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ABSTRACT OF THE DISSERTATION

Vortex motion and stability with density variation, buoyancy and surface
tension

by

Ching Chang

Doctor of Philosophy in Engineering Sciences (Applied Mechanics)

University of California San Diego, 2020

Professor Stefan G. Llewellyn Smith, Chair

The motion of buoyant vortices is studied using reduced-order models. For a vortex

filament, i.e. a curve in three-dimensional space along which vorticity is concentrated as

a delta function, the evolution of the filament is calculated using a desingularized Biot–

Savart integral. Buoyancy is added using a momentum balance argument while surface

tension is also included. A set of equations that couples the transverse motion of the

buoyant vortex filament and the axial flow within its core is derived. The new model is

verified in an asymptotic limit by comparing it to the previous analytical solution for a thin

vortex ring. In another approximation, axisymmetric contour dynamics is implemented

xvii



to model a buoyant vortex ring of deforming core. A vortex patch is enclosed by a vortex

sheet which emerges from baroclinic generation of vorticity. The evolution of the vortex

sheet strength is derived from the Euler equation, and represents the effects of density,

buoyancy and surface tension on the axisymmetric vortex ring. Numerical calculations for

the integro-differential equations are carried out until the curvature singularity of vortex

sheet evolution leads to a blowup. Finally, a linear stability analysis is performed for

vortices in the presences of density and surface tension. The basic state solution is given

as a perturbation series in a small parameter representing curvature of the vortex or a weak

strain acting on it. With the small parameter in the basic state, instabilities are triggered

by the resonances between two neutrally stable Kelvin waves for the unperturbed vortex.

Those parametric instabilities are the curvature instability and the Moore–Saffman–Tsai–

Widnall instability, corresponding to the parameter being curvature or a strain. The effects

of density and surface tension on these instabilities are studied by calculating the growth

rate and the instability bandwidth in various wavenumber regimes.
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Chapter 1

Introduction

By definition, a fluid is any substance that deforms continuously when subjected

to a shear force. Typical examples are water, air, gas and anything that flows. Fluids

can serve as a medium that transports mass and/or momentum to other objects. Fluids

play a very important role in the natural processes in hydrology, physical oceanography,

atmospheric dynamics..., and are also essential in the daily life of human civilization in-

cluding keeping airplanes aloft, keeping HVAC (heating, ventilation, and air condition)

systems operating, distributing potable and agricultural water, etc. Fluid mechanics is a

branch of mechanics concerned about the statics and dynamics of fluid. Fluid statics is

a simpler problem than fluid dynamics since there is no motion and the only unknown is

hydrostatic pressure. Unfortunately, fluid dynamics is a much more difficult topic. Given

the nature of fluid’s continuous deformation and spatially-varying velocity, its motion is

usually describe by a “velocity field”, u(x, t), which is a function of space and time. This

Eulerian description is in contrast with the Lagrangian description commonly used in clas-

sical mechanics that follows the velocity of a specified particle. To solve for the Eulerian

velocity field u, some conservation laws need to be satisfied. The governing equations for

the fluid motion, derived from the mass conservation and Newton’s second law, are given
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by

∂ρ

∂t
+∇ · (ρu) = 0, (1.1)

∂(ρu)

∂t
+ u · ∇(ρu) = −∇

{
p− µ

[
∇u + (∇u)T − 2

3
(∇ · u)

]}
+ ρg, (1.2)

where the fluid density ρ and pressure p are functions of space and time. ρg is a body

force. µ is dynamic viscosity which is also a function of space and time in general, but is

constant for Newtonian fluids. (1.1) is the conservation of mass while (1.2) represents the

conservation of momentum. Together they give the compressible, non-Newtonian Navier–

Stokes equations. The mathematical challenge to solve the governing equations is rooted

in the right-handed side of (1.2) because of the nonlinearity in the convection term of

u · ∇(ρu).

Beside the nonlinear term, some simplifications can still be made to the governing

equations (1.1) and (1.2) in different regimes. The most common assumption is to make the

flow incompressible and the density ρ remains constant. In that case, the mass conservation

reduces to zero divergence of the velocity, ∇ · u = 0. On the other hand, the importance

of viscosity is usually measured by a dimensionless parameter, the Reynolds number

Re =
ρLUc
µ

, (1.3)

which compares the inertia to viscous force, where L and Uc are characteristic length and

velocity scales in the flow. For Re � 1, the flow is extremely viscous, so the inertial terms

are negligible and (1.2) reduces to a linear system. For Re � 1, the flow is approximately

inviscid since the effect of viscosity is omitted. The conservation of momentum becomes

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ g, (1.4)
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for incompressible high-Reynolds-number inviscid flows, or so-called incompressible Euler

flows. This kind of flow is the focus of the present dissertation work.

As for most problems in physics, fluid dynamics can be tackled by using laboratory

observations, mathematical theories, numerical simulations, or any combination of them.

Each approach has its own advantages and disadvantages. For example, laboratory obser-

vations require a delicate setup of experiments and a careful data acquisition, as well as

a considerable amount of investment on hardware and equipment; mathematical theories

and numerical simulations would seem to be more cost efficient alternatives but they are

not a direct observation of real world. The nonlinear nature of the momentum equation

remains the biggest obstacle to our understanding on the motion of fluid through theoret-

ical or computational approaches. Moreover, fluid flows are complex dynamical systems

that can span a range of orders of magnitude, e.g. for studying the mobility of cells or

microorganisms, the size is about 10−4 to 10−5 m while in astrophysics, a fluid system can

span ∼ 1012 m in diameter in the case of accretion disk of black holes or other massive

gravitational sources. The most challenging part is when the Reynolds number above a

critical value, the nonlinearity dominates and the flow becomes turbulent. A significant

feature of turbulent flows is that it consists of multiple scales of eddies. The samllest scale

in a turbulent flow is the Kolmogorov length scale η, whose ratio to a characteristic length

scale of the flow L is

η

L
∼ Re−3/4. (1.5)

This means the smallest scale will becomes finer as the Reynolds number increases, and

we should resolve the problem from its largest scale to its finest scale. For instance, to

understand the aerodynamics of a vehicle traveling at 70 mph on a freeway, the Reynolds

number of this flow is at the order of 107. So the length scales need to be resolved in this

problem will span from a few meters all the way down to micrometers.

With the recent surge of the computing power, computational fluid dynamics (CFD)
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has been developed to solve this kind of problems. The most straightforward way to solve it

is to brutally resolve all the scales in a computer simulation. A direct numerical simulation

(DNS) demands roughly

N ∼ 160Re3 (1.6)

grid points to discretize a computational domain of three-dimensional space and time

(Pope, 2000, Chapter 9). Using a powerful 1 giga flop (floating-point operation per sec-

ond) CPU for the vehicle on freeway problem, one needs roughly over a hundred thousand

year to complete the run. This is not feasible from an engineering perspective. A method

to avoid this not-so-feasible approach is to filter out scales below a predefined threshold.

That is large eddy simulations (LES) which can cut down the run time to hours and days,

but another mathematical model is required to model the subgrid physics. There are

also other methods such as the Reynolds-averaged Navier–Stokes (RANS) equations and

a closure problem for the Reynolds stress, e.g. k− ε model, or leveraging the recent devel-

oped technologies of parallel computing and GPU (graphics processing unit) acceleration.

However, the computational cost and the time consumed are still prohibitive.

In this dissertation work, we will not attempt to directly solve the governing equa-

tions for fluid motions using Eulerian numerical schemes with grids. Instead, we will use

reduced-order models derived from vortex dynamics to understand the physics of flows.

The numerical methods for these vortex models are Lagrangian-based.

1.1 Vortex dynamics

A solid element of square shape will deform into a parallelogram when it is subjected

to a shear force. Once the shear is removed, the solid element recovers its initial shape

if the applied shear did not exceed the yielding stress. A fluid element has a completely

different behavior: it will deform continuously once a stress force is applied even after the
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(a) A point vortex
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(b) A vortex sheet

ω

(c) A vortex patch

Figure 1.1: Schematic of zero-, one-, and two-dimensional vortices in two dimensions.

force is removed. The forces applied on a fluid element also may cause linear translation

and rotation of the fluid element. The rotational motion of a fluid element is described by

vorticity, obtained by taking curl of the velocity,

ω =∇× u. (1.7)

The governing equation for ω can be obtained by taking the curl of (1.4),

∂ω

∂t
+ u · ∇ω = ω · ∇u +

1

ρ2
∇ρ×∇p+∇× g, (1.8)

where the rate of change in vorticity is determined by convection, stretching and by baro-

clinic generation.

In many flows, vorticity is an important quantity to understand the fluid motion

and dynamics. Especially in high-Reynolds-number flows, vorticity is organized into some

coherent structures while the rest of the flow remains nearly irrotational. These coherent

vortices are the backbone of fluid motions. We can study the flow using reduced models

to calculate the evolution of those compact vortices in two- or three-dimensional domains.

As the examples shown in figure 1.1 in two-dimensional flows, vorticity can live on a point,

a curve, or in a confined region to model a particular vortex. In three-dimensional flow

domains, there are also examples like vortex filaments, vortex sheets, axisymmetric vortex

rings... etc. For high-Reynolds-number flows with an interface or solid surfaces, these

vortices emerge from those surfaces and usually dominate the motion and the dynamics
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of the flow. The flow field, a solenoidal vector field u(x, t), can be obtained by inverting

(1.7) using the vector potential defined by u =∇×A and

∇× (∇×A) = ω. (1.9)

The velocity is given by

u(x, t) =

∫
V

ω(x′, t)×K(x,x′)dx′, (1.10)

where the integral kernel K(x,x′) is a Green function for the linear operator on A in the

particular geometry of the domain. V is a compact region occupied by vortices where

vorticity is nonzero. (1.10) is the Biot–Savart law for fluid motion and the velocity field

is analog to the magnetic field induced by current in electromagnetism. We integrate over

the points x′ ∈ V to calculate the velocity at any point x in space at a given instant t.

Taking a point vortex or a vortex filament for examples, the vorticity is a delta

function in two- or three-dimensional space. To evolve these compact vortices, the self

induced velocity can be computed by taking x→ x′. However, the Green function K(x,x′)

is the system’s response to a delta function and it is singular when x → x′. There are

several mathematical techniques to desingularize the integral in (1.10). A straightforward

way is to cut off the neighborhood of singularity while evaluating the integral. Alternatively

one can add a small constant to the denominator in K(x,x′) to avoid a division by zero.

The two methods are equivalent and a proper physical argument is required to determined

the size of cutoff or the small constant in the denominator. We will discuss the detailed

treatment for particular vortices in the respective chapters.

The history of vortex dynamics can be dated back a little more than 150 years ago

to the seminal paper by Hermann Ludwig Ferdinand von Helmholtz (see von Helmholtz,

1858). The original publication was in German and was translated to English in Tait
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(1867). It inspired Sir William Thomson (Lord Kelvin) to conduct a series of study on

vortex (Thomson, 1867b, 1869, 1875). Although his attempt on the theory (Thomson,

1867a) of the fundamental composition of matter in vortex elements did not bear fruit, his

work still laid the foundation for the study of vortex dynamics and helps our understanding

of fluid motion and dynamics. For example, the Kelvin’s circulation theorem states that

the circulation around any closed curve C is conserved in an inviscid, incompressible,

barotropic flow.

The development of vortex dynamics has since became an active branch of fluid

dynamics and applied mathematics. Before the recent growth of computer power and

the emergence of computational fluid dynamics in the past few decades, vortex dynamics

was an essential tool for analyzing flow dynamics along with laboratory observations. For

example, in the 1960–70s aerodynamicists used helical vortex filaments to model wing-

tip vortices and study their motion and stability. Nowadays vortex dynamics is still an

important tool to understand the flow physics because it is rooted in the backbone of

fluid dynamics: vorticity. Furthermore, vortex-based numerical methods (see Winckel-

mans, 2004, and the references therein) have the advantages of mesh-free and light to mild

demands in computational resources, which make them still relevant to some valuable

applications.

1.2 Density, buoyancy and surface tension

A classic and comprehensive text that summarizes the development of vortex dy-

namics can be found in Saffman (1992). However, in the discussions therein and in the

most literature of vortex dynamics, density is usually taken to be uniform throughout the

flow. However, the effect of density variation could be important in some applications

especially when gravity is also present. The formation of a vortex ring from a thermal
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plume is a typical example where the plume itself consists of lighter fluid than that of its

ambient. The resulting buoyant vortex ring is very observable as a smoke ring: an exotic

example is the smoke rings from volcano (Velasco Fuentes, 2014). The rising motion is

not only due to its self-induction but also because of the addition of buoyancy which is

the result of coupling density difference and gravity. Gravity is present in the momentum

equation in (1.4) as a conservative body force. A common simplification for buoyant flows

is the Boussinesq approximation where the effect of density difference is only considered

important when it appears with gravity in the momentum equation

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ g′. (1.11)

Here g′ = g(ρ1 − ρ2)/ρ is the reduced gravity (or buoyancy) and ρ1, ρ2 are densities for

the ambient and the plume. In that case, the vorticity equation becomes

∂ω

∂t
+ u · ∇ω = ω · ∇u +∇× g′. (1.12)

The Boussinesq approximation implies that the density difference is very small, i.e. (ρ1 −

ρ2)/ρ1 � 1, while the reduced gravity is of O(1). The flow with a large density difference

such as a vortex bubble ring blew by dolphin (Marten et al., 1996) is considered non-

Boussinesq.

For a non-Boussinesq flow, although the density might have a continuous variation

in the flow, we allow a density jump in reduced models since the vorticity has already

been discontinuous. We write (1.4) in two separate equations with two distinct constant

densities for a buoyant vortex ring and the ambient air respectively. The flow is solved for

the two regions of different densities while the kinematic and dynamic boundary conditions

are satisfied on the interface that separates the two densities. The appropriate conditions

are that the interface is material and the pressure is continuous. From the perspective of
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vortex dynamics, vorticity is created from the baroclinic term in (1.8) as the gradient of

density and gravity (represented by the gradient of hydrostatic pressure) do not parallel

with each other. Vorticity emerging on the interface makes it become a vortex sheet.

There are several works that use vortex dynamic formulations, particularly vortex

sheet, to model the interfacial dynamics between two fluids. That includes free-surface

flow problems such as those investigated by Baker et al. (1982); Baker & Xie (2011);

Shin et al. (2018). Vortex sheets are also an appropriate tool to study Rayleigh–Taylor

instability (see Pullin, 1982; Tryggvason, 1988; Baker et al., 1993). In terms of numerical

computations, one of the great advantage of vortex dynamics over CFD simulations is

its Lagrangian nature which makes it having no difficulty to track a material interface.

Surface tension can also be included if two fluids are in different phase. This is described

by the Young–Laplace equation

p2 − p1 = Ts∇ · n, (1.13)

where p2 − p1 is the pressure jump across the interface and n is the normal vector of the

interface. Ts is surface tension with a unit of force per length. A vortex sheet model with

surface tension has been investigated in Pullin (1982); Hou et al. (1994); Baker & Nachbin

(1998); Shin et al. (2014).

In classical vortex dynamics, the flow is assumed dominated by inertial force in the

form of vortices. There are circumstances in which vorticity is balanced by or competes

with other physical effects, such as the smoke ring rising up from volcano or the dolphin

bubble rings. There are some dimensionless parameters measuring the importance of

various physics that we should introduce here. For the density variation, we define the

dimensionless Atwood number

A =
ρ2 − ρ1
ρ2 + ρ1

, (1.14)
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where A = 0 recovers the classical vortex dynamics model. Gravity can be compared to

inertia by the Froude number

Fr =
Uc√
gL
. (1.15)

The characteristic speed Uc is related to the circulation of vortex by Uc = Γ/L. The

relative importance of buoyancy to inertia is then weighted by

A

Fr 2 =
(ρ2 − ρ1)gL
(ρ2 + ρ1)U2

c

. (1.16)

Lastly, inertial force is compared to surface tension using the Weber number

We =
ρ̄U2

cL

Ts
, (1.17)

where ρ̄ = (ρ2 + ρ1)/2.

A buoyant vortex filament of circular shape, i.e. a thin vortex ring, has been studied

by Turner (1957) and Pedley (1968). However, a formulation for the motion of buoyant

filaments of general shape has not been obtained in literature. On the other hand, a vortex

ring whose core is not thin has been studied in axisymmetry using contour dynamics (Shar-

iff et al., 1989; Riley, 1998), but its unsteady buoyant version has not been investigated

yet.

1.3 Outline of the dissertation

This dissertation work is an attempt to add the effects of density, buoyancy and

surface tension into the classical vortex dynamic formulations. It is organized as follows:

Chapter 2 derives the equation of motion for a buoyant vortex filament. Buoyancy

is added by using the force balance introduced by Moore & Saffman (1972) using an

asymptotic analysis. The vortex core is assumed remaining circular and small compared to
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the curvature of the filament, and the Biot–Savart integral is desingularized by subtracting

the integral over a local osculating circle. A correction to the self-induced velocity using

local induction approximation is then added. A set of coupled equations which gives the

motion of a buoyant vortex filament in its transverse and tangential directions is derived,

and is validated by an asymptotic solution for a buoyant vortex ring with small inclination.

In Chapter 3, the evolution of an axisymmetric buoyant vortex ring with a deform-

ing core is calculated. This is a problem of vortex patch evolution in axisymmetry. We

implement contour dynamics with a correction to the velocity of vortex boundary from

the contribution of a vortex sheet. For a buoyant vortex ring, vorticity is generated on

its core boundary by the baroclinic torque and the boundary becomes a vortex sheet. An

evolution equation for the vortex sheet strength is also derived using the Euler equations.

The coupled integro-differential equations are then solved numerically up to a time where

a singularity of curvature emerges and the numeric blows up.

In Chapter 4, the parametric instability of a vortex ring is calculated using linear

stability analysis including density and surface tension. Infinitesimal disturbances to a

straight vortex tube has been found to be neutrally stable. These disturbances are Kelvin

waves. When an additional parameter representing a small curvature effect is introduced

to the basic state solution, it can feed resonances to two Kelvin waves with azimuthal

wavenumber separated by 1. The instability caused by the resonances is named curvature

instability. We examine the effect of density and surface tension to the curvature instability

when the vortex has a density that differs from that of the flow outside.

Chapter 5 follows the previous chapter, another parametric instability is examined

with the effects of density and surface tension. A straight vortex tube subjected to a weak

strain field triggers the Moore–Saffman–Tsai–Widnall (MSTW) instability. It arises from

the resonances between Kelvin waves with azimuthal wavenuber differed by 2.

In Chapter 6, we conclude the findings in this dissertation work. The results and
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their possible applications are discussed, while connections to future work are also outlined.
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Chapter 2

Buoyant vortex filaments

This chapter investigate the motion of a thin vortex filament in the presence of

buoyancy. The asymptotic model of Moore & Saffman (1972) is extended to take account of

buoyancy forces in the force balance on a vortex element. The motion of a buoyant vortex

is given by the transverse component of force balance, while the tangential component

governs the dynamics of the structure in the core. We show that the local acceleration

of axial flow is generated by the external pressure gradient due to gravity. The equations

are then solved for vortex rings. An analytic solution for a buoyant vortex ring at a small

initial inclination is obtained and it asymptotically agrees with literature.

2.1 Introduction

Vortex dynamics forms an essential part of our understanding of fluid flows, espe-

cially for the most elusive flow phenomenon of turbulence (see Pullin & Saffman, 1998).

When vorticity is concentrated on a curve in space, the calculation of its self-induced mo-

tion is a challenging task. This is due to the singular nature of the Biot–Savart integral. A

first approximation comes from the local induction approximation (LIA). For higher-order

calculations, a cut-off method (see Saffman, 1992, chapter 11) removes the neighborhood of
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the singularity when evaluating the integral. Rosenhead (1930) and Moore (1972) proposed

adding a parameter to the denominator to desingularise the Biot-Savart kernel. Their

method is equivalent to using a cutoff. Schwarz (1985) used a hybrid model combining a

cut-off and the local induction approximation to calculate the motion of vortex filaments

in superfluids. Callegari & Ting (1978) investigated vortex filaments with viscous cores

and axial velocity using matched asymptotic expansions. More recently, Leonard (2010)

calculated the motion of a thin vortex tube with an arbitrary core structure.

Vortex rings have also been intriguing entities in fluid flows, dating back to the

pioneering work of Thomson (1867b). The theoretical speed of propagation for a thin

ring with a hollow core was calculated by Hicks (1884). A good review of vortex rings

can be found in Shariff et al. (1989). Vortex rings have been observed in geophysics

and environmental fluid flows, e.g. bubble rings created by dolphins (see Marten et al.,

1996) or a smoke ring from a fireball. The first investigation to take account of buoyancy

for a vortex ring was the theoretical work and experiments of Turner (1957). Pedley

(1968) performed a theoretical calculation for the motion of bubble rings with and without

viscosity. Lundgren & Mansour (1991) computed the motion of bubble rings using a

boundary integral method. The development of modern computational methods has led

to the investigation of buoyant vortex rings, such as the 3D simulations of Cheng et al.

(2013). In these studies, buoyant rings are allowed to evolve with their axis initially parallel

to gravity, i.e. they start horizontally.

However, the motion of a general vortex filament in combination with buoyancy

does not seem to have attracted theoretical interest previously. In this chapter, we derive

a mathematical model for the motion of a buoyant thin-core vortex filament. Buoyancy

is incorporated by using a force balance on a vortex element. Equations of motion for a

buoyant vortex filament of general shape are derived in the following section. Then the

effect of buoyancy on the flow structure inside the core is discussed in § 2.3. In § 2.4, we
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use our model to investigate a special geometry, a buoyant vortex ring. An analytical

solution for an initially non-horizontal ring with small inclination is obtained analytically.

Its asymptotic form is compared with the solutions from the literature. In the final section,

we draw conclusions and discuss possible future studies.

2.2 Mathematical formulation

We use a force balance on a vortex filament to model its motion. The force balance

argument is derived in Moore & Saffman (1972) (referred to as MS72 hereafter) for a

constant density Euler flow. Here we consider different densities, ρ2 and ρ1, for the vortex

filament itself and for the surrounding fluid respectively. Gravity is also included while

it is omitted in MS72. The derivation in MS72 is an asymptotic analysis based on three

approximations which we also follow: thin vortex core, aκ � 1, where a is the radius of

the core and κ the curvature; slow time, ∂/∂t ≈ Γκ2 ln(1/aκ), where Γ is the circulation;

and uniform core size, ∂a/∂s = O(a2κ2), where s is arclength.

2.2.1 Momentum balance

We use a force balance on a vortex filament to model its motion. The force balance

argument is derived in Moore & Saffman (1972) (referred to as MS72 hereafter) for a

constant density Euler flow. Here we consider different densities, ρ2 and ρ1, for the vortex

filament itself and for the surrounding fluid respectively. Gravity is also included while

it is omitted in MS72. The derivation in MS72 is an asymptotic analysis based on three

approximations which we also follow: thin vortex core, aκ � 1, where a is the radius of

the core and κ the curvature; slow time, ∂/∂t ≈ Γκ2 ln(1/aκ), where Γ is the circulation;

and uniform core size, ∂a/∂s = O(a2κ2), where s is arclength.

A vortex filament with thin core is considered while axial flow is neglected for now.
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According to the formulation in MS72, forces acting on an infinitesimal section of filament

can be divided into two categories, FE and FI , referred to exterior and interior forces

respectively. The exterior force is the force per unit length exerted on the filament core

boundary by the fluid outside, and is given by

FE = Γ

(
V E + V I −

∂R

∂t

)
× t+

Γ2

4π
κn

(
ln

8

aκ
− 1

)
. (2.1)

Here ∂R/∂t is the local motion of the filament itself, V E is the background flow evaluated

at the filament centerline, and V I is the velocity contributed by the rest of the filament.

It accounts for the non-singular part of Biot-Savart law and can be evaluated using the

desingularized Biot-Savart integral,

V I(R0) =
Γ

4π

[∫
dR× (R0 −R)

|R0 −R|3
−
∫

dR� × (R0 −R�)

|R0 −R�|3

]
. (2.2)

The notation R0 in the second integral indicates that it is taken along the osculating circle

to R at R0, the point at which V I is being evaluated. The first term on the RHS of (2.1)

is the Kutta-Joukowski lift on the filament. The last two terms are the effect of pressure

reduction on the core boundary due to the curvature of filament. The vectors t, n are

local unit tangent and normal vectors defined by

t =
∂R/∂ξ

|∂R/∂ξ|
, κn =

∂t

∂s
, (2.3)

where ξ is an arbitrary parameterization of the curve R and s is arclength. The binormal

vector is the cross product of tangent and normal vectors, b = t× n (see figure 2.1).

The interior force comes from integrating the pressure over the end surface and

then taking the derivative along the tangent of the filament. Due to the curvature, the
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Figure 2.1: A filament R in space is parameterized by ξ. Its tangent, normal and
binormal vectors are defined using the Frenet-Serret formulas. The osculating circle
R� associated with the point R0 has radius κ−1.

net result is in the normal direction. This gives

FI = π

∫ a

0

rv(r)2 drκn+
Γ2

8π
κn, (2.4)

where v(r) is the azimuthal velocity within the core. The second term on the RHS matches

the pressure reduction on the boundary from outside. This represents the force acting on

the both ends of an infinitesimal filament. We have not included axial flow yet, so this is

solely due to the pressure. Then the balance of forces, which is correct to O(a2κ2) based

on the assumptions at the beginning of § 2, gives

FE + FI = 0, (2.5)

and the motion is determined by taking cross product of the force balance with the tangent

t,

∂R

∂t
= V E + V I +

Γ

4π
κb

(
ln

8

aκ
− 1

2
+
µ

4

)
, (2.6)

with

µ =
1

2
a2v2 =

16π2

Γ2

∫ a

0

rv(r)2 dr (2.7)

and the bar denoting the average over the cross-section. For the motion of a vortex ring
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in a quiescent fluid, this gives

∂R

∂t
=

Γ

4π
κb

(
ln

8

aκ
− 1

2
+
µ

4

)
, (2.8)

since V I vanishes for rings. The parameter µ is determined by the flow structure inside

the core. If the vorticity is uniform within the core, µ = 1 while µ = 0 for a hollow core.

