
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
On identification, zero-knowledge, and plaintext-aware- encryption

Permalink
https://escholarship.org/uc/item/2x71j3d0

Author
Palacio, Adriana Maria

Publication Date
2006

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2x71j3d0
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

On Identification, Zero-Knowledge, and Plaintext-Aware-Encryption

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Adriana Maria Palacio

Committee in charge:

Professor Mihir Bellare, Chair
Professor Samuel R. Buss
Professor Sanjoy Dasgupta
Professor Adriano Garsia
Professor Daniele Micciancio

2006

Copyright

Adriana Maria Palacio, 2006

All rights reserved.

The dissertation of Adriana Maria Palacio is approved,

and it is acceptable in quality and form for publication

on microfilm:

Chair

University of California, San Diego

2006

iii

To my parents, Tomás and Mercedes,

my brother, Ricardo, and my sister, Mónica

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

Acknowledgements . viii

Vita, Publications and Fields of Study xii

Abstract . xiv

1 Introduction . 1
1.1 The role of cryptography . 1
1.2 Practice-oriented provable security 2
1.3 Cryptographic assumptions . 4
1.4 Contributions . 5

1.4.1 Summary of results . 5
1.4.2 Identification . 6
1.4.3 Zero knowledge . 9
1.4.4 Plaintext awareness . 13

2 Preliminaries . 15
2.1 Notation and terminology . 15
2.2 Definitions . 16

2.2.1 RSA, DL, and DDH assumptions 16
2.2.2 Random-oracle model . 18

3 GQ and Schnorr Identification Schemes 20
3.1 Introduction . 20

3.1.1 Identification schemes and their security 20
3.1.2 The GQ scheme and our results about it 21
3.1.3 The Schnorr scheme and our results about it 24
3.1.4 Discussion and related work 25

3.2 Definitions . 27
3.2.1 ID schemes . 27
3.2.2 Impersonation under concurrent attack 27
3.2.3 Comments . 29

3.3 Reset lemma . 29
3.4 Security of GQ under concurrent attack 34

v

3.4.1 GQ identification scheme . 35
3.4.2 RSA assumption . 35
3.4.3 Result . 36

3.5 Security of Schnorr under concurrent attack 42
3.5.1 Schnorr identification scheme 42
3.5.2 DL assumption . 43
3.5.3 Result . 44

4 Knowledge-of-Exponent Assumptions and 3-round Zero-Knowledge
Protocols . 49
4.1 Introduction . 49

4.1.1 The assumptions, roughly 49
4.1.2 History and nomenclature of the assumptions 50
4.1.3 Falsifying KEA2 . 51
4.1.4 An analogy . 52
4.1.5 Falsification result . 52
4.1.6 Remark . 53
4.1.7 KEA3 . 53
4.1.8 Recovering the ZK results 54
4.1.9 Strength of the assumptions 55
4.1.10 Related work . 55

4.2 Preliminaries . 56
4.3 KEA2 is false . 59

4.3.1 Proof of Theorem 4.3.2 . 61
4.3.2 Extensions and variants . 63

4.4 The KEA3 assumption . 63
4.5 Three-round zero knowledge . 66

4.5.1 Arguments . 67
4.5.2 Canonical arguments . 67
4.5.3 The Hada-Tanaka protocol 69
4.5.4 Protocol PHTP . 71
4.5.5 Zero knowledge of PHTP 76
4.5.6 Summary . 80

5 Plaintext-Aware Public-Key Encryption without Random Oracles . . . 82
5.1 Introduction . 82

5.1.1 Background . 83
5.1.2 Our goals and motivation 85
5.1.3 Definitions . 86
5.1.4 Relations . 87
5.1.5 Constructions . 88

5.2 Notation and standard definitions 91
5.2.1 Encryption schemes . 92

vi

5.2.2 Standard security notions 92
5.3 New notions of plaintext awareness 93

5.3.1 Comparison . 97
5.3.2 Statistical PA . 99

5.4 Relations among notions . 100
5.4.1 Proof of Theorem 5.4.1 . 101
5.4.2 Proof of Theorem 5.4.2 . 105
5.4.3 Proof of Theorem 5.4.3 . 110
5.4.4 Proof of Theorem 5.4.4 . 113
5.4.5 Proof of Theorem 5.4.5 . 115

