)

and inner product 2: ⟨h1(Zi),h2(Zi)⟩b2 = E
[
2E
(
h⊤

1 | Zi1
)
·2E (h2 | Zi1)

]
. We can then use the

well-defined score vectors in (4.30) to span linear subspaces, termed parametric submodel

tangent spaces.

Parametric Submodel Tangent Spaces

Non-overlap Model Class 1

The parametric submodel tangent space for model class 1 spanned by S
θ

sub (Zi;θ 0) is a

linear subspace of Hb, where

£sub
βγ

= {BSp×1
θ

sub (Zi;θ 0) ; ∀Bq×p}= £β ⊕Λγ ,

£β =
{

BSq×1
β

(Zi;θ 0) ; ∀Bq×q
}
, Λγ =

{
BSr×1

γ (Zi;θ 0) , ∀Bq×r
}
, (4.31)

with ⊕ denoting the direct sum. Since θ
sub =

(
β
⊤,γ⊤

)⊤
∈ Rp, £sub

βγ
is the direct sum of two

linear subspaces: £β , the tangent space for β ; and Λγ , the tangent space for γ , also termed the

parametric submodel nuisance tangent space (submodel n.t.s.).

Enumerated Model Class 2

The parametric submodel tangent space for model class 2 spanned by M
[
S

θ
sub (Zi;θ 0)

]
is

£̃sub
βγ

= {BM
[
S

θ
sub (Zi;θ 0)

]
; ∀Bq×p}= £̃β ⊕ Λ̃γ ,

£̃β =
{

BM
[
Sq×1

β
(Zi;θ 0)

]
; ∀Bq×q

}
, Λ̃γ =

{
BM

[
Sr×1

γ (Zi;θ 0)
]
, ∀Bq×r

}
,
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where £̃sub
βγ

, £̃β and Λ̃γ are the respectively mapped subspaces from Hb to Hw with the U-

statistics projection mapping M in (4.24).

Semiparametric Tangent Spaces

We are now in a position to define semiparametric tangent spaces. Since β is unchanged

for a semiparametric model, £β

(
£̃β

)
remains the same, but the nuisance tangent spaces need to

be expanded to accommodate the infinite-dimensional nuisance parameter for semiparametric

models.

Non-overlap Model Class 1

Let ϒ be the collection of nuisance parameter γ for all possible parametric submodels in

Psub
γ defined in (4.29).

Definition. The semiparametric nuisance tangent space (semiparametric n.t.s.) Λη for

model class 1 is the mean-square closure (in terms of the norm b1) of the unions of points

(h(Zi)) in all the parametric submodel nuisance tangent spaces, which, with a slight abuse of

notation, we denote by Λ∪ = ∪{γ∈ϒ}Λγ . Specifically, Λη consists of all h(Zi) in Hb for which

there exists a sequence of B jSγ j
(Zi) ∈ Λ∪ ( j = 1,2, ...) such that

lim
j→∞

∥hq×1 (Zi)−Bq×r j
j Sr j×1

γ j
(Zi)∥2

b1 = 0, (4.32)

where Sr j×1
γ j

(Zi) corresponds to a sequence of submodels Psub
γ j

characterized by γ j∈Rr j , where

each submodel and its associated dimension (r j) are allowed to vary with j. Denote the whole

semiparametric tangent space for class 1 by £ = £β ⊕Λη .

Enumerated Model Class 2

The semiparametric n.t.s. for model class 2, denoted by Λ̃η , is the mean-square closure

of Λ̃∪ = ∪{γ∈ϒ}Λ̃γ . It consists of all h(Zi) in Hw which is either in Λ̃∪ or the limit of a
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convergent sequence h j (Zi) ∈ Λ̃∪ ( j = 1,2, ...), i.e.,

lim
j→∞

∥h(Zi)−h j (Zi)∥2
w = 0. (4.33)

The semiparametric tangent space for model class 2 is hence £̃ = £̃β ⊕ Λ̃η .

Both Λη and Λ̃η are closed by definition. The theorem below shows that linearity and

closedness are preserved under the projection mapping M .

Theorem 4.4 The semiparametric n.t.s. Λη and Λ̃η are both linear subspaces and

Λ̃η = M (Λη).

Therefore, all h(Zi) ∈ Hb has a unique projection (up to its equivalence class) onto

each subspace of Λη and Λ̃η .

4.5.3 Dual Geometric Interpretations for Semiparametric Models

We now show a fundamental connection, termed dual orthogonality, for the two classes

of models, which is a direct generalization of the results for parametric models by leveraging

the bridge of submodels (See Appendix for details). It geometrically characterizes the semi-

parametric RAL estimators through properties of their I.F.s with respect to their respective

semiparametric nuisance tangent spaces.

Theorem 4.5 A semiparametric RAL estimator of β for either class of models must

have an influence function (I.F.) ϕ(Zi) satisfying

(i) :
〈
ϕ (Zi) ,Sβ (Zi;θ 0)

〉
b1 = E

[
ϕ (Zi)S⊤

β
(Zi;θ 0)

]
= Iq, (4.34)

(ii) : Πb1
{

ϕ (Zi) | Λη

}
= 0,

(iii) : Πb2

{
ϕ (Zi) | Λ̃η

}
= Πw

{
2E [ϕ (Zi) | Zi1] | Λ̃η

}
= 0,

where Iq is the q×q identity matrix, Πb1
{

ϕ (Zi) | Λη

}
is the unique projection (w.r.t. inner

product 1) of ϕ (Zi) onto Λη , and Πb2

{
ϕ (Zi) | Λ̃η

}
is the unique projection (w.r.t. inner prod-

76



uct 2) of ϕ (Zi) onto Λ̃η , therefore, ϕ (Zi) is deemed dual orthogonal to both the semiparametric

n.t.s. Λη (corresponding to model class 1) and its mappingΛ̃η (for model class 2).

While Theorem 4.3 asserts that the two classes of models share the same RAL estimators

and I.F.s., Theorem 4.5 further identifies such estimators through the dual orthogonality property

for the I.F.s with respect to their respective semiparametric n.t.s. Λη and Λ̃η . Recall that the

variance of any element is always larger than or equal to its projection onto a linear subspace

in (4.22) and (4.27). This intrinsic connection between the two model classes allows us to

locate the efficient estimator for model class 2 through that for model class 1, which serves as a

“conjugate” model class as we now discuss.

4.6 Semiparametric Efficiency Bound

In this section, our goal is to identify the efficient semiparametric RAL estimator for

the FRM in (4.2), or enumerated model class 2. Directly tackling the efficiency for class 2 is

much more difficult, but the dual orthogonality motivates a strategy to find this estimator via

the more straightforward model class 1. Although the efficient I.F. for class 2 corresponds to

multiple I.F.s in class 1, our goal is fulfilled if we can identify one in the equivalence class of

the efficient I.F. for model 1. In essence, we first establish the efficient I.F. for model class 1

and then show that its mapping is in the intended equivalence class for model 2.

Definition. The efficient I.F. is the unique influence function (up to its equivalence class)

belonging to the tangent space that has the smallest asymptotic variance.

Recall that a semiparametric RAL estimator of β in P is an RAL estimator for every

parametric submodel. In terms of influence functions, the class of I.F.s for a semiparametric

model will be a subset of the class of I.F.s for all parametric submodels. Hence, the asymptotic

variance of a semiparametric model must be greater than or equal to the parametric efficiency

bound for any submodel, or the supremum of such bounds for all submodels. We define the

semiparametric efficiency bound via the bridge of parametric submodels for each model class.
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4.6.1 Parametric Submodels

Non-overlap Model Class 1

The efficient I.F. for a parametric submodel in class 1, denoted by ϕsub
γ ,eff1 (Zi;θ 0), is

the unique I.F. in the tangent space £sub
βγ

= £β ⊕Λγ with the smallest norm b1, i.e., for any I.F.

ϕsub (Zi;θ 0) of a submodel in Psub
γ ,

∥∥∥ϕ
sub
γ ,eff1 (Zi;θ 0)

∥∥∥2

b1
≤
∥∥∥ϕ

sub (Zi;θ 0)
∥∥∥2

b1
, ϕ

sub
γ ,eff1 (Zi;θ 0) = Πb1

{
ϕ

sub (Zi;θ 0) | £sub
βγ

}
,

then the efficiency bound for parametric submodels of class 1 is its variance

υ
sub
1,γ =Var

[
ϕ

sub
γ ,eff1 (Zi;θ 0)

]
.

The semiparametric efficiency bound for non-overlap model class 1 is defined as the supremum

of υsub
1,γ over all submodels:

υ1 = sup
{Psub

γ }
υ

sub
1,γ = sup

{Psub
γ }

Var
[
ϕ

sub
γ ,eff1 (Zi;θ 0)

]
, (4.35)

where sup is defined based on the non-negative definite criterion for comparing matrices using

their differences.

Enumerated Model Class 2

Likewise, the efficient I.F. for parametric submodels in class 2, ψsub
γ ,eff2 (Zi;θ 0), is the I.F.

lying in £sub
βγ

= £β ⊕Λγ with the smallest norm b2. Hence, any I.F. ψsub (Zi;θ 0) of a submodel

satisfies

∥∥∥ψ
sub
γ ,eff2 (Zi;θ 0)

∥∥∥2

b2
=
∥∥∥M [

ψ
sub
γ ,eff2 (Zi;θ 0)

]∥∥∥2

w
≤
∥∥∥M [

ψ
sub (Zi;θ 0)

]∥∥∥2

w
=
∥∥∥ψ

sub (Zi;θ 0)
∥∥∥2

b2
.

By the multivariate Pythagoras, any two I.F.s with zero difference in norm b2 are
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equivalent as they determine the same efficiency (asymptotic variance). The equivalence class

for ψsub
γ ,eff2(Zi;θ 0) is hence defined to be

Γ
sub
eff2 =

{
ψ

sub (Zi;θ 0) ∈ £sub
βγ

: M
[
ψ

sub (Zi;θ 0)
]
= M

[
ψ

sub
γ ,eff2 (Zi;θ 0)

]
a.s.
}
, (4.36)

ψsub
γ ,eff2(Zi;θ 0) is unique up to this equivalence class Γsub

eff2, and the efficiency bound for paramet-

ric submodels of class 2 is defined by

υ
sub
2,γ =Var

{
M
[
ψ

sub
γ ,eff2 (Zi;θ 0)

]}
.

The associated semiparametric efficiency bound for class 2 is defined by the supremum υ2 =

sup{Psub
γ }υsub

2,γ . The theorem below connects the two classes of submodels regarding the efficient

I.F., with a proof in the Appendix.

Theorem 4.6 The norm b2 of the efficient I.F. for class 1, ϕsub
γ ,eff1 (Zi;θ 0) , equals

the norm b2 of the efficient I.F. for class 2, ψsub
γ ,eff2 (Zi;θ 0) , hence ϕsub

γ ,eff1 (Zi;θ 0) is in the

equivalence class Γsub
eff2 defined in (4.36), i.e.,

∥∥∥ϕ
sub
γ ,eff1 (Zi;θ 0)

∥∥∥2

b2
=
∥∥∥ψ

sub
γ ,eff2 (Zi;θ 0)

∥∥∥2

b2
, ϕ

sub
γ ,eff1 (Zi;θ 0) ∈ Γ

sub
eff2.

ϕsub
γ ,eff1 (Zi;θ 0) is already shown to be a valid I.F. for model 2, now with the same norm b2 as

ψsub
γ ,eff2 (Zi;θ 0), it is indeed in the equivalence class Γsub

eff2. It now follows from Theorem 6 that

after the mapping, M
[
ϕsub

γ ,eff1 (Zi;θ 0)
]
= M

[
ψsub

γ ,eff2 (Zi;θ 0)
]

a.s., hence they determine the

same asymptotic variance. Essentially, ϕsub
γ ,eff1 (Zi;θ 0) delivers exactly what we aim to find: one

element lying in the submodel tangent space £sub
γ that yields the efficiency for the model class

2.

4.6.2 Semiparametric Models

Now we switch from parametric submodels to semiparametric models using the semi-
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parametric n.t.s. Λη defined in (4.32). For notational brevity, we drop the superscripts (of

“sub”) and subscripts γ for quantities of semiparametric models to differentiate from those of

submodels. By definition, the efficient I.F. for the semiparametric non-overlap model 1 is the

I.F. in £ whose variance achieves the semiparametric efficiency bound υ1. With variationally

independent parameters θ = {β ,η(·)}, the efficient score is shown to be the residual of the

score vector for β after projecting it onto the nuisance tangent space (Tsiatis, 2006). For model

class 1, the semiparametric efficient score is hence

Seff1 (Zi;θ 0) = Sβ (Zi;θ 0)−Πb1
{

Sβ (Zi;θ 0) | Λη

}
. (4.37)

The theorem below shows how to find the efficient I.F. for the semiparametric model class 1,

with a proof in the Appendix.

Theorem 4.7 Let

ϕeff1 (Zi;θ 0) = E−1
(

Seff1S⊤
eff1

)
Seff1 (Zi;θ 0) . (4.38)

Then ϕeff1 (Zi;θ 0) is the unique element in £ = £β ⊕Λη whose variance achieves υ1.

Akin to submodels, this semiparametric efficient I.F. ϕeff1 (Zi;θ 0) for model class 1 is

also mapped to an element in £̃ that achieves the efficiency for the model class 2, as summarized

in the following theorem.

Theorem 4.8 Let ψeff2 (Zi;θ 0) denote the efficient I.F. for the semiparametric model

class 2. Then ϕeff1 (Zi;θ 0) has the same norm b2 as ψeff2 (Zi;θ 0) and hence is in its equivalence

class denoted by Γeff2, i.e.,

∥ϕeff1 (Zi;θ 0)∥2
b2 = ∥ψeff2 (Zi;θ 0)∥2

b2 , or ∥M [ϕeff1 (Zi;θ 0)]∥2
w = ∥M [ψeff2 (Zi;θ 0)]∥2

w ,

where Γeff2 = {ψ (Zi;θ 0) ∈ £ : M [ψ (Zi;θ 0)] = M [ψeff2 (Zi;θ 0)] a.s.}.
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Again, the multivariate Pythagoras implies that the variance of M [ϕeff1 (Zi;θ 0)] equals

the semiparametric efficiency bound υ2 for enumerated model class 2, i.e.,

Var{M [ϕeff1 (Zi;θ 0)]}=Var{M [ψeff2 (Zi;θ 0)]}= υ2.