In the discussion so far, the density has been constant.

2.2.2 Motion with buoyancy

Now we consider density difference by setting the core density to ρ2 and outside

density to ρ1. The exterior forces account for the forces acting on the boundary which

forms the lateral surface of the element. In § 5 of MS72, the velocity on the boundary is first

obtained by matching the asymptotic solutions from both sides. The flow is irrotational

outside, so the potential and the boundary are expanded in κ

φ = φ0 + φ1 + φ2 + · · · , a = a0 + a1 + a2 + · · · . (2.9)

Then the pressure is computed using Bernoulli’s equation, (5.16) of MS72. The calculation

for velocity is kinematic so we follow it. Adding gravity to Bernoulli’s equation gives

p+ ρ1

[
1

2
(∇φ0)

2 +∇φ0 · ∇φ1 −
∂R

∂t
· ∇φ0 + (z − Z)g

]
= 0, (2.10)

where the local r-θ plane is perpendicular to t and z = Z is the vertical position of the

centerline (see figure 2.2). The leading-order potentials φ0 is given in (5.8) of MS72 as

φ0 =
Γθ

2π
. (2.11)
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The first-order potential is then given in (5.15) of MS72 as

φ1 =(V E + V I) · (Xn+ Y b)− a20
r2

(
∂R

∂t
− V E − V I

)
· (Xn+ Y b) +

ΓY

4π
κ ln

8

rκ

+
ΓY a20
4πr2

κ

(
ln

8

a0κ
− 1

)
+

∫
(V E + V I) · tds,

(2.12)

where (X, Y ) are coordinates on the n-b plane of the Frenet–Serret frame scaled by O(κ−1)

so that x = R+Xn+ Y b.

Therefore the pressure is given by (compare with 5.17 in MS72)

p = ρ1

[
− Γ2

8π2a2
+

Γ

πa

(
Y

a
Q · n− X

a
Q · b

)
− Γ2X

4π2a2
κ

(
ln

8

aκ
− 1

2

)]
+ρ1(Z−z)g, (2.13)

where Q = V E + V I − ∂R/∂t is the relative velocity between the surrounding fluid and

the vortex filament. Integrating the pressure per unit length ds we obtain the exterior

force,

FE = ρ1

[
ΓQ× t+

Γ2

4π

(
ln

8

aκ
− 1

2

)
κn− Γ2

8π
κn+ πa2gz

]
, (2.14)

where gz = −g and the last term is the weight of the surrounding fluid displaced by the

filament, i.e. Archimedes’ principle. Note that on the boundary r = a, as X, Y → 0, the

pressure becomes

p(r = a) = pa = ρ1

[
− Γ2

8π2a2
+ (Z − z)g

]
. (2.15)

This will be the boundary condition for the subsequent calculation of the interior forces.

MS72 starts its discussion of the interior forces by calculating the pressure acting

on both ends of the segment. In MS72, the pressure is assumed to be symmetric about the

centerline of the filament and calculated using (6.1) from MS72. Here we include density
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ρ1

g

η
r

θ

t

n

b

x
y

z

FE

FI

FI

g

z = Z
η

r(θ = 0)

r(θ = π)
t

Figure 2.2: The coordinate system on a small element of the filament. The unit
tangent t is perpendicular to the r-θ plane and its angle with the gravity is η. We
define θ = 0 when the angle between r and g is minimal.

and gravity, yielding

∂p

∂r
= ρ2

(
v20
r

+ gr

)
, (2.16)

where r is the local radial coordinate and v0 is the azimuthal velocity in the interior. gr is

the projection of gravity on r. The pressure depends on r and θ while it depends only on

r in MS72.

The force due to pressure acting on one end is

−
∫ 2π

0

∫ a

0

pr dr dθ =
1

2

∫ 2π

0

[∫ a

0

r2
∂p

∂r
dr − a2p(r = a)

]
dθ

=
1

2

(
ρ2πa

2v2 +

∫ 2π

0

∫ a

0

r2gr dr dθ

)
+ ρ1(

Γ2

8π
− πa2gs cos η),

(2.17)

where the bar indicates the average over the end surface area. The double integral vanishes

since gr = r cos θ g sin η. The last two terms come from evaluating the pressure on r =

a and using the geometric relation z − Z = −(r cos θ sin η + s cos η), which illustrated

in figure 2.2. The pressure force on the end acting along the filament is calculated by

differentiating (2.17) with respect to s,

ρ2
∂

∂s

(
1

2
πa2v2t

)
+ ρ1

(
Γ2

8π
κn− πa2g cos η t

)
. (2.18)
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When axial flow is nonzero, there are two additional contributions to the interior

force FI : the tangential momentum flux across the two ends of the infinitesimal filament,

and the rate of change of tangential momentum inside. The momentum flux across the

ends is given by combining (6.4) and (6.5) of MS72,

−ρ2
∫∫

w

(
wt+ u⊥ +

∂R

∂t

)
dA = −ρ2

(
πa2w2t+

a2wΓ

4
κb+ πa2w

∂R

∂t

)
, (2.19)

where w is the axial flow and the bar means the average over the cross section. The mo-

mentum flux carried by the mean axial flow is decomposed into local tangential component,

local perpendicular component (u⊥ on the r-θ plane) and the motion of the filament, which

correspond to those three terms respectively. The rate of change of tangential momentum

inside is given by MS72 (6.6),

−ρ2
∂ξ

∂s

∂

∂t

(
πa2wt

∂s

∂ξ

)
= −ρ2

[
π
∂

∂t
(a2wt) + πa2wt

∂

∂t

(
ln
∂s

∂ξ

)]
. (2.20)

We have a density ρ2 for the filament, so the two equations above are multiplied

by ρ2. Finally, we combine all the interior forces (2.18)–(2.20) and obtain

FI =ρ2π
∂

∂s

[(
1

2
a2v2 − a2w2

)
t− a2w∂R

∂t
− a2wΓ

4π
κb

]
− ρ1πa2g cos η t

− ρ2π
[
∂

∂t
(a2wt) + a2wt

∂

∂t

(
ln
∂s

∂ξ

)]
+ ρ1

Γ2

8π
κn.

(2.21)

We balance all the forces using

FE + FI + FB = 0, (2.22)

where FB = ρ2πa
2g is the body force, i.e. the filament’s weight. The transverse component
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of the force balance becomes

ρ1

[
ΓQ× t+

Γ2

4π

(
ln

8

aκ
− 1

2

)
κn

]
+ (ρ1 − ρ2)πa2g [z− (t · z)t]

+ ρ2π

(
1

2
a2v2 − a2w2 +

a2wΓ

4π
τ

)
κn− ρ2

[
2πa2w

∂t

∂t
+ Γ

∂

∂s

(
a2w

4
κ

)
b

]
= 0.

(2.23)

Note that ∂b/∂s = −τn where τ is torsion. The t-component is related to the core

structure which will be discussed in the next section. The motion is given by taking the

cross product of t with (2.23),

∂R

∂t
=V E + V I +

Γ

4π
κb

(
ln

8

aκ
− 1

2
+

1

4

ρ2
ρ1

)
+

(
1− ρ2

ρ1

)
πa2g

Γ
t× z

+
ρ2
ρ1

(
−πa

2w2

Γ
+
a2w

4
τ

)
κb− ρ2

ρ1

[
2πa2w

Γ
t× ∂t

∂t
− ∂

∂s

(
a2w

4
κ

)
n

]
.

(2.24)

To calculate the motion of a buoyant vortex filament using (2.24), one still needs

the evolution equations for a and w which will be derived in the following section.

2.3 The internal structure

In order to calculate w, we look into the flow structure within the core. This is

achieved by examining the tangential component of (2.22):

ρ2π
∂

∂s

(
1

2
a2v2 − a2w2

)
− 2ρ2πa

2w
∂

∂t

(
ln
∂s

∂ξ

)
− ρ2π

[
V||

∂

∂s
(a2w) +

∂

∂t
(a2w)

]
=(ρ1 − ρ2)πa2g cos η

(2.25)

where V|| = t ·∂R/∂t is the tangential velocity. Buoyancy contributes an extra term when

we compare (2.25) to (8.15) in MS72. To simplify the tangential equation, (8.5) in MS72,

the decomposition w = W (t) + q(s, t) + Γχ(r/a)/b is used, with a constant length b and

with χ(r/a) the variation of w in the r-θ plane. This is justified based on the argument
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that q is O(κ). We shall use

w = w(s, t) +
Γ

b
χ(
r

a
) (2.26)

for buoyant case here, since the dependence of w on s (and ξ) is O(1) and χ = 0. We then

obtain

w2 = w2(s, t) +
Γ2

b2
ν (2.27)

with a constant

ν = 2

∫ a

0

χ2(
r

a
) rdr. (2.28)

The continuity equation in (8.10) of MS72 for the vorticity core is

∂ξ

∂s

∂

∂t

(
a2
∂s

∂ξ

)
+ a2

∂w

∂s
= 0. (2.29)

For incompressible flow, the volume of the core is conserved with a uniform core size so

that

d

dt
(a2L) = 0, (2.30)

where L(t) is the total length of the filament. It can be shown that using (3.5) and (2.30),

∂w

∂s
= − ∂

∂t

(
ln
∂s

∂ξ

)
+

1

L

dL

dt
, (2.31)

which is identical to (8.12) in MS72. From (2.7) we find that a2v2 is a constant with

respect to s and (3.3) gives ∂w2/∂s = ∂w2/∂s. The tangential component then becomes

−ρ2π
D

Dt
(Lw) = (ρ1 − ρ2)πLg cos η, (2.32)

where D/Dt = ∂/∂t+ V||∂/∂s is defined to be the material derivative along the filament.

In general, the buoyancy force will accelerate or decelerate the axial flow inside the
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core. An exception is when the the tangent vector and gravity are perpendicular to each

other, i.e. η = π/2; in this case Lw is conserved. We will examine a nearly horizontal

ring in this circumstance in the next section. It is worth noting that in the hollow vortex

limit where ρ2 → 0, the equation becomes singular. This is due to our assumption of slow

time which removes the small time scale and the large acceleration due to an adjustment

to balance with the RHS of (2.32). The remedy should be reformulating the force balance

and including the inertial term. However, such a treatment lies beyond the scope of this

chapter. For a buoyant vortex filament of a given shape R, its motion can be calculated

using (2.24) and (3.2) with a given density ratio, ρ2/ρ1. For the case of non-zero axial

flow inside the core, an additional equation (2.32) is coupled with (2.24) and (2.30) to

determine the motion of a buoyant vortex filament.

2.4 Solution for buoyant rings

We consider a vortex ring R of light fluid in a heavier ambient, centered at the

origin with radius R0 and its axis initially inclined at an angle α0 from the direction of

gravity (see Figure 2.3). The equation of motion (2.24) for the ring becomes

∂R

∂t
=

Γ

4πR
b

(
ln

8R

a
− 1

2
+

1

4

ρ2
ρ1

)
+

(
1− ρ2

ρ1

)
πa2g

Γ
t× z

+
ρ2
ρ1

[
−πa

2w2

ΓR
b− 2πa2w

Γ
t× ∂t

∂t
+
a2

4R

∂w

∂s
n

]
.

(2.33)

The ring radius R will vary in time, but the volume of the core is conserved for incom-

pressible flow:

a2R = a20 R0. (2.34)
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2.4.1 Formulation

We use local coordinates on the ring defined by

R(t, θ) = Xc(t) +R(t)


cos θ cosα(t)

sin θ

cos θ sinα(t)

 , (2.35)

whose time derivative is

∂R

∂t
=

dXc

dt
+

dR

dt


cos θ cosα

sin θ

cos θ sinα

+R
dα

dt


− cos θ sinα

0

cos θ cosα

 . (2.36)

Using the Frenet–Serret formulas, we obtain

n =


− cos θ cosα

− sin θ

− cos θ sinα

 , b =


− sinα

0

cosα

 , t× ∂t

∂t
= n

dα

dt
sin θ. (2.37)

The equation of motion (4.1) becomes

∂R

∂t
=
U +W1

R


− sinα

0

cosα

+
β

R


cos θ

sin θ cosα

0

+
W2

R


− cos θ cosα

− sin θ

− cos θ sinα

 (2.38)

where

U(R) =
Γ

4π

(
3

2
ln 4R− 1

2
ln a20R0 −

1

2
+

1

4

ρ2
ρ1

)
, β =

πa20R0

Γ

(
1− ρ2

ρ1

)
g (2.39)
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Figure 2.3: Initial setting of a vortex ring is tilting an angle α0 from x axis. Gravity
g is in the negative z direction.

come from vorticity and buoyancy, while

W1(R) = −ρ2
ρ1

πa20R0w2

ΓR
, W2(R, θ) =

ρ2
ρ1

(
−2πa20R0w

Γ

dα

dt
sin θ +

a20R0

4R

∂w

∂s

)
(2.40)

are associated with axial flow inside the core.

Combining (2.36) and (2.38), we obtain a set of evolution equations for Xc:

dxc
dt

= −U +W1

R
sinα,

dyc
dt

= 0,
dzc
dt

=
U +W1

R
cosα, (2.41)

which is coupled to the evolution of R and α by

dR

dt
=
β

R
cosα− W2

R
,

dα

dt
= − β

R2
sinα,

d

dt
(R sinα) = −W2

R
sinα. (2.42)

For a ring with density equal to the ambient value, there is no buoyancy, so that

β = 0 and dα/dt = 0. Then if the axial flow w is a constant then W2 = 0 and W1 is

a constant. Therefore dR/dt = 0 and the ring radius remains constant. As we know, a

vortex ring with no buoyancy just moves without expansion or turning. Axial flow changes

its translation speed by −πa2w2/RΓ.

When buoyancy is present, β 6= 0. Axial flow is locally accelerated due to the pres-
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sure gradient discussed in section 3. In this case, w has temporal and spatial dependence,

and dR/dt varies with θ. As a result, the ring cannot maintain its circular shape and (2.35)

becomes invalid. On the other hand, if axial flow is always negligible, an analytic solution

for (2.41) and (2.42) can be derived. We may take the ring to be nearly horizontal, so that

cos η ≈ 0 and (2.32) gives the solution w ≈ 0. Then we may solve the evolution equations

analytically.

2.4.2 A slightly non-horizontal buoyant ring

According to Turner (1957) and Pedley (1968), we know that the radius of a hori-

zontal ring grows as it rises. We also anticipate that α will decrease, so that the ring will

turn toward the horizontal. Here we take the initial angle α0 to be small, and require no

axial flow so that W1 = W2 = 0 while keeping the buoyancy term. The evolution equations

become

dxc
dt

= −U
R

sinα,
dyc
dt

= 0,
dzc
dt

=
U

R
cosα, (2.43)

dR

dt
=
β

R
cosα,

dα

dt
= − β

R2
sinα,

d

dt
(R sinα) = 0. (2.44)

The last equation gives R sinα = R0 sinα0. Then we solve for α by integrating

(4.12b) to obtain ∫ α dα′

sin3 α′
= − βt

R2
0 sin2 α0

+ C1.

The integral on the left hand side can be evaluated using the initial condition α(t = 0) =

α0, giving

βt

R2
0 sin2 α0

=
1

2

(
cscα cotα− cscα0 cotα0 + ln

cscα0 − cotα0

cscα− cotα

)
. (2.45)
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Since α is an implicit function of time, we will also solve other quantities implicitly

in terms of α rather than explicitly in time. The radius is found by integrating (4.12a),

yielding

1

2
dR2 = β cosα

dt

dα
dα. (2.46)

With R(α0) = R0, the solution is

R(α) = R0
sinα0

sinα
. (2.47)

It is trivial to conclude that yc(t) = 0. Integrating the equations for xc(t), zc(t)

with initial condition (0, 0) yields

xc(t) =
Γ

4π
R0 sinα0

[
A0

(
ln

cscα− cotα

cscα0 − cotα0

)
− 3

2

∫ α

α0

ln(sinα′)

sinα′
dα′
]

(2.48)

and

zc(t) =
Γ

4π
R0 sinα0

{
A0(cscα− cscα0)−

3

2

[
ln(sinα) + 1

sinα
− ln(sinα0) + 1

sinα0

]}
, (2.49)

where

A0 =
3

2
ln(R0 sinα0) + ln

8

a0
√
R0

− 1

2
+

1

4

ρ2
ρ1

is a constant determined by the initial condition. The integral in xc is related to the

dilogarithm function Li2 and is given by

∫ α

α0

ln(sinα′)

sinα′
dα′ = − 1

4
ln 2

[
ln

1 + cosα

1− cosα
− ln

1 + cosα0

1− cosα0

]
+

1

8

[
ln2(1− cosα)− ln2(1 + cosα)− ln2(1− cosα0) + ln2(1 + cosα0)

]
+

1

4

[
Li2(

1 + cosα

2
)− Li2(

1− cosα

2
)− Li2(

1 + cosα0

2
) + Li2(

1− cosα0

2
)

]
.

(2.50)
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2.4.3 Long time behavior

Using the small angle expansion, we approximate

βt

R2
0 sin2 α0

=
1

2

(
α−2 − ln

α

2

)
+O(1), (2.51)

so that, to leading order,

α(t) ≈ R0 sinα0√
2βt

. (2.52)

Therefore, we need α→ 0 as t→∞. The ring turns to the horizontal for long times.

The radius is approximately

R(t) = R0
sinα0

sinα(t)
≈
√

2βt. (2.53)

This asymptotic behavior agrees with the investigations by Turner (1957) and Lundgren

& Mansour (1991).

The trajectory is approximately

xc ≈ −
3Γ

64π
R0 sinα0

[
(ln t)2 +

8

3
A0 ln t

]
; zc ≈

3Γ

16π

√
2β t

1
2 ln t, (2.54)

where xc should be asymptotically a constant as t→∞. If we differentiate zc with respect

to time, we find

dzc
dt
≈ 3Γ

16π

√
2β t−

1
2

(
1

2
ln t+ 1

)
. (2.55)

This agrees with Pedley’s result of the speed varying as t−1/2 ln t for a horizontal ring.
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2.5 Conclusion

We have studied the motion of a buoyant vortex filament using a force balance

approach, to take account for all the forces acting on a element of vortex whose density

is different from its surrounding fluid. Buoyancy forces arise from integrating pressure

over the boundary. For a simple geometry such as a ring, buoyancy causes its radius to

increase when it moves against gravity; conversely a buoyant ring moving downward will

shrink. The motion of a buoyant filament also depends on axial flow inside its core. An

investigation of the internal structure shows that axial flow is generated inside the core, and

its rate of change is proportional to the projection of gravity on the local tangent. The

acceleration/deceleration of axial flow reaches maximum when the background pressure

gradient aligns with the local tangent. If the tangent vector is horizontal, there is locally

no acceleration of axial flow.

A set of equations (2.24), (2.30) and (2.32) are obtained for the motion of a buoyant

vortex filament. For a filament of arbitrary shape, the calculation needs to be carried out

numerically. For a simple circular geometry, we obtain an exact solution for the evolution

of an initially non-horizontal ring, valid when the ring has small inclination so that axial

flow is not significant. Our calculation shows that buoyancy will change the orientation of

the ring and turn it to the horizontal. Our asymptotic solution agree with the results of

Turner (1957) and Pedley (1968).

The solution for a ring given here is restricted by several assumptions. It is worth

investigating when the angle α becomes large. In this case, it is also important to examine

the effect of axial flow which becomes non-trivial and a numerical calculation is required.

The other extension is to investigate a buoyant vortex ring with large core radius using

axisymmetric contour dynamics. The stability analysis on a buoyant vortex ring is another

intriguing topic.

30



Chapter 2, in full, has been published in the Journal of Fluid Mechanics, “The

motion of a buoyant vortex filament” by C. Chang and S. G. Llewellyn Smith, 2018, 857,

R1 (Cambridge University Press). The dissertation author was the primary investigator

and author of this material.
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Chapter 3

Axisymmetric contour dynamics for

buoyant vortex rings

This chapter uses a reduced order model to study the motion of a buoyant vortex

ring with non-negligible core size. Buoyancy is considered in both non-Boussinesq and

Boussinesq situations using an axisymmetric contour dynamics formulation. The density

of the vortex ring differs from that of the ambient fluid, and both densities are constant and

conserved. The motion of the ring is calculated by following the boundary of the vortex

core, which is also the interface between the two densities. The velocity of the contour

comes from a combination of a specific continuous vorticity distribution within its core and

a vortex sheet on the core boundary. An evolution equation for the vortex sheet is derived

from the Euler equation, which simplifies considerably in the Boussinesq limit. Numerical

solutions for the coupled integro-differential equations are obtained. The dynamics of

the vortex sheet and the formation of two possible singularities, including singularities in

the curvature and the shock-like profile of the vortex sheet strength, are discussed. Three

dimensionless groups, the Atwood, Froude and Weber numbers, are introduced to measure

the importance of physical effects acting on the motion of a buoyant vortex ring.
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3.1 Introduction

Vortex rings have attracted much attention from applied mathematicians and fluid

dynamicists over the history of vortex dynamics. Early studies can be traced back to

the work of Thomson (1867b) and Hicks (1884). Their theories for the steady motion of

a vortex ring assumed that the core is small and circular. The vortex core refers to the

region enclosed by a contour shown in figure 3.1. The area of that region allows us to define

a vortex core radius a. If a is very small compared to the radius of the vortex ring about

its axis of symmetry, we define it as a thin ring; otherwise the ring is “fat”. A detailed

description of the profile of the vortical core was missing until Fraenkel (1972) provided

an asymptotic formulation for small cross-section rings. Norbury (1972) found steady

“fat” vortex rings close to the Hill’s spherical vortex. Norbury (1973) then connected the

previous two solutions via a one-parameter family of steady vortex rings ranging from thin

to fat rings. This solution has an azimuthal vorticity distribution inside the ring given by

ωφ = rΩ, (3.1)

where r is the radial distance to the axis of symmetry and Ω is constant. Then ωφ satisfies

the vorticity equation in axisymmetric geometry,

D

Dt

(ωφ
r

)
= 0, (3.2)

where D/Dt is the material derivative. We are using cylindrical coordinates (r, φ, z).

In general, classic vortex dynamics deals with incompressible, inviscid Euler flows.

The flows are dominated by vorticity and the fluid density is set constant throughout.

Shariff, Leonard & Ferziger (1989) provides a comprehensive review of vortex rings, while

Shariff & Leonard (1992) has a clear discussion of the formation, dynamics, interactions
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and the stability of vortex rings. In many circumstances, e.g. in geophysical and environ-

mental settings, fluid flows are not only governed by vorticity but also by other physical

effects. The additional physics we want to address here is buoyancy, the combined effect

of density difference and gravity. Well-known example of buoyant vortices are the bubble

rings created and manipulated by dolphins (see Marten et al., 1996), which might be im-

portant to understand animal behaviour. One can also observe bubble rings created by

human divers in the ocean or a swimming pool. A smoke ring can be created from a fire-

ball or a thermal plume, and smoke rings expelled from a volcano have also been observed

(Velasco Fuentes, 2014). From a fluid dynamics perspective, the first study of buoyant

vortex rings was the theoretical work and laboratory observations of Turner (1957). The

theoretical study of Pedley (1968) confirmed Turner’s finding of the expansion of a buoy-

ant vortex ring in inviscid flows and predicted finite lifetimes for bubble rings. Chang &

Llewellyn Smith (2018) calculated the motion of thin buoyant vortex filaments including

a buoyant ring with a small inclination. However, these results are for thin vortex rings

whose core size is much smaller than their radius.

Buoyant vortex rings with large cores have been studied theoretically and numeri-

cally by Lundgren & Mansour (1991) and Chen et al. (1999). Their calculations start from

a spherical bubble rising due to buoyancy. The bubble is penetrated by the surrounding

fluid from its bottom because of the gradient of hydrostatic pressure and then changes its

topology to a bubble ring. Lundgren & Mansour (1991) used a boundary-integral method

based on potential theory to calculate the motion of bubbles before and after they turned

into rings. A model equation similar to that in Turner (1957) and Pedley (1968) was

used when the vortex ring became very thin at later times. Chen et al. (1999) used the

incompressible Navier–Stokes equations to calculate the transition from a spherical bubble

to a bubble ring numerically. Another numerical study by Cheng, Lou & Lim (2013) car-

ried out three-dimensional DNS that showed that a bubble ring is eventually destroyed by
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instability. The recent experimental studies of Vasel-Be-Hagh, Carriveau & Ting (2015a)

and Vasel-Be-Hagh et al. (2015b) investigate the formation and the dynamics of bubble

rings along with the viscous drag acting on a buoyant vortex ring.

Here we use a contour dynamics method in axisymmetric geometry to study buoyant

vortex rings. Contour dynamics was first used by Zabusky, Hughes & Roberts (1979) to

calculate the nonlinear evolution of a vortex patch in two dimensions. It was later adapted

to axisymmetry in Pozrikidis (1986); Shariff et al. (1989); see also Riley (1998) and Shariff,

Leonard & Ferziger (2008). A detailed description and numerical techniques of the method

can be found in Dritschel (1989) and in the review of Pullin (1992). Blyth et al. (2014)

showed that buoyancy enters the vorticity equation through the baroclinic term. To take

account of buoyancy, we assign constant densities ρ1, ρ2 to the surrounding fluid and

the vortex ring respectively. The density gradient becomes a Dirac delta function on the

interface and the baroclinic torque is zero everywhere except on the interface. As a result,

vorticity is generated on the interface and forms a vortex sheet. An evolution equation

for the vortex sheet is essential for buoyancy to be included into the contour dynamics

formulation. Other additional physics such as magnetic force (see Hattori & Moffatt, 2006;

Llewellyn Smith & Hattori, 2012) also enters in the form of a vortex sheet. A review of

contour dynamics method with additional physics can be found in Llewellyn Smith et al.