5.5 Constructions . 117
5.5.1 Approaches . 117
5.5.2 Prime-order groups . 118
5.5.3 The DHK assumptions . 118
5.5.4 Constructions . 120
5.5.5 A lemma . 122
5.5.6 Proof of Theorem 5.5.3 . 123
5.5.7 Proof of Theorem 5.5.4 . 126

5.6 Damg̊ard’s arguments about DEG’s security 129
5.6.1 RPR-security . 129
5.6.2 Claim and proof approach 129

Bibliography . 132

vii

LIST OF FIGURES

3.1 Properties of popular ID schemes 25
3.2 A canonical protocol . 30
3.3 Experiments used to define acc and res in the Reset Lemma 32
3.4 GQ identification scheme . 34
3.5 Rsa-omi-adversary I for the proof of Theorem 3.4.2 39
3.6 Schnorr identification scheme . 42
3.7 Omdl-adversary I for the proof of Theorem 3.5.2 45

4.1 Adversaries A and J for the proof of Theorem 4.3.2 62
4.2 A 3-round argument . 68
4.3 HTP and PHTP . 70
4.4 Adversaries A and J for the proof of Lemma 4.5.3 73

5.1 Relations between PA and notions of privacy 87
5.2 Experiments used to define PA1 and PA0 93
5.3 Experiments used to define PA2 . 95
5.4 Adversaries and distinguishers for the proof of Theorem 5.4.1 . . . 103
5.5 Adversaries C , P0, P1 for the proof of Theorem 5.4.2 106
5.6 Adversary Y and distinguishers for the proof of Theorem 5.4.2 . . 107
5.7 Algorithms C , D and I for the proof of Theorem 5.4.3 111
5.8 Adversary X for the proof of Theorem 5.4.3 112
5.9 Adversaries and extractor for the proof of Theorem 5.4.4 114
5.10 Adversaries and extractor for the proof of Theorem 5.4.5 116
5.11 Experiment used to define DHK1 and DHK0 119
5.12 Damg̊ard ElGamal encryption scheme 121
5.13 Cramer-Shoup Lite encryption scheme 122
5.14 Adversaries H , Y

′ and extractor for the proof of Theorem 5.5.3 . . 124
5.15 Adversary H and extractor C

∗ for the proof of Theorem 5.5.3 . . . 127

viii

ACKNOWLEDGEMENTS

I thank my advisor, Professor Mihir Bellare, for his continuous support dur-

ing my doctoral studies. Mihir engendered my interest in the field of Cryptography,

and showed me what research is all about. He taught me how to formulate ques-

tions, approach a problem from different angles, and express my ideas clearly. He

encouraged me to become more critical and much more persistent. I want to thank

Mihir especially for always being there to listen and offer advice, and for helping

me get through difficult times.

I thank the members of my doctoral committee, Professor Samuel R. Buss,

Professor Sanjoy Dasgupta, Professor Adriano Garsia, and Professor Daniele Mic-

ciancio, for supervising this dissertation. Thanks are also due to Professor Garrison

Cottrell, Professor Charles Elkan, and Professor Victor Vianu, for their support

and encouragement during my initial years in the graduate program.

I am very grateful for the financial assistance I received while at UCSD.

I was supported by an NSF Graduate Research Fellowship; Mihir’s NSF grants

CCR-0098123, ANR-0129617 and CCR-0208842, and his IBM Faculty Partnership

Development Award; and a MASEM Fellowship, funded by NSF and sponsored

by UCSD.

My co-authors, Mihir, John Black, Alexandra (Sasha) Boldyreva, Marc Fis-

chlin, Tadayoshi (Yoshi) Kohno, and Bogdan Warinschi, have my gratitude for

sharing their ideas about research with me, and for making the experience of

working with them very enjoyable.