Based on Theorem 4.8, we can identify the efficient estimator for model class 2 via

that for model class 1. In model class 1, it is more straightforward to construct the efficient I.F.

ϕeff1 (Zi;θ 0) .

4.7 The Efficiency for the FRM

By the conditions in Theorem 4.5 that any I.F. satisfies, to derive the semiparametric

efficient estimator ϕeff1 (Zi;θ 0) for model class 1, we first identify the specific form of the

semiparametric n.t.s. Λη and then find elements that are orthogonal to it, which form a pool of

candidates for the optimal one.

Let Zi = (Y⊤
i ,X

⊤
i )

⊤, Yi = (Y⊤
i1 ,Y

⊤
i2 )

⊤, Xi = (X⊤
i1 ,X

⊤
i2 )

⊤, i = (i1, i2)∈Cn
2 , where Xi (Yi)

is a q×1 (m×1) vector of explanatory variables (outcomes) for the i-th subject. Let fi(Yi1,Yi2)

be a univariate continuous response for the i-th pair such as the microbiome Beta-diversity in

(2.2) (same considerations apply to more general types, see Tsiatis (2006)). The semiparametric

FRM in this case is

fi = h(Xi;β )+ εi, E(εi | Xi) = 0, i = (i1, i2) ∈Cn
2 . (4.39)

The goal is to identify the semiparametric RAL estimator of β with the smallest variance for

the FRM through ϕeff1 (εi,Xi;θ 0) .
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4.7.1 Identifying Λη with the Joint Likelihood and Score

The joint density of the observed outcomes for pairs, (εi,Xi), where εi = fi −h(Xi,β ) ,

belongs to a class of semiparametric models

P =
{

pε,X (εi,Xi;β ,η (·)) ; β ∈ Rq and η (·) is infinite-dimensional
}
. (4.40)

We assume that the underlying true data are generated from p(Yi,Xi;θ 0), which induces

p(Yi,Xi;θ 0) = p(Yi1,Xi1) p(Yi2,Xi2) . By independence and the change of variables, θ 0 re-

mains the same for describing the individual-level p(Yi,Xi) and pairwise-level p(Yi,Xi) or

p(εi,Xi) (see Appendix for details). So we denote the truth by pε,X (εi,Xi;θ 0) . Its parametric

submodels are given by

Psub
γ = {pε,X (εi,Xi;β ,γ) ; β ∈ Rq, γ ∈ Rr} ⊂ P,

which contain the truth θ 0 = {β 0,η0(·)} for all γ . Let Λη denote the semiparametric n.t.s.

for model class 1 resulting from the mean-square closure of the parametric submodels n.t.s.

Λ∪ = ∪{γ∈ϒ}Λγ . We can readily determine the form of Λη by applying arguments similar to

those for the classical within-subject semiparametric models (see Chapter 4 of Tsiatis (2006)),

summarized by the theorem below.

Theorem 4.9 The space Λη contains all mean-zero functions λ (εi,Xi) satisfying the

constraint on the conditional mean in (4.39), namely,

Λη =
{

λ
q×1 (εi,Xi) : E [λ (εi,Xi)εi | Xi] = 0q×1

}
. (4.41)

Its orthogonal complement (w.r.t. inner product 1) is defined by

Λ
⊥
η =

{
χ

q×1 (εi,Xi) ∈ Hb : ⟨χ (εi,Xi) ,λ (εi,Xi)⟩b1 = 0
}
.
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The form of Λη for model class 1 above is conformable with that for the semiparametric

GLM in Tsiatis (2006), as both models have restrictions only on the conditional mean.

4.7.2 The Efficient Influence Function of the FRM

Recall that the efficient score is the residual after projecting Sβ onto Λη by (4.37). In

Hb, the projection (w.r.t. inner product 1) of an arbitrary element g(εi,Xi) ∈ Hb onto Λη is

readily shown to satisfy:

Πb1

{
g(εi,Xi) | Λ

⊥
η

}
= g−Πb1

{
g(εi,Xi) | Λη

}
= E [g(εi,Xi)εi | Xi]E−1(ε2

i | Xi)εi, (4.42)

which is verified by the fact that
〈
Πb1

{
g | Λ⊥

η

}
,λ ∗ (εi,Xi)

〉
b1 = 0 for any λ

∗ (ε,X) ∈ Λη .

Substituting Sβ (εi,Xi) in place of g(εi,Xi) in (4.42) yields the efficient score for model 1:

Seff1 (εi,Xi;θ 0) = Sβ −Πb1
{

Sβ (εi,Xi) | Λη

}
= E

[
Sβ (εi,Xi)εi | Xi

]
V−1 (Xi)εi, (4.43)

where V (Xi) = E
(
ε2

i | Xi
)
. By fixing η(·) at the truth η0(·) and taking partial derivatives w.r.t.

β of the conditional mean restriction E [ fi −h(Xi;β ) | Xi] = 0, we obtain

E
[
εiS⊤

β
(εi,Xi) | Xi

]
=

∂

∂β
⊤h(Xi;β 0)

def
= D(Xi) , (4.44)

which is the partial derivatives of β for the mean function h(Xi;β 0) in (4.39). Then the efficient

score in (4.43) simplifies to

Seff1 (εi,Xi;θ 0) = E
[
Sβ (εi,Xi)εi | Xi

]
V−1 (Xi)εi = D⊤ (Xi)V−1 (Xi)εi. (4.45)
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By (4.38) in Theorem 7, the unique efficient I.F. for model class 1 is obtained by scaling

Seff1 (εi,Xi;θ 0):

ϕeff1 (εi,Xi;θ 0) = E−1
(

Seff1S⊤
eff1

)
Seff1 = E−1

(
D⊤

i V−1
i Di

)
D⊤

i V−1
i [ fi −h(Xi;β 0)] , (4.46)

which is easily verified to satisfy (i) - (iii) in (4.34).

By Theorem 4.8, this semiparametric efficient I.F. ϕeff1 (εi,Xi;θ 0) is in the equivalence

class of the efficient I.F. for model class 2, thus achieving the semiparametric efficiency bound

υ2 :

υ2 =Var{M [ϕeff1 (εi,Xi;θ 0)]}=Var [2E (ϕeff1 (εi,Xi;θ 0) | Zi1)] = B−1
ΣU B−1, (4.47)

where

B = E
[
D⊤ (Xi)V−1 (Xi)D(Xi)

]
, ṽi1 = 2E

{
D⊤ (Xi)V (Xi)

−1 [ fi −µ (Xi,β 0)] | Zi1

}
,

ΣU =Var (ṽi1) = vi1v⊤i1 , i = (i1, i2) ∈Cn
2 , Zi1 = (Y⊤

i1 ,X
⊤
i1 )

⊤. (4.48)

Consequently, the efficient score equations

∑
i∈Cn

2

Seff1 (εi,Xi) = ∑
i∈Cn

2

D⊤(Xi)V−1(Xi) [ fi −h(Xi,β )] = 0, (4.49)

yield an estimator β̂ eff whose variance (after mapping) is the smallest among all semiparametric

RAL estimators of the FRM.

This υ2 coincides with Σ
ugee
β

in (4.13), which is the asymptotic variance of the UGEE

estimator in Theorem 4.2. Hence, the UGEE in (4.12) for between-subject FRM is the efficient

estimating equation (4.49), and the resulting UGEE estimator does achieve the semiparametric

efficiency bound υ2.
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4.8 Examples of Efficient UGEE

In this section, we demonstrate that semiparametric UGEE estimators for continuous

responses do achieve the efficiency bound. For space consideration, examples of binary or count

responses are included in the Supplements.

4.8.1 Exogenous Between-subject Responses

Consider a classical linear regression

Yi = Xiβ + εi, εi ∼i.i.d N
(
0,σ2

Y
)
, 1 ≤ i ≤ n.

For simplicity, we assume Xi ∼i.i.d N
(
0,σ2

X
)
. The maximum likelihood estimator (MLE) of β

reaches the Cramér-Rao (CR) bound σ2
Y σ

−2
X .

Let fi =Yi1 −Yi2 and Xi = Xi1 −Xi2 for i = (i1, i2) ∈Cn
2 . Consider an FRM: E ( fi | Xi) =

Xiβ . Let

Si = fi −Xiβ , Di =
∂

∂β
(Xiβ ) = Xi, Vi =Var ( fi) = 2σ

2
Y .

The UGEE and associated I.F. for this exogenous FRM are given by

Un (β ) = ∑
i∈Cn

2

DiV−1
i Si = ∑

i∈Cn
2

Xi
(
2σ

2
Y
)−1

( fi −Xiβ ) = 0,

ϕugee (εi,Xi;β0) = E(XiV−1
i Xi)XiV−1

i ( fi −Xiβ0) =
(
2σ

2
X
)−1

(εiXi) .

The asymptotic variance calculated based on norm b2 is

υ2 =
∥∥ϕugee (εi,Xi;β0)

∥∥2
b2 =Var

[
2E
(
ϕugee (εi,Xi;β0) | εi1,Xi1

)]
= σ

2
Y σ

−2
X ,

which is exactly the same as the CR bound for the MLE of β for the classic linear regression.

The semiparamatric UGEE estimator is efficient.
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4.8.2 Endogenous Between-subject Responses

Now consider (identically but not independently distributed) endogenous between-

subject responses fi = fi1,i2 ∼i.d. (µ,σ2), where, unlike the exogenous example above, subject-

level outcomes may be latent. Let β =
(
µ,σ2)⊤ be the parameters of interest and β 0 =(

µ0,σ
2
0
)⊤ denote the truth. To obtain the efficient (parametric) estimator for β as our benchmark

for this case, assume fi ∼i.d. N
(
µ,σ2). The efficient (parametric) I.F. in model class 1 is

ϕeff1 ( fi) =
(

fi −µ0, −σ
2
0 +( fi −µ0)

2
)⊤

, (4.50)

which is also in the equivalent class of the efficient I.F. ψeff2 ( fi) for the model class 2 with the

variance (based on norm b2)

Σ
eff2
β 0

= 4E
[
E (ϕeff1 ( fi) | fi1)E

(
ϕ
⊤
eff1 ( fi) | fi1

)]
.

For endogenous responses where the benchmark based on individuals is intractable, we use this

Σeff2
β 0

(from a parametric model) as the efficiency bound.

Now consider a semiparametric FRM with E ( fi) = µ, E
[
( fi −µ)2

]
= σ2, i = (i1, i2)∈

Cn
2 , and let

Si =
(

fi −µ, ( fi −µ)2 −σ
2
)⊤

, Di =
∂

∂β
⊤β , Vi = diag

(
Var ( fi) , Var

[
( fi −µ)2

])
,

(4.51)

The UGEE, the resulting estimator, and the associated I.F. for the FRM are

Un (β ) = ∑
i∈Cn

2

D⊤
i V−1

i Si = 0, β̂
ugee
f =

(
n
2

)−1

∑
i∈Cn

2

(
fi,
(

fi − fi
)2
)⊤

,

ϕugee ( fi) =
(

fi −µ0, −σ
2
0 +( fi −µ0)

2
)⊤

.

Since ϕugee ( fi) = ϕeff1 ( fi) in (4.50), this UGEE estimator does achieve the benchmark Σeff2
β 0
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and hence is optimal. Therefore, in the endogenous case, UGEE also yields the most efficient

semiparametric RAL estimator.

4.9 Adaptive Estimator for the FRM

We first clarify the concept of local and global efficiency. Local efficiency refers to the

efficiency for particular assumptions of the nonparametric component of the model (Newey,

1990). Such estimators are optimal for a particular distribution, subject to the constraint implied

by the semiparametric model (Tsiatis and Ma, 2004; Robinson, 1988), while the more ambitious

global efficiency refers to the efficiency for all values of the nonparametric component (Bickel,

1982).

We define local and global efficiency for FRM in the same vein as for within-subject

models. Namely, any semiparametric RAL estimator β̂ with the asymptotic variance achiev-

ing the bound υ2 in (4.47) for the true model p0( fi,Xi) = p( fi,Xi;θ 0) is locally efficient at

p0 ( fi,Xi). If the same β̂ is semiparametric efficient regardless of p0( fi,Xi) ∈ P , then it is

globally efficient. For FRM, the nonparametric component refers to the unknown true condi-

tional distribution p0 ( fi | Xi) left unspecified, which yields an unknown conditional variance

V (Xi) = Var ( fi | Xi) . As in the case of models for within-subject attributes?, adaptive esti-

mators can be used to find approximations to this variance by imposing additional working

variance assumptions to improve efficiency as shown in our simulations (see Section 4.9.3 and

Supplements). In the following, we demonstrate global and local efficiency for FRM.

4.9.1 Globally Efficient Estimators

Example 1. (Binary responses) Consider an FRM for binary responses fi with a vector

of explanatory variables Xi, where E ( fi | Xi)= expit
(

β
⊤Xi

)
= exp

(
β
⊤Xi

)[
1+ exp

(
β
⊤Xi

)]−1
.

The variance of the binary fi conditional on Xi takes the form

V (Xi;β ) = exp
(

β
⊤Xi

)[
1+ exp

(
β
⊤Xi

)]−2
, (4.52)
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which does not involve any additional unknown parameter (aside from β ). By (4.46), the

optimal UGEE is:

∑
i∈Cn

2

D⊤
i V−1

i Si = ∑
i∈Cn

2

Xi

[
fi − expit

(
β
⊤Xi

)]
= 0.