(2018). The evolution equation for vortex sheet strength between different density fluids

can be found in Baker et al. (1982) and Baker & Xie (2011) for two-dimensional free-surface

waves. A similar formulation was used with gravity absent in Sohn & Hwang (2005) and

Shin, Sohn & Hwang (2018) for two-density flows. Tryggvason (1988) and Stock, Dahm

& Tryggvason (2008) derived an evolution equation for a vortex sheet to investigate the

problems of Rayleigh–Taylor instability and the interaction between vortices and a density

interface.

Surface tension can also be important in the dynamics of buoyant vortex rings,
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and the vortex sheet equation will contain a term representing surface tension. Studies

including surface tension in the vortex sheet dynamics are Baker & Nachbin (1998), Shin,

Sohn & Hwang (2014), Sohn (2015) and Shin et al. (2018). Most studies solve two-

dimensional problems and with an initially straight line or a slightly perturbed vortex

sheet, although Baker & Moore (1989) and Sohn (2015) study a circular vortex sheet in

two dimensions.

In this chapter, calculations for a vortex sheet in axisymmetry are carried out. In

§ 3.2, we introduce axisymmetric contour dynamics and derive an evolution equation for

the vortex sheet on the interface using the Euler equation. The relevant dimensionless

numbers in this problem are also discussed. In § 3.3, we present our numerical approaches

for solving the coupled integro-differential equations in axisymmetric domain. Numerical

results are presented in § 3.4. We conclude in § 3.5.

3.2 Mathematical formulation

We consider a buoyant vortex ring in an ideal fluid. The governing equations are

∇ · u = 0, (3.3)

ρ
Du

Dt
= −∇p+ ρg. (3.4)

The cross-section of a vortex ring core forms a confined region in the r-z plane (see fig-

ure 3.1) and the vorticity is zero everywhere except inside or on this contour. The contour

is material and represented by a parameterized curve R. Its evolution determines the

motion of the axisymmetric vortex ring. The flow is axisymmetric without swirl, so the

velocity field and the vorticity field are u = (ur, 0, uz) and ω = (0, ωφ, 0), respectively. We
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can calculate the motion by evolving the contour using

dR

dt
= u, (3.5)

where the velocity is

ur = −1

r

∂ψ

∂z
, uz =

1

r

∂ψ

∂r
. (3.6)

The Stokes streamfunction is given by

ψ(r, z, t) =

∫∫
ωφ(r′, z′, t)G(r, z|r′, z′) dr′ dz′, (3.7)

and satisfies the equation

1

r

(
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2

)
ψ = −ωφ. (3.8)

This differential equation is solved using the Green’s function

G(r, z|r′, z′) =

√
rr′

2π

[(
2

k
− k
)
K(k)− 2

k
E(k)

]
, (3.9)

where

k2 =
4rr′

(r + r′)2 + (z − z′)2
. (3.10)

Here K(k) and E(k) are the complete elliptic integrals of the first and second kind respec-

tively. The double integral in (3.7) is transformed into a contour integral using Green’s

theorem and the velocity field in (3.6) is obtained. The velocity on the boundary is then

evaluated and the contour is evolved in time. This technique is called contour dynamics.

More details of contour dynamics calculation for vortex rings can be found in Pozrikidis

(1986); Shariff et al. (1989); Riley (1998) and Shariff et al. (2008).
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If a vortex sheet is present on the interface, the velocity will consist of contributions

from both the vortex sheet on the interface and the continuous vorticity inside. The latter

is referred to as a vortex patch. For a classic vortex ring with one density throughout the

flow, there is only a vortex patch. Riley (1998) gives a good discussion of axisymmetric

vortex patches. The continuous vorticity distribution is taken to be ωφ = rΩ, where Ω is

a constant (see § 1). Using Green’s theorem gives the contour integrals

up(r, z) =
Ω

r

∮
G cos θ′r′ ds′ r̂ + Ω

∮
[H cos θ′(z′ − z)−G sin θ′] ds′ ẑ, (3.11)

where s is the arc length and θ(r, z) is the angle between the outward normal to the

interface and the unit vector in z (see figure 3.1). All variables with primes in the integral

are functions of (r′, z′). The function G is given in (3.9), while

H(r, z|r′, z′) =
r′K(k)

π
√

(r + r′)2 + (z − z′)2
. (3.12)

For the vortex sheet, carrying out the integral in (3.7) along the interface and using

(3.6) gives the self-induced velocity of a vortex sheet with strength γ as (see Hattori &

Moffatt, 2006)

us(r, z) = −1

r

∮
∂G

∂z
γ′ dξ′ r̂ +

1

r

∮
∂G

∂r
γ′ dξ′ ẑ, (3.13)

where ξ is a parameterisation without any specific physical significance that increases

clockwise along the contour (see figure 3.1). The contour is evolved using u = up + us in

(3.5).

3.2.1 The non-Boussinesq case

For a vortex ring whose density differs from that of the environment, the density

jump on the interface results in baroclinic generation of vorticity. Baroclinic torque creates
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t

θ

Figure 3.1: A schematic illustration of the contour in axisymmetric domain; ωφ and
γ are positive into the plane. The parameterisation ξ goes clockwise.

a vortex sheet on the interface. In axisymmetric geometry, the vortex sheet is composed

of vorticity perpendicular to the r-z plane, i.e. in the azimuthal direction. The interface

can be written as a closed curve R = (R(ξ, t), Z(ξ, t)), where ξ is the parameterisation

introduced earlier. The local tangent and normal vectors are

t =
∂R

∂ξ

∣∣∣∣∂R∂ξ
∣∣∣∣−1 , n =

∂t

∂s
κ−1, (3.14)

where κ is the curvature, s is arclength, and

∂s

∂ξ
=

∣∣∣∣∂R∂ξ
∣∣∣∣ = L (3.15)

is the arc length metric. The normal vector points out of the vortex.

On either side of the interface, the densities are ρ1 and ρ2, where the subscripts 1

and 2 indicate outside and inside. The corresponding velocities are u1, u2 and the vortex

sheet strength is defined by γ = L(u1 − u2) · t. The tangential velocity on the interface

is given by averaging velocities from either side, ū = (u1 + u2)/2. A Lagrangian velocity

following material points is defined by

ũ = ū + α
γ

2L
t. (3.16)
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For α = 1 or −1, the material points follow the motion of outside or inside fluid respectively

(see Baker et al., 1982). Then velocities on either side of the interface are

u1 = ū +
γ

2L
t = ũ + (1− α)

γ

2L
t, u2 = ū− γ

2L
t = ũ− (1 + α)

γ

2L
t. (3.17)

Evaluating the Euler equation on both sides gives

∂u1

∂t
+ (u1 · ∇)u1 = − 1

ρ1
∇p+ g, (3.18)

∂u2

∂t
+ (u2 · ∇)u2 = − 1

ρ2
∇p+ g. (3.19)

We follow the procedure in Baker et al. (1982) to eliminate pressure. We first subtract

(3.19) from (3.18) and replace u1 and u2 in the advection term by ũ from (3.17), giving

d

dt

(γ
L
t
)

+
γ

L
t · ∇ũ− αγ

L
t · ∇

(γ
L
t
)

= −
(

1

ρ1
− 1

ρ2

)
∇p. (3.20)

A material derivative following Lagrangian points is defined as

d

dt
=

∂

∂t
+ (ũ · ∇). (3.21)

Similarly, adding (3.18) and (3.19) together, and replacing u1 and u2 by ũ and ū gives

2
dū

dt
− αγ

L
t · ∇ū +

γ

2L
t · ∇

(γ
L
t
)

= −
(

1

ρ2
+

1

ρ1

)
∇p+ 2g. (3.22)

The ratio between the coefficients of the pressure gradient in (3.20) and (3.22) is the

Atwood number

A =
ρ1 − ρ2
ρ1 + ρ2

. (3.23)
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Eliminating the pressure yields

d

dt

(γ
L
t
)

+
γ

L
t · ∇ũ− αγ

L
t · ∇

(γ
L
t
)

= −2A

[
dū

dt
− α

2

γ

L
t · ∇ū +

γ

4L
t · ∇

(γ
L
t
)
− g
]
.

(3.24)

To simplify the equation above, it can be shown that

1

L

dL

dt
= t · [(t · ∇)ũ], t · ∇ =

1

L

∂

∂ξ
. (3.25)

By projecting (3.24) on the tangential direction and using the Frenet–Serret formulas,

1

L

∂t

∂ξ
= κn,

1

L

∂n

∂ξ
= −κt, (3.26)

we obtain

dγ

dt
− α

2

∂

∂ξ

(γ
L

)2
= −2AL

[
t · dū

dt
− α

2

γ

L2

∂ū

∂ξ
· t+

1

8

1

L

∂

∂ξ

(γ
L

)2
− t · g

]
. (3.27)

This equation agrees with equation (2.15) in Baker et al. (1982), although their problem is

two-dimensional and they use complex variables and Bernoulli’s equation. We can match

each term to their two-dimensional formulation, so the vortex sheet dynamics are the same

in two-dimensional and axisymmetric flows. In this chapter, we set α = 0, i.e. we follow

material points on the mean velocity so that ũ = ū. We now drop the tildes and bars to

obtain

dγ

dt
= −2AL

[
t · du

dt
+

1

8

1

L

∂

∂ξ

(γ
L

)2
− t · g

]
. (3.28)

A similar equation can also be found in Shin et al. (2018), although gravity is omitted in

their formulation.

The evolution equation for γ is coupled with (3.11) and (3.13). These equations

can be transformed into a Fredholm integral equation of the second kind for dγ/dt. Using
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(3.11), (3.13) and the definition of the unit tangent, we have

t · du

dt
= t · dup

dt
+ t · dus

dt

=
1

R

(
− 1

L

∂R

∂ξ

∮
dγ′

dt

∂G

∂Z
dξ′ +

1

L

∂Z

∂ξ

∮
dγ′

dt

∂G

∂R
dξ′
)

+ f(R,Z, γ,u), (3.29)

where f is a function of R, Z, γ and u, provided in Appendix A.1. The evolution equation

of dγ/dt is coupled with the Lagrangian advection equation in (3.5).

3.2.2 The Boussinesq limit

When the density difference across the interface is small but gravity remains im-

portant, we may assume ρ1 ≈ ρ2 in all terms except for gravity. This is the Boussinesq

approximation. The evolution equation for γ in the Boussinesq limit is

dγ

dt
= 2ALt · g =

(
1− ρ2

ρ̄

)
Lt · g, (3.30)

where ρ̄ = (ρ1 + ρ2)/2 (other definitions are possible). In the Boussinesq approximation,

the acceleration term t · (du/dt) vanishes in the vortex sheet equation. This gives an

advantage in solving the integro-differential equations numerically, since dγ/dt is no longer

determined by a Fredholm integral function and can be integrated by straightforward time-

stepping.

3.2.3 Surface tension

When a vortex ring consists of air or vapor inside a liquid, the pressure is discon-

tinuous across the interface. This dynamical jump is balanced by surface tension Ts,

p2 − p1 = κTs, (3.31)
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where κ is the curvature of the interface. Typically Ts is a constant. We can replace the

pressure in (3.18) and (3.19) by p1 and p1 + κTs, respectively, then carry out the same

calculation as in § 2.1. We obtain

dγ

dt
= −2AL

[
t · du

dt
+

1

8

1

L

∂

∂ξ

(γ
L

)2
− t · g

]
+
Ts
ρ̄

∂κ

∂ξ
. (3.32)

The rate of change of the vortex sheet strength contains a contribution proportional to

the gradient of curvature along the interface when surface tension is present.

3.2.4 Dimensionless parameters

There are four dimensionless parameters for this problem. One is the aspect ratio

of the ring, S = a0/R0, where a0 is the initial radius of vorticity core and R0 is the initial

radius of vortex ring. Another dimensionless number can be taken as the Froude number

Fr =
Uc√
ga0

, (3.33)

where Uc is a velocity scale. We set Uc = a20Ω, which characterizes the translation of a

homogeneous ring. The time scale is a0/Uc = 1/(a0Ω). The vortex sheet strength γ can

be scaled by a0Uc while ξ has no dimension. A dimensionless form of (3.32) is then given

by

dγ

dt
= −2AL

[
t · du

dt
+

1

8

1

L

∂

∂ξ

(γ
L

)2
+

1

Fr 2 t · ẑ
]

+
1

We

∂κ

∂ξ
, (3.34)

where gravity g = −gẑ. The last parameter in the dimensionless equation is the Weber

number,

We =
ρ̄U2

c a0
Ts

(3.35)

A special case is Ω = 0, when there is no continuous vorticity inside the vortex. We then

choose the velocity scale using Uc =
√
ga0, giving Fr = 1.
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We call the third term on the right-hand side of (3.34) the buoyancy or source term,

since vorticity is created by baroclinic generation. The second term on the right-hand side

is the quadratic or nonlinear term. The first term is the dynamic-coupling term, in which

the dynamics of the contour is coupled to the evolution of the sheet strength. The last

term corresponds to surface tension.

3.3 Numerical method

Before we start our discussion of the numerical scheme, it is worth surveying the

literature to identify similar problems that have been investigated. In table 3.1 we list

some references with calculations of vortex sheet evolution. The vortex sheet strength

does not evolve when density differences, body forces and surface tension all vanish. Once

density differences are introduced, the dynamic-coupled and quadratic terms in (3.34) are

nonzero. Body forces behave like a source in (3.34). The self-induced velocity of the vortex

sheet is calculated using the Biot–Savart law. If a vortex sheet is a closed contour enclosing

vorticity, the contribution from vortex patch (3.11) must be added.

Our numerical scheme consists of four main parts: an interpolation method to

approximate the location of the contour and compute spatial derivatives, quadrature to

evaluate contour integrals, an integral equation to obtain the vortex sheet strength and

a time-stepping method to evolve the contour. The contour is discretised using a set of

Lagrangian points, i.e. material points, Xn in the r-z plane with n = 1, 2, . . . , N . The

initial contour is given by

R(ξ, 0) = R0 + a0 cos ξ, Z(ξ, 0) = a0 sin ξ (3.36)

for ξ ∈ [0, 2π); R0 is the initial radius of the ring and a0 is the radius of its core. For

small ring sizes, this is almost the steadily propagating solution of Norbury (1973). We
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set R0 = 1 in all calculations. These Lagrangian points are evolved using (3.5),

dXn

dt
= un, (3.37)

where un is u evaluated numerically on Xn.

3.3.1 Interpolation and spatial differentiation

Since the contour is a closed curve, it is natural to use a Fourier series to interpolate

between points,

R(ξ) =

N/2−1∑
k=−N/2

X̂k eikξ, (3.38)

where the X̂k are the Fourier coefficients of the Lagrangian points’ locations. Here k =

−N/2,. . . , −1, 0, 1,. . . , N/2− 1 are the wavenumbers. The parameter ξ is equally spaced

in [0, 2π). The mth derivative along the contour is computed from the Fourier series

R(m)(ξ) =

N/2−1∑
k=−N/2

(ik)mX̂k eikξ. (3.39)

The spatial distribution of the vortex sheet strength γn is also interpolated using

Fourier series. A Fourier filter is used to cut off the highest one-third of the spectrum to

mitigate the the aliasing error from the quadratic term.

f̂(k) =

 1, |k| ≤ N/3

0, |k| > N/3,
(3.40)

The aliasing error from the quadratic term can also be mitigated. A filter proposed by

Krasny (1986b) is also implemented to suppress the growth of noise due to round-off error

using a threshold of O(10−12). At every time step, filters are applied whenever the time
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derivatives, u and dγ/dt, are obtained. Krasny’s filter is applied first, then (3.40) right

after it. Once the time derivatives are filtered, (R,Z) and γ are marched forward by one

time step and the same filtering process applied to the new (R,Z) and γ.

3.3.2 Quadrature rule

The velocity u for each material point is the sum of (3.11) and (3.13), in which

the contour integrals are computed numerically. The quadrature can be done using the

trapezoidal rule which gives spectral convergence for periodic functions (Trefethen & Wei-

deman, 2014). However the functions G and H are singular as (r′, z′) → (r, z), because

the complete elliptic integral of the first kind, K(k), is unbounded when k → 1. There are

several ways to remove the singularity. One way is the vortex blob method (see Krasny,

1986a): a small parameter ε is introduced into the denominator in (3.10), giving

k2 =
4rr′

(r + r′)2 + (z − z′)2 + ε2
. (3.41)

The idea is essentially the same as the Moore–Rosenhead method (see Saffman, 1992,

p. 213) to desingularise the Biot–Savart integral for vortex filaments, in which a small

parameter ε is added into denominator to avoid a division by zero. It acts to remove scales

smaller than ε. The appropriate value of ε is discussed below.

A formally exact method is to subtract the singular part of the integrand. The reg-

ularised integral is then computed numerically using the trapezoidal rule. The asymptotic

behavior of the singularity of (3.9) is (Pozrikidis, 1986)

Gs ∼
r′

2π
ln

4√
1− k2

. (3.42)

Shariff et al. (1989); Nitsche & Krasny (1994); Nitsche (2001); Hattori & Moffatt (2006);
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Llewellyn Smith & Hattori (2012) use this method to remove the singularity. A local series

is then integrated term by term over segments adjacent to the singular point. Another

method used in two dimensions (Baker et al., 1993; Hou et al., 1994; Baker & Xie, 2011;

Shin et al., 2018) is the trapezoidal rule based on alternative/mid points to avoid the

singular point. This idea is not pursued here (but see § 3.5).

While the series expansion method should formally yield higher accuracy, it suffers

from two problems. First, the function takes a different form on the segment including the

singularity which may reduce the accuracy of the trapezoidal rule. Second, it is difficult to

implement when solving the dynamic-coupled term in the vortex sheet equation, since it

requires a local approximation to dγ/dt, which is unknown. As a result, the blob method

appears to be the most natural regularisation and is the one that was used. Nevertheless we

can examine the difference between the two. The contours in figure 3.2(a) show very little

difference using ε = 0.01. Some differences can be noticed near the roll-up at t = 0.8, but

the bulk motions of the two are almost the same. That serves our purpose well enough to

model the motion of a buoyant vortex ring, even though the small scales are not perfectly

resolved. We also test different value of ε. In figure 3.2(b), the profiles almost overlap for

ε ≤ 0.01, and the maximum error of velocity profile is O(10−6). The volume is a conserved

quantity and the change in volume is 0.2% during t = 0–0.84 with ε = 0.01. With ε = 0.05

the computation lasts for a longer time t = 0–1.09 and the change in volume is 0.6%. In

the present study, we used ε = 0.05 in order to achieve longer integration in time.

The convergence test for u with respect to N uses the following approach: first

we calculate the velocity u(N/2) with grid resolution N/2, then we double the resolution

to N by adding one new point between every two existing points. The velocity is then

calculated again as u(N). We compute the change in velocity at the original points, then

take its norm as

εN = ||u(N) − u(N/2)||. (3.43)
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Figure 3.2: (a) Comparison of the blob method (solid line) and the series expansion
method (dashed line) using velocity us only. ε = 0.01; (b) a close look of velocity profile
for various ε; (c) convergence test with different core size a0.
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We find εN → 0 when N →∞, where εN is a function of N and a0 plotted in figure 3.2(c).

Different initial vortex core radii a0 require different values of N . If we set εN = 10−4

as our desired accuracy, a0 = 0.2 satisfies this criterion with N = 64, while a0 = 0.8 the

required resolution rises to N = 256. Therefore, we choose N = 64 for a0 = 0.2 and

N = 256 for a0 = 0.8, N = 128 for a0 = 0.4 and N = 256 for a0 = 0.6 to keep εN below

10−4. For higher accuracy, e.g. εN < 10−8, a0 = 0.2 needs resolution N = 128 and a0 = 0.8

needs at least N = 512.

3.3.3 Integral equation

To solve for γ, the rate of change of γ is calculated by solving the integral equation

given by combining (3.29) and (3.32):

dγ

dt
= −2ALdγ

dt
+ F , (3.44)

where the linear integral operator is

Lg =
1

R

(
−∂R
∂ξ

∮
∂G

∂Z
g dξ′ +

∂Z

∂ξ

∮
∂G

∂R
g dξ′

)

and F contains all the terms on the right-hand side of (3.32) except the terms in dγ/dt.

The Green function G is regularised by the blob method. The integral operator L is

discretised using the trapezoidal rule and Fi is F evaluated at Xn. Then (3.44) becomes

dγ

dt

∣∣∣∣
i

= −2A
∑
j

Lij
dγ

dt

∣∣∣∣
j

+ Fi. (3.45)

The discretised equation can be transformed into the linear system

(δij + 2ALij)
dγ

dt

∣∣∣∣
i

= Fi. (3.46)
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The matrix is diagonally dominant and (3.46) can be solved by successive over-relaxation

(SOR) efficiently.

3.3.4 Time-stepping

Finally, X and γ are advanced in time using the classic four-stage Runge–Kutta

scheme

dX

dt
=

1

6

[
u(1) + 2u(2) + 2u(3) + u(4)

]
, (3.47)

where the u(j) are intermediate values (e.g. see Iserles, 2009, § 3.2). The time step ∆t is

fixed at 0.001 in our calculations. The initial value of γ is zero. The two filters introduced

earlier are also applied to intermediate values.

3.4 Numerical results

We first discuss the γ-equation and its solutions. We show the possible emergence

of curvature singularities that limit the length of numerical calculations. Then we present

numerical results and discuss their dependence on the dimensionless numbers A and Fr .

Finally we quantify the motion of the ring using integral quantities.

3.4.1 Boussinesq vs non-Boussinesq cases

The evolution equation for γ, (3.34), is central when using axisymmetric contour

dynamics to calculate the motion of buoyant vortex rings. The first two terms on the right-

hand side of (3.34) are multiplied by the Atwood number A and represent the contribution

from density difference alone. The third term with gravity has a prefactor A/Fr 2 which

measures the strength of buoyancy. We exclude surface tension for now, so that We →∞.

When the density difference is small but gravity is strong, we have A→ 0 but A/Fr & 1.
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Figure 3.3: (a, b) The vortex sheet strength γ along the boundary and (c, d) the
snapshots of contours. The Atwood numbers are A = 0.01, 0.5 for (a, c) and (b, d),
respectively. All cases have Fr = 1 and We =∞. For the Boussinesq case, γ is obtained
using (3.30), while (3.28) is used for non-Boussinesq calculations.
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The problem can then be approximated by the Boussinesq formulation. For small Atwood

number, e.g. A = 0.01, the vortex sheets evolved using (3.28) and (3.30) are almost

identical (figure 3.3a). Profiles computed from both γ equations are very similar, as shown

in figure 3.3(c). Since A is small, the first two terms in the non-Boussinesq formulation

are negligible.

We increase the Atwood number to 0.5. The solutions for γ are show in figure 3.3(b)

and the corresponding contours in figure 3.3(d). The Boussinesq and non-Boussinesq cases

differ when A is sufficiently large. The contour in the Boussinesq case have evolved into

two roll ups when t = 0.6. The non-Boussinesq case is similar to the Boussinesq calculation

before t = 0.2, but then the contour starts to deform more drastically than the Boussinesq

case when t > 0.2. The non-Boussinesq calculation stops around t = 0.3 when the contour

develops a sharp tip near (0.92, 0.36) in figure 3.3(d) at which point the Fourier spectrum

has saturated (see below), but before any roll-ups appear. The roll-ups are associated with

the formation of finite-time singularity in curvature which has been found in many other

studies on vortex sheet calculations.

3.4.2 Singularities and vortex sheet dynamics for moderate A

We plot the curvature of vortex sheets in the non-Boussinesq case for A = 0.3,

0.5 in figure 3.4. The formation of a spike in each case is apparent. This could indicate

a finite-time curvature singularity as seen in the literature. The formation of curvature

singularities of a vortex sheet was studied by Moore (1979). These singularities can be

observed physically when singularities in the complex plane reach the real axis. Meiron,

Baker & Orszag (1982) and Krasny (1986b) numerically confirmed Moore’s asymptotic

result. Cowley, Baker & Tanveer (1999) showed how singularities move in the complex

plane and reach the real axis in finite time. Krasny (1986b) studied the formation of

these singularities using the point–vortex approach, while Krasny (1986b) and Cowley
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et al. (1999) identified the singularity as having a 3
2
-power form. Baker et al. (1993)

applied a vortex sheet model to the Rayleigh–Taylor instability problem, and showed

that singularities do not reach the real axis in finite time if one layer of fluid has zero

density (i.e. A = 1). These investigations considered two-dimensional periodic problems.

The present calculation is axisymmetric, but the same kind of curvature singularity is

possible. The nature of these singularities is worthy of a more detailed study, but that

lies beyond the scope of this work as our intention is to calculate the motion of buoyant

vortex rings. The reason we discuss singularities here is to point out that such a spike

will cause a numerical blowup in our calculations. Even though our blob method may

not allow actual singularity formation, the resulting growth in curvature appears strong

enough to terminate the simulation for the values of ε required to obtain good overall

numerical accuracy.