Several friends and colleagues at UCSD have contributed significantly to

my development as a researcher and as a person: Michel Abdalla, Mihir, Sasha,

Alejandro Hevia, Matthew Hohlfeld, Yoshi, Jee Hea Lee, Vadim Lyubashevsky,

Daniele, Sara More, Chanathip (Meaw) Namprempre, Gregory Neven, Saurabh

Panjwani, Sherief Reda, Thomas Ristenpart, Bogdan, and Bianca Zadrozny. I am

grateful for the opportunity to meet each of them, and I thank them for the many

ix

thought-provoking conversations we have had. During the final year of my doctoral

studies, I have enjoyed the company of Anton Mityagin, Sara Shoup, and Scott

Yilek, and I am thankful for the laughs we have shared.

My longtime friends Adriana Arango, Adriana DaCosta, Alexandra Howell,

Teresa Tsai, and Denise Leon, have been very supportive and encouraging, while

reminding me of the importance of taking time to enjoy non-academic life. I thank

each of them for their friendship. I am grateful to Adriana Arango for being there

for me every step of the way. Her support has been invaluable. Thanks to Adriana

DaCosta for her trust, concern, and loyalty.

I also wish to thank my dear friend Andrés Caicedo for his unconditional love

and understanding, and for scolding me each time I go astray. Andrés’s cynical

humor has always managed to put a smile on my face. It has been wonderful to

have a close friend that understands the experience of graduate school, with whom

to exchange “war stories.”

Thanks to Vadim for his constructive criticism about my job application

materials, my dissertation, and my defense, and for all his additional help while I

was preparing each of these. I appreciate his efforts to make my life easier during

stressful times, and to get me to pay less attention to minutiae. He has brought

me much happiness this year, and his love has had a healing effect on me. For

that, I am especially grateful.

I am indebted to my parents, my brother, and my sister, for encouraging me

endlessly, letting me know that they believe in me, and taking care of me when

I needed it. This dissertation is dedicated to them, for without their help and

encouragement, I do not think I would have completed it.

The text of Chapter 3, in part, is a reprint of the material as it appears

in M. Bellare and A. Palacio, “GQ and Schnorr Identification Schemes: Proofs of

Security against Impersonation under Active and Concurrent Attacks,” Advances

in Cryptology - Crypto 2002 Proceedings, Lecture Notes in Computer Science Vol.

2442, M. Yung ed., Springer-Verlag, 2002. The text of Chapter 4, in part, is a

x

reprint of the material as it appears in M. Bellare and A. Palacio, “The Knowledge-

of-Exponent Assumptions and 3-Round Zero-Knowledge Protocols,” Advances in

Cryptology - Crypto 2004 Proceedings, Lecture Notes in Computer Science Vol.

3152, M. Franklin ed., Springer-Verlag, 2004. The text of Chapter 5, in full, is

a reprint of the material as it appears in M. Bellare and A. Palacio, “Towards

Plaintext-Aware Public-Key Encryption without Random Oracles,” Advances in

Cryptology - Asiacrypt 2004 Proceedings, Lecture Notes in Computer Science Vol.

3329, P. J. Lee ed., Springer-Verlag, 2004.

xi

VITA

1973 Born, Chicago, IL

1998 B.S. in Systems and Computer Engineering,
Universidad de los Andes, Bogotá, Colombia

1998 B.S. in Mathematics,
Universidad de los Andes, Bogotá, Colombia

1998 - 2000 Software Engineer,
OPUS Ingeneŕıa Ltda., Bogotá, Colombia

2004 M.S. in Computer Science,
University of California, San Diego

2004 Summer Graduate Teaching Fellow,
University of California, San Diego

2006 Ph.D. in Computer Science,
University of California, San Diego

PUBLICATIONS

M. Bellare and A. Palacio. “GQ and Schnorr Identification Schemes: Proofs
of Security against Impersonation under Active and Concurrent Attacks.” In
Advances in Cryptology - Crypto 2002 Proceedings, Lecture Notes in Computer
Science Vol. 2442, M. Yung ed., Springer-Verlag, 2002.

M. Bellare, A. Boldyreva, and A. Palacio. “An Uninstantiable Random-Oracle-
Model Scheme for a Hybrid-Encryption Problem.” In Advances in Cryptology - Eu-
rocrypt 2004 Proceedings, Lecture Notes in Computer Science Vol. 3027, C. Cachin
and J. Camenisch eds, Springer-Verlag, 2004.