Since the above only contains β with no other parameter, the resulting UGEE estimator β̂ has

the efficient I.F. depending only on β 0 :

ϕeff1 ( fi,Xi;β 0) = E−1
[
XiV (Xi;β 0)X

⊤
i

]
Xi

[
fi − expit

(
β
⊤
0 Xi

)]
.

This β̂ is semiparametric efficient regardless of p( fi,Xi;θ 0)∈P and thus is globally efficient.

4.9.2 Locally Efficient Estimators

Example 2. (Count responses) Consider an FRM for a count response fi with

E ( fi | Xi) = exp
(

β
⊤Xi

)
, where fi is over-dispersed. We specify a working variance that

is proportional to the conditional mean, i.e., V
(
Xi;τ2,β

)
= τ2 exp

(
β
⊤Xi

)
, with τ2 = 1 for

non-overdispersed and τ2 > 1 for overdispersed fi. We then estimate τ2 and β by iterating

between (1) minimizing the squared sum of residuals
{[

fi − exp
(

β
⊤Xi

)]2
−V

(
Xi;τ2,β

)}2

for τ2 with a given β̂ and (2) solving the UGEE for β with a given τ̂2, until convergence.

Under mild regularity conditions, τ̂2 →p τ2
∗ (a constant may or may not be the truth),

leading to a UGEE estimator β̂
P

with the efficient I.F.

ϕeff1
(

fi,Xi;τ
2
∗ ,β 0

)
= E−1

[
Xi exp

(
β
⊤
0 Xi

)
X⊤

i

]
Xi

[
fi − exp

(
β
⊤
0 Xi

)]
. (4.53)

This estimator is locally efficient; if the conditional variance is indeed proportional to the

conditional mean, i.e., τ2
∗ = τ2

0 , then it is semiparametric efficient.

Alternatively, we specify a working variance from the Negative Binomial (NB) distribu-
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tion with a dispersion parameter ζ , and substitute exp
(

β
⊤Xi

)[
1+ζ exp

(
β
⊤Xi

)]
in place of

V (Xi;ζ ,β ), leading to an UGEE estimator β̂
NB

with the I.F.

E−1
{

Xi

[
1+ζ∗ exp

(
β
⊤
0 Xi

)]−1
exp
(

β
⊤
0 Xi

)
X⊤

i

}
Xi

[
1+ζ∗ exp

(
β
⊤
0 Xi

)]−1 [
fi − exp

(
β
⊤
0 Xi

)]
. Again, it has the form of the efficient I.F., but

with respect to the limiting point ζ∗ that may or may not be the truth. If the assumed working

variance is the same as the true variance, then the resulting β̂
NB

is semiparametric efficient.

The distinct forms of efficient I.F.s between (4.53) and the above result from different

working variance assumptions made. For count responses, other forms of non-negative working

variance can be assumed, each leads to a different variance of β̂ . Adaptive estimators have been

shown empirically to improve efficiency for classical semiparametric GLMs for within-subject

attributes in Tsiatis (2006). Our simulation studies also demonstrate this feature, some of which

are discussed below.

4.9.3 Simulation Studies

To illustrate the local efficiency of adaptive estimators, we consider again overdispersed

count response. The data are generated from the Negative Binomial distribution and parameters

are then estimated using both parametric and semiparametric models (with different working

variances). For Monte Carlo (MC) simulations, we set total MC iterations M = 1,000 and

sample sizes n = 100, 300, 500. All analyses are performed with the R software platform

(R Development Core Team, 2012), with code optimized using Rcpp (Eddelbuettel et al.,

2011) for run-time improvement, which is available as Supplement. We demonstrate between-

subject attributes here, similar performances of within-subject attributes can be found in the

Supplement.

Without loss of generality, we include one continuous predictor. By first generating

Xi ∼i.i.d U (a,b) with U (a,b) denoting a uniform distribution over (a,b), we create between-

subject Xi with Xi = Xi1 +Xi2
(
i = (i1, i2) ∈Cn

2
)
. Given Xi, we generate fi ∼ NB

(
ζ ,h

(
β
⊤
i Xi

))
,

89



Table 4.1. Simulation results comparing MLE with UGEE for between-subject attributes.

Method Assump. β0 β1
n = 100

Est. Variance Est. Variance
Asy. Asy.

Work-MLE NB 2.99 0.0002 3.00 0.0001
Asy. Emp. Asy. Emp.

UGEE NB 3.00 0.0002 0.0002 3.00 0.0001 0.0001
Pois 3.00 0.0007 0.0007 3.00 0.0005 0.0005

Const. 2.99 0.006 0.006 3.00 0.0028 0.0029
n = 300

Est. Variance Est. Variance
Asy. Asy.

Work-MLE NB 2.9970 1.8e-05 3.00 1.5e-05
Asy. Emp. Asy. Emp.

UGEE NB 3.00 1.8e-05 1.8e-05 3.00 1.5e-05 1.5e-05
Pois 3.00 7.5e-05 7.4e-05 3.00 5.1e-05 5.00e-05

Const. 3.00 0.0007 0.0007 3.00 0.0003 0.0003
n = 500

Est. Variance Est. Variance
Asy. Asy.

Work-MLE NB 2.99 6.3e-06 3.00 5.3e-06
Asy. Emp. Asy. Emp.

UGEE NB 3.00 6.3e-06 6.2e-06 3.00 5.2e-06 5.1e-06
Pois 3.00 2.7e-05 2.7e-05 3.00 1.9e-05 1.8e-05

Const. 2.99 0.0002 0.0002 3.00 0.0001 0.0001

where h(β⊤
i Xi) = exp [β0 +β1 (Xi)] and NB(ζ ,µ) denotes a Negative Binomial with mean µ

and dispersion parameter ζ . We estimate β = (β0,β1)
⊤ using (i) MLE from Negative Binomial

(NB); and (ii) semiparametric UGEE with working variances from (1) NB, (2) Poisson and (3)

as a constant (See the Supplement for details). We set ζ = 10, β0 = 3, β1 = 3, a = 0, b = 1

and report the parameter estimators (Est.), asymptotic (Asy.) and empirical (Emp.) variances

under different sample sizes.

The MLE from NB is the benchmark for efficiency in this setting. As expected, Table

1 shows that UGEE estimators with the working variance of NB reach the local efficiency
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bound, while the other two yield larger variances. As expected, the constant working variance

yields the largest variance, since the Poisson working variance has a better approximation to

the true variance than a constant. Thus, akin to within-subject attributes, adaptive approaches

demonstrate efficiency gains for semiparametric models of between-subject attributes as well,

with improvement depending on how well the working variance resembles the true variance.

4.10 Discussion

By leveraging the Hilbert-space-based semiparametric efficiency theory, we demon-

strated that UGEE estimators are semiparametric efficient for functional response models (FRM)

modeling between-subject attributes. Such estimators deliver the smallest asymptotic variances

among a class of regular and asymptotic linear (RAL) estimators for this emerging class of semi-

parametric models. Specifying mathematical distributions such as normality for between-subject

attributes is much more difficult than for their within-subject counterparts, as between-subject

attributes are not only correlated, but generally follow more complex distributions. Extending

the semiparametric efficiency theories to between-subject attributes will not only enrich the

body of research on this topic, but will also greatly facilitate the applications of FRM to provide

valid and efficient inferences in practice.

To show the efficiency of UGEE estimators for FRM, or model class 2, we first gen-

eralized all relevant concepts and properties of estimators to between-subject attributes, such

as asymptotic linear, regular estimators, and efficiency bounds. Since directly establishing

the efficiency theory is difficult for UGEE estimators, we also introduced a class of models

involving only a subset of independent pairs of between-subject responses, or model class 1.

Although this “conjugate” class of models has no practical utility in practice given its lower

efficiency (compared to FRM, see Supplements for details), it provides a powerful tool to

help determine the efficiency of the UGEE estimator for FRM. By connecting estimators from

the two classes of models with a dual orthogonality property with respect to their respective
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nuisance tangent spaces, we determined the efficiency of the UGEE estimator for FRM through

the efficiency of the estimator for the “conjugate” class of models, which are much easier to

address by leveraging the existing Hilbert-space-based semiparametric efficiency theory.

Therefore, not only does UGEE enjoy the semiparametric robustness, but also the

efficiency in inference, just like its counterpart GEE for the classical within-subject attributes.

With blooming implementations of between-subject attributes as effective summary metrics of

high-dimensional data in biomedical and other research disciplines, the developed efficiency

will propel growing applications of FRM.

One of the limitations is that we only focus on the efficiency bound for semiparametric

FRM when applied to the cross-sectional data. We are currently working on extending the

results to clustered data such as repeated assessments in longitudinal studies. A major challenge

is to address the missing data arising from study dropouts and elucidate its impact on estimators

through different missing data mechanisms.

Chapter 4, in part is currently being prepared for submission for publication of the

material. The dissertation author was the primary investigator and author of this material. The

co-authors include Lin, T., Zhang, X., Chen, T. and Tu, XM.
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Chapter 5

Future Directions

Rooted in the high-dimensional data from real applications, this dissertation achieved

our main objectives to develop new statistical methodologies to 1) overcome the challenges of

analyzing high-dimensional data through effective dimension reductions; 2) unify a framework

to fill the vital gaps in quantifying their effects by addressing the inherent correlations properly;

3) ground the implementations of the new method from a rigorous theoretical perspective.

In summary, the unified paradigm for between-subject attributes we proposed here

reduces the astronomical data dimensions effectively, harmonizes robustness and efficiency

in statistical modeling to inform scientific insights, and is theoretically grounded in statistical

inference to accelerate blooming applications in biomedical, psychosocial, and related research.

This building block also provides a premise for extensions to longitudinal data and

causal effects in the future. In this Chapter, we discuss some future directions including causal

inference and longitudinal data analysis.

5.1 Doubly Robust Causal Effects for High-dimensional
Outcomes

Exciting study results have revealed associations between the high-dimensional data

and many diseases or health problems. However, with the current scientific frontier shifting

towards discovering causal effects of the underlying biological mechanism, simply evaluating
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associations is no longer a sufficient research goal. Instead, finding causal relationships provides

more insights for disease prevention and intervention. For example, in a recent work, we

constructed a double robust (DR) causal estimator for Mann-Whitney-Wilcoxon MWW rank

sum test (MWWRST) in observational studies. The original MWWRST test is widely used to

compare two treatment groups in randomized control trials (RCT) when data distributions are

highly skewed, especially in the presence of outliers. As it generally yields invalid inference

when applied to observational study data due to confounders. Wu et al. (2014b) introduced an

approach to address confounding effects by incorporating the inverse probability weighting

(IPW) technique into this rank-based statistic. In this work, we further address an important

limitation in Wu et al. (2014b) by extending their approach to a doubly robust setting to provide

causal inference with functional response models (FRM) by integrating the two modules to

model both the mean outcome and the missing probability, where “doubly robust (DR)” means

that it’s robust to misspecification of either module. Additionally, if both are specified correctly,

this proposed new estimator is the most efficient.

For the future, we aim to further extend such an estimator to the high-dimensional

outcome, where we can leverage the pairwise distance to modify the definition of causal effects.

For example, most human microbiome studies are observational due to cost, logistics, and

difficulties in experimental control. Existing frameworks leading to a causal effect of exposure

to certain individual taxa proportions often suffer from weak signals (Zhang et al., 2017), given

the high-dimensional nature of microbiome data. To overcome the challenge of finding the

causal effect for high-dimensional data, we propose to extend the definition of average causal

effect (ATE) to high-dimensional outcome by deploying their pairwise distances. This building

block allows for an overall characterization of the causal effect for microbiome composition.

Building upon this, we could apply various observational study methods (inverse probability

weighting, mean score imputation, etc.) to address confounding effects. Additionally, we will

extend “doubly robust (DR)” estimators to our current context of between-subject attributes and
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develop a class of weighted-UGEEs to provide DR estimators of causal effects, and this will

significantly improve robustness and efficiency.

Particularly, this appealing extension will lead to a framework to identify exposure-

causing changes in microbiome composition and assess the efficacy of some microbiota-related

therapies, and furthermore, the development of a new class of therapies for certain diseases.

Similar metrics can also be implemented in mHealth. By a similar construction of between-

subject attributes as the causal effect for high-dimensional wearable data, this framework can

also unbury causal effects of personalized treatments on physical activities, circadian rhythm,

etc.

5.2 Triply Robust Causal Mediation Effect of High-
dimensional Outcomes: Applications to Microbiome
Sequence Data

Recently, additional evidence has implicated the casual mediating effect of the human

microbiome from exposure or treatment to clinical outcomes. In the future, we also aim to

construct a powerful and robust semiparametric model for such mediation effects. For classical

within-subject attributes, the counterfactual mediation framework to define causal direct and

mediation effects allow for the exposure – mediator interactions have been developed (Van der

Vaart, 2000). Facing the growing need to uncover possible mediating roles of the human

microbiome in relationships between exposures/treatments and clinical outcomes, we aim to

extend this counterfactual mediation framework to between-subject attributes by combining

two FRMs (one for the outcome and the other for the mediation) and developing weighted-

UGEEs for joint inference of model parameters. Additionally, we also want to extend the “triply

robust (TR)” estimator for mediation effect in (Tchetgen and Shpitser, 2012) to between-subject

attributes in our context. This will help us develop a triply robust estimator for the mediation

effect of microbiome composition using the Beta-diversity, where we could afford model
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misspecifications from treatment, mediator, and outcome (i.e., the name “triply-robust”) without

sacrificing the asymptotic consistency. By focusing on the between-subject Beta-diversity, this

approach will not only achieve effective dimension reduction by pooling individual weak signals

but also inform an overall mediation effect of the human microbiome by integrating information

across all sequenced genomes.