The Fourier spectrum of dγ/dt in figure 3.5 shows the growth of higher modes. The

spectrum still fills up when a filter is applied. The calculation blows up when the highest

filtered mode, |k| = N/3, reaches the order of magnitude of the |k| = 1 mode. For the

Boussinesq case, the highest mode grows but never exceeds the magnitude of mode |k| = 1

during the calculation. The difference between the vortex sheet evolution equations for the

Boussinesq and non-Boussinesq cases comes from the first two terms in (3.28), which we

now examine in detail. The behaviour of dγ/dt is investigated by examining the evolution

of each term in (3.28), as shown in figure 3.6. At t = 0.1, dγ/dt is dominated by the

source term (III), i.e. buoyancy, along with the dynamic-coupled term (I). The quadratic

term (II) is small compared to the first two and negligible. As the calculation proceeds to

t = 0.2, the dynamic-coupled term dominates dγ/dt while the source terms become less

important. The quadratic term became of the same order as the source term, and this

is when the dynamics becomes more complicated. The contour in figure 3.3(d) starts to

deviate from its initially circular shape. The sharp drop of vortex sheet strength profile
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Figure 3.5: Fourier spectra of dγ/dt for Boussinesq and non-Boussinesq calculations
for A = 0.5, Fr = 1 and We = ∞, shown in figure 3.3(b) and (d). The calculations
were stopped when the Fourier coefficient of highest mode becomes ' O(1).
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in (3.29); II: quadratic term; III: buoyancy. A = 0.5 and Fr = 1. Their sum is dγ/dt.

near s = 0.83 indicates that a roll-up is beginning. In the plots at later times t = 0.25

and 0.3, the ratio of the source term diminished. At this moment, the entire dynamics is

dominated by the sharp spike in the γ-profile, which is a combined contribution from the

dynamic-couple and the quadratic terms. Note that while this is happening, the matrix

on the left-hand side of the linear system (3.46) remains diagonally dominated, so that the

linear system is well-conditioned.

3.4.3 Non-Boussinesq vortex rings

We first fix the aspect ratio at S = 0.6 for the following calculation. Our aim is to

investigate how buoyancy alters the motion of the rings. Buoyancy is a result of combining
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Figure 3.7: Evolution of contour with different Atwood numbers A = 0.3, 0.5, 0.7,
from left to right respectively. Other parameters are kept constant: S = 0.6, Fr = 0.3
and We =∞.

density difference and gravity, and can be measured by A/Fr 2. We examine the terms on

the right-hand side of (3.34). If A is small and Fr is large, buoyancy is negligible and

dγ/dt ≈ 0, so the vortex ring retains its classic solution. If Fr decreases such that A/Fr 2

equals or greater than O(1), the buoyant vortex ring is in the Boussinesq limit. If A

increases significantly, every term in the γ-equation become important and the vortex ring

evolves in the non-Boussinesq regime.

The evolution of contours for cases with Atwood numbers, A = 0.3, 0.5, 0.7, is

shown in figure 3.7. In each case, we observe that contours were deformed from their

initially circular shape. The lower half of the contour bent inward and the ambient fluid

squeezed into the vortical core from below. Similar behaviour was obtained in Lundgren &

Mansour (1991) for a spherical vortex bubble. As the contour for A = 0.3 and 0.5 evolves,

two counter-rotating roll-ups develop. These are due to the dot product of local tangent

and gravity, i.e. t · ẑ, in the buoyancy term. The dot product is negative when the local

tangent of the contour points down and positive when it points up. As the result, the

source term has different signs on the left and right half of the contour. Once the vortex
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Fr = 0.3 and We =∞.

sheet is created by the baroclinic torque, it rotates in opposite directions. In the A = 0.3

and 0.5 cases, a mushroom-like structure can be seen when the contour evolves for a longer

time. We did not include surface tension in the calculations here, but we anticipate that

surface tension will suppress the development of roll-up. The mushroom structure did

not appear for the A = 0.7 case, when the calculation stopped earlier than the former

two cases, before any roll-up will appear. Since roll-up did not happen, the failure of the

calculation does not seem to be related to the curvature singularities we discussed above.

We look into the vortex sheet strength profile for A = 0.7 by plotting γ along the contour.

We found that as the vortex sheet strength evolved, a shock-like discontinuity developed

in its profile, as shown in figure 3.8. This originates from the quadratic term in the vortex

sheet equation. For large enough Atwood number, the evolution equation for γ resembles

the inviscid Burgers equation, which is known to allow shocks. The whole calculation

then broke down once the discontinuity appeared in γ and subsequently spread to other

numerical quantities.

Calculations were carried out in a wider parameter space for A and Fr , as shown

in figure 3.9. The dotted curves are lines of constant A/Fr 2 that represent the strength of

buoyancy. The Weber number is infinite. The contours are shown at the moment when
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the magnitude of highest filtered mode |k| = N/3 is in the same order to the magnitude

of mode |k| = 1 so that failure of the calculations is imminent. The bottom left corner

is where A and Fr are both small, and hence it is the Boussinesq limit. The cases with

A = 1 on the right have more limited calculation time, since the nonlinear term ∂γ2/∂ξ

becomes important and leads to a shock-like discontinuity in γ as discussed above. On the

top of the chart, the computations are also very limited. In this regime, the vortex sheet

equation is dominated by the dynamic-coupled and the quadratic terms while buoyancy

is weak. Our numerical scheme is not very stable in this regime. In general, contours on

the bottom-left portion of the domain are more manageable for numerical calculation.

The aspect ratio of the ring S was then varied from 0.6 to 0.2, 0.1 and 0.05. As

shown in figure 3.10, the contour is still bending inward from its bottom, but its inner

half (closer to the axis of symmetry) is lifted up compared to the S = 0.6 case. The

mushroom-like structure is not observed during the calculation. Calculations stopped

because a shock-like profile of γ formed. When the aspect ratio dropped to 0.05, the

dynamic became different from those with larger S. The contour maintained its near-

circular shape until t = 0.4, then it started to deform into an elliptic shape. Then it

paused its upward motion and stayed near (1.08, 0.11) during t = 0.4–0.5. From t = 0.7

it resumed its upward motion, and a small tip appeared on the top of the contour before

the calculation failed. In figure 3.11, we plot the centroid (defined in § 4.4) for S = 0.05.

Initially Zc increases linearly and then is nearly constant around t = 0.4–0.5, before

increasing again. Before the contour deviated from its circular shape, the initial vertical

velocity can be estimated using the thin ring model from Chang & Llewellyn Smith (2018):

∂Zc
∂t

=
Γ

4πR

(
ln

8

S
− 1

2
+

1

4

ρ2
ρ1

)
,
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where Γ is the circulation and the expansion rate of the ring can be estimated by

∂Rc

∂t
=

(
1− ρ2

ρ1

)
πa2g

Γ
,

which are plotted by dashed lines in figure 3.11 for S = 0.05. Then Rc expanded rapidly

before t = 0.4, then diminished a little before resuming its expansion. While the current

calculations eventually fail, for a thin ring Pedley (1968) has shown that the radius of a

buoyant ring increases as
√
t when t→∞.

The vertical acceleration can be calculated by differentiating ∂Zc/∂t:

∂2Zc
∂t2

= − Γ

4πR2

(
ln

8

S
− 1

2
+

1

4

ρ2
ρ1

)
∂R
∂t
− Γ

4πR
1

S

∂S

∂t
,

=
a2g

4R2

(
1− ρ2

ρ1

)(
− ln

8

S
+ 2− 1

4

ρ2
ρ1

)
,

(3.48)

where the continuity equation gives −2S−1∂S/∂t = 3R−1∂R/∂t. Scaling (3.48) by U2
c /a0,

the acceleration of a thin ring due to buoyancy is

(
1− ρ2

ρ1

)
S2

4Fr 2

(
− ln

8

S
+ 2− 1

4

ρ2
ρ1

)
.

3.4.4 Centroid and circulation

We now present some quantitative results of contour evolution. Two integral quan-

tities are used to quantify vortex motion and dynamics: the centroid and the circulation.

The centroid of the vortical core is calculated using the formula (Pozrikidis, 1986):

R2
c =

∮
R3Zt · r ds∮
RZt · r ds

, Zc =

∮
R3Z2t · r ds

2
∮
R3Zt · r ds

. (3.49)
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Figure 3.10: Evolution of contour with aspect ratio S = 0.2, 0.1, 0.05, respectively.
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To control the strength of buoyancy, we set Fr = 0.3 and increase A from 0.3 to 1.

Figure 3.12 shows the evolution of the centroid (Rc, Zc). Buoyancy increases the speed of

the vortex ring in the vertical direction and expands the ring. The speed of translation

for A = 0.3 is a constant and Zc is almost linear in time. When A is increased, the ring

accelerates slightly. The slope of Zc becomes steeper in time for A > 0.3, which indicates

that a stronger buoyancy accelerates the vortex ring in the vertical direction. The growth

of Rc shown in figure 3.12 indicates the expansion of the vortex ring, which increases as

buoyancy strengthens.

The evolution of circulation Γ and its derivative are plotted in figure 3.12. The
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circulation of a buoyant vortex ring has contributions from both patch and sheet, with

Γ = Γp +

∮
γ dξ, Γp = Ω

∮
R2t · z ds, (3.50)

where Γp is the part from the vortex patch computed using the contour integral given in

Pozrikidis (1986). The sign is reversed because we evaluate the integral clockwise. The

circulation contributed by the vortex sheet is calculated by integrating γ along the contour.

When there is no density difference and buoyancy, circulation is conserved according to

Kelvin’s circulation theory, i.e. Γ = Γp and dΓ/dt = 0. The material derivative of Γ can

be obtained by integrating (3.34) along the contour. For the Boussinesq case, there is only

one term on the right-hand side,

dΓ

dt
= −2

A

Fr 2

∮
Lt · z dξ, (3.51)

and dΓ/dt is a function of the shape of the contour only. The shape is characterized by

the local tangent t and the metric L. For the non-Boussinesq case, dΓ/dt also requires

integration over the dynamic-coupled and the quadratic terms, which are functions of γ

and the dynamics of the contour. For A = 0.3, the rate of change of the circulation is

approximately zero in figure 3.12. For larger values of A, the circulation decreases. This

can be compared to the contours shown in figure 3.9. As the contours evolve and are

deformed into two lobes, the vorticity on the contour is swept into the region between

the two lobes and accumulate. The net effect is a negative circulation contributed by the

vortex sheet. With Γp kept constant, the total circulation then drops. The circulation for

A = 1 and Fr = 0.3 reached a minimum at t = 0.145 then increases beyond its initial

value.
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Figure 3.13: Evolution of contour for positive, zero, and negative Ω from left to right
respectively. S = 0.6, A = 0.3, We =∞.

3.4.5 Calculations for Ω ≤ 0

The results we have shown so far are for Ω > 0, for which the ring is moving

upward against gravity. Other possibilities include Ω = 0, when the vorticity inside the

core vanishes and the vortex ring is “hollow”, and Ω < 0, for which the vortex ring moves

downward when there is no buoyancy. We calculate both cases and compare them to the

Ω > 0 case in figure 3.13. For Ω > 0 and Ω < 0, we set |Ω| = 6.7392 so that Fr = 1. The

Froude number is greater than that used in figure 3.7, so the bulk vorticity inside the core

is more dominant here than the cases shown in figure 3.7 (Fr = 0.3). The contour still

bent inward from the bottom, but it did not evolve into two counter-rotating rollups like a

mushroom structure. Instead a single rollup, located on the inner half (closer to the axis of

symmetry) and rotating counter-clockwise, appeared first. The outer half (away from the

axis of symmetry) moved slower and is dragged behind the inner half. When the continuous

vorticity Ω inside vanishes, we observe a different behaviour: a rollup rotating clockwise

appeared on the outer half of the contour earlier than its counter-clockwise counterpart.

This might show that the two counter-rotating rollups appeared in the Fr = 0.3 are
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Figure 3.14: Evolution of (a) centroid: (Rc, Zc) and (b) the trajectories for Ω > 0;
—, Ω = 0; - -, Ω < 0; · –.

associated with the dominant balance between the bulk vorticity (vortex ring) and the

vortex sheet (density and gravity) respectively. When the bulk vorticity dominates, the

counter-clockwise rollup appears, while when vortex sheet dominates the clockwise rollup

emerges first. The expansion of the ring radius and the vertical speed of the ring are also

decreased when the continuous vorticity vanishes (figure 3.14).

If we reverse the direction in which vortex ring travels by setting Ω = −6.7392,

the contour moved downward initially as shown in figure 3.13. This downward movement

reversed at t ≈ 0.4 where Zc started to increase (figure 3.13). A clockwise rollup emerged

and the end of calculation at t = 0.7 indicating vortex sheet grown to a stage that took

over the dominance on the evolution of the contour. A long lobe close to the axis of

symmetry can be seen being dragged behind as the bulk motion of the contour moves up.
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3.4.6 Energy conservation

The kinetic energy of the flow associated with the vortex sheet is

Ts = (ρ1 − ρ2) π
∮
ψ u · tL dξ + (ρ1 + ρ2)π

∮
ψγ

2
dξ, (3.52)

while the contribution from vortex patch can be calculated as a contour integral, as in

(A3) of Pozrikidis (1986). The potential energy is

U = π(ρ2 − ρ1)g
∮
RZ2∂R

∂ξ
dξ. (3.53)

(See appendix A.2 for detailed derivations.) In the absence of surface tension, the total

energy (kinetic plus potential) is conserved under inviscid dynamics. The volume, which

should also be constant in time, is numerically well conserved. For ρ1 = ρ2 and for the

Boussinesq case shown in figure 3.15(a,c) respectively, this is true for energy. In the non-

Boussinesq case, the numerical conservation of total energy is limited (see figure 3.15 b).

It is conserved well until a certain time of integration, which decreases as A increases. For

A = 0.3 shown in figure 3.15(b), total energy is conserved until around t = 0.35, whereas

it is conserved when t < 0.6 for A = 0.1 and when t < 0.12 for A = 0.7. The numerical

failure of energy conservation must be due to the extra terms in the non-Boussinesq cases:

the dynamic-coupled term (t · du/dt) and the quadratic term (∂γ2/∂ξ). The numerical

problem could be due to a number of reasons including the desingularisation used in the

numerical method, the growth of γ and the possible appearance of singularities discussed

in § 4.2 (see figure 6). We also observed the Fourier spectrum filling up in figure 5: the

numerical growth of high modes is correlated to the failure of energy conservation. Further

study of the limitations of energy convervation is left as future work.
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Figure 3.15: Ω = 0, (a) A = 0; (b) A = 0.3; (c) Boussinesq calculation for A = 0.3.
Potential energy; —, kinetic energy; - -, potential plus kinetic energy; · · · .
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3.5 Conclusion

We have presented theoretical and numerical results on the motion of a buoyant

vortex ring in the non-Boussinesq regime. We derived a vortex sheet equation in (3.28)

from the Euler equation. A set of coupled integro-differential equations, (3.5), (3.11),

(3.13) and (3.28), is used to calculate the motion of a buoyant vortex ring. The nondi-

mensionalized vortex sheet equation in (3.34) contains three dimensionless parameters:

the Atwood number, A, the Froude number, Fr and the Weber number, We, representing

different physical effects. When A and Fr are both small, the flow is in the Boussinesq

limit; the vortex sheet is dominated by the gravity term and decoupled from the dynam-

ics of the contour. The problem moves into the non-Boussinesq regime when A and Fr

becomes moderate to large. In this regime, the γ equation is coupled with du/dt. The

apparent emergence of curvature singularities limits the validity in time of our numerical

calculations, as discussed in § 3.4.2

Our numerical results show that the contour can deform drastically when the vor-

tex sheet is present. Numerical results are obtained for both the Boussinesq and non-

Boussinesq cases where the Atwood and the Froude numbers are small to moderate. Cal-

culations for large Froude number and Atwood number close to one have been attempted

but the results are very limited. In § 3.4.3 we pointed out that a shock-like discontinuity

in the vortex sheet strength γ leads to numerical failure for those cases. This does not

appear to be a curvature singularity, although this may be an artifact of the blob method,

since Baker & Xie (2011) showed curvature singularities approaching the real axis in the

complex plane for A = 1. Our results for small to moderate Atwood and Froude numbers

show how the motion of vortex rings deviate from a classic steady solution into nonlinear

evolution when adding density effect and buoyancy. The core of the vortex ring is deformed

in such a fashion that the surrounding fluid squeezes in from the bottom. In some cases, a

mushroom-like pattern develops with two counter-rotating roll-ups on the contour. Surface
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tension is given in our formulation, but we did not include it in the numerical results. The

numerics for surface tension requires careful treatment, so the present work emphasized

the effects of density and buoyancy. Our results give insights into flows dominated by

buoyancy and vorticity, which have implications on geophysical and environmental fluid

dynamics. Possible future work includes investigations of the stability of these vortex

rings, the effect of surface tension, and as an investigation of curvature singularities in

axisymmetry. These last two work would require the development of a numerical method

that is robust in the presence of surface tension and that does not use blobs, e.g. adapting

the midpoint rule used by Baker & Nachbin (1998) to work in axisymmetric geometry.

Chapter 3, in full, has been published in the Journal of Fluid Mechanics, “Ax-

isymmetric contour dynamics for buoyant vortex rings” by C. Chang and S. G. Llewellyn

Smith, 2020, 887, A28 (Cambridge University Press). The dissertation author was the

primary investigator and author of this material.
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Chapter 4

Effects of density and surface tension

on curvature instability of a vortex

ring

The curvature instability of thin vortex rings is a parametric instability discovered

from short-wavelength analysis by Hattori & Fukumoto (2003). A full-wavelength analysis

using normal modes then followed in Fukumoto & Hattori (2005). This chapter extends

the calculation to the case with different densities inside and outside the vortex core in the

presence of surface tension. The maximum growth rate and the instability half-bandwidth

are calculated from the dispersion relation given by the resonance between two Kelvin

waves of m and m + 1, where m is the azimuthal wavenumber. The result shows that

vortex rings are unstable to resonance waves in the presence of density and surface tension.

The curvature instability for the principal modes is enhanced by density variations in the

small axial wavenumber regime, while the asymptote for short wavelengths is close to the

constant density case. The effect of surface tension is marginal. The growth rates of

non-principal modes are also examined and long waves are most unstable.
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4.1 Introduction

Vortices are coherent fluid entities that can transport properties and mass through

an ambient fluid. A number of geometries such as vortex columns, vortex rings, and

helical vortices have been the focus of specific study. Given their apparent vulnerability

to small fluctuations and susceptibility to disruption, their stability has drawn attentions

from scientists and engineers, including the laboratory experiments of Maxworthy (1972,

1977); Widnall & Sullivan (1973) on vortex rings, and the theoretical studies of Widnall

& Bliss (1971); Widnall (1972) on helical vortices. For vortex rings, Widnall et al. (1974)

found that a vortex ring is unstable to bending waves. (see also Widnall & Tsai, 1977;

Saffman, 1978).

We start our discussion with the simplest three-dimensional geometry. A straight

vortex column with uniform vorticity inside its core is the simplest geometry in which

to study the three-dimensional instabilities of vortices. Infinitesimal disturbances of this

basic state of a vortex column are found to be neutrally stable and called Kelvin waves

(see Saffman, 1992, § 12.1). However, an instability mechanism proposed by Widnall et al.

(1974) showed the potential for instability: if a vortex column is perturbed by a small

parameter, ε, to account for a small geometric or physical effect, the resulting steady-

state solution can be written as a perturbation series of ε. This basic solution is then

disturbed by Kelvin waves, which can interact with the O(ε) part of the basic state,

potentially leading to instabilities. For example, a vortex column subjected to the external

strain field (εy,−εx, 0) perpendicular to the axis of the vortex column, is unstable as was

discovered by Moore & Saffman (1975) and Tsai & Widnall (1976). This is known as the

Moore–Saffman–Tsai–Widnall (MSTW) instability. The strained vortex column disturbed

by Kelvin waves whose interaction leads to a resonance between two Kelvin waves with

azimuthal wavenumber separated by 2. This resonance leads to the exponential growth of

infinitesimal waves. The MSTW instability has been studied extensively in, e.g. Eloy & Le
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Dizès (2001); Fukumoto (2003), and is related to the elliptic instability in the short-wave

limit (see Bayly, 1986; Waleffe, 1990; Leweke & Williamson, 1998).

The same perturbation expansion in ε can be used for the stability analysis of a

thin vortex ring. For a thin vortex ring, ε is defined as

ε =
a

R
(4.1)

where a is its core size and R is the ring radius. If ε � 1, the ring appears locally as

a vortex tube perturbed by small curvature ε. We obtain the basic state solution for

a vortex ring as an expansion in ε. Using the coordinates in figure 4.1, the resulting

instability problem was first set up for a thin vortex ring with an uniform core in Widnall

& Tsai (1977). Their short-wavelength analysis shows that the MSTW instability arises

from the interaction between Kelvin waves and the basic state at O(ε2). They concluded

that the MSTW instability is responsible for the instability of a thin vortex ring observed

in the experiments of Widnall & Sullivan (1973). However Hattori & Fukumoto (2003)

discovered another instability that they named curvature instability. They showed that

disturbances are then also unstable in the short-wavelength limit by calculating the growth

rate using the geometric optics method. Fukumoto & Hattori (2005) then carried out a

normal mode analysis using the setup of Widnall & Tsai (1977). A dipole field arising

from the basic state in O(ε) leads to resonances between two Kelvin waves of wavenumber

separated by 1 and instability emerges. All possible resonant pairs of Kelvin waves with

azimuthal wavenumber m and m + 1 were examined, and larger m were found to be

more unstable. Fukumoto & Hattori (2005) also argued that curvature instability is more

unstable than the MSTW instability for a uniform core when ε� 1.

Recent studies have examined vortices with a non-uniform core: Blanco-Rodriguez

& Le Dizès (2016) and Blanco-Rodriguez & Le Dizès (2017) use Gaussian distributions of
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vorticity for the vortex core and subjected to elliptic and curvature instabilities. Hattori,

Blanco-Rodriguez & Dizès (2019) studied the short-wavelength instabilities of a vortex

ring with Gaussian distributions of vorticity and swirl. They found from direct numerical

simulations that only the elliptic instability is observed when there is no swirl flow, while

the curvature instability emerges when swirl is present but is limited to certain wavenumber

range. This is the first numerical evidence confirming the curvature instability of a vortex

ring.

All the studies above are for constant-density flows. There are, however, many

example of vortex rings in natural and industrial situations for which density effects are

important. Vortex rings generated by density differences are examples of thermals (Turner,

1973), and are important in geological and environmental safety applications. (Saffman,

1992, § 5.8) discusses the motion of buoyant vortex rings using conserved quantities, while

Baumann et al. (1992) examines their fall. Dolphins are known to create air-filled bubble

rings (Marten et al., 1996). Once created, these thin hollow rings seem to survive until the

dolphins destroy them, raising the question of their stability. Here we aim to extend the

linear stability analysis to a vortex ring with density differing from that of its ambient.

The densities are unequal but constant inside and outside the core. Surface tension

is also considered. This configuration is consistent with previous work, and we follow

them by taking a Rankine vortex as the ring’s core. In present chapter, we follow the

calculation in Fukumoto & Hattori (2005) and carry out a normal mode analysis for the

curvature instability. In § 4.2, the linearised governing equations and boundary conditions

for infinitesimal disturbances are given. The basic state solution as a perturbation series

up to O(ε) is also given. We discuss Kelvin waves with densities and surface tension in

§,4.3. The growth rate and the half-bandwidth of the curvature instability and numerical

examples are presented in § 4.4. We draw conclusions in §,4.5 and return to the MSTW

instability in the next chapter.
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Figure 4.1: (a) Top view of a thin vortex ring and (b) a cross-section view of the
xy-plane. The ring moves in the x-direction (θ = 0).

4.2 Formulation

A vortex ring with radius R and core size a is considered. The core is taken to be

thin, so that ε = a/R� 1. The outer region and the vortical core have constant densities

ρ1 and ρ2 respectively. The circulation around the core is Γ. The problem is nondimen-

sionalized using length scale a, velocity scale Uc = Γ/(2πa), and time scale 2πa2/Γ, while

the pressure scale is taken to be ρ2(Γ/2πa)2. The velocity potential describing the outer

irrotational flow is scaled by Γ/2π.

Density differences in the presence of a gravity field lead to buoyancy effects acting

on the vortex ring. However, buoyant vortex rings (whether light or heavy, ρ1 6= ρ2) do

not move steadily (see e.g. Turner, 1957; Pedley, 1968; Chang & Llewellyn Smith, 2018).

Light vortex rings expand with the radius growing like
√
t, and the speed slows down as

t−1/2 ln t. To avoid this complication, we consider buoyancy to have a slowly-varying effect

so that the mean flow is “frozen” in time. This is justified on the basis that the Froude

number

Fr =
Γ/(2πa)
√
ag

is very large. The time scale of the rotational motion inside the core ∼ a2/Γ, while the

time scale of buoyant motion is ∼
√
a/g. Then

√
a/g � a2/Γ is equivalent to Fr � 1,
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so the vortex ring can be considered frozen on the time scale of a2/Γ. Therefore, gravity

term is omitted in the governing equations.

4.2.1 Governing equations

Following Fukumoto & Hattori (2005), we use a coordinate system (r, θ, s) co-

moving with the ring, as shown in figure 4.1, with velocity u = (u, v, w). The undisturbed

core boundary is taken to be r = 1. Since the core is rotational, the governing equations

in the inner region are the Euler equations,

∇ · u = 0,
∂u

∂t
+ u · ∇u = −∇p. (4.2)

Vorticity is zero outside the core of the vortex ring, and the Laplace equation in the outer

irrotational region is

∇2Φ = 0, (4.3)

where Φ is the velocity potential.