M. Bellare and A. Palacio. “The Knowledge-of-Exponent Assumptions and 3-
Round Zero-Knowledge Protocols.” In Advances in Cryptology - Crypto 2004 Pro-
ceedings, Lecture Notes in Computer Science Vol. 3152, M. Franklin ed., Springer-
Verlag, 2004.

M. Bellare and A. Palacio. “Towards Plaintext-Aware Public-Key Encryption
without Random Oracles.” In Advances in Cryptology - Asiacrypt 2004 Proceed-
ings, Lecture Notes in Computer Science Vol. 3329, P. J. Lee ed., Springer-Verlag,
2004.

xii

M. Bellare and A. Palacio. “Protecting against Key Exposure: Strongly Key-
Insulated Encryption with Optimal Threshold.” Applicable Algebra in Engineer-
ing, Communication and Computing, Vol. 16, No. 6, Springer-Verlag, 2006.

FIELDS OF STUDY

Major Field: Computer Science
Studies in Cryptography.
Professor Mihir Bellare, University of California, San Diego

xiii

ABSTRACT OF THE DISSERTATION

On Identification, Zero-Knowledge, and Plaintext-Aware-Encryption

by

Adriana Maria Palacio

Doctor of Philosophy in Computer Science

University of California, San Diego, 2006

Professor Mihir Bellare, Chair

This dissertation studies three cryptographic tools: identification schemes –

collections of algorithms that enable a party to identify itself to another without

revealing information that would facilitate impersonation; zero-knowledge proofs –

interactive protocols that efficiently demonstrate the validity of an assertion with-

out conveying any additional knowledge; and plaintext-aware encryption schemes –

public-key encryption protocols with the property that the “only” way to efficiently

produce a valid ciphertext is to encrypt a message; hence the creator of a ciphertext

must “know” the corresponding plaintext.

We first consider two of the most efficient and best-known identification

schemes: GQ and Schnorr. The question of whether they can be proved secure

against impersonation under active attack had remained open for over ten years.

This dissertation provides such a proof for GQ based on the one-more-RSA-inver-

sion assumption, an extension of the usual one-wayness assumption. It also pro-

vides such a proof for Schnorr based on a corresponding discrete-logarithm-related

assumption. Both results extend to establish security against impersonation under

concurrent attack.

Next, we falsify an assumption, here called KEA2, underlying the Hada-

Tanaka 3-round negligible-error zero-knowledge protocol for NP. Providing such a

protocol is a challenging problem that has attracted considerable research effort.

xiv

The fact that KEA2 is false means that we “lose” one of the few positive results

on this subject. To recover the result, we propose a modification of KEA2. Af-

ter removing a small bug in the Hada-Tanaka protocol that renders it unsound,

we obtain a 3-round, negligible-error zero-knowledge protocol for NP under the

discrete-logarithm assumption and our new, suitably modified, assumption.

Finally, we address the problem of defining and achieving plaintext-aware

encryption in the standard public-key setting. We provide definitions for three

notions of increasing strength: PA0, PA1, PA2, chosen so that security against

chosen-plaintext attack (IND-CPA) coupled with PA1 implies security against non-

adaptive chosen-ciphertext attack (IND-CCA1), and IND-CPA coupled with PA2

implies security against adaptive chosen-ciphertext attack (IND-CCA2). Towards

achieving the new notions, we show that a scheme due to Damg̊ard, denoted DEG,

and Cramer-Shoup “lite” are both PA0 under Damg̊ard’s DHK0 assumption, and

PA1 under an extension of DHK0. DEG is thus the most efficient scheme proved

IND-CCA1-secure.

xv

1 Introduction

With the proliferation of computers and communications systems, digital in-

formation has become one of the most important resources of the economy and

society at large. The development of effective techniques for securing digital infor-

mation is vital to sustenance of modern society.

It is not possible to eradicate all risks associated to transmission of digital in-

formation, but communicating parties expect certain security objectives to be met.