5.3 Distance-based Between-subject Regression for Longi-
tudinal Data

Besides this ongoing extension in causal effects, our collaborators also strongly rec-

ommend us to further extend our approach to longitudinal study data where the sample are

sequenced every 6 months, say. Given the dynamic and highly personalized nature of the human

microbiome, valuable information is likely to be obtained from studies following subjects over

time. To overcome the challenges in analyzing pairwise outcomes for such studies with missing

data, we plan to extend the distance-based semiparametric framework to longitudinal settings,

which can comprehensively capture changes in microbiome composition over time. We also

address missing observations using a class of weighted-UGEE that yields valid inference under

the missing at random (MAR) mechanism. In addition, we will further work on integrating a

semiparametric “doubly robust (DR)” framework into our approach, to provide valid inferences

under less stringent assumptions on modeling missing data in longitudinal studies.
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Chapter 6

Supplemental Material

6.1 S1: Supporting Information for Chapter 2: A Semi-
parametric Model for Between-Subject Attributes:
Applications to Beta-diversity of Microbiome Data

6.1.1 Proof of Theorem 2.1.

Without loss of generality, consider the normalized quantity
(n

2

)−1Un. A Taylor’s series

expansion gives

√
n
(

θ̂ −θ

)
=

(
− ∂

∂θ
Un(θ)

)−⊤√
nUn(θ)+op (1) . (6.1)

From the theory of multivariate U-statistics that (Kowalski and Tu, 2008a),

∂

∂θ
Un(θ) =

(
n
2

)−1

∑
i∈Cn

2

∂

∂θ
(−DiV−1

i hi(θ))→p E
(

∂

∂θ
hi(θ)

(
−DiV−1

i
)⊤)

=−E
(

DiV−1
i D⊤

i

)
=−B,
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where op (1) denotes the stochastic version of o(1). Since Un,i is a U-statistic-like quantity, it

again follows from the theory of multivariate U-statistics that:

√
nUn =

√
n
(

n
2

)−1

∑
i∈Cn

2

Un,i =
√

n
2
n

n

∑
i1=1

E (Un,i | yi1,xi1,zi1)+op (1) (6.2)

=
√

n
2
n

n

∑
i1=1

vi1 +op (1)→d N (0,ΣU) ,

By combining (6.11) and (6.12), we have:

√
n
(

θ̂ −θ

)
=

(
− ∂

∂θ
Un

)−⊤√
nUn +op (1) = B−1√n

2
n

n

∑
i1=1

vi1 +op (1)→d N (0,Σθ ) .

6.1.2 Proof of Theorem 2.2.

Again consider the normalized quantity
(n

2

)−1Un. By the theory of multivariate U-

statistics that (Kowalski and Tu, 2008a):

∂

∂θ
Un (θ) =

 ∂

∂θ (1)
Un(1) (θ)

∂

∂θ (1)
Un(2) (θ)

∂

∂θ (2)
Un(1) (θ)

∂

∂θ (2)
Un(2) (θ)

→p B = E
(

DiV−1
i D⊤

i

)
=

 B11 B12

B⊤
12 B22

 .

(6.3)

It follows from a Taylor’s series expansion and (6.3) that

0 = Un(1)

(
θ̃ (1),θ (20)

)
= Un(1) (θ)+

(
∂⊤

∂θ (1)
Un(1) (θ)

)(
θ̃ (1)−θ (1)

)
+op

(
n−

1
2

)
= Un(1) (θ)+B11

(
θ̃ (1)−θ (1)

)
+op

(
n−

1
2

)
.

Thus,

θ̃ (1)−θ (1) =−B−1
11 Un(1) (θ)+op

(
n−

1
2

)
. (6.4)
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Similarly, since B⊤
12 = B21, we have:

Un(2)

(
θ̃ (1),θ (20)

)
= Un(2) (θ)+

(
∂⊤

∂θ (1)
Un(2)

)(
θ̃ (1)−θ (1)

)
+op

(
n−

1
2

)
(6.5)

= Un(2) (θ)+B⊤
12

(
θ̃ (1)−θ (1)

)
+op

(
n−

1
2

)
= Un(2) (θ)+B21

(
θ̃ (1)−θ (1)

)
+op

(
n−

1
2

)
.

It follows from (6.4) and (6.5) that

Un(2)

(
θ̃ (1),θ (20)

)
= Un(2) (θ)+B21

[
−B−⊤

11 Un(1) (θ)+op

(
n−

1
2

)]
+op

(
n−

1
2

)
= Un(2) (θ)−

[
B21B−⊤

11 Un(1) (θ)+op

(
n−

1
2

)]
+op

(
n−

1
2

)
=

(
−B21B−1

11 Iq

)
Un (θ)+op

(
n−

1
2

)
= GUn (θ)+op

(
n−

1
2

)
.

By the central limit theorem,

√
nUn(2)

(
θ̃ (1),θ (20)

)
=
√

nGUn (θ)+op (1)→d N
(

0,Σ(2) = GΣU G⊤
)
. (6.6)

The asymptotic normality of Un(2)

(
θ̃ (1),θ (20)

)
implies that the score statistic Sn

(
θ̃ (1),θ (20)

)
has the asymptotic χ2

q distribution.

6.1.3 PERMANOVA

If xi consists of only one categorical variable for groups, PERMANOVA can be used to

compare Beta-diversity across different groups. Consider a total of K groups for this categorical

variable, PERMANOVA uses the pseudo-F statistic for inference about overall group differences
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in Beta-diversity:

pseudo-F =
tr (HGH)/(p−1)

tr[(In −H)G(In −H)]/(n− p)
, (6.7)

G =

(
In −

1n1⊤n
n

)
A
(

In −
1n1⊤n

n

)
, A =

(
−1

2
d2

i

)
,

where tr (·) denotes the trace of a matrix, X is the design matrix that contains the group

information, p is the length of xi, H = X(X⊤X)−1X⊤ is the projection of the design matrix

X , G is the Gower’s centered matrix obtained from the distance matrix D = (di), 1n denotes a

n×1 column vector of 1’s, and In denotes the n×n identity matrix. For example, if K = 2, and

xi = 1 if the ith subject is from diseased group and xi = 0 otherwise, then X =
(
1n,x⊤

)
, where

x⊤ = (x1,x2, . . . ,xn)
⊤.

6.1.4 Details of Data Generating Procedure with eCDF and Copula

For notational clarity, we use upper-case to denote random variables and lower-case

to denote their values. Consider a random variable X and let F (x) denote the cumulative

distribution function (CDF) of X . Then the probability integral transformation of X , U = F (X) ,

follows U (0,1) , where U (0,1) is a uniform between 0 and 1 (Kowalski and Tu, 2008a). Thus,

if F (x) is known, we can simulate X from X = F−1 (U), where F−1 (u) is the inverse of F (x)

defined by F−1 (u) = inf{x | F (x)≥ u} , 0 < u < 1. If F (x) is unknown, we can instead use

the empirical CDF (eCDF) of the observed X , i.e., Fn(x) = 1
n ∑

n
i=1 I (Xi ≤ x), where I (A) is an

indicator with value 1 if A is true and 0 otherwise.

For a p × 1 random vector X = (X1,X2, ...,Xp)
⊤ such as OTU counts, let F (x) =

F (x1,x2, ...,xp) denote the CDF. It can be expressed in terms of uniformly distributed marginals

Fj
(
X j
)

and a copula, defined as the joint CDF of a p×1 random vector U = (U1,U2, ...,Up)
⊤

with uniform marginals U j = Fj
(
X j
)
(1 ≤ j ≤ p) (Sklar, 1959). Similar to the univariate

case, we can simulate correlated multivariate random vectors X = (X1,X2, ...,Xp)
⊤ where
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X j = Fj
−1 (U j

)
, with specified marginals Fj

(
X j
)

through copula.

To simulate X with distributions similar to those OTUs from a real study, we first use the

copula to create a correlated multivariate uniform Un based on the eCDF Fn (x) of the observed

OTUs, with the uniform marginals Un j = Fn j
(
X j
)
= 1

n ∑
n
i=1 I

(
Xi j ≤ x j

)
. Then by smoothing

Un j (de repartition an dimensions et leurs marges, gen), we apply the copula again to create a

multivariate normal V with correlations similar to those of the original OTUs. Afterward, by

simulating from V, we obtain correlated multivariate uniform U with correlations and marginals

similar to those of Un. Finally, by smoothing Fn j
(
X j
)

and inverting the simulated U j to X j with

X j = Fj
−1 (U j

)
, where Fj (·) is a smoothed version of Fn j (·), we obtain the simulated OTUs

X = (X1,X2, ...,Xp)
⊤ with a distribution similar to Fn (x) of the real OTUs. Beta-diversity was

then calculated from simulated OTU counts after appropriate normalization.

As this procedure does not involve analytical distributional models, population-level

characteristics such as mean and standard deviation are estimated by Monte Carlo (MC) simula-

tion with a large MC size of 5,000.

6.1.5 Details of Simulation for Group Comparison Accounting for
Covariates

We simulate the two covariates from parametric distributions with xg
i ∼ Bern(p) and

za
i ∼U (a,b) and then created their respective pairwise counterparts xg

i and za
i , where Bern(p)

denotes Bernoulli with mean p and U (a,b) a uniform over (a,b). We set:

p = 0.45, a = 0, b = 1

θ 0 =
(

β0,β
d
22,β

d
12,β

g
22,β

g
12,ξ

a
)⊤

= (−0.4595,0,0,0.5,0.5,0.5)⊤.

To simulate f (yi) for the regression with covariates, we first simulate Beta-diversity

distance di (yi) and then use the two covariates xg
i and za

i to create the mean h(xi,zi;θ 0) =

exp
(
u⊤

i θ 0
)
. We next center di (yi) with the true value of β0 (=−0.4595) to create a “residual”
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εi = di (yi)−β0, which is then added to u⊤i θ 0 and expenentiated to create:

d̃i (yi) = exp
(

u⊤
i θ 0 + εi

)
= exp

(
u⊤

i θ 0

)
exp(εi) .

By setting C0 = E (exp(εi)), we obtain simulated f (yi) = C−1
0 d̃i (yi). This ensures that

E [ f (yi) | xi,zi] = h(xi,zi;θ) = exp
(
u⊤

i θ
)
.

We estimate C0 by the sample mean C0 =
(n

2

)−1
∑i∈Cn

2
exp(εi) using a large n = 5,000,

where C0 = 1.000796 in our setting.

6.1.6 Details to Obtain Parameter Estimates from UGEE

The method to find θ̂ is through Newton-Raphson using the pseudo-score Un (θ). For

example, in a model with

E [ fi | xi] = hi(xi;θ) = exp
{

θ
⊤g(xi)

}
, i = (i1, i2) ∈Cn

2 , (6.8)

where xi = {xi1,xi2} , g(·) is some symmetric smooth function such as the Euclidean distance.

Let

Si = fi −hi(xi;θ), Di =
∂

∂θ
hi(xi;θ), Vi =Var ( fi | xi,zi) = exp

{
θ
⊤g(xi)

}
,

with

Un (θ) = ∑
i∈Cn

2

Un,i = ∑
i∈Cn

2

DiV−1
i Si = 0, (6.9)

we can obtain θ̂ by iterating through

θ
(t+1)−θ

(t) = ∑
i∈Cn

2

(
DiV−1

i Di
)−1

DiV−1
i Si

= ∑
i∈Cn

2

(
DiV−1

i Di
)−1

DiV−1
i

{
fi −hi(xi;θ

(t))
}

(6.10)
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until convergence, where all relevant quantities of (Di,Vi) are evaluated at the tth step with θ
(t).

6.1.7 FDR-corrected Test Results for the Real Data Analyses

We applied the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) to

control the family-wise FDR at 5%, and provided comparisons of p-values before and after

FDR-correction for the real data analyses.

Shown in top panel of the table Table 6.1 are estimates (Est.) of θ , Wald and score test

p-values (Wald under “W.p”, score under “S.p”, Bootstrap Wald under “B.W.p” and Bootstrap

score under “B.S.p”) for testing the nulls of no difference for the diagnostic groups and no effect

for the two covariates. The bottom panel includes Wald and score test p-values for the three

major types of hypotheses and covariate effects.

The comparisons indicate that major conclusions in the real data application remain

unchanged after FDR-corrections, except for comparing the between-group variability of AUD-

HC pairs vs. the within-group variability of AH-AH pairs with β d
23 = 0, where the score test

p-value (S.p) was .020 before and .060 after correction.

6.1.8 Simulation Details of Power Comparison with the Existing
Approach.

To control for the effect size that allows for appropriate power comparisons in the simu-

lation, the data were generated from the alternative using the Dirichlet-Multinomial distribution

(DM) with parameters calibrated from the real data using R package ‘dirmult’ (Tvedebrink,

2010), with effect size estimated with θ̂−0√
nse(θ̂)

as a rough quantification. This allows us to vary

effect sizes more easily for the power comparison and continues to generate Beta-diversity

outcomes with their distributions resembling the real data as shown in the Figure S2 below.
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 d = 0.2 

 Diseased 

 HC 

 d = 0.2 

 AH  AUD 
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Figure 6.1. Principal Coordinates Analysis (PCoA) plots of Beta-diverisity distance for (1)
combined diseased (AH and AUD patients) group and non-alcoholic controls (HC) (left) and
(2)alcoholic hepatitis (AH) patients, alcohol user disorder (AUD) patients and non-alcoholic
controls (HC) (right)
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Figure 6.2. Empirical CDFs of Real vs. Simulated Beta-diversity.
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6.2 S2: Supporting Information for Chapter 3: A Distance-
based Semiparametric Regression Framework for
Between-subject attributes

6.2.1 Details for Considering Pairs with Discordant Binary Responses

For each ith subject, yi = 1 if diseased, yi = 0 otherwise. Then there will be 4 pairwise

possibilities: yi = y j = 0, yi = y j = 1, yi = 0,y j = 1 and yi = 1,y j = 0.