In the (r, θ, s) coordinates the Euler equations become

∂u

∂t
+ u · ∇u− v2

r
− εw

2 sin θ

hs
= −∂p

∂r
, (4.4)

∂v

∂t
+ u · ∇v +

uv

r
− εw

2 cos θ

hs
= −1

r

∂p

∂θ
, (4.5)

∂w

∂t
+ u · ∇w + ε

w(u sin θ + v cos θ)

hs
= − 1

hs

∂p

∂s
, (4.6)

where hs = 1 + εr sin θ, and

u · ∇ = u
∂

∂r
+
v

r

∂

∂θ
+
w

hs

∂

∂s
. (4.7)
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The continuity equation is

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+

1

hs

∂w

∂s
+

ε

hs
(u sin θ + v cos θ) = 0. (4.8)

Outside the core, Laplace’s equation becomes

1

r

∂

∂r

(
r
∂Φ

∂r

)
+

1

r2
∂2Φ

∂θ2
+

1

h2s

∂2Φ

∂s2
+

ε

hs

(
sin θ

∂Φ

∂r
+

cos θ

r

∂Φ

∂θ

)
= 0. (4.9)

4.2.2 Boundary conditions

The boundary of the vortex is taken to be r = F (θ; ε), where F (θ; ε) will be found

as part of the solution. The inner and outer solutions are matched on the core boundary.

For inviscid flows, the matching conditions are given by the kinematic and the dynamic

conditions. The kinematic condition is

D

Dt
(r − F )

∣∣∣∣
r→F−

=
D

Dt
(r − F )

∣∣∣∣
r→F+

= 0, (4.10)

where D/Dt is the usual Lagrangian time derivative and ± represent the inside and outside

of the boundary, respectively.

The dynamic condition relates the jump in pressure across the boundary to surface

tension. Because the outer flow is irrotational, we can use the unsteady Bernoulli equation

to express the pressure there in terms of a velocity potential. Taking pressure to vanish

at infinity without loss of generality, one obtains

ρ2
ρ1
p+

∂Φ

∂t
+

1

2
|∇Φ|2 = S∇ · n. (4.11)

Here S is dimensionless surface tension σ/[ρ1a(Γ/2πa)2] and n = ∇(r − F )/|∇(r − F )| is

the outward normal vector on the boundary.
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4.2.3 The mean flow solution

Linear stability analysis needs a steady state solution as a base to be “perturbed”

by infinitesimal disturbances. At O(1), a steady solution exists describing the vortex ring

in a moving coordinate system. The solution (written using uppercase letters) can be

obtained as a perturbation series in ε:

U = U 0 + εU 1 + · · · , P = P0 + εP1 + · · · , Φ = Φ0 + εΦ1 + · · · , (4.12)

as in § 2 of Fukumoto & Hattori (2005) who take ρ1 = ρ2. The leading-order solution

corresponds to a vortex column perturbed by the small dimensionless curvature of the

vortical core. The shape of the boundary is formally expanded in ε, but is taken to be

circular, so that the expansion is redundant.

Here we use the same basic state with a correction for ρ1 6= ρ2. A normal mode

analysis of the disturbances then leads to a dispersion relation and possible instability. We

now obtain the basic solution for the stability calculation using (4.12). The leading-order

mean flow solution is the Rankine vortex with velocity and pressure fields

(U0, V0,W0) = (0, r, 0), P0 =
1

2

(
r2 − 1− ρ1

ρ2

)
+
ρ1
ρ2
S (4.13)

inside the core (r < 1). The boundary of the vortex is circular, so that F0 = 1. The

velocity potential outside (r > 1) is

Φ0 = θ. (4.14)

Curvature leads to the following O(ε) contribution to the mean flow:

U1 =
5

8
(1− r2) cos θ, V1 =

1

8
(7r2 − 5) sin θ, P1 =

(
3

8
r3 − 5

8
r

)
sin θ (4.15)
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Basic solution, U = O(1) Disturbances, ũ = O(δ)

U = U 0 + εU1 + · · · , ũ = ũ0 + εũ1 + · · ·

O(1) solution: vortex column, U 0 Kelvin waves, ũ0 = O(δ)

O(ε) solution: thin vortex ring, U 1 Resonances, ũ1 = O(δε)

Figure 4.2: Schematic structure of the present calculation. The basic state solution
is given as a perturbation series in ε.

in the inner region, while the outer solution is a dipole field:

Φ1 =
1

8

[
2

(
r − 1

r

)
− ρ2
ρ1

(
r +

1

r

)
− 4S

(
r +

1

r

)
− 4r log r

]
cos θ. (4.16)

The shape of the boundary has been taken to remain circular to O(ε), i.e. F1 = 0. See

appendix B.1.1 for detailed calculations yielding (4.13)–(4.16). The mean flow solution

can be compared to the result of Fukumoto & Hattori (2005) by taking ρ2/ρ1 = 1 and

S = 0.

4.2.4 Linearised equations and boundary conditions for infinites-

imal disturbances

We disturb the mean flow derived in the previous subsection, and write

U + ũ, V + ṽ, W + w̃, P + p̃, Φ + φ̃, (4.17)

where the disturbed boundary is r = F + f̃ . The structure of the solution is outlined in

figure 4.2. Disturbances, denoted by tilde, are O(δ) compared to the mean flow with δ � 1.

In parallel, the solution is expanded in ε, the small non-dimensional core size. For this
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stability analysis, we are interested in disturbances at O(δ) and O(δε). The vortex column

solution given by U 0 is neutrally stable, supporting Kelvin waves ũ0. However, when a

small parameter ε is introduced, instability can be excited corresponding to resonance or

parametric instability. Disturbances are decomposed into normal modes in s and t, that

are expanded in ε as

ũ = (ũ0 + εũ1 + · · · )ei(ks−ωt), (4.18)

p̃ = (p̃0 + εp̃1 + · · · )ei(ks−ωt), (4.19)

φ̃ = (φ̃0 + εφ̃1 + · · · )ei(ks−ωt), (4.20)

where the real part is implicit with no loss of generality. The wavenumber and the fre-

quency are also expanded as

k = k0 + εk1 + · · · , ω = ω0 + εω1 + · · · . (4.21)

The core boundary disturbance is

f̃ = (f̃0 + εf̃1 + · · · )ei(ks−ωt). (4.22)

Since the disturbances (ũ, p̃, φ̃) are small compared to the basic solution (U , P,Φ), (4.6)–

(4.9) can be linearised.

O(δ) linearised equations and boundary conditions

The linearised equations for disturbances at O(δ) are

−iω0ũ0 +
V0
r

∂ũ0
∂θ
− 2V0ṽ0

r
= −∂p̃0

∂r
, (4.23)
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−iω0ṽ0 +
V0
r

∂ṽ0
∂θ

+

(
∂V0
∂r

+
V0
r

)
ũ0 = −1

r

∂p̃0
∂θ

, (4.24)

−iω0w̃0 +
V0
r

∂w̃0

∂θ
= −∂p̃0

∂s
, (4.25)

1

r

∂

∂r
(rũ0) +

1

r

∂ṽ0
∂θ

+
∂w̃0

∂s
= 0 (4.26)

inside and

1

r

∂

∂r

(
r
∂φ̃0

∂r

)
+

1

r2
∂2φ̃0

∂θ2
+
∂2φ̃0

∂s2
= 0 (4.27)

outside the core. The linearised boundary conditions at r = 1 are

ũ0 =
∂φ̃0

∂r
= −iω0f̃0 +

∂f̃0
∂θ

, (4.28)

ρ2
ρ1
p̃0 − iω0φ̃0 +

∂φ̃0

∂θ
=

(
1− ρ2

ρ1

)
f̃0 − S

(
∂2f̃0
∂θ2
− k20 f̃0

)
. (4.29)

The solutions to this problem are Kelvin waves, as detailed below and in appendix B.2.

O(δε) linearised equations and boundary conditions

We proceed to O(δε). The inner solution satisfies

−iω0ũ1 +
∂ũ1
∂θ
− 2ṽ1 +

∂p̃1
∂r

=

(
iω1 −

∂U1

∂r

)
ũ0 − U1

∂ũ0
∂r
− V1

r

∂ũ0
∂θ

(4.30)

−
(

1

r

∂U1

∂θ
− 2V1

r

)
ṽ0,

−iω0ṽ1 + 2ũ1 +
∂ṽ1
∂θ

+
1

r

∂p̃1
∂θ

=

(
iω1 −

1

r

∂V1
∂θ
− V1

r

)
ṽ0 − U1

∂ṽ0
∂r
− V1

r

∂ṽ0
∂θ

(4.31)

−
(
∂V1
∂r

+
V1
r

)
ũ0,

−iω0w̃1 +
∂w̃1

∂θ
+ ik0p̃1 =− i(k1 − k0r sin θ)p̃0 + (iω1 − r cos θ)w̃0 (4.32)

− U1
∂w̃0

∂r
− V1

r

∂w̃0

∂θ
,

∂ũ1
∂r

+
ũ1
r

+
1

r

∂ṽ1
∂θ

+ ik0w̃1 = −i(k1 − k0r sin θ)w̃0 − ũ0 sin θ − ṽ0 cos θ. (4.33)
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The velocity potential outside satisfies

∂2φ̃1

∂r2
+

1

r

∂φ̃1

∂r
+

1

r2
∂2φ̃1

∂θ2
− k20φ̃1 = 2(k0k1 − k20r sin θ)φ̃0 − sin θ

∂φ̃0

∂r
− cos θ

r

∂φ̃0

∂θ
. (4.34)

The linearised boundary conditions at r = 1 are

−iω0f̃1 +
∂f̃1
∂θ
− ũ1 =iω1f̃0 − V1

∂f̃0
∂θ

+
∂U1

∂r
f̃0, (4.35)

ũ1 =
∂φ̃1

∂r
, (4.36)

ρ2
ρ1
p̃1 − iω0φ̃1 +

∂φ̃1

∂θ
=iω1φ̃0 −

∂Φ1

∂θ

∂φ̃0

∂θ
+

(
1− ρ2

ρ1

)
f̃1 + 2S sin θf̃0 (4.37)

− S

(
∂2f̃1
∂θ2
− k20 f̃1 − 2k0k1f̃0 + 2 sin θ k20 f̃0 + cos θ

∂f̃0
∂θ

)
.

The dispersion relations at O(δ) and O(δε) are obtained from (4.28–4.29), and

(4.36–4.37) respectively. The condition (4.35) is used only to determine the boundary

shape f̃1, and is not required to calculate the dispersion relation when surface tension

term vanishes (Fukumoto & Hattori, 2005).

4.3 O(δ) solution: Kelvin waves on a vortex column

The disturbances satisfying (4.23)–(4.27) are written as

ũ0(r, θ) = u
(m)
0 (r)eimθ, p̃0(r, θ) = p

(m)
0 (r)eimθ, φ̃0(r, θ) = φ

(m)
0 (r)eimθ, (4.38)

where m is the azimuthal wavenumber. The solution at leading order is a Kelvin wave,

described in appendix B.2. The Kelvin waves are coupled to the dipole field (4.15)–(4.16)

through the right-hand sides of (4.30)–(4.34). When two Kelvin waves with wavenumber

m and m + 1 appear in the forcing terms on the right-hand side of (4.30)–(4.34), the
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Figure 4.3: Dispersion curves for the Kelvin wave with m = 1 for density ratios from
one to zero. Red curves are cograde branches and blue curves are retrograde branches.
Only the first five branches are plotted, which have the largest value of |ω0−m| in each
of the cograde and retrograde modes. An isolated branch (thick black curve) can be
seen emanating from (k0, ω0) = (0,m− 1). Surface tension is zero for all plots.

solution at the O(δε) will possess modes for m− 1, m, m+ 1 and m+ 2. We focus on the

resonance between pairs of Kelvin waves (m,m+ 1) in this study.

The solution (B.16) and (B.18) contains the amplitudes of Kelvin waves, α0, β0,

that are determined using the boundary conditions. The boundary conditions (4.28) and

(4.29) for wavenumber m become

−i(ω0 −m)f
(m)
0 = u

(m)
0 =

dφ0

dr

(m)

, (4.39)

ρ2
ρ1
p
(m)
0 − i(ω0 −m)φ

(m)
0 =

(
1− ρ2

ρ1

)
f
(m)
0 + S(m2 + k20)f

(m)
0 . (4.40)
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Substituting p
(m)
0 , u

(m)
0 , φ

(m)
0 and f

(m)
0 (see appendix B.2) into the equations above,

we obtain a set of homogeneous linear equations for α
(m)
0 and β

(m)
0 . For non-trivial α

(m)
0

and β
(m)
0 , the determinant must be zero, which gives the dispersion relation for mode m:

[
1 +

E1

(ω0 −m)2

(
m− k0

Km+1(k0)

Km(k0)

)]
Jm+1(η1) =

{
−m ω0 −m

ω0 −m+ 2

+

[
ρ2
ρ1
− E1

m

(ω0 −m)(ω0 −m+ 2)

](
m− k0

Km+1(k0)

Km(k0)

)}
η1
k20

Jm(η1), (4.41)

where

E1 = 1− ρ2
ρ1

+ S(k20 +m2).

Here Jm is the Bessel function of the first kind and Km is the modified Bessel function of

the second kind; η1 is the radial wavenumber for the Kelvin wave defined in (B.17). For

the m+ 1-wave, the boundary conditions are the same formulas as in (4.40) except that m

is replaced by m+ 1, and similarly for the solution in appendix B.2. Using the boundary

conditions and the solution for the m+ 1-mode, we obtain the dispersion relation,

[
1− E2

(ω0 −m− 1)2

(
m+ 1 + k0

Km(k0)

Km+1(k0)

)]
Jm(η2) =

{
−(m+ 1)

ω0 −m− 1

ω0 −m− 3

+

[
ρ2
ρ1

+ E2
m+ 1

(ω0 −m− 1)(ω0 −m− 3)

](
m+ 1 + k0

Km(k0)

Km+1(k0)

)}
η2
k20

Jm+1(η2), (4.42)

for it, where E2 = 1− ρ2/ρ1 + S[k20 + (m + 1)2] and η2 is also the radial wavenumber for

m+ 1.

If we set the density ratio to one and surface tension to zero, we can easily recover

(4.42) and (4.41) from the dispersion relation for Kelvin waves (B6 and B7 in Fukumoto &

Hattori, 2005). The dispersion curves for modes for m = 1 are plotted in figure 4.3 and 4.4

as functions of density ratio and surface tension. There are infinitely many branches of

cograde and retrograde modes for each Kelvin wave with wavenumber m. Figures 4.3

and 4.4 show the first five branches in each of the cograde and the retrograde modes. An
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isolated branch is also shown. We designate the branch with the largest value of |ω0−m| for

a given k0 as the first cograde/retrograde branch and then counting the branches toward

ω0 = m. So the uppermost cograde branch and the bottommost retrograde branch are

the first cograde and first retrograde modes. Every mode of m has cograde branches going

upward where ω0 > m and retrograde branches going downward where ω0 < m, plotted

in red and blue respectively. All the cograde and retrograde branches radiate out from

(k0, ω0) = (0,m) when ρ2/ρ1 = 1. There is an isolated branch starting from (0,m − 1)

that only appears when m 6= 0. In figure 4.3, we can see how decreasing the density

ratio from one to zero changes the dispersion relation of Kelvin waves: all the branches

move away from the centerline ω0 = m, the cograde ones shift toward ω0 = m + 2 and

the retrograde and isolated branches shift toward ω0 = m − 2. While the branches shift,

the starting point of all the branches remains the same. One exception is the outermost

cograde branch: its starting point moves from (0,m) upward to (0,m+1) when ρ2/ρ1 drops

to zero in figure 4.3. We refer this as “isolation” of the cograde mode. Similar changes are

also observed when surface tension increases from zero to one in figure 4.4: the cograde

branches move toward ω0 = m + 2, the retrograde and isolated branches move toward

ω0 = m − 2. The uppermost cograde mode departs from the other cograde modes and

becomes isolated. The impact of this change is that a intersection point could disappear

when (ρ2/ρ1, S) deviates from (1, 0) (see figure 4.5).

There is another significant change to the Kelvin waves with density and surface

tension: the top branches and the bottom downward branches, i.e. the first cograde mode

and the isolated mode respectively, have a real part ω0 that disappears at some point

(k0,m ± 2) on the top or the bottom edge of the plot. Since k0 is always real, the radial

wavenumber η1 = k0
√

4/(ω0 −m)2 − 1 is real only if ω0 ∈ (m − 2,m + 2). For the case

of ρ2/ρ1 = 1 and S = 0, all the branches lie between ω0 = m − 2 and m + 2, so the

Kelvin waves are always neutrally stable. When ρ2/ρ1 < 1 and S 6= 0, the isolated branch
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Figure 4.4: Dispersion curves for the Kelvin wave with m = 1 as surface tension
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reaches ω0 = m − 2 on the edge of the plot, for example at k0 = 4.2 in the plot for

S = 0.01 of figure 4.4. The uppermost cograde branch reaches ω0 = m + 2 at k0 ≈ 5.2.

For |ω0 −m| > 2, the radial wavenumber η1 becomes pure imaginary. We can replace it

by iλ1 where λ1 is real, then replace the Bessel function of the first kind Jm in (4.41) by

imIm(λ1). The new dispersion relation is real for |ω0 −m| > 2, and the upward cograde

branch and the downward isolated branch extend beyond ω0 = m± 2.

When two Kelvin waves for wavenumber differing by 1 resonate, all their branches

result in infinitely many intersection points when they cross through each other. As

mentioned in Fukumoto & Hattori (2005), only the intersection points between the cograde

modes m and the retrograde modes m + 1 are candidates for curvature instability; see

figure 4.5(a) for an example. For the convenience of discussion, we follow Fukumoto &

Hattori (2005) to define “principal modes”. The ith principal mode is referred to as the

intersection point of ith cograde and ith retrograde modes, and we indicate the first five

principal modes by black dots in figure 4.5. Their growth rates are larger than those of

other intersection points when ρ2/ρ1 = 1 and S = 0, so they will be the focus of our

curvature instability calculations. Although we will show later that they do not always

dominate over other intersection points when ρ2/ρ1 6= 1 or S 6= 0 (see §4.4). The reader

should be aware of that only four dots are shown for ρ2/ρ1 = 0.4 or below. This is due

to the “isolation” of the first cograde branch of m as discussed earlier. Since it is moving

away from the other cograde branches, it does not cross the first retrograde branch of m+1

anymore. The first principal mode then disappears. The migration of first few principal

modes and the disappearance of the first mode are demonstrated in figure 4.5 b.

Note that the “principal modes” refer here to the set of principal modes when

ρ2/ρ1 = 1 and S = 0. If we choose an arbitrary value of density ratio and plot its

dispersion curve, we will obtain a plot like that for ρ2/ρ1 = 0.4 in figure 4.5. By looking

at that single plot, we would not be able to see that a process of isolation had taken
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place, and another sequence of intersection points (just below the back dots) would have

been taken as principal modes by definition. Since our goal is to investigate the effects of

density and surface tension, we to keep track of the same sequence of intersection points,

the principal modes for ρ2/ρ1 = 1 and S = 0.

4.4 O(δε) solution: curvature as a small perturbation

The solution of the O(δε) disturbances governed by (4.30)–(4.34) is given in ap-

pendix C of Fukumoto & Hattori (2005). We do not reproduce it here, given its com-

plexity. The solution contains undetermined coefficients (wave amplitudes) α1, β1 which

must be non-zero. The boundary conditions in (4.36) and (4.37) are used to obtain the

dispersion relation. Note that in order to include surface tension, we need to compute f̃1

from (4.35) before using the second and the third equations for the dispersion relation. In

Fukumoto & Hattori (2005), f̃1 is not necessary since surface tension is omitted.

The result of substituting the O(δε) solutions for modes m and m+1 into (4.36) and

(4.37) and the O(δε) boundary disturbance f̃1 for the two modes is given in appendix B.3.

Using these results and requiring the coefficients α1, β1 not to vanish leads to the dispersion

relation for k1 and ω1. The detailed calculation is outlined in appendix B.3. The dispersion

relation takes the form given in (B.39). Given the cumbersome algebra which is impractical

to carry out manually, we use computer-aided symbolic algebra. We validate the result

obtained from symbolic algebra with the formulas for the maximum growth rate σ1max

and the instability half-bandwidth ∆k1 given in (2.23) and (2.24) of Fukumoto & Hattori

(2005). Unfortunately, the two new parameters, ρ2/ρ1 and S, lead to too much complexity

to check the formulas algebraically. Hence we compare our results with those of Fukumoto

& Hattori (2005) for specific values. Using the formulas returned by the symbolic algebra,

we calculate σ1max and ∆k1 for given values of m and (k0, ω0). Then we set ρ2/ρ1 = 1
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and S = 0 and compared the numbers with those from Fukumoto & Hattori (2005), as

shown in table 4.1 for m = 0 and table 4.2 for m = 5. Each row in the tables represents a

mode of resonance between a (m,m + 1) pair, while the first row corresponds to the first

principal mode. The results agree very well with Fukumoto & Hattori (2005) for each of

wavenumber m and principal modes.

4.4.1 Effect of density variations

In this section, we set surface tension to 0 and focus on the effect of density differ-

ences.

Heavy core: ρ2/ρ1 > 1

We first set examine ρ2/ρ1 > 1. In this case, the vortex ring core is denser than

the fluid surrounding it (for instance Rayleigh–Taylor instability could create vortex rings

when heavier fluid falls through a lighter fluid and rolls up; see e.g. Baker et al., 1980; Joly

et al., 2005). The first five principal modes for the resonance between (0, 1) and (5, 6) are

shown in figure 4.6(a), (b) respectively. For the (0, 1) resonance pair, the first principal

mode (blue) is most unstable. The growth rates of all five modes decrease sharply as

ρ2/ρ1 increases from 1 to 1.2. The first, second (red) and fifth (green) principal modes

then climb up and flat out as ρ2/ρ1 further increases to 100. The third (amber) principal

mode has a stable region between ρ2/ρ1 = 5.4 and 9.8, while the fourth (purple) principal

modes has a stable points at ρ2/ρ1 = 1.8.

For the resonance between the higher pair (m,m+1) = (5, 6) shown in figure 4.6(b),

the growth rate of all the modes increase between ρ2/ρ1 = 1 and 1.38, then remain almost

constant beyond ρ2/ρ1 = 2. Hence a dense vortex core is more unstable than one with

ρ2/ρ1 = 1.
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Figure 4.6: First five principal modes (k0, ω0) for (a, c) (0, 1); (b, d) (5, 6), the
maximum growth rate σ1max and the instability half-bandwidth ∆k1 are plotted versus
density ratio ρ2/ρ1 between (a, b) [1, 100]; (c, d) [0, 1]. The first to fifth principal modes
are blue, red, amber, purple and green curves.
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Light core: ρ2/ρ1 < 1

We then set the density ratio ρ2/ρ1 between 0 and 1, where zero corresponds to a

hollow core and one to for constant-density flow. For resonances between m = 0 and 1, we

calculate the first five principal modes (see figure 4.6c). The plot shows that instability

exists for the whole range of density ratios. The maximum growth rate of each principal

mode exhibits a maximum value between ρ2/ρ1 = 0.5 and 0.8, except for the first principal

mode (blue line) which has a maximum at ρ2/ρ1 = 0.2. The instability disappears for the

first principal mode when the density ratio is between 0.15 and 0.2.

The calculation is extended to include more principal modes of the (0, 1) pair with

wavenumber k0 up to 20 in figure 4.7(a). Each cross represents a principal mode and the

spectrum is discrete. The dotted line connects the principal modes with the same density

ratio. Note that for different curves, the value of k0 of the same ith principal mode will

vary because the position of principal mode shifts from case to case. The first five data

points of each curve correspond to the first five principal modes we showed in figure 4.6(c).

In general, the maximum growth rate σ1max decreases as k0 increases for all density ratios,

and they all tend to a same value roughly 0.02487 for large k0. The increase of instability

half-bandwidth is almost linear in k0.

For the higher wavenumber resonance pair for m = 5 and 6, the first five principal

modes are shown in figure 4.6(d). The first principal mode only exists for a density ratio

above 0.6 because the first cograde branch of the mode for m = 5 no longer crosses the first

retrograde branch of the mode for m = 6, as discussed earlier in § 3. We can see that the

first five principal modes have maxima of the growth rate near ρ2/ρ1 = 0.8–0.9. Compared

to the the lower-mode resonance, e.g. (0, 1), we see that the most unstable density ratio

is closer to one for a higher value of (m,m + 1) pair. The maximum of the growth rate

is slightly greater for large m and the unstable half-bandwidth ∆k1 is much wider. We

again extended the calculation for principal modes to k0 ≤ 20 in figure 4.7(b). The result
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Figure 4.7: Maximum growth rate σ1max and unstable half-bandwidth ∆k1 of principal
modes k0 < 20 for (m,m+1) = (a) (0, 1); (b) (5, 6). The black dashed line is the short-
wavelength asymptote (4.43) for ρ2/ρ1 = 1.
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is very different compared to the m = 0 case. The largest maximum growth rate and

widest unstable half-bandwidth appear at ρ2/ρ1 = 1. The first principal mode with the

lowest k0 is most unstable and the growth rate decays for higher principal modes. But

for density ratios less than one, the first principal mode has the lowest maximum growth

rate. The growth rate increases as k0 increases and converges to a value of 0.04904 as for

the case ρ2/ρ1 = 1. The unstable half-bandwidth also converge to a value close to that of

ρ2/ρ1 = 1. The short-wavelength asymptote for the growth rate for the case of ρ2/ρ1 = 1,

given in (5.1) of Fukumoto & Hattori (2005) as

σ1max ≈
15

64π2
+

√
15

32k0

[
m

π

(
21

8
+

1

π2

)
+

1

2

(
−9
√

15

64
+

21

8π
+

√
15

16π2
+

1

π3

)]
, (4.43)

is plotted in black dashed line in figures 4.7 and 4.10.