Typical requirements for digital communication include privacy, which guarantees

that information is kept secret from all but those authorized to have it; authen-

ticity, which ensures that the receiver of a message can determine that it has not

been tampered with; and entity authentication, which enables corroboration of the

identity of a party. These security goals, and many more, can be satisfied with the

use of cryptographic protocols – communication protocols designed to withstand

the influence of adversaries attempting to make them deviate from their specified

functionality.

1.1 The role of cryptography

Protection of digital communications requires much more than the correct im-

plementation of adequate cryptographic protocols. Appropriate security policies,

legislation, physical security mechanisms, and measures to detect and document

1

2

threats are also necessary. Nevertheless, designing efficient quality cryptographic

protocols is a crucial step in securing digital communication systems.

A secure communication protocol is one that achieves security goals such as

those mentioned above. Cryptography is concerned with the design and analysis

of such protocols. A cryptographic protocol, also called a scheme, is a collection

of algorithms, one for each party involved in the communication. The algorithms

themselves are usually publicly known, but they are a function of some secret in-

formation, called a cryptographic key, and security of the protocol relies on secrecy

of this key.

Public-key cryptography, which was proposed in the revolutionary work of

Diffie and Hellman [39], assumes that a party possesses a pair of keys – a public key

and an associated secret key. The public key is bound to the party’s identity and

made publicly known; for example, by listing it in a public directory. The secret key

is assumed to be kept securely by the party. (How this is accomplished is outside

the scope of cryptography.) Henceforth, we will assume that the infrastructure

required to support public-key cryptography is available.

Ad hoc approaches and heuristics for the design of cryptographic protocols

have proved to be perilous. Proposed schemes are often broken, sometimes af-

ter they have been implemented and disseminated (e.g., wireless LAN protocol

WEP [27, 46, 85], Diebold’s AccuVote-TS voting system [63]). Protocol designers

cannot envision all possible strategies that an adversary may use to attack a sys-

tem. Therefore, countermeasures designed to prevent specific attacks are invariably

insufficient. A more sound approach is required.

1.2 Practice-oriented provable security

Researchers, practitioners, and standards bodies have embraced a methodol-

ogy for cryptographic protocol design called practice-oriented provable security [10,

12, 20]. This approach is a refinement of the provable-security approach introduced

3

in the seminal work of Goldwasser and Micali [55].

Provable security is achieved for a given cryptographic problem when one for-

mally defines a security goal, provides a protocol to meet this goal, and proves that

the protocol satisfies the security definition, under some widely-believed computa-

tional-hardness assumption. Formulating a security goal involves making a formal

adversarial model that captures an attacker’s capabilities, and defining exactly

what it means for a protocol to be secure. The latter requires specifying what

an adversary must do to be successful in attacking a scheme. A scheme is proved

secure via a reduction. A reduction shows that the only way to break the pro-

tocol is to solve the underlying computationally-hard problem. Thus, a formal

definition for this problem must also be provided. A security proof guarantees

that the protocol not only withstands known attacks, but is secure against all

(computationally-bounded) adversarial strategies as long as the underlying hard-

ness assumption holds.

The impact of traditional provable security on practical cryptography was

very limited due in part to the inefficiency and complexity of the provably-secure

constructions first proposed. Practice-oriented provable security was introduced by

Mihir Bellare and Phillip Rogaway [10, 12, 20] to address this issue and bring the

benefits of provable security to cryptographic practice. This approach combines the

principles of provable security with traditional practical cryptography, enabling the

design of efficient, proved-secure protocols. It has had a significant impact on the

application of cryptography in industry and has enriched both theory and practice.

Indeed, modern cryptographic standards often employ provably-secure protocols

and these are increasingly preferred to ad hoc schemes in real-world applications.

In this dissertation we employ the principles of practice-oriented provable

security. These include a focus on concrete security analysis, which quantifies how

much security a protocol provides, giving practitioners guidance in choosing among

protocols. For each cryptographic problem considered, we present definitions for

the security goals, describe protocols designed to achieve these goals, and analyze

4

these protocols. To show that a scheme is insecure, we present an attack, that is,

a successful adversarial strategy. To show that a scheme is secure, we present a

proof based on appropriate cryptographic assumptions, providing concrete bounds

for the reductions. These bounds can then be used to compute the maximum

probability of success possible for an adversary attacking the scheme, based on the

best solution known for the underlying hard problem.