In logistic regression, we have:

Pr(yi = 1 | xi) =
exp(β0 +β1xi)

1+ exp(β0 +β1xi)
,Pr(yi = 0 | xi) =

1
1+ exp(β0 +β1xi)

Pr(yi = 1 | xi) =
exp(β0 +β1x j)

1+ exp(β0 +β1x j)
,Pr(y j = 0 | x j) =

1
1+ exp(β0 +β1x j)

Thus,

Pr(yi = 1,y j = 1 | xi,x j) = Pr(yi = 1 | xi) ·Pr(y j = 1 | x j) by independence

=
exp(β0 +β1xi)

1+ exp(β0 +β1xi)
·

exp(β0 +β1x j)

1+ exp(β0 +β1x j)

=
exp[2β0 +β1(xi + x j)]

[1+ exp(β0 +β1xi)] · [1+ exp(β0 +β1x j)]

Similarly,

Pr(yi = 0,y j = 0 | xi,x j) =
1

[1+ exp(β0 +β1xi)] · [1+ exp(β0 +β1x j)]
,

Pr(yi = 1,y j = 0 | xi,x j) =
exp(β0 +β1xi)

[1+ exp(β0 +β1xi)] · [1+ exp(β0 +β1x j)]
,

Pr(yi = 0,y j = 1 | xi,x j) =
exp(β0 +β1x j)

[1+ exp(β0 +β1xi)] · [1+ exp(β0 +β1x j)]
.
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If we choose yi = 0,y j = 0 as reference, then,

Pr(yi = 1,y j = 1 | xi,x j)

Pr(yi = 0,y j = 0 | xi,x j)
= exp[2β0 +β1(xi + x j)],

Pr(yi = 1,y j = 0 | xi,x j)

Pr(yi = 0,y j = 0 | xi,x j)
= exp[β0 +β1xi],

Pr(yi = 0,y j = 1 | xi,x j)

Pr(yi = 0,y j = 0 | xi,x j)
= exp[β0 +β1x j],(i, j) ∈Cn

2 ,

All of those relative probabilities are not related to the differences of xi,x j.

However, if we choose yi = 0,y j = 1 as reference, then

Pr(yi = 1,y j = 0 | xi,x j)

Pr(yi = 0,y j = 1 | xi,x j)
= exp[β1(xi − x j)],(i, j) ∈Cn

2 .

i.e. if we define an indicator ψ(i, j) = 1 if yi = 1,y j = 0, ψ(i, j) = 0 if yi = 0,y j = 1, then this

amounts to modeling with logistic regression

Pr
{

ψ(i, j) = 1 | xi,x j
}

1−Pr
{

ψ(i, j) = 1 | xi,x j
} = exp

{
β1(xi − x j)

}
,

i.e. log it[Pr
{

ψ(i, j) = 1 | xi,x j
}
] = β1(xi − x j), (i, j) ∈Cn

2 .

Therefore, only the pairs with discordant responses are associated with differences in the

explanatory variables.

6.2.2 Details to Obtain Parameter Estimates from UGEE

The method to find θ̂ is through Newton-Raphson using the pseudo-score Ũn (θ). For

example, in a model with

E ( fi | xi) = hi(xi;θ) = θ
⊤g(xi), i = (i1, i2) ∈Cn

2 ,
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where xi = {xi1,xi2} , g(·) is some symmetric smooth function such as the Euclidean distance

where g(xi) =
[
(xi1 − xi2)

2]1/2. Let

Si = fi −hi(xi;θ), Di =
∂

∂θ
hi(xi;θ), Vi =Var ( fi | xi,zi) = σ

2 (a constant),

with

Un (θ) = ∑
i∈Cn

2

Un,i = ∑
i∈Cn

2

DiV−1
i Si = 0,

we can obtain θ̂ by iterating through

θ
(t+1)−θ

(t) = ∑
i∈Cn

2

(
DiV−1

i Di
)−1

DiV−1
i Si

= ∑
i∈Cn

2

(
DiV−1

i Di
)−1

DiV−1
i

{
fi −hi(xi;θ

(t))
}

until convergence, where all relevant quantities of (Di,Vi) are evaluated at the tth step with θ (t).

6.2.3 Proof of Theorem 3.1

Without loss of generality, consider the normalized quantity
(n

2

)−1Ũn.

(
n
2

)−1

Ũn =

(
n
2

)−1

∑
i∈Cn

2

Ũn,i (yi1,yi2)

=

(
n
2

)−1

∑
i∈Cn

2

1
2

{
Un,i (yi1,yi2)+Un,̃i (yi2,yi1)

}

Let

δm =
(

sign(i1 − i2)δ m
12(wi), ...,sign(i1 − i2)δ m

(Km−1)Km
(wi)

)⊤
, δ =

(
δ
⊤
1 , . . . ,δ⊤

q

)⊤
,

ri(i1, i2) =
(

sign(i1 − i2)d(xi1,xi2),(zi1 − zi2)
⊤,δ⊤

)⊤
=−ri(i2, i1).
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Then h(xi,zi,wi;θ) = θ⊤ri for FRM with continuous or count responses,

Un,i (yi1 ,yi2) = Di (yi1,yi2)V−1
i (yi1,yi2)Si (yi1,yi2)

= DiV−1
i { fi (yi1,yi2)−hi1i2 (xi,zi,wi;θ)}

= ri(i1, i2)V−1
i

{
(yi1 − yi2)−θ

⊤ri(i1, i2)
}

Un,̃i (yi2,yi1) = Di (yi2,yi1)V−1
i (yi2,yi1)Si (yi2,yi1)

= ri(i2, i1)d (xi2,xi1)V−1
i

{
(yi2 − yi1)−θ

⊤ri(i2, i1)
}

= (−1)ri(i1, i2)V−1
i (−1)

{
(yi1 − yi2)−θ

⊤ri(i1, i2)
}

= (−1)(−1)Un,i (yi1,yi2) =Un,i (yi1,yi2)

For FRM with binary responses, logit {h(xi,zi,wi;θ)}= θ⊤ri.

hi2i1 (xi,zi,wi;θ) =de f
πi2i1 =

exp(θ⊤ri(i2, i1))
1+ exp(θ⊤ri(i2, i1))

=
exp(−θ⊤ri(i1, i2))

1+ exp(−θ⊤ri(i1, i2))

=
1

1+ exp(θ⊤ri(i1, i2))
= 1−πi1i2 = 1−hi1i2 (xi,zi,wi;θ)
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Un,i (yi1 ,yi2) = Di (yi1,yi2)V−1
i (yi1,yi2)Si (yi1,yi2)

= DiV−1
i { fi (yi1,yi2)−hi1i2 (xi,zi,wi;θ)}

= ri(i1, i2)d (xi1 ,xi2){I (yi1 = 1,yi2 = 0)−πi1i2}

Un,̃i (yi2,yi1) = Di (yi2,yi1)V−1
i (yi2,yi1)Si (yi2,yi1)

= ri(i2, i1)d (xi2,xi1){I (yi2 = 1,yi1 = 0)−πi2i1}

= (−1)ri(i1, i2)d (xi2,xi1) [{1− I (yi1 = 1,yi2 = 0)}− (1−πi1i2)]

= (−1)ri(i1, i2)d (xi2,xi1)(−1){I (yi1 = 1,yi2 = 0)−πi1i2}

=Un,i (yi1,yi2)

Ũn,i (yi1,yi2) =
1
2

{
Un,i (yi1,yi2)+Un,̃i (yi2,yi1)

}
=Un,i (yi1,yi2) =Un,̃i (yi2 ,yi1)

Thus, for both FRMs,

Ũn,i (yi1,yi2) =
1
2

{
Un,i (yi1,yi2)+Un,̃i (yi2,yi1)

}
=Un,i (yi1,yi2) ,

since the beta-diversity matrix is symmetric, i.e. d (xi1,xi2) = d (xi2,xi1) . Taylor expansion gives

√
n
(

θ̂ −θ

)
=−

{
∂

∂θ
Ũn(θ ,ϕ)

}−⊤
· [
√

nŨn(θ ,ϕ)+{ ∂

∂ϕ
Ũn(θ ,ϕ)}⊤ ·

√
n(ϕ̂ −ϕ)]+op (1) ,

By the assumption, { ∂

∂ϕ
Ũn(θ ,ϕ)}⊤ ·

√
n(ϕ̂ −ϕ) = op (1) . And

∂

∂θ
Ũn(θ ,ϕ) =

(
n
2

)−1

∑
i∈Cn

2

∂

∂θ

{
−DiV−1

i hi(θ)
}
→p E

∂

∂θ
hi(θ)(−DiV−1

i )−⊤

=−E(DiV−1
i D⊤

i ) =
de f −B⊤,

Since Ũn,i is a U-statistic-like quantity, it follows from the theory of multivariate U-
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statistics (Kowalski and Tu, 2008a) that:

√
nŨn =

√
n
(

n
2

)−1

∑
i∈Cn

2

Ũn,i =
√

n
2
n

n

∑
i1=1

E
(

Ũn,i | yi1,xi1,zi1,wi1

)
+op (1)

=
√

n
2
n

n

∑
i1=1

vi1 +op (1)→d N (0,ΣU) ,

ΣU = 4var (vi1)

where op (1) denotes the stochastic version of o(1). It follows that

√
n
(

θ̂ −θ

)
=

(
− ∂

∂θ
Ũn

)−⊤√
nŨn +op (1) = B−1√n

2
n

n

∑
i1=1

vi1 +op (1)→d N (0,Σθ ) ,

where Σθ = B−1
ΣU B−1.

6.3 S3: Supporting Information for Chapter 4: On Semi-
parametric Efficiency of an Emerging Class of Distance-
based Regression Models for Between-subject At-
tributes

6.3.1 Proofs of Theorems

1. Proof. of Theorem 4.1

Without loss of generality, consider the normalized quantity
(n

2

)−1Un. A Taylor’s series

expansion gives

√
n
(

θ̂ −θ

)
=

(
− ∂

∂θ
Un(θ)

)−⊤√
nUn(θ)+op (1) . (6.11)

110



From the theory of multivariate U-statistics that (Kowalski and Tu, 2007),

∂

∂θ
Un(θ) =

(
n
2

)−1

∑
i∈Cn

2

∂

∂θ
(−DiV−1

i hi(θ))→p E
(

∂

∂θ
hi(θ)

(
−DiV−1

i
)⊤)

=−E
(

DiV−1
i D⊤

i

)
=−B,

where op (1) denotes the stochastic version of o(1). Since Un,i is a U-statistic-like quantity, it

again follows from the theory of multivariate U-statistics that (Kowalski and Tu, 2007):

√
nUn =

√
n
(

n
2

)−1

∑
i∈Cn

2

Un,i =
√

n
2
n

n

∑
i1=1

E (Un,i | yi1 ,xi1)+op (1) (6.12)

=
√

n
2
n

n

∑
i1=1

vi1 +op (1)→d N (0,ΣU) ,

By combining (6.11) and (6.12), we have:

√
n
(

θ̂ −θ

)
=

(
− ∂

∂θ
Un

)−⊤√
nUn +op (1) = B−1√n

2
n

n

∑
i1=1

vi1 +op (1)→d N (0,Σθ ) .

2. Proof. of Theorem 4.3

If ϕ and ψ are two such I.F.s, then it’s easy to show that

E (|ϕ −ψ|) = 0.

Thus, ϕ = ψ a.s..

3. Proof (sketch) of Theorem 4.4 (Key results).

We first give the definition of two sequences of probability measures that are contiguous:

Let Vn be a sequence of random vectors and let P1n and P0n be sequences of probability measures

with densities p1n(vn) and p0n(vn), respectively. The sequence of probability measures P1n is

contiguous to the sequence of probability measures P0n if, for any sequence of events An defined
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with respect to Vn, P0n(An)→ 0 as n → ∞ implies that P1n(An)→ 0 as n → ∞.

Consider the sequence of densities p0n(vn) = Πi∈Cn
2
p(zin,θ0) and the LDGP p1n(vn) =

Πi∈Cn
2
p(zin,θn), where n1/2(θn −θ0)→ τ . The if we have P1n and P0n contiguous, we can show

that oP0n(1) = oP1n(1). Making use of LeCam’s concept of contiguity, Hajek (1962) proved the

asymptotic normality of such Sθ ( fi;θ) under the contiguous alternatives.

Then, by AL we have

n1/2
(

β̂ n −β (θ0)
)
=
√

n
(

n
2

)−1

∑
i∈Cn

2

ϕ ( fi)+oP0n(1),

and by the theory of U-statistics,

n1/2
(

β̂ n −β (θn)
)
→d N (0,4Σ) ,

where

Σ =Var (E (ϕ ( fi) | Zi)) = E
[
E (ϕ ( fi) | Zi)E

(
ϕ
⊤ ( fi) | Zi

)]
.

Then by adding and subtracting common terms, we obtain:

n1/2
(

β̂ n −β (θn)
)
=
√

n
(

n
2

)−1

∑
i∈Cn

2

[ϕ ( fi)−Eθn{ϕ ( fi)}]

+n1/2Eθn{ϕ ( fi)}−n1/2{β (θn)−β (θ0)}+oP1n(1),

and also by the theory of U-statistics,

√
n
(

n
2

)−1

∑
i∈Cn

2

[ϕ ( fi)−Eθn{ϕ ( fi)}] =
√

n
2
n

n

∑
i=1

E (ϕ ( fi) | Zi)+op (1)

=

√
n

n

n

∑
i=1

2E (ϕ ( fi) | Zi)+op (1)

→d N (0,4Σ) .
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Combining with

n1/2{β (θ n)−β (θ0)}→ Γ(θ 0)τ,

where Γ(θ0) = ∂β (θ0)/∂θ
⊤, and

n1/2Eθn{ϕ ( fi)}→ Eθ0{ϕ ( fi)ST
θ ( f ,θ0)}τ.

which requires the Taylor expansion w.r.t the density function p( f ,θn). Through some algebra,

we then proved the theorem.

4. Proof of Theorem 4.5

Let η̂n denote a
√

n-consistent estimator of η , i.e.,

√
n(η̂n −η0) = Op (1) ,

where Op (·) denotes stochastic boundedness.