In general, density difference affects the curvature instability of a vortex ring, but

the change is only significant for the first few principal modes with smaller k0. For large

k0, the maximum growth rate and the instability half-bandwidth converge to those for

ρ2/ρ1 = 1. As pointed out by Fukumoto & Hattori (2005), local vortex stretching in

the toroidal direction (along s) is the mechanism for short-wavelength instability. The

stretching due to the local strain field is a kinematic mechanism so that should not be

affected by density. For long waves, the possible reason for increasing instability is that

the fore-aft symmetry of the vortex core is broken due to the distorted boundary (p. 87

in Fukumoto & Hattori, 2005). As shown in figure 4.8, the sausage-like distortion and

the asymmetric pressure on the vortex boundary could result in a pressure distribution in

s, and this nonuniform distribution of force acts to break up the ring. In the case of a

vortex core that is lighter than the outside fluid, the acceleration by the exterior pressure

is amplified because the same force is acting on a smaller mass (given the same volume of

the core), and the vortex becomes more unstable.

97



(a)

-1 0 1

-1

0

1

k
0
s = 0

-1 0 1
-1

0

1
k

0
s = 1.0472

-1 0 1
-1

0

1
k

0
s = 2.0944

-1 0 1

-1

0

1

k
0
s = 3.1416

-1 0 1
x

-1

0

1
k

0
s = 4.1888

-1 0 1
x

-1

0

1
k

0
s = 5.236

(b)

Figure 4.8: (a) The shape of disturbed boundary for the first principal mode of
the (0, 1) resonance at (k0, ω0) = (0.6647548585, 0.6183157195) and ρ2/ρ1 = 0.4; (b)
pressure contours at different meridional crosssections k0s. Red curves are disturbed
boundaries.
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Figure 4.9: First five principal modes (k0, ω0) for (a) (0, 1); (b) (5, 6), the maximum
growth rate σ1max and the instability half-bandwidth ∆k1 are plotted versus surface
tension S. ρ2/ρ1 = 0.2. The first to fifth principal modes are blue, red, amber, purple
and green curves.

4.4.2 Surface tension

We now include surface tension S in the calculation. Adding surface tension in-

troduces another degree of freedom into the parameter space. Calculations for the first

five principal modes are shown in figure 4.9. In the (0, 1) case, the first principal mode

(blue) is stable, while the growth rates of other four modes gradually decrease between

S = 10−2 and 1, and the second principal mode is the most unstable. The first principal

mode disappears near S = 100 due to the isolation of the first cograde mode from the

waves for m = 0 (cf. § 3). The first principal mode is absent in the (5, 6) resonance, again

because of isolation. The growth rates of other four principal modes for the (5, 6) reso-

nance vary when surface tension is less then 1 but become constant when S is greater than

1. Therefore, we pick two density ratios, ρ2/ρ1 = 0.2 and 0. Since (4.6) shows that results

do not vary for S > 1, we now let surface tension varies from zero to one and examine the

effect of different density ratios.
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The (0, 1) resonant pair with no surface tension is unstable for all density ratios

except for the first principal mode of ρ2/ρ1 = 0.2 (see figure 4.7a). Adding surface tension

does not change the growth rate significantly. The growth rate of the first few principal

modes decrease slightly, but for k0 > 6, the growth rates are identical with different surface

tension. For the density ratio ρ2/ρ1 = 0, the principal modes with higher k0 all have the

same growth rate. On the other end of the spectrum for smaller k0, the first principal

mode becomes stabilised when S = 1, while the second principal mode has the largest

growth rate.

A resonant pair of higher wavenumbers (5, 6) is shown in figure 4.11. In both

figure 4.11(a) and (b), surface tension barely changes the maximum growth rate and the

unstable half-bandwidth.. In the short-wavelength regime, the curves for different values

of surface tension collapse.

To summarise briefly from what we have demonstrated numerically: for resonant

pairs with small (m,m + 1), long waves with the smallest k0 are most unstable and the

growth rate decays to a constant for large k0. The largest growth rate occurs approximately

at ρ2/ρ1 = 0.2 for the most unstable mode, and other modes have maximum growth rate

between ρ2/ρ1 = 0.5 and 1. Surface tension has a small influence on the instability. For a

larger value of (m,m+1) pairs, e.g. the (5, 6) pair in figure 4.6(b), the instability is divided

into two regimes aroundρ2/ρ1 = 0.68: the principal mode with smallest wavenumber k0

has the largest growth rate when the density ratio is above 0.68, while it has the lowest,

but nonzero, growth rate when density ratio drops below 0.68. In both cases, the growth

rates converge to the same value for short wavelengths, when the effect of surface tension

is minimal.

100



0 5 10 15 20
k

0

0

0.05

0.1

1m
ax

S = 0
S = 0.0001
S = 0.001
S = 0.01
S = 0.1
S = 1
shortwave asymp

0 5 10 15 20
k

0

0

0.5

1

 k
1

(a)

0 5 10 15 20
k

0

0

0.05

0.1

1m
ax

S = 0
S = 0.0001
S = 0.001
S = 0.01
S = 0.1
S = 1
shortwave asymp

0 5 10 15 20
k

0

0.2

0.4

0.6

0.8

1

 k
1

(b)

Figure 4.10: Maximum growth rate σ1max and instability half-bandwidth ∆k1 for the
(0, 1) resonance, (a) ρ2/ρ1 = 0.2 and (b) ρ2/ρ1 = 0. Surface tension, S, increases from
0 to 1. The black dashed line is the short-wavelength asymptote (4.43) for ρ2/ρ1 = 1
and S = 0.
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Figure 4.11: Maximum growth rate σ1max and instability half-bandwidth ∆k1 for the
(5, 6) resonance, (a) ρ2/ρ1 = 0.2 and (b) ρ2/ρ1 = 0. Surface tension, S, increases from
0 to 1.
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4.4.3 Wave energy

We calculate the energy of a resonant pair of Kelvin waves using Krein’s theory of

parametric resonance (see Krein, 1950; MacKay, 1986). The instability can be predicted

by inspecting the energy of Kelvin waves without a calculation using the O(δε) dispersion

relation. A formula for the wave energy is given in Cairns (1979) and Fukumoto (2003):

E(m) = −π
2
ω0
∂D

∂ω0

∣∣∣f (m)
0

∣∣∣2 , (4.44)

where D is the dispersion relation obtained from (4.11) written in the form

Df
(m)
0 ei(mθ+ks−ωt) = 0. (4.45)

Here

D =(ω0 −m)2

ρ2
ρ1

(η1/k0)
2Jm(η1)

m
(

1− 2
ω0−m

)
Jm(η1)− η1Jm+1(η1)

− Km

k0Km+1 −mKm


+ 1− ρ2

ρ1
+ S(m2 + k20). (4.46)

This agrees with (7.6) in Fukumoto (2003) when ρ2/ρ1 = 1 and S = 0. (Fukumoto (2003)

use the Bessel function of order m − 1 in their formula while we use m + 1, but the two

are easily verified to be equivalent).

According to Krein’s theory, the resonance between modes for m and m + 1 is

unstable if the cograde mode for the m waves and the retrograde mode for m + 1 waves

possess energies of opposite sign, since resonance between a positive-energy and a negative-

energy wave is a necessary and sufficient conditions for instability (see Fukumoto & Hattori,

2005, §4.3). Figure 4.12 shows the first three cograde modes (solid red) and the first three

retrograde modes (dashed blue) for m = 5, 6 and ρ2/ρ1 = 0.1. All the cograde modes of

103



0 1 2 3 4 5 6 7 8 9 10
-5

0

5

E
/2

m = 5

0 1 2 3 4 5 6 7 8 9 10
k

0

-5

0

5

E
/2

m = 6

Figure 4.12: The energy of the first three cograde modes (solid) and the first three
retrograde modes (dashed) of Kelvin waves for m = 5, 6. The solid thick line is the
isolated mode.
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Figure 4.13: Maximum growth rate σ1max for the modes of the (5, 6) resonance with
variations of (a) ρ2/ρ1; and (b) S. Principal modes are marked by blue crosses while
other modes are red circles. The black dashed line is short-wavelength asymptotic
(4.43) for ρ2/ρ1 = 1 and S = 0.

m = 5 have positive energy while all the retrograde modes of m = 6 have negative energy,

therefore the first three principal modes created from their intersections are unstable.

4.4.4 Non-principal modes

As discussed in § 3 and demonstrated in figure 4.5, changing the value of (ρ2/ρ1, S)

from (1, 0) leads to the isolation of the first cograde branch of Kelvin wave for wavenumber

m. Once it migrates out of the region of ω0 ∈ (m,m + 1), it no longer intersects the first

retrograde branch of m + 1. As a result the first principal mode will no longer exist, so

that the sequence of principal modes now starts with the second principal mode. Our

discussion and calculations so far have been limited to those principal modes.

Growth rates for some non-principal modes are shown in figure 4.13. The nature of

the instability changes with the isolation of the first cograde branch of Kelvin waves. The

growth rates of principal modes are not always larger than that of non-principal modes for

ρ2/ρ1 = 0.8 (figure 4.13a, top-right) as they were in the case of ρ2/ρ1 = 1 (top-left), but
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Figure 4.14: Maximum growth rate for modes with ρ2/ρ1 ∈ [0.01, 100]. Blue, red,
amber and purple curves are for m = 2, 4, 8 and 16 respectively. The growth rate for
ρ2/ρ1 = 1 is indicated by a circle. The dashed line is the value 165/256 when m→∞
from Fukumoto & Hattori (2005).

the first principal mode is still the most unstable. As ρ2/ρ1 diminishes further, the first

principal mode disappears (figure 4.5) and the rest of principal modes are no longer the

most unstable for smaller k0, while remaining the most unstable in k0 → 20. The same

trend can be seen in figure 4.13(b) for surface tension variation. The most unstable mode

is the mode with the smallest value of k0, no matter whether it belongs to the sequence of

principal modes or not. This result indicates that a vortex ring is most unstable for the

longest wavelength able to fit inside its circumference when subject to curvature instability

given any pair of (ρ2/ρ1, S).

The maximum growth rate for all modes is shown in figure 4.14 as functions of

density ratio. The growth rate as m→∞ for ρ2/ρ1 = 1 from Fukumoto & Hattori (2005)
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Figure 4.15: Intersection points of pair (m,m + 1) = (2, 3). (a) ρ2/ρ1 = 0.4083; (b)
ρ2/ρ1 = 1 and (c) ρ2/ρ1 = 1.2. Principal modes are labeled by numbers; otherwise
are non-principal modes. The black dot is the mode that has the largest growth rate.
The most unstable mode switches from point 1 to the new mode causes the jump at
ρ2/ρ1 = 1.079 in figure 4.14.

is 165/256 = 0.64453125 (dashed line). In our calculation for ρ2/ρ1 6= 1, the growth rate

is not always bounded by that value. Taking m = 2 for example, a cusp at ρ2/ρ1 = 0.4786

can be observed in figure 4.14, where σ1max = 0.8013. This can be related to the isolation

of the first cograde mode from the other cograde modes for m (see figure 4.15 a, with the

first cograde branch in the top left corner). As discussed in §3, the isolation made the first

principal mode, i.e. the intersection point between the first cograde and the first retrograde

modes, moves toward ω0 = m+ 1. Once it has moved out of the domain ω0 ∈ (m,m+ 1),

the first principal mode disappears and a non-principal mode has the largest growth rate.

A steep drop of the curve to the left of the cusp in figure 4.14 correspond to this transition

of the largest growth rate from a principal mode to a non-principal mode. Another steep

elevation of growth rate is observed near ρ2/ρ1 = 1.079 because of a reversed version of

the isolation: when ρ2/ρ1 increases beyond 1, the isolated branch for m+ 1 wave migrates

upward to its retrograde branches. In that case the isolated branch intersects with the

cograde modes for m wave (see figure 4.15 c, with the isolated branch in the bottom left

corner), which creates a new set of non-principal modes including one with the largest

growth rate. The principal modes only possess the largest growth rate in the interval
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between the two “cliffs” where ρ2/ρ1 ∈ (0.4786, 1.079) in figure 4.14, and non-principal

modes have the largest growth rate in the rest of the region.

For other waves with wavenumber m > 2, the growth rate as a function of ρ2/ρ1 is

qualitatively similar. The growth rate for m = 4 has peak value 1.023 at ρ2/ρ1 = 0.5 for

m = 4. The range of ρ2/ρ1 where a principal mode is most unstable becomes narrower as

m increases. In the region away from the cusp, i.e. ρ2/ρ1 < 0.1, ρ2/ρ1 > 10 and ρ2/ρ1 = 1,

the growth rate is independent of ρ2/ρ1 and gradually approaches the value of 165/256 as

m increases. To the right of the plot, where ρ2/ρ1 > 10, the growth rate is higher then

that to the left, where ρ2/ρ1 < 0.1, e.g. σ1max = 0.3341 at ρ2/ρ1 = 100 compared to 0.2822

at ρ2/ρ1 = 0.01, and they are both higher than 0.2146 at ρ2/ρ1 = 1 for m = 2. That

indicates that a heavy core is more unstable than a light core. However, the difference

shrinks as m increases: for m = 8, it is σ1max = 0.4903 to 0.4885. The numerics were

unable to resolve beyond wavenumber m = 32 except for ρ2/ρ1 = 1.

4.5 Conclusion

We have carried out a linear stability analysis to investigate the density and surface

tension effects on a vortex ring, which is a generalisation of Fukumoto & Hattori (2005)’s

calculations for ρ2/ρ1 = 1 and S = 0. Curvature instability for the principal modes of

resonances between Kelvin waves for wavenumber m and m + 1 are calculated. In the

long-wavelength regime k0 < 10, the instability is enhanced for the symmetric (m = 0)

and bending (m = 1) modes when ρ2/ρ1 6= 1 but is suppressed for m > 1. Surface tension

mitigates the instability for long waves, but the effect is minor. For the short-wavelength

k0 > 10, the effects of density and surface tension are minimal, and the principal modes are

asymptotically similar to the case of ρ2/ρ1 = 1 and S = 0. For all the resonances, including

principal and non-principal modes, the longest wavelength is the most unstable. The
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principal modes are not guaranteed to be the most unstable modes for (ρ2/ρ1, S) 6= (1, 0).

We have presented results for a wide range of values of ρ2/ρ1 and S. It is now of

interest to consider the values of these quantities for real-world situations. These might

include bubble rings in water, for which ρ2/ρ1 is about 0.001. Surface tension between

water and air is 7.2× 10−3 kg/s2, and S depends on the strength of circulation Γ and the

size of the ring. If we assume a thin bubble ring of diameter 1.5 m and core radius 1 cm

that travels roughly at 2 m/s, S is of the order 1.8 × 10−4. Another possible example is

a vortex ring made of hot air or gases, possibly formed as a thermal. The core density

depends on temperature: at 950◦C, the density ratio is about 0.3. Surface tension is

negligible under this circumstance. Our calculations indicate that both of these two cases

are linearly unstable. The growth rate for principal modes in the former case is 0.09304, a

70% increase on the value 0.05434 for the (ρ2/ρ1, S) = (1, 0) case; while the later example

has a growth rate 0.2807, more than five times that of a constant-density ring.

The present work can be seen as a stepping stone to further stability analysis for a

buoyant vortex ring which requires gravity in the formulation. In the present framework,

we have made the “frozen-state” assumption for the linear stability problem, which is

justified by arguing that the Froude number is larger than the order of (δε)−1/2. It is well-

known that a buoyant vortex propagates in an unsteady fashion (Turner, 1957; Pedley,

1968; Chang & Llewellyn Smith, 2018), so it is challenging to carry out a full analysis with

gravity by the usual method of normal modes. We leave this approach to later, however,

and continue with the present method to investigate density and surface tension effects on

the MSTW instability in the following chapter.

Chapter 4, in full, has been submitted for publication of the material as it may

appear in the Journal of Fluid Mechanics, “Density and surface tension effects on vortex

ring stability. I Curvature instability” by C. Chang and S. G. Llewellyn Smith, 2020

(Cambridge University Press). The dissertation author was the primary investigator and
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author of this material.
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Chapter 5

Effects of density and surface tension

on the Moore–Saffman–Tsai–Widnall

instability of a strained vortex

The Moore–Saffman–Tsai–Widnall (MSTW) instability is a parametric instability

that arises in strained vortex columns. The strength of the strain is assumed weak and is

perpendicular to the vortex axis, and introduced as a small perturbation. In this chapter

of our investigation on vortex instability with effects of density and surface tension, a

linear stability analysis for this situation. The instability is caused by resonance between

two Kelvin waves with azimuthal wavenumber separated by 2. The density ratio is defined

as ρ1/ρ2, the ratio of vortex to ambient fluid. The dispersion relations for Kelvin waves

and resonant modes are obtained by solving the governin equations. Results show that the

stationary resonant waves for m = ±1 are more unstable when the density ratio approaches

zero, while the growth rate is maximised near ρ2/ρ1 = 0.215 for the resonance (m,m+2) =

(0, 2). Surface tension suppresses the instability, but its effect is less significant compared

to that of density. As the azimuthal wavenumbers m increases, the MSTW instability
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decays in contrast with the curvature instability examined in the previous chapter.

5.1 Introduction

This chapter continues the study on the effects of density and surface tension on

vortex stability. A linear stability analysis is carried out and parametric instabilities are

investigated. A possible mechanism of instability was proposed by Widnall et al. (1974)

in their study on vortex ring stability. These authors argued that a basic state solution

subject to neutrally stable disturbances ũ of O(δ), δ � 1, can be unstable with the addition

of another physical effect represented by a parameter ε. The solution is then expanded as

a perturbation series in ε, setting the stage for possible resonance between two neutrally

stable O(δ) modes. The resonant instability appears consequently at O(δε) and is called

parametric instability.

Two types of parametric instabilities have been discovered for vortices: the Moore–

Saffman–Tsai–Widnall instability and the curvature instability. The former, abbreviated

to MSTW instability, was first discovered by Moore & Saffman (1975) and Tsai & Widnall

(1976), and has since been revisited by Fukumoto (2003) among others. The basic state is

a vortex column with uniform vorticity inside the column and zero outside the column. It

is hence a Rankine vortex that extends uniformly in the third dimension. Linear analysis

shows that the O(1) vortex column is neutrally stable when disturbed by waves of O(δ).

Those O(δ) disturbances are Kelvin waves. Movivated by the goal of examining vortex

ring stability, weak strain, measured by the small parameter γ (rather than ε). This

situation leads to the MSTW instability, which is the focus of the present work. This

is an approximation to the vortex ring case with no basic-state curvature, but with the

leading-order strain retained. In the curvature instability studied in the previous chapter,

the basic state is expanded in terms of the ratio of the core size of the vortex ring to its
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radius of curvature and is curved at O(ε).

Moore & Saffman (1975); Tsai & Widnall (1976) found that when a weak strain

field is imposed on the vortex perpendicular to its axis, an instability emerges due to the

strain field. The strain field is mathematically a quadrupole, and enables a resonance

between two Kelvin waves of azimuthal wavenumber m and m+2. The MSTW instability

has been studied extensively since then, e.g. Eloy & Le Dizès (2001); Fukumoto (2003).

In the short wavelength regime, it has shown to be the elliptic instability of Bayly (1986);

Waleffe (1990); Leweke & Williamson (1998). Blanco-Rodriguez & Le Dizès (2016) has

theoretically studied the short wave elliptic instability of a Batchelor vortex (a Gaussian

core). A recent study of direct numerical simulations (DNS) by Hattori et al. (2019) has

shown that both type of parametric instabilities exist in the short-wavelength regime, and

that the elliptic instability dominates over the curvature instabilities.

The stability of a strained vortex column was also investigated in the context of

aircraft trailing vortices. The mutual interaction between long waves causes the Crow

instability (Crow, 1970). The Biot–Savart law is used to compute the induced velocity on

one of the trailing vortices due to the presence of the other. In a frame fixed to one of the

vortices, a weak strain field is created by the other vortex in the thin-core limit providing

their seapration is large. Moore & Saffman (1971) obtained a solution represented as a

perturbation series in γ, where γ � 1 is the strength of the strain field. The core boundary

deforms into elliptic shape at O(γ),

F = 1 +
1

2
γ cos 2θ +O(γ2). (5.1)

The stability of the strained vortex was also investigated by Moore & Saffman (1971) for

twp-dimensional and three-dimensional long-wave disturbances. Moore & Saffman (1975)

and Tsai & Widnall (1976) studied the instability mechanism proposed by Widnall et al.
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(1974) for short-wave disturbances. Fukumoto (2003) extended the stability calculation

for intersection points of Kelvin wave dispersion curves.

Historically, the curvature instability (Hattori & Fukumoto, 2003; Fukumoto &

Hattori, 2005) was discovered later than the MSTW instability. We have studied it

with the effects of density and surface tension in the previous chapter (see also Chang

& Llewellyn Smith, 2020). In the asymptotic analysis by Fukumoto & Hattori (2005), the

authors argued that the curvature instability dominates over the MSTW instability pro-

vided that ε � 1. However, in the recent numerical simulations by Hattori et al. (2019),

the elliptic instability (short-wavelength MSTW) is found to be dominant for a vortex ring

with or without swirl, and the curvature instability is only detected when swirl is present.

We follow the formulation in Tsai & Widnall (1976) and Fukumoto (2003) but

include density and surface tension. In §,5.2, the mathematical formulation including gov-

erning equations, boundary conditions, and the basic state solution are given. Linearised

equations at O(δ) and O(δε) are also derived. The solutions at both orders with density

and surface tension are discussed in §,3. We shownthe result for stationary resonance be-

tween (m,m+2) = (−1, 1) in §,5.4, followed by resonance for m ≥ 0 in §,5.5. We conclude

in §,5.6.

5.2 Formulation

Two thin parallel vortex tubes are considered, as shown in figure 5.1(a). We assume

that γ = a/D � 1, where a is the core size and R the separation between tubes. The

outer region and the vortical cores have constant densities ρ1 and ρ2 respectively. The

circulation of the core is Γ for both vortices but with opposite sign. We nondimensionalise

the problem using length scale a, velocity scale Uc = Γ/(2πa), and time scale 2πa2/Γ,

while the pressure scale is taken to be ρ2(Γ/2πa)2. The velocity potential describing the
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(a)

a

D

(b)

−ΓΓ

Figure 5.1: (a) Side view of two parallel vortex tubes and (b) top view of the counter-
rotating vortices.

outer irrotational flow is scaled by Γ/2π.

Each vortex tube experiences a strain field perpendicular to its centerline. This is

due to the induction of the other vortex tube. The strain is a quadrupole field of strength

O(γ). We focus on the vortex on the left, with cylindrical coordinates (r, θ, z) centered in

it (see figure 5.1b). This model can be seen as an approximation for a vortex ring with

curvature ε, with γ representing the local effect of the curvature of the other half of the

vortex ring. We work to O(γ) in the following formulation.

5.2.1 Governing equations

We use cylindrical coordinates (r, θ, z), with velocity u = (u, v, w). The undisturbed

core boundary is taken to be r = 1. Since the core is rotational, the governing equations

are the Euler equations (4.2) inside the vortex core; and the Laplace equation (4.3) for a

velocity potential in the irrotational region outside.

In cylindrical coordinates the Euler equations are

∂u

∂t
+ u · ∇u− v2

r
= −∂p

∂r
, (5.2)

∂v

∂t
+ u · ∇v +

uv

r
= −1

r

∂p

∂θ
, (5.3)

∂w

∂t
+ u · ∇w = −∂p

∂z
, (5.4)
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where

u · ∇ = u
∂

∂r
+
v

r

∂

∂θ
+ w

∂

∂z
. (5.5)

The continuity equation is

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+
∂w

∂z
= 0. (5.6)

Outside the core, Laplace’s equation is

1

r

∂

∂r

(
r
∂Φ

∂r

)
+

1

r2
∂2Φ

∂θ2
+
∂2Φ

∂z2
= 0. (5.7)

The solution for (5.2) and (5.6) is called the inner solution, while the outer solution refers

to the solution of (5.7).

5.2.2 Boundary conditions

The boundary of the vortex is taken to be r = F , where F (θ; γ) will be obtained

as part of the solution. The inner and outer solutions are matched on the core boundary

where r = F . For inviscid flows, the matching are given by the kinematic and the dynamic

conditions. These conditions are given by (4.10) and (4.11) in §, 4.2.2.

5.2.3 The mean flow solution

This solution (written using uppercase letters) can be obtained as a perturbation

series in γ:

U = U 0 + γU 1 + · · · , P = P0 + γP1 + · · · , Φ = Φ0 + γΦ1 + · · · , (5.8)

where γ is the strength of the strain field.

The leading-order mean flow solution is the Rankine vortex which is given in (4.13)
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and (4.14). The strain field leads to the following O(γ) solution of the mean flow (cf. the

solution in Moore & Saffman, 1971):

U1 = −r sin 2θ, V1 = −r cos 2θ, P1 = 0 (5.9)

in the inner region, while the outer solution is

Φ1 =
1

8

[
3

r2
− r2 − ρ2

ρ1

(
1

r2
+ r2

)
+ 3S

(
1

r2
+ r2

)]
sin 2θ. (5.10)

The shape of the boundary to O(γ) is

F (θ; γ) = F0 + γF1 + · · · = 1 + γ
1

2
cos 2θ +O(γ2). (5.11)

See appendix B.1.2 for the detailed calculations leading to (5.9)–(5.11).