1.3 Cryptographic assumptions

Standard cryptographic assumptions involve well-studied problems that are

believed to be difficult to solve using reasonable computational resources. A proof

of security based on such an assumption is a strong, albeit not absolute, security

guarantee. This guarantee is backed by decades of failed attempts to solve a well-

known, simply-stated problem.

While provably-secure protocols guarantee protection against all attackers

with the abilities specified in the adversarial model (if the underlying assumption

holds), ad hoc protocols can at best guarantee protection against specific attacks.

Thus, schemes designed using the provable-security approach and standard cryp-

tographic assumptions have superior security guarantees.

Numerous protocols have been proposed for which there are no proofs of

security and no known attacks. What can be said about the security of such

schemes? The fact that an attack has not been discovered does not imply that

none exists. Until a proof of security is provided, we cannot conclude that the

scheme is secure. Unless an attack is found, we cannot conclude that it is insecure

either. In such cases, less well-studied, sometimes even far-fetched, assumptions

might be considered. Is there anything to gain from such musings?

Basing proofs of security on non-standard, but plausible, simply-stated as-

sumptions frees cryptanalysts from the details of the protocols and the security

models, allowing them to focus on disproving the assumptions. Furthermore, re-

5

ducing the security of several protocols (with the same or different security goals)

to a single assumption, standard or not, helps to clarify and unify the global pic-

ture of protocol security by showing that the properties underlying the security

of all of the schemes are the same. Thus, we consider a reduction to a new, less

well-studied, or otherwise non-standard, cryptographic assumption to be of value.

With the above in mind, in this dissertation we use some recent RSA- and

discrete-logarithm-based assumptions that are strong, but plausible, to provide se-

curity proofs for protocols whose security status was unknown for many years. We

also make use of a couple of non-standard discrete-logarithm-related assumptions

which are considered problematic by some, to achieve security goals that have not

been met before. Our results are explained in the following section.

1.4 Contributions

We first briefly summarize the problems addressed in this dissertation and our

contributions. Then we discuss each problem in turn, providing some background

and motivation for our study, before presenting our results. Readers familiar with

any of the problems discussed below may wish to skip the corresponding back-

ground and proceed to the results.

1.4.1 Summary of results

We consider three cryptographic problems: identification, zero knowledge,

and plaintext awareness. A protocol that provides identification enables a party to

prove its identity to another, without revealing information that would facilitate

future impersonation. Zero-knowledge protocols are used to efficiently demon-

strate the validity of an assertion without conveying any additional knowledge.

Plaintext-aware protocols are public-key encryption schemes with the property

that the “only” way to efficiently produce a valid ciphertext is to encrypt a mes-

sage; hence the creator of a ciphertext must “know” the corresponding plaintext.

6

We begin by providing the first proofs of security for two efficient and well-

known identification schemes: GQ and Schnorr, based solely on assumptions re-

lated to the underlying one-way functions. Then we falsify an assumption on

which Hada and Tanaka base their 3-round, negligible-error, zero-knowledge ar-

guments for NP, demonstrating that it is possible to falsifying assumptions that

do not lend themselves easily to “efficient falsification” (Naor [70]) due to their

nature and quantifier structure. We also recover the results of Hada and Tanaka

on 3-round zero knowledge, under a new assumption. Finally, we define and con-

struct plaintext-aware encryption schemes in the standard setting of public-key

cryptography. These results are described in more detail below.

1.4.2 Identification

Since the advent of automated teller machines (ATMs), banks and customers

have had to deal with a new form of theft. ATMs have been rigged to record

account information read from customers’ cards. This information has then been

used to manufacture counterfeit ATM cards. Using these forged cards, thieves

have withdrawn millions of dollars from customer accounts.

In order to prevent ATMs from obtaining information that can be used to

manufacture counterfeit cards, it has been proposed to use smart cards containing

a secret that will enable identification to the bank. Instead of simply reading the

account information from a magnetic stripe on the back of the card, the ATM

facilitates an interactive protocol between the smart card and the bank computer.