First, note that

E [m( fi,β 0,η0)] = 0.

So

∫
m( fi,β 0,η0) p( fi,β 0,η0)dν ( fi) = 0,

∂

∂η⊤

∫
m( fi,β 0,η0) p( fi,β 0,η0)dν ( fi) = 0.
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Thus,

0 =
∫

∂m( fi,β 0,η0)

∂η⊤ p( fi,β 0,η0)dν ( fi)

+
∫

m( fi,β 0,η0)

∂ p( fi,β 0,η0)

∂η⊤

p(Zi,β 0,η0)
p( fi,β 0,η0)dν ( fi)

=
∫

∂m(( fi,β 0,η0))

∂η⊤ p( fi,β 0,η0)dν ( fi)

+
∫

m( fi,β 0,η0)S⊤η ( fi,β 0,η0) p( fi,β 0,η0)dν ( fi) .

It follows that

0 = E
[

∂m( fi,β 0,η0)

∂η⊤

]
+Em( fi,β 0,η0)S⊤η ( fi,β 0,η0)

= E
[

∂m( fi,β 0,η0)

∂η⊤

]
+E[ϕ ( fi,β 0,η0)−E [ϕ ( fi,β 0,η0)]]S

⊤
η ( fi,β 0,η0)

= E
[

∂m( fi,β 0,η0)

∂η⊤

]
+E

[
ϕ ( fi,β 0,η0)S⊤η ( fi,β 0,η0)

]
.

by the definition of m( fi,β 0,η0).

From fact that the influence function ϕ( fi) satisfies corollary (ii):

E
[
ϕ ( fi)S⊤η ( fi,β 0,η0)

]
= 0, we have:

E
[

∂m( fi,β 0,η0)

∂η⊤

]
= 0.

With similar argument by expanding w.r.t. β , we have:

E

[
∂m( fi,β 0,η0)

∂β
⊤

]
=−Iq.

Now expand the following equations around (β 0,η0),
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∑
i∈Cn

2

m
(

fi, β̂ n, η̂n

(
β̂ n

))
= 0,

we have:

0 = ∑
i∈Cn

2

m
(

fi, β̂ n, η̂n

(
β̂ n

))
= ∑

i∈Cn
2

m( fi,β 0,η0)+ ∑
i∈Cn

2

∂

∂β
⊤m( fi,β 0,η0)

(
β̂ n −β 0

)
+

+ ∑
i∈Cn

2

∂

∂η⊤m( fi,β 0,η0)
(

η̂n

(
β̂ n

)
−η0

)
+op

(
n−

1
2

)
.

Then

√
n
(

β̂ n −β 0

)
=−

√
n

[(
n
2

)−1

∑
i∈Cn

2

∂

∂β
⊤m( fi,β 0,η0)

]−1[(
n
2

)−1

∑
i∈Cn

2

m( fi,β 0,η0)

]

−
√

n

[(
n
2

)−1

∑
i∈Cn

2

∂

∂β
⊤m( fi,β 0,η0)

]−1

[(
n
2

)−1

∑
i∈Cn

2

∂

∂η⊤m( fi,β 0,η0)
(

η̂n

(
β̂ n

)
−η0

)]
+op (1) .

Since

(
n
2

)−1

∑
i∈Cn

2

∂

∂β
⊤m( fi,β 0,η0)−→p E

[
∂

∂β
⊤m( fi,β 0,η0)

]
=−Iq,(

n
2

)−1

∑
i∈Cn

2

∂

∂η⊤m( fi,β 0,η0)−→p E
[

∂

∂η⊤m( fi,β 0,η0)

]
= 0,

(
η̂n

(
β̂ n

)
−η0

)
= Op(1),
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it follows that

√
n
(

β̂ n −β 0

)
=
√

n
(

n
2

)−1

∑
i∈Cn

2

m( fi,β 0,η0)+op (1)

=
√

n
(

n
2

)−1

∑
i∈Cn

2

{ϕ ( fi,β 0,η0)−E [ϕ ( fi,β 0,η0)]}+op (1)

=
√

n
(

n
2

)−1

∑
i∈Cn

2

ϕ ( fi,β 0,η0)+op (1)

5. Proof of Theorem 4.6. The set of all influence functions

ϕ ( fi) : E
[
ϕ ( fi)S⊤

θ
( fi,θ 0)

]
= Γ(θ 0) is the affine space/linear variety ϕ∗ ( fi) + £⊥, where

ϕ∗ (Z) is some influence function and £⊥ is orthogonal to the tangent space spanned by Sθ (Z).

∀l ∈ H, let ϕ ( fi) = ϕ∗ ( fi)+ l ( fi)

Γ(θ 0) = E
[
ϕ ( fi)S⊤θ ( fi,θ 0)

]
= E

[
{ϕ

∗ ( fi)+ l ( fi)}·S⊤θ ( fi,θ 0)
]

= E
[
ϕ
∗ ( fi)S⊤θ ( fi,θ 0)

]
+E

[
l ( fi)S⊤θ ( fi,θ 0)

]
= E

[
ϕ
∗ ( fi)S⊤θ ( fi,θ 0)

]
= Γ(θ 0)

Therefore, E
[
l ( fi)S⊤

θ
( fi,θ 0)

]
= 0, i.e. l ∈ T⊥.

6. Proof of Theorem 4.7. The efficient influence function is given by

ϕe f f ( fi) = ϕ
∗ ( fi)−Π

(
ϕ
∗ ( fi) | £⊥

)
= Π(ϕ∗ ( fi) | £)

= Γ(θ 0) I−1 (θ 0)Sθ ( fi,θ 0) .

For ∀ influence function ϕ ( f ), ϕ( f ) = ϕ∗ ( f )+£⊥ and Π
(
ϕ∗ ( f ) | £⊥

)
∈ £⊥. It follows
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that

ϕ ( f ) = ϕe f f ( f )+ l, l ∈ £⊥,

Var (ϕ ( f )) =Var
(

ϕe f f ( f )
)
+Var(l), ∀l ∈ £⊥.

By construction,

ϕe f f ( f ) = Π(ϕ∗ ( f ) | £) = Be f f Sθ ( f ,θ0) for some Be f f .

Since E
[
ϕe f f ( f )S⊤

θ
( f ,θ 0)

]
= Γ(θ 0), it follows that ϕe f f ( f ) satisfies that

Γ(θ 0) = Be f f E
[
Sθ ( f ,θ 0)S⊤θ ( f ,θ 0)

]
= Be f f I (θ 0) ,

with I (θ 0) the information matrix. So

Be f f = Γ(θ 0) I−1 (θ 0) ,

ϕe f f ( f ) = Γ(θ 0) I−1 (θ 0)Sθ ( f ,θ 0) .

7. Proof of Corollary 2.

Need to show: The unique efficient influence function is a scaled version of the efficient

score:

ϕe f f ( fi,θ 0) = E−1
(

Se f f S⊤e f f

)
Se f f ( fi,θ 0)

By definition,

Se f f (Z,θ 0)⊥ Λ, E
[
Se f f Π(Sβ (Z,θ 0) |Λ)

]
= 0,
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it follows that

E
(

Se f f S⊤
β

)
= E

(
Se f f S⊤e f f

)
+E

[
Se f f Π(Sβ (Z,θ 0) |Λ)

]
= E

(
Se f f S⊤e f f

)
.

Let ϕe f f ( f ,θ 0) = E−1
(

Se f f S⊤e f f

)
Se f f ( f ,θ 0). Then, ϕe f f ( f ,θ 0) satisfies corollary (i) and

(ii), since

E
(

Se f f S⊤
β

)
= E−1

(
Se f f S⊤e f f

)
E
(

Se f f S⊤
β

)
= E−1

(
Se f f S⊤e f f

)
E
(

Se f f S⊤e f f

)
= Iq,

E
(

Se f f S⊤η
)
= E−1

(
Se f f S⊤e f f

)(
Se f f S⊤η

)
= 0.

Thus, ϕe f f (Z,θ 0) is an influence function.

Since ϕe f f is the unique influence function in the tangent space £, and both Sβ ( f ,θ 0)∈

£ and Π(Sβ ( f ,θ 0) |Λ) ∈ £, we have

ϕe f f ( f ,θ 0) = E−1
(

Se f f S⊤e f f

)
Se f f ( f ,θ 0)

= E−1
(

Se f f S⊤e f f

)[
Sβ ( f ,θ 0)−Π

(
Sβ ( f ,θ 0) |Λ

)]
∈ £,

Thus ϕe f f ( f ,θ 0) is the efficient influence function for RAL estimators of β .

6.3.2 Super-efficient Estimators of Between-subject Attributes

We give an example of super-efficient estimator for between-subject attributes that are

exogenous.

Consider a sequence of normally distributed within-subject attributes Yi ∼i.i.d N
(
µ,σ2).

To construct an exogenous between-subject attributes fi, we can, for example, let fi = Yi1 −Yi2 ,

i = (i1, i2) ∈Cn
2 , which yields fi ∼i.d. N

(
0,2σ2). If interest lies in estimating β = 2σ2, either Yi

or fi can be used. Since the MLE based on Yi is efficient, we use its CR bound as the benchmark
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to demonstrate the efficiency for estimators based on fi.

Let β0 = 2σ2
0 , Y = (1/n)∑

n
i=1Yi. Maximizing the log-likelihood of Yi yields the MLE

β̂ mle
Y = (2/n)∑

n
i=1
(
Yi −Y

)2 that is AL:

√
n
(

β̂
mle
Y −β0

)
= n−1/2

n

∑
i=1

ϕmle(Yi)+op(1), ϕmle(Yi) = 2(Yi −µ0)
2 −β0. (6.13)

By CLT,
√

n
(

β̂
mle
Y −β0

)
−→d N (0,υ) , υ = 2β

2
0 . (6.14)

where υ is our benchmark, the smallest asymptotic variance among all RAL estimators of β

based on Yi.

For between-subject attributes fi ∼i.d. N (0,β ) , first consider the non-overlapping model

1, whose (parametric) efficient I.F. is found by scaling the individual score for fi under N (0,β ) :

ϕeff1 ( fi) = f 2
i −β0 = (Yi1 −Yi2)

2 −β0, (6.15)

which is in the equivalent class of the efficient I.F. ψeff2 ( fi) for enumerated model 2, whose

norm b2 equals to

υ2 = ∥ψeff2 ( fi)∥b2 = ∥ϕeff1 ( fi)∥b2 =Var (2E [ϕeff1 ( fi) | Yi1]) = 2β
2
0 = υ .

For enumerated model 2, β̂ eff
f =

(n
2

)−1
∑i∈Cn

2
f 2
i is AN with variance achieving the benchmark

υ , indicating that compared with Yi, there is no loss of information in estimating β using fi, and

β̂ eff
f is as efficient as β̂ mle

Y .

The super-efficient Estimator for β

Now we introduce an example of a super-efficient estimator for between-subject attribute

fi ∼i.d. N (0,β ). The efficient estimator is β̂ eff
f =

(n
2

)−1
∑i∈Cn

2
f 2
i , with n1/2

(
β̂ eff

f −β0

)
→d
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N
(
0,2β 2

0 = υ
)
. Without loss of generality, let υ = 1. Construct another estimator

β̂
s
f =

 1/
√

2, if
∣∣∣β̂ eff

f −1/
√

2
∣∣∣< n−1/4,

β̂ eff
f , otherwise.

Then it is readily shown that

√
n
(

β̂
s
f −β0

)
−→d

 N(0,0), if β0 = 1/
√

2,

N(0,υ = 1), if β0 ̸= 1/
√

2.

This new estimator β̂ s
f seems more efficient than the β̂ eff

f (or β̂ mle
Y ): at β0 = 1/

√
2, it has a

variance of 0; at other points, β̂ s
f is as efficient as β̂ eff

f . This property is termed “super-efficiency”,

which is unnatural with undesirable local properties as we show now. Consider generating the

data from a sequence βn = 1/
√

2+n−1/3, which converges to 1/
√

2 as n −→ ∞. For the β̂ eff
f ,

we still have n1/2
(

β̂ eff
f −βn

)
−→d N(0,υ). However, n1/2(β̂ s

f −βn)−→p −∞, i.e., if data are

generated from this sequence βn = 1/
√

2+n−1/3, which is very close to the point where β̂ s
f is

super-efficient ( i.e., β0 = 1/
√

2), the local properties of this estimator would be undesirable.

The super-efficiency is gained at the expense of poor estimation in a neighborhood of zero.

To rule out such estimators, we hence required an estimator to be regular in all our

discussions.

Proof: Without loss of generality, let υ = 1. Let Cn =
{∣∣∣β̂ eff

f −1/
√

2
∣∣∣< n−1/4

}
. Then,

Pr(Cn) = Pr
(∣∣∣β̂ eff

f −1/
√

2
∣∣∣< n−1/4

)
= Pr

[
−n−1/4 +1/

√
2 <

(
n
2

)−1

∑
i∈Cn

2

f 2
i < n−1/4 +1/

√
2

]

= Pr
[√

n
[
−n−1/4 − (β0 −1/

√
2)
]
<
√

n
(

β̂
eff
f −β0

)
<
√

n
[
n−1/4 − (β0 −1/

√
2)
]]

= Φ

(
n1/4 −n1/2(β0 −1/

√
2)
)
−Φ

(
−n1/4 −n1/2(β0 −1/

√
2)
)
.
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If β0 = 1/
√

2, Pr(β̂ s
f = 1/

√
2) = Pr(Cn) −→ 1− 0 = 1, as n −→ ∞, indicating that

β̂ s
f −→p β0, or

√
n
(

β̂ s
f −β0

)
−→d N(0,0). If β0 ̸= 1/

√
2, −n1/2(β0−1/

√
2) dominates inside

the CDF, so Pr(Cn)−→ 0−0 = 0 and β̂ s
f = β̂ eff

f .