5.2.4 Linearised equations and boundary conditions for infinites-

imal disturbances

We disturb the mean flow that derived in § 5.2.3,

U + ũ, V + ṽ, W + w̃, P + p̃, Φ + φ̃, (5.12)

and the disturbed boundary is r = F + f̃ . The disturbances are assumed to be of O(δ)

compared to the O(1) basic state with δ � 1. The usual stability analysis treats O(δ)

disturbances. Here these are neutrally stable, and it is the O(δγ) solution that is of interest

for parametric instability.The disturbances are decomposed into normal modes in s and

t. We use tildes over lowercase letters to represent the disturbances. As with the basic
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solution, they are expanded in γ as

ũ = (ũ0 + γũ1 + · · · )ei(kz−ωt), (5.13)

p̃ = (p̃0 + γp̃1 + · · · )ei(kz−ωt), (5.14)

φ̃ = (φ̃0 + γφ̃1 + · · · )ei(kz−ωt). (5.15)

The wavenumber and the frequency are also expanded as

k = k0 + γk1 + · · · , ω = ω0 + γω1 + · · · . (5.16)

The core boundary disturbance is

f̃ = (f̃0 + γf̃1 + · · · )ei(kz−ωt). (5.17)

Since the disturbances (ũ, p̃, φ̃) are small compared to the basic solution (U , P,Φ), (5.2)–

(5.7) can investigated at O(δ) and O(δγ) in what follows.

O(δ) linearised equations and boundary conditions

The linearised equations for disturbances at O(δ) are

−iω0ũ0 +
V0
r

∂ũ0
∂θ
− 2V0ṽ0

r
= −∂p̃0

∂r
, (5.18)

−iω0ṽ0 + ũ0
∂V0
∂r

+
V0
r

∂ṽ0
∂θ

+
V0ũ0
r

= −1

r

∂p̃0
∂θ

, (5.19)

−iω0w̃0 +
V0
r

∂w̃0

∂θ
= −ik0p̃0, (5.20)

1

r

∂

∂r
(rũ0) +

1

r

∂ṽ0
∂θ

+ ik0w̃0 = 0 (5.21)
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for the inside and

1

r

∂

∂r

(
r
∂φ̃0

∂r

)
+

1

r2
∂2φ̃0

∂θ2
− k20φ̃0 = 0 (5.22)

for the outside. The linearised boundary conditions at r = 1 are

−iω0f̃0 +
∂f̃0
∂θ

= ũ0, (5.23)

ũ0 =
∂φ̃0

∂r
, (5.24)

ρ2
ρ1
p̃0 − iω0φ̃0 +

∂φ̃0

∂θ
=

(
1− ρ2

ρ1

)
f̃0 − S

(
∂2f̃0
∂θ2
− k20 f̃0

)
. (5.25)

The solutions are Kelvin waves given in appendix B.2.

O(δγ) linearised equations and boundary conditions

We proceed to the next order in the expansion in γ. The equations for disturbances

of O(δγ) are also linearised. The inner solution satisfies

−iω0ũ1 +
∂ũ1
∂θ
− 2ṽ1 +

∂p̃1
∂r

=

(
iω1 −

∂U1

∂r

)
ũ0 − U1

∂ũ0
∂r
− V1

r

∂ũ0
∂θ

−
(

1

r

∂U1

∂θ
− 2V1

r

)
ṽ0, (5.26)

−iω0ṽ1 + 2ũ1 +
∂ṽ1
∂θ

+
1

r

∂p̃1
∂θ

=

(
iω1 −

1

r

∂V1
∂θ
− U1

r

)
ṽ0 − U1

∂ṽ0
∂r
− V1

r

∂ṽ0
∂θ

−
(
∂V1
∂r

+
V1
r

)
ũ0, (5.27)

−iω0w̃1 +
∂w̃1

∂θ
+ ik0p̃1 =− ik1p̃0 + iω1w̃0 − U1

∂w̃0

∂r
− V1

r

∂w̃0

∂θ
(5.28)

with the continuity equation

∂ũ1
∂r

+
ũ1
r

+
1

r

∂ṽ1
∂θ

+ ik0w̃1 = −ik1w̃0. (5.29)
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The velocity potential outside satisfies

∂2φ̃1

∂r2
+

1

r

∂φ̃1

∂r
+

1

r2
∂2φ̃1

∂θ2
− k20φ̃1 = 2k0k1φ̃0. (5.30)

The linearised kinematic boundary conditions at r = 1 are

−iω0f̃1 +
∂f̃1
∂θ
− ũ1 =iω1f̃0 − V1

∂f̃0
∂θ
− dF1

dθ
ṽ0 +

∂U1

∂r
f̃0 + F1

∂ũ0
∂r

, (5.31)

ũ1 −
∂φ̃1

∂r
=

(
−∂Φ1

∂θ
+ V1

)
∂f̃0
∂θ

+

(
2

dF1

dθ
+
∂2Φ1

∂r2
− ∂U1

∂r

)
f̃0

+
dF1

dθ

(
ṽ0 −

∂φ̃0

∂θ

)
+ F1

(
2
∂f̃0
∂θ

+
∂2φ̃0

∂r2
− ∂ũ0

∂r

)
, (5.32)

The linearised dynamic condition at r = 1 is

ρ2
ρ1
p̃1 − iω0φ̃1 +

∂φ̃1

∂θ
=iω1φ̃0 −

∂Φ1

∂r

∂φ̃0

∂r
− ∂Φ1

∂θ

∂φ̃0

∂θ
+

(
1− ρ2

ρ1

)
f̃1

+

(
2
∂Φ1

∂θ
− ∂2Φ1

∂r∂θ

)
f̃0 − F1

[
ρ2
ρ1

∂p̃0
∂r
− iω0

∂φ̃0

∂r
+
∂2φ̃0

∂r∂θ
− 2

∂φ̃0

∂θ

]

− F1

[
ρ2
ρ1

∂2P0

∂r2
+ 3

(
∂Φ0

∂θ

)2
]
f̃0

− S

(
∂2f̃1
∂θ2
− k20 f̃1 − 2k0k1f̃0 − 2F1

∂2f̃0
∂θ2

)
.

(5.33)

Solutions for the disturbance waves at O(δ) and O(δγ) are given in the next section.

The dispersion relation is obtained by matching the boundary conditions.
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5.3 Solutions

Solutions for both O(δ) and O(δγ) disturbance waves are written as

ũ(r, θ) = u(m)(r)eimθ, p̃(r, θ) = p(m)(r)eimθ, φ̃(r, θ) = φ(m)(r)eimθ, (5.34)

where m is the azimuthal wavenumber. The resonance condition is when two Kelvin

waves of azimuthal wavenumber differing by 2 are coupled by the quadrupole at O(δ).

The solutions at O(δ) and O(δγ) are written as m and m+ 2 waves.

5.3.1 Kelvin waves at O(δ)

The solution at O(δ) is a Kelvin wave, which is described in appendix B.2. The

Kelvin waves are coupled with the quadrupole field (5.9) through the right-hand sides of

(5.26)–(5.28). When two Kelvin waves with wavenumber m and m+2 appear in the forcing

terms on the right-hand side of (5.26)–(5.28), the solution at the O(δγ) will possess modes

for m− 2, m, m+ 2 and m+ 4. The resonances are between pairs of two adjacent modes

separated by 2. We focus on the resonance between a pair of Kelvin waves (m,m + 2) in

this study, since the cases for (m− 2,m), (m+ 2,m+ 4) can be inferred by using different

value of m.

The solution (B.16) and (B.18) contains coefficients (Kelvin wave amplitudes) α0

and β0 that are determined using the boundary conditions. The boundary conditions for

wavenumber m become

−i(ω0 −m)f
(m)
0 = u

(m)
0 =

dφ0

dr

(m)

, (5.35)

ρ2
ρ1
p
(m)
0 − i(ω0 −m)φ

(m)
0 =

(
1− ρ2

ρ1

)
f
(m)
0 + S(m2 + k20)f

(m)
0 . (5.36)

Substituting p
(m)
0 , u

(m)
0 , φ

(m)
0 and f

(m)
0 (see appendix B.2) into the equations above, we
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obtain a set of homogeneous linear equations for α
(m)
0 and β

(m)
0 . For non-trivial α

(m)
0 and

β
(m)
0 , the determinant must be zero, which gives the dispersion relation for mode m in

(4.41) (see §, 4.3). For the second set of Kelvin waves, the wavenumber is m + 2 in the

MSTW instability instead of m+ 1 in the curvature calculation. The boundary conditions

are the same formulas as in (5.36) except that m is replaced by m + 2, and similarly for

the solution in appendix B.2. Using the boundary conditions and the solution for the

m+ 2-mode, we obtain the dispersion relation

[
1− E2

(ω0 −m− 2)2

(
m+ 2 + k0

Km+1(k0)

Km+2(k0)

)]
Jm+1(η2) =

{
−(m+ 2)

ω0 −m− 2

ω0 −m− 4

+

[
ρ2
ρ1

+ E2
m+ 2

(ω0 −m− 2)(ω0 −m− 4)

](
m+ 2 + k0

Km+1(k0)

Km+2(k0)

)}
η2
k20

Jm+2(η2), (5.37)

where E2 = 1− ρ2/ρ1 + S[k20 + (m+ 2)2] and η2 is the radial wavenumber for m+ 2.

The intersection points between the two sets of Kelvin waves give possible candi-

dates for parametric instability. The actual modes can be found by finding the roots for

(4.41) and (5.37) with ω0 ∈ [m,m + 2]. For Kelvin waves with wavenumber m, there are

cograde branches going upward where ω0 > m and retrograde branches going downward

where ω0 < m (see figure 5.2 for m = 2). The cograde branches are labeled from top

as the 1st, 2nd, . . . cograde modes, while the retrograde branches are labeled from the

bottom. The cograde branches of the m waves and the retrograde branches of the m + 2

waves cross in ω0 ∈ [m,m + 2] setting up possible modes for resonance. We follow the

definition in Fukumoto (2003) for the case of (ρ2/ρ1, S) = (1, 0). The principal modes

are the intersection point of the first cograde branch for m and the isolated branch for

m+ 2, and also the intersection points of the i+ 1-th cograde branches for m and the i-th

retrograde branches for m+2. This definition is slightly different from that in § 4.3 for the

curvature instability, where the cograde branches for m never cross the isolated branch for

m+ 1 when (ρ2/ρ1, S) = (1, 0).
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Figure 5.2: Dispersion curves for the Kelvin wave with m = 2 for density ratios from
one to zero. Red curves are cograde branches and blue curves are retrograde branches.
Only the first five branches of each are plotted. An isolated branch (thick black curve)
can be seen below the retrograde branches. Surface tension is zero for all plots.
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Figure 5.3: The first three cograde modes of the Kelvin wave for m = −1 (red) and the
first three retrograde modes of the Kelvin wave for m = 1 (blue dashed); their isolated
branches (thick solid and dashed) can be seen emanating from (k0, ω0) = (0, 0). Circles
are the first four principal modes with ω0 = 0.
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As discussed in §,4.3, density and surface tension act to “isolate” the first cograde

mode when (ρ2/ρ1, S) 6= (1, 0). In figure 5.2, the first cograde mode (the uppermost red

curve with the largest value of |ω0 − 2|) departs from the other cograde modes and shifts

upward as the density ratio decreases. The isolated branch (thick black line) also shifts

downward from its initial position when ρ2/ρ1 = 1, and the short wavelength part (large

k0) of the isolated branch drops below ω0 = m− 2. On the other hand, when the density

ratio increases above 1, the situation reverses: the first cograde mode and the isolated

mode move closer toward other cograde and retrograde modes. A special scenario is two

counter-winding helical waves with wavenumber m = −1 and 1 whose dispersion curves

are symmetric about the k0-axis (figure 5.3). In this case, the principal modes are always

on the k0-axis, and ω0 = 0.

5.3.2 Resonance at O(δγ)

The solution of the O(δγ) disturbances governed by (5.26)–(5.30) is given in ap-

pendix A of Fukumoto (2003). We do not reproduce it here, given its complexity. The

solution contains undetermined coefficients α1, β1 which must be non-zero. The boundary

conditions in (5.32) and (5.33) are used to obtain the dispersion relation. Note that in

order to include surface tension, we need to compute f1 from (5.31) before using the dy-

namic condition for the dispersion relation. In Moore & Saffman (1975); Tsai & Widnall

(1976) and Fukumoto (2003), f̃1 is not necessary since ρ2/ρ1 = 1 and surface tension is

omitted.

Substituting the basic solution (5.9)–(5.11) into the boundary conditions (5.32) and

(5.33) gives

ũ1 −
∂φ̃1

∂r
= sin 2θ

[
∂φ̃0

∂θ
− ṽ0 +

(
1− ρ2

ρ1
+ 3S

)
f̃0

]
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+
1

2
cos 2θ

[
−
(

1− ρ2
ρ1

+ 3S

)
∂f̃0
∂θ

+
∂2φ̃0

∂r2
− ∂ũ0

∂r

]
; (5.38)

ρ2
ρ1
p̃1 − iω0φ̃1 +

∂φ̃1

∂θ
=iω1φ̃0 + sin 2θ

∂φ̃0

∂r
+

(
1− ρ2

ρ1

)
f̃1

− 1

2

(
−1− ρ2

ρ1
+ 3S

)
cos 2θ

∂φ̃0

∂θ
+

3

2

(
1− ρ2

ρ1
+ 2S

)
cos 2θf̃0

− 1

2
cos 2θ

[
ρ2
ρ1

∂p̃0
∂r
− iω0

∂φ̃0

∂r
+
∂2φ̃0

∂r∂θ

]

− S

(
∂2f̃1
∂θ2
− k20 f̃1 − 2k0k1f̃0 − cos 2θ

∂2f̃0
∂θ2

)
. (5.39)

Using the above equations, we write two set of equations for m and m + 2 in (B.26) to

(B.29). They can be written as two inhomogeneous linear systems (B.32) and (B.33) for α1

and β1. The dispersion relation (B.39) is given by requiring that α1 and β1 are non-trivial

(see details in appendix B.3). A dispersion relation for (k1, ω1) determines the stability,

and the flow is unstable for Im{ω1} > 0. The maximum growth rate σ1max is given by the

maximum imaginary part of ω1 at k1 = 0; and the half bandwidth of instability, ∆k1, by

the range over which the imaginary part of ω1 vanishes. The expressions for all formulae

are too cumbersome to handle manually, and so computer symbolic algebra is utilised to

obtain the dispersion relation (B.39) and ω1 and ∆k1. A description of procedure is given in

detailed in appendix B.3, and the symbolic algebra files are provided in the supplementary

material. We will show numerical results for m = −1 and 1 in the next section followed

by the case for m ≥ 0 in § 5.5.

5.4 Resonance between waves m = −1 and 1

We first discuss the special case of the resonance pair (−1, 1) in this section. When

m = −1, the resonance is between the right- and left-handed helical waves. Fukumoto

(2003) gives a detailed discussion of this resonance pair. Widnall et al. (1974) and Moore
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Figure 5.4: Principal modes (k0, 0) for (m,m + 2) = (−1, 1), the maximum growth
rate σ1max and the instability half-bandwidth ∆k1 plotted versus (a) density ratio
ρ2/ρ1 ∈ [0.005, 100]; (b) surface tension S ∈ [0, 500]. The second to sixth principal
modes are the blue, red, amber, purple and green curves.

& Saffman (1975) imply that the stationary mode is most unstable. The two dispersion

curves are mirrored about ω0 = 0 (see figure 5.3), and therefore their principal modes are

exactly on the k0-axis.

5.4.1 Principal modes (ω0 = 0)

We substitute m = −1 and ω0 = 0 for the principal modes of stationary waves

(circles in figure 5.3). The maximum growth rate σ1max and half the instability bandwidth

∆k1 are then calculated using computer symbolic algebra. To verify the result of the

symbolic calculation, results for (ρ2/ρ1, S) = (1, 0) are compared to those in Fukumoto

(2003) in table 5.1. The present study has σ1max accurate to ten significant figures and ∆k1

up to five significant figures. As seen in figure 5.3, the first principal mode at (k0, ω0) =

(0, 0) is independent of ρ2/ρ1 and S, so we will not include it in the comparison here.

The principal modes’ maximum growth rates and instability half-bandwidths are

plotted as functions of ρ2/ρ1 in figure 5.4(a). The second principal mode (blue curve) is the
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most unstable mode. The largest growth rate is at ρ2/ρ1 = 0 with a value of σ1max = 0.882.

The least unstable density ratio is 0.915 where the second and third principal modes have

a growth rate of 0.5696. The instability half bandwidth ∆k1 is strongly correlated with the

wavenumber k0, and the principal mode with higher k0 has wider instability bandwidth.

Figure 5.4(b) shows the effect of surface tension when ρ2/ρ1 = 0.001. The density ratio

0.001 is picked because it is close to the typical ratio between air and water. Surface tension

merely changes the locations of principal modes. The second principal mode dominates

the instability. The growth rate is 0.8803 at S = 10−4 and drops to 0.585 when S = 500.

The growth rate and the instability half-bandwidth are calculated for large k0 in

figure 5.5 with different values of ρ2/ρ1 ∈ [0, 1] and S ∈ [0, 100]. For the growth rate

σ1max, density only has an effect for those principal modes with k0 < 10. The growth rates

for different values of ρ2/ρ1 and S all converge to a fixed value 0.5625 as k0 → ∞. The

short-wavelength limit given in (5.13) of Fukumoto (2003) for (ρ2/ρ1, S) = (1, 0) as

σ1max ≈
9

16

(
1 +

1

12k0
− 7

48k20
+

5

64k30

)
, (5.40)

is plotted as the dashed line in figure 5.5.

5.4.2 Non-principal modes

For stationary waves m = ±1, non-principal modes are intersection points where

ω0 6= 0. In the case ρ2/ρ1 = 1 and S = 0, the growth rates of non-principal modes

are at least two order smaller than that of the principal modes (see figure 5.6a). As the

density ratio decreases to zero, the maximum growth rates of non-principal modes grow

and become one order of magnitude smaller than those of the principal modes. The trend

reverses for increasing surface tension. The maximum growth rate of non-principal modes

is one order of magnitude less than that of the principal modes and that difference widens
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Figure 5.5: Maximum growth rate σ1max and unstable half-bandwidth ∆k1 of principal
modes k0 < 20 for helical waves (m,m + 2) = (−1, 1); (a) different ρ2/ρ1 with S = 0;
(b) different S with ρ2/ρ1 = 0.001. The dashed line is the short-wavelength asymptotic
result for ρ2/ρ1 = 1.
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Figure 5.6: Maximum growth rate σ1max for the modes of the (−1, 1) resonance with
variations of (a) ρ2/ρ1; and (b) S. Principal modes are marked by blue crosses while
other modes are red circles. The black dashed line is the short-wavelength asymptotic
result (5.40) for ρ2/ρ1 = 1 and S = 0.

to more than two orders of magnitude for S = 10 in figure 5.6(b). With variations in

either density or surface tension, the instability of the principal modes always dominates

over non-principal modes.

5.5 Resonance between waves m and m + 2 (m ≥ 0)

We continue to explore resonant pairs of (m,m + 2) other than (−1, 1). Among

those pairs, the case of (0, 2) is particular interesting. As Fukumoto (2003) states, this is

due to its resistance to viscous dissipation when the Reynolds number is not sufficiently

large (Eloy & Le Dizès, 2001). We first discuss the (0, 2) resonant pair, followed by other

helical waves.
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5.5.1 The case m = 0

We calculate the growth rate σ1max and half the unstable bandwidth ∆k1 for the

first five principal modes. The definition of principal modes is the same as in Eloy & Le

Dizès (2001) and Fukumoto (2003): the first principal mode is the intersection between

the first cograde mode for m = 0 and the isolated mode for m = 2; the second principal

mode is the second cograde mode for m = 0 intersected by the first retrograde mode for

m = 2; and so on. The location (k0, ω0) of the principal modes in figure 5.7(a) shows

that k0 shifts to lower wavelengths as the density ratio ρ2/ρ1 drops below one. The first

principal mode’s growth rate has a cusp at ρ2/ρ1 = 0.215 with σ1max ≈ 4.32. The mode is

then stabilised below ρ2/ρ1 < 0.215 and disappears near ρ2/ρ1 ≈ 0.09. The third principal

mode is the most unstable with σ1max = 0.5668647793 for ρ2/ρ1 = 1 in the calculation of

Fukumoto (2003). In our calculation with density variations, the second principal mode is

the most unstable mode as ρ2/ρ1 → 0 with σ1max = 0.6028. while the first principal mode

is the most unstable for ρ2/ρ1 → 100 with σ1max = 0.6167. The trend of ∆k1 is very similar

to that of k0: as the density ratio decreases the unstable bandwidth decreases. We also

extend our calculation to other principal modes with higher wavenumber k0 in figure 5.8.

The growth rate is asymptotically close to that of (5.40) in the short-wavelength regime

for ρ2/ρ1 = 1. For large k0 ∆k1 increases linearly with k0 and the slopes are identical

except for k0 < 4.

The dependence on surface tension S is shown in figure 5.7(b) for ρ2/ρ1 = 0.2.

The first principal mode disappears as surface tension increases to S ≈ 0.14 and is always

unstable until it disappears. The effect on the other four principal modes is not significant.

The second principal mode (red curve) has the biggest drop in σ1max from a value of 0.6049

to 0.5482 at S = 100.
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Figure 5.7: Principal modes for (m,m+ 2) = (0, 2), maximum growth rate σ1max and
the instability half-bandwidth ∆k1 plotted versus (a) density ratio ρ2/ρ1 ∈ [0.005, 100];
(b) surface tension S ∈ [0, 500] at ρ2/ρ1 = 0.2. The first to fifth principal modes are
the blue, red, amber, purple and green curves.
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Figure 5.8: Maximum growth rate σ1max and unstable half-bandwidth ∆k1 of principal
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is the short-wavelength asymptotic result (5.40) for ρ2/ρ1 = 1.
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Figure 5.9: Principal modes for (m,m+ 2) = (4, 6), the maximum growth rate σ1max
and the instability half-bandwidth ∆k1 are plotted versus (a) density ratio ρ2/ρ1 ∈
[0.01, 100]; (b) surface tension S ∈ [0, 100] at ρ2/ρ1 = 0.2. The first to fifth principal
modes are the blue, red, amber, purple and green curves.

5.5.2 Other pairs of (m,m+ 2)

Moving on to higher resonance pairs, e.g. (m,m+ 2) = (4, 6), we found the change

in the positions (k0, ω0) of principal modes (see figure 5.9a) to be qualitatively similar to

that for the (0, 2) pair. The first principal mode (in blue in figure 5.9) disappears near a

larger density ratio at the value of ρ2/ρ1 = 0.72. The most significant difference is how the

growth rate behaves before the first principal mode disappears. The growth rate of the

first principal mode increases drastically and then drops to zero before the first principal

mode vanishes in the (0, 2) resonance (figure 5.7a), while σ1max plunges to zero for (4, 6)

in figure 5.9(a) and never exceeds 0.6. The dependence on surface tension S is shown in

figure 5.9(b). The growth rate σ1max decreases only slightly, and is almost independent of

surface tension for S & 1.

Resonance pairs with higher azimuthal wavenumber m have smaller growth rate

σ1max for the MSTW instability, while the curvature instability is more unstable for larger
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m (see Chang & Llewellyn Smith, 2020). In figure 5.10 we plot the maximum growth

rate among intersection points (resonant modes) that include the principal modes and few

non-principal modes for axial wavenumber k0 ≤ 20, as a function of density ratio ρ2/ρ1.

The maximum growth rate decreases as m increases. This is due to the strain field, which

kills the small-scale disturbances on the boundary. For a fixed value of m the growth rate

is constant to the two ends of the plot, i.e. as ρ2/ρ1 → ±∞, and the curve has a dip in the

middle at ρ2/ρ1 = 0.925. That is where the most unstable mode (the one with the largest

growth rate) jumps from one intersection point of Kelvin waves to another. As shown in

figure 5.11, the most unstable mode represented by a black dot switches from the seventh

principal mode to the fourth principal mode as density ratio increases from 0.925 to 1.069.

The sharp discontinuities in the curves in figure 5.10 may seem strange at first glance, but

are actually appropriate.

Given that the whole calculation is based on those discrete intersection points of

Kelvin waves, the largest growth rate among all modes can have a discontinuity while it

switches from one intersection point to another. That happens when the previous most

unstable mode decayed or disappeared and another mode took over. The instability of a

resonance mode is a function of its location (k0, ω0) and the location is a function of density

ratio and surface tension. The migrations of the first cograde mode and the isolated mode

discussed in § 3 also have a huge influence on the location of intersection points.

5.6 Conclusion

The parametric instability of a vortex column subjected to a weak strain field has

been investigated for various density ratio and surface tension. The instability, the Moore–

Saffman–Tsai–Widnall instability, is the result of the resonance between two Kelvin waves

of azimuthal wavenumber m and m+ 2. The resonance is fed by a quadrupole field which
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Figure 5.11: Intersection points of the pair (m,m + 1) = (8, 10); (a) ρ2/ρ1 = 0.925;
(b) ρ2/ρ1 = 1.069 and (c) ρ2/ρ1 = 10. Principal modes are labeled by numbered circles;
the black dot is the mode with largest growth rate. The most unstable mode switches
from the seventh principal mode to the fourth principal mode, then back to the seventh,
causing the discontinuity in σ1max.

comes from the correction to the basic state at O(γ). We have extended the calculation by

Fukumoto (2003) to a parameter space (ρ2/ρ1, S), where (ρ2/ρ1, S) = (1, 0) is the previous

result.