If the protocol is completed correctly, then the bank allows the transaction to

procede; otherwise, it does not. Intuitively, by avoiding recovery of the secret

stored on the smart card, which makes it possible for the latter to convince the

bank of its identity, card forgery can be prevented.

An identification (ID) scheme [43] can be used by a smart card to identify

itself to a bank. Such a scheme enables a party holding a secret key – the prover –

7

to identify itself to a party holding the corresponding public key – the verifier. The

main notion of security for identification schemes is security against impersonation

under active attack [43]. In such an attack, the adversary’s goal is impersonation:

playing the role of the prover, but denied the secret key, it attempts to make the

verifier accept. Before the impersonation attempt, the adversary can play the role

of cheating verifier, interacting with the prover numerous times to try to obtain

information about the secret key. An example of an active attack occurs with the

use of a forged ATM card manufactured using information obtained from a rigged

ATM. Indeed, the rigged ATM interacts with the prover, possibly numerous times,

before the actual impersonation attempt.

A weaker notion of security for ID schemes, namely security against imper-

sonation under passive attack, considers adversaries that can eavesdrop on the

communication between the prover and the verifier, but cannot interact with the

prover directly. Note that security against impersonation under passive attack is

not sufficient to solve the problem of rigged ATMs described above.

The Guillou-Quisquater (GQ) [58] and Schnorr [79] identification schemes

are among the most efficient and best-known such schemes. They are known

to be secure against impersonation under passive attack, assuming, respectively,

hardness of RSA-inversion (i.e., one-wayness of RSA), and hardness of the dis-

crete-logarithm problem (DLP).

Our results

The question of whether the GQ [58] and Schnorr [79] identification schemes

can be proved secure against impersonation under active attack had remained open

for more than 10 years. In Chapter 3 of this dissertation, we provide such a proof for

the GQ scheme based on the one-more-RSA-inversion assumption, an extension of

the usual one-wayness assumption, which was introduced in [16]. We then provide

such a proof for the Schnorr ID scheme based on the one-more-discrete-logarithm

assumption, also introduced in [16], which is an extension of the usual discrete-loga-

8

rithm assumption (DLA). Our results extend to establish security against stronger

attacks, namely concurrent ones, based on the same assumptions.

The one-more-RSA-inversion assumption was used in [16] to provide a secu-

rity proof for Chaum’s RSA-based blind-signature scheme [32]. It was also used

in [17] to prove that an RSA-based transitive signature scheme due to Micali and

Rivest [67] is secure. Our result about GQ then implies that the properties of

RSA underlying the security of these three schemes are the same. Thus we obtain

the benefit one usually expects with a proof of security, namely reduction of the

security of several cryptographic protocols to a single number-theoretic problem.

As discussed in Section 1.3, such reductions free cryptanalysts from the details of

the protocols and security models, allowing them to focus on disproving a simply-

stated assumption.

The benefits of our second result above are analogous to those of our result

for the GQ scheme. Although the assumption used is relatively novel and strong,

our proof reduces the security of the Schnorr identification scheme to a question

about the hardness of a number-theoretic problem, thereby freeing cryptanalysts

from consideration of attacks related to the identification problem itself.

The GQ and Schnorr ID schemes are Fiat-Shamir (FS) [45] follow-ons. FS

is an efficient identification scheme based on a zero-knowledge proof due to Gold-

wasser, Micali, and Rackoff [56]. Feige, Fiat, and Shamir [45, 43] were the first

to use zero-knowledge techniques to address the problem of identification. Their

work paved the road for numerous successors, including GQ and Schnorr. These

two schemes are comparable to FS in computational cost but have much smaller

key sizes. FS, GQ, and Schnorr are 3-round honest-verifier zero-knowledge [13]

proofs of knowledge [56, 9], under the standard hardness assumptions for factor-

ing, RSA-inversion, and DLP, respectively.

We consider three-round zero-knowledge protocols in the following section.