With a smaller asymptotic variance at the exact point β0 = 1/
√

2, β̂ s
f seems more

efficient than β̂ eff
f . However, this super-efficiency is unnatural with undesirable local properties.

Consider a sequence βn = 1/
√

2+n−1/3, which converges to 1/
√

2 as n −→ ∞. For β̂ eff
f ,

n1/2
(

β̂
eff
f −βn

)
= n1/2(β̂ eff

f −1/
√

2)−n−1/6 = n1/2(β̂ eff
f −1/

√
2)+op(1).

By theory of U-statistics,

n1/2(β̂ eff
f −1/

√
2) = n1/2(

(
n
2

)−1

∑
i∈Cn

2

f 2
i −1/

√
2)−→d N

(
β0 −1/

√
2,υ
)
=β0=1/

√
2 N (0,υ) ,

so we still have
√

n
(

β̂ eff
f −βn

)
−→d N(0,υ) if data are generated from this sequence βn.

However, for β̂ s
f that is “super-efficient”, we have

Pr(β̂ s
f = 1/

√
2) = Pr(Cn)

= Φ

(
n1/4 −n1/2(βn −1/

√
2)
)
−Φ

(
−n1/4 −n1/2(βn −1/

√
2)
)

= Φ(n1/4 −n−1/6)−Φ(−n1/4 −n−1/6)−→ 1−0 = 1 as n −→ ∞,

i.e., Pr(β̂ s
f = 1/

√
2)−→ 1, subtracting βn and multiply by

√
n on both sides yield

Pr
[√

n
(

β̂
s
f −βn

)
=
√

n
(

1/
√

2−βn

)]
−→ 1.

Plugging in βn = 1/
√

2+ n−1/3 on the RHS yields n1/2
(

1/
√

2−βn

)
= −n1/6 −→ −∞ as

n −→ ∞, so
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Pr(
√

n(β̂ s
f −βn) =−∞)−→ 1, or

√
n(β̂ s

f −βn)−→p −∞,

i.e., if data are generated from a sequence βn = 1/
√

2+n−1/3, which is very close to true value

of β , the local properties of this estimator would be undesirable.

6.3.3 Details about the Hilbert Space

A. Hilbert Space and Projection Theorem

We briefly review the Hilbert space and associated projection theorem that are funda-

mental to develop semiparametric efficiency for FRM here, for full materials, please refer to

(Rudin, Walter (1987)).

1. Hilbert Spaces

A Hilbert space H is a complete, normed linear vector space equipped with an inner

product (e.g., covariance inner product E(h⊤h)). A linear subspace must contain the origin.

Completeness means that every Cauchy sequence converges to an element of the space.

Definition. The norm, or “length”, of a vector h ∈ H is defined as ∥h∥= ⟨h,h⟩1/2 .

2. Projection Theorem for the Hilbert Space

Theorem A.1. Let H be a Hilbert space and U a linear subspace that is closed (i.e.,

contains all its limit points). Corresponding to any h ∈ H , there exists a unique u0 ∈ U that is

closest to h; furthermore, h−u0 is orthogonal to U ; that is,

∥h−u0∥ ≤ ∥h−u∥, ⟨h−u0,u⟩= 0, for all u ∈ U .

We refer to u0 as the projection of h onto the space U , denoted by Π(h | U ). Moreover, u0 is

the only element u ∈ U such that h−u is orthogonal to U . The condition that a Hilbert space

be complete is necessary to guarantee the existence of the projection. A formal proof can be

found in Luenberger (1969).
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3. Hilbert Space for Random Vectors

Let (L ,A ,P) denote a probability space, where L denotes the sample space, A the

σ -algebra and P the probability measure. Let Z be a random vector of dimension p. Then a

linear subspace of Rq is the space consisting of all q-dimensional mean-zero random functions

h of Z, h : L → Rq, where h(Z) is measurable and satisfies

(i) E [h(Z)] = 0, (ii) E
[
h⊤ (Z)h(Z)

]
< ∞.

Lemma A.1. Let v(Z) = (v1 (Z) , ...,vr (Z))⊤ be an r-dimensional (r ≤ q) random

function with E [v(Z)] = 0 and E
(
v⊤v

)
< ∞. Consider the linear subspace U spanned by

v(Z):

U = {Bv; for any arbitrary q× r matrix B of real numbers}.

Assuming E(vv⊤) is nonsingular (i.e., positive definite), then the unique projection of a p-

dimensional h ∈ H onto U is

Π{h(Z) | U }= E(hv⊤)E−1(vv⊤)v. (6.16)

Proof: Consider the problem of finding the projection of an p-dimensional h ∈H onto

U . Such a projection B0v is unique and must satisfy:

E
{
[h(Z)−B0v(Z)]⊤Bv(Z)

}
= 0 for all B ∈ Rp×r,

which is equivalent to

E
{
[h(Z)−B0v(Z)]⊤ v(Z)

}
= 0.

Therefore, we have E(hv⊤) = B0E(vv⊤). Assuming E(vv⊤) is nonsingular (i.e., positive
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definite, or PD),

B0 = E(hv⊤)E−1(vv⊤).

Hence, the unique projection is

Π(h(Z) | U ) = E(hv⊤)E−1(vv⊤)v.

4. q-replicating linear subspaces

For the r-dimensional (r ≤ q) random function v(Z) = (v1 (Z) , ...,vr (Z))⊤ with

E [v(Z)] = 0 and E
(
v⊤v

)
< ∞. The linear subspace U spanned by v(Z):

U = {Bv; for any arbitrary q× r matrix B of real numbers}

is a q-replicating linear subspace, since we can define U (1) = {b⊤K [v(Zi)] ; for an arbitrary

r-dimensional constant vector br×1} and have U =
[
U (1)

]q
. This special form of subspace

that we consider throughout allows the multivariate Pythagoras to hold, which yield some nice

properties as we demonstrate below.

Theorem A.1. indicates

∥h(Z)∥2 = ∥Π(h | U )∥2 +∥h−Π(h | U )∥2 ≥ ∥Π [h(Zi) | U ]∥2 , (6.17)

suggesting that in the Hilbert space H , the norm (or the squared distance to the origin) of any

element h(Z) is always larger than or equal to that of its projection onto the subspace U . For

q = 1 where h(Z) being a scalar, this is equivalent to

Var(h(Z)) =Var [Π(h | U )]+Var [h−Π(h | U )]≥Var [Π(h | U )] .

But in general for q > 1, to compare variance matrix of two q-dimensional functions

124



h1,h2 ∈ H , we evaluate whether Var (h1)−Var (h2) is nonnegative or nonpositive definite, we

say the variance matrix Var (h1)≤Var (h2) iff Var (h1)−Var (h2) is nonnegative definite. With

U being a q-replicating linear space allows us to have below holding true for a q-dimensional

h(Zi) with q > 1 (which in general only hold for q = 1) :

Var(h) =Var [Π(h | U )]+Var [h−Π(h | U )] ,

indicating that the variance matrix of any element h is larger than (i.e., the difference being

nonnegative definite) the variance matrix of the projection Π(h | U ), or the variance matrix of

the residual after projection [h−Π(h | U )]. This is useful when we construct efficient score

functions using projection, and we no longer distinguish between the Hilbert space of random

functions with q = 1 or q > 1.

B. Hilbert Space for Between-subject Attributes

1. Inner Prodcut 2 and Norm b2

For the norm b2 of the between-subject attributes that encompass an FRM form for the

correlated h(Zi)’s, we equipped the Hilbert space H
(q)

b with

⟨h1 (Zi) ,h2 (Zi)⟩b2 = E
{

2E
[
h⊤

1 (Zi) | Zi1

]
·2E [h2 (Zi) | Zi1]

}
,

∥h(Zi)∥b2 = ⟨h(Zi) ,h(Zi)⟩
1/2
b2 = E1/2

{
2E
[
h⊤ (Zi) | Zi1

]
·2E [h(Zi) | Zi1 ]

}
.

It is readily checked that this definition of inner product 2 satisfies conditions 1) - 3)

below,

1). ⟨h1 (Zi) ,h2 (Zi)⟩b2 = ⟨h2 (Zi) ,h1 (Zi)⟩b2 ,

2). ⟨ah1 (Zi) ,h2 (Zi)⟩b2 = a⟨h1 (Zi) ,h2 (Zi)⟩b2 ,

3). ⟨h1 (Zi)+h2 (Zi) ,h3 (Zi)⟩b2 = ⟨h1 (Zi) ,h2 (Zi)⟩b2 + ⟨h1 (Zi) ,h3 (Zi)⟩b2 ,

4). ⟨h(Zi) ,h(Zi)⟩b2 ≥ 0, ⟨h(Zi) ,h(Zi)⟩b2 = 0 iff E [h(Zi) | Zi1] = 0 a.s..

125



For 4), we have that if E [h(Zi) | Zi1] = 0 a.s., then ∥h(Zi)∥2
b2 = ⟨h(Zi) ,h(Zi)⟩b2 = 0. Con-

versely, ⟨h(Zi) ,h(Zi)⟩b2 = 0 implies that for all 1 ≤ s ≤ q,

E {E [hs (Zi) | Zi1]E [hs (Zi) | Zi1]}= E
{

E2 [hs (Zi) | Zii1]
}
= 0,

we then have:

E [hs (Zi) | Zi1 ] = 0 a.s. for all 1 ≤ s ≤ q, i.e., E [h(Zi) | Zi1] = 0 a.s..

Thus,

⟨h(Zi) ,h(Zi)⟩b2 = 0 iff E [h(Zi) | Zi1] = 0 a.s..

In general, ⟨h(Zi) ,h(Zi)⟩b2 = 0 does not imply h(Zi) = 0 a.s.. To see this, consider a

counterexample

Zi1,Zi2 ∼ N (1,1) , h(Zi) = h(Zi1,Zi2) = (1−Zi1)(1−Zi2) .

Then, h(Zi) = h(Zi1,Zi2) is summetric and although ⟨h(Zi) ,h(Zi)⟩b2 = ∥h(Zi)∥2
b2 = 0, since

E [h(Zi) | Zi1] = (1−Zi1)E (1−Zi2) = 0 a.s.,

in general,

h(Zi) ̸= 0 a.s.,

i.e., here ∥h(Zi)∥2
b2 = 0 iff E [h(Zi) | Zi1] = 0 a.s., but ∥h(Zi)∥2

b2 = 0 does not imply h(Zi) = 0

a.s..

Thus, unlike the origin of Hb under the inner product 1, the origin of Hb under inner

product 2 is not the equivalence class of h(Zi) with h(Zi) = 0 a.s., but a larger equivalence

class consisting of functions h(Zi) such that E [h(Zi) | Zi1 ] = 0 a.s..
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6.3.4 Detailed Simulation Settings

Within-subject Regression

Without loss of generality, we include one continuous covariate Xi ∼i.i.d U (a,b), with

U (a,b) denoting a uniform distribution over (a,b). Given Xi, Yi ∼ NB
(

τ,hi(β
⊤Xi)

)
, with

hi(β
⊤Xi) = exp(β0 +β1Xi), and NB(τ,µ) denoting a Negative Binomial with mean µ and

dispersion paramater τ .

To demonstrate the local efficiency of GEE for count responses, we first simulate

Xi ∼i.i.d Uni f (a,b). With

E(Yi | xi) = exp(β0 +β1xi) = hi(β
⊤Xi), β = (β0,β1),

we then simulate overdispersed Yi ∼ NB(τ,hi(β
⊤Xi)).

We then estimated β using 1) parametric MLEs from a) Negative Binomial (NB) and

b) Poisson distributions, respectively. To compare, we applied the 2) semiparametric GEE

for within-subject attributes, with working variance assumptions from a) NB and b) Poisson,

respectively. Specifically, the working variance of NB is Var (Yi | xi) = µi(β )/pi(β ), where

pi(β ) = τ/(τ +µi(β )). In the simulation, this additional parameter τ was estimated from the

sample.

Let β̂
(m)

denote the estimator of β and Σ̂
(m)
β

the asymptotic variance from the mth

MC iteration, β̂ and Σ̂
(asymp)
β

denote the sample mean of β̂
(m)

and Σ̂
(m)
β

, respectively, and let

Σ̂
(emp)
β

denote the sample variance of β̂
(m)

. We can then assess the asymptotic performances

by comparing asymptotic and empirical variances from Σ̂
(asymp)
β

and Σ̂
(emp)
β

. We set τ = 10,

β0 = 3, β1 = 3, a = 0, b = 1 and report the parameter estimators (Est.), their asymptotic (Asy.)

and empirical (Emp.) variances under different sample sizes in Supplemental Table 1.

******************** Supplemental Table 1 goes here ********************

Supplemental Table 1 shows that for within-subject attributes, MLEs and GEEs all
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yield unbiased estimators. As the true data was generated from NB, the MLE from NB reaches

the CR bound and hence is the most efficient. Note that except for the Poisson MLE, all other

methods yield close asymptotic and empirical variances as expected, this indicates the drawback

of parametric MLE, i.e., if the fitted parametric model deviates from the true data, the obtained

MLE will be incorrect. While semiparametric models alleviate this issue as we impose no

parametric assumption. The two GEE estimators are both unbiased, yet the one with the correct

working variance assumption of NB has smaller variances and reaches the semiparametric

bound.

Between-subject regression

Now we conduct a similar simulation for between-subject attributes, to demonstrate

the local efficiency of UGEE for count responses. We first simulate Xi ∼i.i.d Uni f (a,b), then

construct Xi = Xi1 +Xi2. Let

E( fi | xi) = exp(β0 +β1xi) = hi(β ), β = (β0,β1),

we can simulate overdispersed fi ∼ NB(τ,hi(β )) following a Negative Binomial distribution

with mean hi(β ) and dispersion paramater τ (or the shape parameter of the gamma mixing

distribution).

We then estimate β using

1) The working-MLE of Negative Binomial through fi;

2) Semiparametric UGEE with

Un (β ) = ∑
i∈Cn

2

D⊤
i V−1

i Si, Si = fi −hi, Di =
∂

∂β
⊤hi(β ).