Two distinguished types of resonances are examined. The first corresponds to

stationary helical waves with wavenumber m = ±1. The strained vortex is most unstable

when the density ratio is very small (ρ2/ρ1 → 0): the maximum growth rate is σ1max ≈ 0.88

compared to a minimum of 0.57 near ρ2/ρ1 = 1. Surface tension mitigates the instability

of the vortex for S > 0.01, and the maximum growth rate drops from 0.88 to 0.58 as

S →∞. We have also shown that the most unstable modes are dominated by the principal

modes in the resonances for m = ±1 stationary waves. The second type of resonances is

for wavenumber m ≥ 0, and m = 0 is a particular case of bulging modes. For the

(0, 2) resonance, the maximum growth rate from the first principal mode maximizes near

ρ2/ρ1 = 0.215 with a very large value, and that mode vanishes as ρ2/ρ1 → 0 while the

second principal mode takes over to become most unstable. We have also shown that the

maximum growth rate decreases as the azimuthal wavenumber m increases, which is in

contrast to the curvature instability.
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In the recent study by Hattori et al. (2019) using direct numerical simulations, the

short-wavelength MSTW instability (the elliptic instability) is shown to be more unstable

than the curvature instability for a vortex ring of Gaussian core structure. This result

demonstrates the correctness of the theoretical prediction in Blanco-Rodriguez & Le Dizès

(2016) on the elliptic instability for the Batchelor vortex (a vortex with a Gaussian core).

Furthermore, the analytical result of curvature instability for a Gaussian core (Blanco-

Rodriguez & Le Dizès, 2017) has also been confirmed in Hattori et al. (2019). This is

the first numerical evidence for the curvature instability after its discovery in Hattori &

Fukumoto (2003) and Fukumoto & Hattori (2005) for vortex rings. The present study

considers uniform cores with a jump in density across the boundary. It would be of

interest to extend this result to continuous vorticity and density distributions. It will be

more complicated to carry out a full numerical simulation for this kind of problem with

large density jumps at the boundary of the vortices. . Direct numerical simulations to

detect the curvature and MSTW instabilities of vortices with density differences hence

remain unfinished tasks for the future.

Chapter 5, in full, has been submitted for publication of the material as it may

appear in the Journal of Fluid Mechanics, “Density and surface tension effects on vor-

tex ring stability. II Moore–Saffman–Tsai–Widnall instability” by C. Chang and S. G.

Llewellyn Smith, 2020 (Cambridge University Press). The dissertation author was the

primary investigator and author of this material.
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Chapter 6

Conclusions

Fluid flows are complex systems that manifest interesting physics. Vortex dynamics

provides an effective way to understand the underlying physics of incompressible Euler

flows, and is a relevant tool for many applications such as aerodynamics and fluid-solid

interactions. While the classic models mostly deal with forces such as inertia and pressure,

there are additional physical effects that can be added into the formulations for various

flow problems. The most common example is using vortex sheet to model free-surface

flow and Rayleigh–Taylor instability, where there is a density jump across the sheet. The

present work has calculated the motion and stability of vortices using an extended vortex

dynamics formulation. The density of vortex is different form the density of the fluid that

surrounds it, and gravity and surface tension are also added into the calculations.

In Chapter 2, we derived a new mathematical model for buoyant vortex filaments

using force balance. Our model shows that buoyancy acts to decrease the local curvature

of the filament, which confirms the analytic result from previous works that a buoyant

vortex thin ring will expand as it elevates. An equation for the axial flow inside filament

core is obtained showing that the interior lighter fluid flows against gravity.

In Chapter 3, we formulated a set of coupled integro-differential equations in contour
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dynamics that calculates the motion of a buoyant vortex ring. Vorticity is generated by

baroclinic torque that turns the interface into a vortex sheet enclosed a vortex patch.

The evolution equation for the vortex sheet strength is derived and numerical solutions

are attempted. The time of numerical calculation is limited by the blowu, but the result

shows a complex dynamic of vortex sheet that includes the curvature singularity of sheet

evolution, a nonlinearity from the quadratic term, and a dynamical coupling with the

Lagrangian velocity that leads to a Fredholm integral equation.

We have also calculated the stability of vortices with the effects of density and sur-

face tension in this dissertation work. The basic state solution is given as a perturbation

series and normal modes analysis are used to study two type of parametric instabilities:

curvature instability and Moore–Saffman–Tsai–Widnall instability, with the aid of sym-

bolic computer algebra. In Chapter 4, our calculation for curvature instability showed that

a density variation makes a vortex ring more unstable while the vortex core is lighter or

heavier than its ambient. The vortex is more unstable for small k0 and large m when sub-

jected to curvature instability. Chapter 5 dealt with the MSTW instability, the strained

vortex is most unstable for small k0, but instability decays as m increases. Surface tension

stabilized both instabilities very marginally.

6.1 Applications

In the present dissertation, we have extended two classic models for vortex motions:

vortex filaments and contour dynamics for vortex patches. The effects of density variation,

buoyancy, and surface tension have been added to the mathematical formulations to include

the appropriate physics. These new models have the potential to be utilized in a number

of engineering applications:

140



Aero/hydrodynamics surfaces with high angle of attack

Aircrafts or maritime vessels rely on control surfaces to adjust their attitude and

motion for them to maneuver in air/water. When these control surfaces are in action, they

usually create a high angle of attack with the oncoming stream and a force perpendicular

to the surface, i.e. lift, is generated. The flow separates from the leading edge of the sur-

face and a leading-edge vortex will emerge. If a CFD scheme, e.g. LES or RANS, is used

to simulate the flow field, the computational grids and operations require large computer

efforts. Vortex sheets or series of point vortices can be used to approximate the flow field,

and the computational cost can be significantly reduced. If one needs a quick and reliable

calculation of lift, vortex models provide a very good estimate compared with CFD (see

Eldredge & Jones, 2019). The low CPU time can provide a possible real-time estimate

in, e.g. closed-loop control, applications. An extension to three-dimensional models using

vortex filaments and sheets is also an intriguing research topic. In hydrodynamics appli-

cations, the separation of leading-edge vortex can create cavitation bubbles filled with gas

taken out of solution. The analysis for cavitation bubbles should then use the model we

developed in Chapter 3.

Helical wake vortices from rotary machinery

Rotary machinery like wind turbines or vessel propellers generate vorticial flow

structures from its tips due to the pressure difference on both sides. These wing-tip

vortices spiral downstream to form a wake. The efficiency of the machinery and the load

on the structure are impacted by the helical wake. Helical vortex filaments are frequently

used to model this kind of flow field. The new model in Chapter 2 adds buoyancy and

surface tension to vortex filaments and make it an appropriate tool for the cavitation

problem of ship propulsion or energy harvest like marine hydro generator. The problem

could use a numerical scheme for wake (Winckelmans et al., 2005) with a modification for
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buoyancy and a possible combination with CFD to obtain a Lagrangian-Eulerian hybrid

scheme.

6.2 Future work

Other than density, buoyancy, and surface tension, there are several other physical

effects that can also be included in vortex dynamics. For example, magnetic force or mag-

netic field is added to study magnetohydrodynamics. A model for vortex-current filaments

is given in Yatsuyanagi et al. (1996), which is based on the momentum balance (Moore

& Saffman, 1972) for a filament. A combination of the present buoyant model with this

vortex-current filaments is interesting and has implications in astrophysical fluid dynamics.

Beside filament models, contour dynamics has also been coupled with a toroidal magnetic

field in Hattori & Moffatt (2006), Llewellyn Smith & Hattori (2012). Like buoyancy does

to the contour dynamics, magnetic field results a vortex sheet on contour, and the two

effects can be coupled together (see Llewellyn Smith et al., 2018). Adding compressibility

is also a possible extension, and theoretical or numerical calculations for these vortices still

remain open tasks.

In our stability calculations, Rankine vortex gives the vorticity profile as a Heav-

iside step function. It would be interesting to do calculations for a continuous profile,

e.g. a Gaussian function, which is a more realistic situation. The importance of gravity is

assumed negligible and we freeze the vortex ring in a steady state in the present study. To

study the stability of buoyant vortices without this constraint, we may need to perform

numerical simulations combining with modal analysis tools. The present linear analysis is

a stepping stone to studies of nonlinear evolution using direct numerical simulations.

There are also several vortex problems that deal with single density flows could be

investigated in the future. Kida (1981) gives steady solutions for vortex filaments under
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the local induction approximation, but the stability of these steady solutions are not fully

understood yet. A furthermore question would be if there is any steady solution that

satisfies the Biot-Savart law (Oberti & Ricca, 2019). Vortex sheets have been used for the

study of shear layer and interfacial dynamics. A possible new model in dipole sheet or

vortex-dipole sheet, which are an asymptotic limit of two vortex sheets of opposite sign

collapsed together, is also an intriguing question.
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Appendix A

Supplementary formulae for

axisymmetric contour dynamics

A.1 Calculation of t · du/dt

Taking the material derivative d/dt of (3.11) yields

dup,r
dt

=− Ω

R2
ur

∮
R′ cos θ′Gds′

+
Ω

R

∮ (
u′r cos θ′G−R′ sin θ′dθ

′

dt
G+R′ cos θ′

dG

dt

)
ds′,

(A.1)

dup,z
dt

=Ω

∮ [
(u′z − uz) cos θ′H − (Z ′ − Z) sin θ′

dθ′

dt
H + (Z ′ − Z) cos θ′

dH

dt

]
ds′

− Ω

∮ (
cos θ′

dθ′

dt
G+ sin θ′

dG

dt

)
ds′.

(A.2)

The primes indicate dummy variables in the integrals and (R,Z) is the location of La-

grangian point. The first subscript represent the contribution from the vortex patch or

vortex sheet, while the second subscript indicates the velocity components. We do the
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same for (3.13) for the sheet:

dus,r
dt

= − 1

R

∮
dγ

dt

∂G

∂Z
dξ′ +

1

R2
ur

∮
γ
∂G

∂Z
dξ′ − 1

R

∮
γ

d

dt

(
∂G

∂Z

)
dξ′, (A.3)

dus,z
dt

=
1

R

∮
dγ

dt

∂G

∂R
dξ′ − 1

R2
ur

∮
γ
∂G

∂R
dξ′ +

1

R

∮
γ

d

dt

(
∂G

∂R

)
dξ′. (A.4)

Taking the dot product of du/dt with the tangent t = L−1(∂R/∂ξ, ∂Z/∂ξ) yields (3.29)

with

f(R,Z, γ,u) =
1

L

∂R

∂ξ

[
Ω

R

∮ (
u′r cos θ′G−R′ sin θ′dθ

′

dt
G+R′ cos θ′

dG

dt

)
ds′

− Ω

R2
ur

∮
R′ cos θ′Gds′ − 1

R2
ur

∮
γ
∂G

∂Z
dξ′ − 1

R

∮
γ

d

dt

(
∂G

∂Z

)
dξ′
]

+
1

L

∂Z

∂ξ

{
−Ω

∮ (
cos θ′

dθ′

dt
G+ sin θ′

dG

dt

)
ds′

+ Ω

∮ [
(u′z − uz) cos θ′H − (Z ′ − Z) sin θ′

dθ′

dt
H + (Z ′ − Z) cos θ′

×dH

dt

]
ds′ +

1

R2
ur

∮
γ
∂G

∂R
dξ′ +

1

R

∮
γ

d

dt

(
∂G

∂R

)
dξ′
}
.

(A.5)

A.2 Expressions for the kinetic and potential energies

Using (3.11.4) in Saffman (1992), the kinetic energy in a volume V is given by

T =
1

2
ρ

∫
V

|u|2 dV =
1

2
ρ

[∫
V

A · ω dV −
∫
S

(u×A) · n dS

]
, (A.6)

where the unit normal vector n points out from the volume V enclosed by the surface S,

and the vector potential gives u = ∇×A. For axisymmetric flows in (r, φ, z),

ω = ωφφ̂, A =
ψ

r
φ̂
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and

dV = rdr dφ dz, dS = r dφ ds,

where the surface S is a torus and s is the arc length of a contour on the rz plane.

Integrating over φ gives

T = πρ

[∫∫
ωφψ dr dz −

∮
(u×A) · nr ds

]
. (A.7)

For the setting shown in figure 3.1, the kinetic energies outside and inside the vortex

are

T1 = −πρ1
∮

(u1 ×A) · (−n)r ds, (A.8)

and

T2 = πρ2

[∫∫
ωφψ dr dz −

∮
(u2 ×A) · n rds

]
, (A.9)

respectively. The total kinetic energy is T = T1+T2. The double integral in T2 corresponds

to the vortex patch,

Tp = πρ2

∫∫
ωφψ dr dz = πρ2Ω

∫∫
ψrdr dz, (A.10)

and can be calculated using (A3) in Pozrikidis (1986) as a contour integral. The remaining

integrals in T are related to the vortex sheet:

Ts = πρ1

∮
(u1 ×A) · n r ds− πρ2

∮
(u2 ×A) · nr ds. (A.11)

By using ui = uir̂ + viẑ and ds = L dξ, we obtain

(ui ×A) · n =
ψ

r

(
ui
∂R

∂ξ
+ vi

∂Z

∂ξ

)
1

L
=
ψ

r
ui · t. (A.12)
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Then (A.11) becomes

Ts = πρ1

∮
ψu1 · tds− πρ2

∮
ψu2 · tds, (A.13)

= (ρ1 − ρ2)π
∮
ψu · t Ldξ + (ρ1 + ρ2)

π

2

∮
ψγdξ. (A.14)

If ρ1 = ρ2 = ρ,

Ts = πρ

∮
ψ(u1 − u2) · tLdξ,= πρ

∮
ψγ dξ, (A.15)

where γ = L(u1 − u2) · t. Taking ρ = 1, this is identical to (2.36) in Hattori & Moffatt

(2006). Finally, the potential energy is calculated from

U = 2π(ρ2 − ρ1)g
∫∫

rzdrdz = π(ρ2 − ρ1)g
∮
RZ2∂R

∂ξ
dξ. (A.16)
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Appendix B

Linear stability calculation

B.1 The basic state solution

The basic solution is obtained as a perturbation series as shown in (4.12) or (5.8).

The leading-order solution is the Rankine vortex and the boundary is circular. Pressure

is obtained from

−V
2
0

r
= −∂P0

∂r
(B.1)

inside and from the Bernoulli equation outside. The dynamic boundary condition for

pressure on r = 1 gives

ρ2
ρ1
P0 +

1

2

(
∂Φ0

∂θ

)2

= S. (B.2)

B.1.1 With a small curvature ε

The solution in (4.12) at O(ε), the governing equations lead to

∂U1

∂θ
− 2V1 = −∂P1

∂r
, (B.3)

2U1 +
∂V1
∂θ

= −1

r

∂P1

∂θ
, (B.4)
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∂U1

∂r
+
U1

r
+

1

r

∂V1
∂θ

= −r cos θ (B.5)

in the core and

∂2Φ1

∂r2
+

1

r

∂Φ1

∂r
+

1

r2
∂2Φ1

∂θ2
= −cos θ

r
(B.6)

outside the core. The matching conditions (4.10)–(4.11) give

U1 =
∂F1

∂θ
=
∂Φ1

∂r
, (B.7)

ρ2
ρ1
P1 +

∂Φ1

∂θ
+ F1

(
ρ2
ρ1
− 1

)
= −S

(
− sin θ + F1 +

∂2F1

∂θ2

)
(B.8)

at r = 1. Solving the above system with the condition F1 = 0 leads to the solution in

(4.15) and (4.16).

B.1.2 With a weak strain field γ

The solution in (5.8) at O(γ), the linearized governing equations give

∂U1

∂θ
− 2V1 = −∂P1

∂r
, (B.9)

2U1 +
∂V1
∂θ

= −1

r

∂P1

∂θ
, (B.10)

∂U1

∂r
+
U1

r
+

1

r

∂V1
∂θ

= 0 (B.11)

for r < 1 + γF1, and

∂2Φ1

∂r2
+

1

r

∂Φ1

∂r
+

1

r2
∂2Φ1

∂θ2
= 0 (B.12)

for r > 1 + γF1. The matching condition from (4.10)–(4.11), linearised on r = 1, is

U1 −
dF1

dθ
= 0, (B.13)

∂Φ1

∂r
− dF1

dθ
= 0, (B.14)
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ρ2
ρ1
P1 +

∂Φ1

∂θ
+ F1

(
ρ2
ρ1
− 1

)
= −S

(
F1 +

∂2F1

∂θ2

)
. (B.15)

The solution is given in (5.9) to (5.10) and (5.11).

B.2 The solution for Kelvin waves

Solutions to (4.23)–(4.27) with the basic state given by (4.13) and (4.14), indepen-

dent of s with wavenumber m in θ and k0 in s, are known as Kelvin waves. They take the

form

p
(m)
0 = Jm(η1r)β

(m)
0 ,

u
(m)
0 =

i

ω0 −m+ 2

[
−m
r
Jm(η1r) +

ω0 −m
ω0 −m− 2

η1Jm+1(η1r)

]
β
(m)
0 ,

v
(m)
0 =

1

ω0 −m+ 2

[
m

r
Jm(η1r) +

2

ω0 −m− 2
η1Jm+1(η1r)

]
β
(m)
0 ,

w
(m)
0 =

k0
ω0 −m

Jm(η1r)β
(m)
0

(B.16)

for r < 1 + f̃0. The radial wavenumber is

η21 =

[
4

(ω0 −m)2
− 1

]
k20. (B.17)

For r > 1 + f̃0,

φ
(m)
0 = Km(k0r)α

(m)
0 . (B.18)

α0, β0 are the amplitudes of Kelvin waves. The m+ 1 waves for curvature instability and

the m + 2 waves for MSTW instability are obtained by replacing m in the formulas by

m+1 and m+2. Recurrence relations are used to reduce the order of the Bessel functions.
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The kinematic boundary condition (4.28) leads to

f
(m)
0 =

i

(ω0 −m)
u
(m)
0 . (B.19)

The dispersion relation is obtained by enforcing the dynamic boundary condition, which

includes both surface tension and the density ratio.

B.3 Calculation for parametric instability

B.3.1 Boundary conditions for the curvature instability

Substituting the O(δε) solutions for modes m and m+1 into (4.36) and (4.37) gives

u
(m)
1 =

dφ1

dr

(m)

, (B.20)

ρ2
ρ1
p
(m)
1 − i(ω0 −m)φ

(m)
1 = iω1φ

(m)
0 +

m+ 1

8

(
ρ2
ρ1

+ 4S

)
φ
(m+1)
0

+

[
1− ρ2

ρ1
+ S(k20 +m2)

]
f
(m)
1

+ 2Sk0k1f
(m)
0 − S

(
m+ 1

2
+ k20 − 1

)
if

(m+1)
0 (B.21)

and

u
(m+1)
1 =

dφ1

dr

(m+1)

, (B.22)

ρ2
ρ1
p
(m+1)
1 − i(ω0 −m− 1)φ

(m+1)
1 = iω1φ

(m+1)
0 − m

8

(
ρ2
ρ1

+ 4S

)
φ
(m)
0

+

[
1− ρ2

ρ1
+ S(k20 + (m+ 1)2)

]
f
(m+1)
1

+ 2Sk0k1f
(m+1)
0 − S

(m
2
− k20 + 1

)
if

(m)
0 (B.23)

151



respectively. The O(δε) boundary disturbance f1 for the two modes is obtained from (4.35)

as

f
(m)
1 =

1

i(ω0 −m)

[
−u(m)

1 − iω1f
(m)
0 − m+ 1

8
f
(m+1)
0 − 5

8
f
(m+1)
0

]
, (B.24)

f
(m+1)
1 =

1

i(ω0 −m− 1)

[
−u(m+1)

1 − iω1f
(m+1)
0 +

m

8
f
(m)
0 − 5

8
f
(m)
0

]
. (B.25)

B.3.2 Boundary conditions for the MSTW instability

Writing the boundary conditions (5.32) and (5.33) for the O(δγ) solutions gives

u
(m)
1 − dφ1

dr

(m)

=− m+ 2

2
φ
(m+2)
0 − i

2
v
(m+2)
0 +

1

4

[
d2φ0

dr2

(m+2)

− du0
dr

(m+2)
]

+
i

2

(
1− ρ2

ρ1
+ 3S

)
f
(m+2)
0 − i(m+ 2)

4

(
1− ρ2

ρ1
+ 3S

)
f
(m+2)
0 ,

(B.26)

ρ2
ρ1
p
(m)
1 − i(ω0 −m)φ

(m)
1 =iω1φ

(m)
0 − 1

4

[
ρ2
ρ1

dp0
dr

(m+2)

− i(ω0 −m)
dφ0

dr

(m+2)
]

− i(m+ 2)

4

(
−1− ρ2

ρ1
+ 3S

)
φ
(m+2)
0

+
3

4

(
1− ρ2

ρ1
+ 2S

)
f
(m+2)
0 +

[
1− ρ2

ρ1
+ S(m2 + k20)

]
f
(m)
1

+ S

[
2k0k1f

(m)
0 − (m+ 2)2

2
f
(m+2)
0

]
(B.27)

for wave m, and

u
(m+2)
1 − dφ1

dr

(m+2)

=
m

2
φ
(m)
0 +

i

2
v
(m)
0 +

1

4

[
d2φ0

dr2

(m)

− du0
dr

(m)
]

− i

2

(
1− ρ2

ρ1
+ 3S

)
f
(m)
0 − im

4

(
1− ρ2

ρ1
+ 3S

)
f
(m)
0 ,

(B.28)
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ρ2
ρ1
p
(m+2)
1 − i(ω0 −m− 2)φ

(m+2)
1 =iω1φ

(m+2)
0 − 1

4

[
ρ2
ρ1

dp0
dr

(m)

− i(ω0 −m− 2)
dφ0

dr

(m)
]

− im

4

(
−1− ρ2

ρ1
+ 3S

)
φ
(m)
0 +

3

4

(
1− ρ2

ρ1
+ 2S

)
× f (m)

0 +

{
1− ρ2

ρ1
+ S[(m+ 2)2 + k20]

}
f
(m+2)
1

+ S

[
2k0k1f

(m+2)
0 − m2

2
f
(m)
0

]
.

(B.29)

for wave m + 2 (cf. (4.8) and (4.9) in Fukumoto, 2003, for ρ2/ρ1 = 1, S = 0). Unlike the

case of Tsai & Widnall (1976) and Fukumoto (2003), f1 needs to be obtained from the

above equations in order to calculate the dispersion relation. Using (5.31), we have

f
(m)
1 =

−1

i(ω0 −m)

[
u
(m)
1 + iω1f

(m)
0 +

i

2
v
(m+2)
0 +

i(m+ 1)

2
f
(m+2)
0 +

1

4

du0
dr

(m+2)
]
, (B.30)

f
(m+2)
1 =

−1

i(ω0 −m− 2)

[
u
(m+2)
1 + iω1f

(m+2)
0 − i

2
v
(m)
0 +

i(m+ 1)

2
f
(m)
0 +

1

4

du0
dr

(m)
]
.

(B.31)

B.3.3 Solvability conditions and dispersion relation

The dispersion relation relating k1 and ω1 for disturbances at O(δε) or O(δγ) is

determined as follows. The disturbance satisfies (4.30)–(4.34) or (5.26)–(5.30) with un-

determined coefficients α1, β1 in the solution, which need to be determined using the

boundary conditions at the same order. The boundary conditions for the first mode for m

(represented by a superscript ‘(1)’) lead to an inhomogeneous linear system of the form

 M11 M12

M21 M22


 α

(1)
1

β
(1)
1

 =

 F1

F2

 , (B.32)
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while the second mode for m+ 1 or m+ 2 (represented by a superscript ‘(2)’) become

 N11 N12

N21 N22


 α

(2)
1

β
(2)
1

 =

 G1

G2

 . (B.33)

The vectors F and G consist of the solution for Kelvin waves which has undetermined

coefficients α0 and β0. They also depend on known quantities, m, k0, ω0, ρ2/ρ1, S, and on

the unknowns k1 and ω1.

The matrices M and N on the left-hand side of (B.32) and (B.33) depend on m,

ω0, k0, ρ2/ρ1, S. The two linear systems are singular, i.e. their determinants are zero. The

solvability condition requires that the vectors F and G lie in the image space of M and

N, i.e. 
M11F2 −M21F1 = 0,

N11G2 −N21G1 = 0.

(B.34)

Using the relations

α
(1)
0 = − iJm(η1)

(ω0 −m)Km(k0)
β
(1)
0 , α

(2)
0 = − iJm+1(η2)

(ω0 −m− 1)Km+1(k0)
β
(2)
0 (B.35)

to replace α
(1)
0 and α

(2)
0 , (B.34) can be converted to a homogeneous linear system

 D11 D12

D21 D22


 β

(1)
0

β
(2)
0

 = 0. (B.36)

For nontrivial β
(1)
0 and β

(2)
0 , the resulting determinant equation

D11D22 −D12D21 = 0 (B.37)

leads to the dispersion relation for (k1, ω1). This is a quadratic equation for ω1, where ω1
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is obtained from D11 and D22 as

D11 = µ1ω1 + µ2, D22 = µ3ω1 + µ4. (B.38)

The dispersion relation is hence

µ1µ3 ω
2
1 + (µ1µ4 + µ2µ3) ω1 + µ2µ4 −D12D21 = 0; (B.39)

Expressions for µi and D12, D21 are obtained using a symbolic algebra computer code.

These quantities are functions of k1 with m, ω0, k0, ρ2/ρ1 and S all given. The

growth rate σ1 = |Im(ω1)| has a maximum when k1 = 0 where µ2 = µ4 = 0, giving

σ1max =

√
−D12D21

µ1µ3

. (B.40)

One half of the unstable bandwidth ∆k1 is calculated by finding the root k1 of

(µ1µ4 + µ2µ3)
2 − 4µ1µ3(µ2µ4 −D12D21) = 0. (B.41)
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