For the unknown Vi, we respectively chose
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a) the true variance of Negative Binomial for fi. Let

Vi =Var ( fi | xi) =
hi(β )

pi(β )
, pi(β ) =

τ

τ +hi(β )
.

The optimal UGEE for estimating β then becomes

Un (β ) = ∑
i∈Cn

2

D⊤
i V−1

i Si = ∑
i∈Cn

2

X⊤
i pi(β ) [ fi −hi(β )] = 0, (6.18)

yielding the asymptotic variance of

Var(β ) = B−14Var
[
X⊤

i pi(β ){ fi −hi(β )} | fi1 ,Xi1

]
B−1,

B = E
[
X⊤

i pi(β )hi(β )E {hi(β )}
]
.

In the simulation, we estimate τ from the sample.

b) a (wrong) variance assumption of Poisson for θ through fi. Let

Vi =Var ( fi | xi) = hi(β ).

The optimal UGEE for estimating β is

Un (β ) = ∑
i∈Cn

2

D⊤
i V−1

i Si = ∑
i∈Cn

2

X⊤
i { fi −hi(β )}= 0, (6.19)

yielding the asymptotic variance of

Var(β ) = E
[
X⊤

i hi(β )Xi

]−1
4Var

[
X⊤

i { fi −hi(β )} | fi1,Xi1

]
E
[
X⊤

i hi(β )Xi

]−1
.

c) a bad (wrong) variance assumption (Constant) through fi. Let

Vi =Var{ fi | xi}=C.
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The optimal UGEE for estimating β is now

Un (β ) = ∑
i∈Cn

2

D⊤
i V−1

i Si = ∑
i∈Cn

2

C−1X⊤
i hi(β ){ fi −hi(β )}= 0, (6.20)

yielding the asymptotic variance of

Var(β ) = E
[
X⊤

i hi(β )
2Xi

]−1
4Var

[
X⊤

i hi(β ){ fi −hi(β )} | fi1,Xi1

]
E
[
X⊤

i hi(β )
2Xi

]−1
.

In the simulation, we used C = V̂ar ( fi) .

We set τ = 10,β0 = 3,β1 = 3,a = 0,b = 1 in all our similations.

6.3.5 Examples of Efficient Estimators for FRM

Binary Responses

Let fi denote an exogenous outcome. For example, let fi = Zi −Z j, Zi ∼i.i.d Bern(p).

0. MLE of p through Zi

The MLE of p can be estimated via maximizing the log-likelihood

ln (zi; p) = ∑
n
i=1 zi log(p)+(1− zi) log(1− p), which yields the MLE p̂mle

n (Zi) = (1/n)∑
n
i=1 Zi.

This MLE p̂mle
n (Zi) is AL, with the expansion

n1/2
(

p̂mle
n (Zi)− p0

)
= n−1/2

n

∑
i=1

(Zi − p0)+op(1), ϕ
mle
p0

(Zi; p0) = Zi − p0.

By CLT, n1/2 (p̂mle
n (Zi)− p0

)
−→d N

(
0,Σmle

p0
= (1/n)p0(1− p0)

)
. Thus, Σmle

p0
is the variance

of MLE p̂mle
n (Zi) and hence the CR bound.

Now assume we are interested in estimating θ = 2p(1− p), then its MLE is simply the

plug-in estimator θ̂ mle
n (Z) = 2Z(1−Z) = (1/n2)∑

n
i=1 ∑

n
j=1 2Zi(1−Z j).

1. MLE of θ = 2p(1− p) through Zi
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It turns out that

Var(Z(1−Z)) =
1
n
(µ4 −µ

2
2 )+O(n−2).

where µk is the kth central moment of Zi. Therefore, the asymptotic variance of θ̂ mle
n (Z) is

Σ
mle
θ0

(Zi) =
4
n
(µ4 −µ

2
2 ) =

1
n

2θ0(1−2θ0). (6.21)

2. MLE of θ = 2p(1− p) through fi

With i = (i, j) ∈Cn
2 , fi = Zi −Z j and f 2

i respectively simplify to

fi =


1, if Zi = 1,Z j = 0,

−1, if Zi = 0,Z j = 1,

0, if Zi = Z j,

f 2
i =

 1, w.p. 2p(1− p),

0, w.p. 1−2p(1− p).

Hence, f 2
i follows Bern(θ), θ = 2p(1− p).

Then the log-likelihood for a single observation of f 2
i is

l1
(

f 2
i ; p
)
= f 2

i log(2p(1− p))+(1− f 2
i ) log(1−2p(1− p)),

or reparameterized with θ = 2p(1− p) yields l1
(

f 2
i ;θ
)
= f 2

i log(θ)+(1− f 2
i ) log(1−θ).

Here we define the MLE θ as θ̂ mle
n ( f 2

i ) and its I.F. for the ith observation of f 2
i :

θ̂
mle
n ( f 2

i ) =

(
n
2

)−1

∑
i∈Cn

2

f 2
i , ϕ

mle
θ0

( fi;θ0) = f 2
i − θ0.
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To obtain its asymptotic properties, we adopt the theory of U-statistics,

n1/2
(

θ̂
mle
n −θ0

)
=
√

n
(

n
2

)−1

∑
i∈Cn

2

ϕ
mle
θ0

(
f 2
i ;θ0

)
=
√

n
1
n

n

∑
i=1

2E
(

ϕ
mle
θ0

(
f 2
i ;θ0

)
| Zi

)
+op (1)

→d N (0,4Σ) , Σ = E
[

E
(

ϕ
mle
θ0

(
f 2
i ;θ0

)
| Zi

)2
]
,

where

E
(

ϕ
mle
θ0

(
f 2
i ;θ0

)
| Zi

)
= E

[(
(Zi −Z j)

2 − θ0
)
| Zi
]

= (Z2
i −2p0Zi + p0)− θ0.

We thus have Σ = 1
2θ0(1−2θ0), and the asymptotic variance of ϕmle

θ0

(
f 2
i ;θ0

)
is

Σ
mle
θ0

( f 2
i ) =

1
n

4Σ =
1
n

2θ0(1−2θ0), (6.22)

which is the same as that obtained from MLE through Zi in (6.21). Hence, there is no loss of

information in estimating θ using the between-subject attrubites fi.

3. Semiparametric UGEE of θ = 2p(1− p) through fi

Since f 2
i ∼ Bern(θ), we can construct the FRM with E

(
f 2
i
)
= θ and let

Si = f 2
i −θ , Di =

∂

∂θ
θ , Vi =Var

(
f 2
i
)
= θ(1−θ), i = (i, j) ∈Cn

2 ,

then define the UGEE estimator of θ as the solution to the estimating equation:

Un (θ) = ∑
i∈Cn

2

Un,i (θ) = ∑
i∈Cn

2

DiV−1
i Si = ∑

i∈Cn
2

1
θ(1−θ)

(
f 2
i −θ

)
= 0,

i.e. we obtain UGEE estimator θ̂
ugee
n and its I.F. for the ith observation f 2

i :
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θ̂
ugee
n ( f 2

i ) =

(
n
2

)−1

∑
i∈Cn

2

f 2
i , ϕ

ugee
θ0

( fi;θ0) = f 2
i −θ0.

Its asymptotic properties are again obtained by the theory of U-statistics,

n1/2
(

θ̂
ugee
n −θ0

)
=
√

n
1
n

n

∑
i=1

2E
(

ϕ
ugee
θ0

(
f 2
i ;θ0

)
| Zi

)
+op (1)

→d N (0,4Σ) ,

where we also have the asymptotic variance of ϕ
ugee
θ0

(
f 2
i ;θ0

)
as

Σ
ugee
θ0

( f 2
i ) = 4Σ =

1
n

2θ0(1−2θ0). (6.23)

which is the same as that obtained from MLE through Zi in (6.21) and that of MLE through fi

in (6.22), i.e., this semiparametric UGEE estimator for binary response reaches the efficiency

bound for estimating θ .

Count Responses

Example 3. Count Responses

Consider an exogenous fi with fi = Zi −Z j, where Zi ∼i.i.d Pois(λ ).

1. MLE of λ through Zi

The MLE of λ can be estimated via maximizing the log-likelihood ln (zi;λ ) of the

within-subject attributes Zi, which yields the MLE λ̂ mle
n (Zi) = (1/n)∑

n
i=1 Zi that is AL with

n1/2
(

λ̂
mle
n (Zi)−λ0

)
= n−1/2

n

∑
i=1

(Zi −λ0)+op(1), ϕ
mle
λ0

(Zi;λ0) = Zi −λ0.

CLT yields n1/2
(

λ̂ mle
n (Zi)−λ0

)
−→d N

(
0,Σmle

λ0
= Eλ0

(
ϕmle

λ0
ϕmle

λ0

))
. Thus, Σmle

λ0
= (1/n)λ0

is the variance of MLE λ̂ mle
n (Zi), hence the CR bound for estimating λ .

Suppose we are interest in estimating θ = 2λ , then the variance its MLE θ̂ mle
n (Zi) =
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(2/n)∑
n
i=1 Zi is

Σ
mle
θ0

=
1
n

4λ0. (6.24)

2. MLE of θ = 2λ through gi = Zi +Z j

Here with i = (i, j) ∈ Cn
2 , gi = Zi +Z j ∼ Poisson(θ), the log-likelihood for a single

observation gi is

l1 (gi;θ) = log(θ)gi −θ − log(gi!).

Here we define the MLE θ as θ̂ mle
n (gi) and its I.F. for the ith observation gi:

θ̂
mle
n (gi) =

(
n
2

)−1

∑
i∈Cn

2

gi, ϕ
mle
θ0

( fi;θ0) = gi −θ0.

The asymptotic properties of θ̂ mle
n (gi) can be obtained via the theory of U-statistics,

n1/2
(

θ̂
mle
n −θ0

)
=
√

n
1
n

n

∑
i=1

2E
(

ϕ
mle
θ0

(gi;θ0) | Zi

)
+op (1)

→d N (0,4Σ) , Σ =Var
(

E
(

ϕ
mle
θ0

(gi;θ0) | Zi

))
.

By the construction of gi = Zi +Z j,

E
(

ϕ
mle
θ0

(gi;θ0) | Zi

)
= E

(
[(Zi +Z j)−θ0] | Zi

)
= Zi −λ0,

Σ simplifies to

Σ = E
[

E
(

ϕ
mle
θ0

(gi;θ0) | Zi

)2
]
= E

[
(Zi −λ0)

2
]
= λ0.

Thus, the asymptotic variance of ϕmle
θ0

(gi;θ0) is

Σ
mle
θ0

(gi) =
1
n

4λ0 (6.25)
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which is the same as that obtained from MLE through Zi in (6.24), indicating no loss of

information in estimating θ using between-subject attrubites fi.

3. Semiparametric UGEE of θ = 2λ through gi = Zi +Z j

With gi ∼ Poisson(θ), we construct the FRM E(gi) = θ and let

Si = gi −θ , Di =
∂

∂θ
θ , Vi =Var (gi) = θ , i = (i, j) ∈Cn

2 .

Define the UGEE estimator of θ = 2λ as the solution to the estimating equation

Un (θ) = ∑
i∈Cn

2

Un,i = ∑
i∈Cn

2

DiV−1
i Si = ∑

i∈Cn
2

1
θ
(gi −θ) = 0,

then the UGEE estimator θ̂
ugee
n and its I.F. for the ith observation gi are

θ̂
ugee
n (gi) =

(
n
2

)−1

∑
i∈Cn

2

gi, ϕ
ugee
θ0

(gi;θ0) = gi −θ0.

The asymptotic properties of θ̂
ugee
n (gi) are again obtained by the theory of U-statistics,

n1/2
(

θ̂
ugee
n −θ0

)
=
√

n
1
n

n

∑
i=1

2E
(

ϕ
ugee
θ0

(gi;θ0) | Zi

)
+op (1)

→d N (0,4Σ) , Σ =Var
(

E
(

ϕ
ugee
θ0

(gi;θ0) | Zi

))
.

With E
(

ϕ
ugee
θ0

(gi;θ0) | Zi

)
= Zi −λ0, the asymptotic variance of ϕ

ugee
θ0

(gi;θ0) is also

Σ
ugee
θ0

(gi) =
1
n

4λ0, (6.26)

which is the same as that obtained from MLE through Zi in (6.24), and that obtained from MLE

through gi in (6.25). Hence, this semiparametric UGEE estimator for count response reaches

the efficiency bound for estimating θ .
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Supplemental Table 1

Method Assumption β0 β1

n = 100

Est. Variance Est. Variance

Asy. Emp. Asy. Emp.

MLE NB 3.0008 0.0051 0.0058 2.9992 0.0143 0.0160

Pois 2.9995 0.0008 0.0087 3.0010 0.0014 0.0242

Asy. Emp. Asy. Emp.

GEE NB 3.0008 0.0051 0.0058 2.9993 0.0142 0.0160

Pois 2.9995 0.0080 0.0083 3.0010 0.0213 0.0224

n = 300

Est. Variance Est. Variance

Asy. Emp. Asy. Emp.

MLE NB 2.9977 0.0017 0.0017 3.0035 0.0047 0.0048

Pois 2.9990 0.0003 0.0025 3.0012 0.0005 0.0069

Asy. Emp. Asy. Emp.

GEE NB 2.9977 0.0017 0.0017 3.0034 0.0047 0.0048

Pois 2.9990 0.0027 0.0025 3.0012 0.0072 0.0069

n = 500

Est. Variance Est. Variance

Asy. Emp. Asy. Emp.

MLE NB 3.0004 0.0010 0.0010 2.9992 0.0028 0.0028

Pois 2.9993 0.0002 0.0016 3.0009 0.0003 0.0044

Asy. Emp. Asy. Emp.

GEE NB 3.0004 0.0010 0.0010 2.9992 0.0028 0.0028

Pois 2.9993 0.0016 0.0016 3.0009 0.0043 0.0044
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