9

1.4.3 Zero knowledge

Loosely speaking, a zero-knowledge (ZK) proof system [56] is a probabilistic

and interactive protocol for two parties, called prover and verifier, that enables

the computationally-unbounded prover to convince the computationally-bounded

verifier of the validity of an assertion without revealing any additional knowledge

(i.e., a verifier obtaining such a proof only gains conviction in the validity of the

assertion). The zero-knowledge requirement is captured by saying that anything

that is computable in polynomial time from the proof is also computable in polyno-

mial time from the assertion itself, using a so-called simulator. The proof system

must also satisfy a completeness condition requiring that if the assertion holds

then the verifier always accepts, and a soundness condition requiring that if the

assertion is false then the verifier rejects with “noticeable” probability, no matter

what strategy is employed by a prover.

The ZK property of a proof system (or argument system, defined below)

guarantees security against any adversarial strategy that a polynomial-time ver-

ifier may use in an attempt to extract knowledge from the prover who tries to

convince the verifier to accept a valid assertion. The soundness property of a proof

system (resp., computational-soundness property of an argument system) guaran-

tees security against all possible (resp., polynomial-time) strategies that a prover

may use in an attempt to fool the verifier into accepting a false assertion. It is

desirable to have ZK protocols with negligible soundness error.

ZK proofs are widely applicable in cryptography and have had a dramatic

effect on cryptographic protocol design. Their power comes from the fact that

NP-statements can be proved in ZK [53] using a prover strategy implemented by

a probabilistic polynomial-time algorithm that is given as an auxiliary input an

NP-witness to the assertion to be proved (provided that one-way functions exist – a

requirement for most of modern cryptography). This makes ZK proofs useful in the

design of protocols for various tasks. They are often used to force malicious parties

10

to properly follow a given protocol (which requires parties to prove correctness of

their actions, revealing nothing but the validity of the assertion).

As an example of an application of ZK in cryptography (due to [43]), consider

the problem of identification discussed in Section 1.4.2. A party can prove its iden-

tity by demonstrating that it “knows” a witness for an NP-statement. If the prover

simply transmits the witness, an adversary that eavesdrops on one interaction in

which the prover identifies itself, can then impersonate the prover. If the prover

uses a ZK proof instead, the adversary will not be able to impersonate the prover

even after eavesdropping on several successful interactions between the prover and

the verifier. In fact, even a cheating verifier will not be able to impersonate the

prover, that is, convince the honest verifier that it is the prover. The protocol is

thus secure against impersonation under active attack.

Brassard, Chaum, and Crépeau [28] introduced a variant of ZK proof sys-

tems in which the soundness condition is replaced by a computational-soundness

condition requiring that it is infeasible (not impossible) to fool the verifier into

accepting false statements with high probability. These protocols are called ZK

arguments. Arguments may be more efficient than proof systems (see [62]), and

they suffice for many cryptographic applications.

The round complexity of a ZK protocol is the number of message exchanges.

This measure is typically considered the most important efficiency criteria. It is

desirable for the number of rounds of a ZK protocol to be a small constant.

Bellare, Jakobsson, and Yung [11] showed how to construct 4-round negligible

soundness-error ZK arguments for every language in NP, assuming the existence

of one-way functions.

Goldreich and Krawczyk [52] showed that only languages in BPP have

3-round negligible-error proofs, or arguments, that are black-box simulation ZK

(BBZK). Roughly, BBZK requires that there exist a universal simulator that us-

ing any cheating verifier V̂ as a black box, produces a probability distribution like

that of the distribution of conversations between V̂ and the prover. This notion

11

of ZK is stronger than the original one, which allows each verifier V̂ to have a

particular simulator SbV
.

For nearly two decades all known ZK protocols were BBZK. Since it was hard

to imagine an alternative way to prove the ZK property of a given protocol, it was

believed that impossibility results for BBZK hold also for ZK. Barak [3] refuted

this belief by showing how to construct non-black-box simulators, and obtaining

several results that were known to be unachievable using black-box simulators.

These do not include, however, a 3-round, negligible-error ZK protocol for NP.

Our results

Whether there exist 3-round negligible-error zero-knowledge proofs or argu-

ments for NP is an intriguing open question in the theory of zero knowledge [56].

The difficulty in answering this question stems from the fact that such protocols

would have to be non-black-box simulation ZK [52], and there are few approaches

or techniques to this end. A positive answer has been provided, however, by Hada

and Tanaka [59, 60]. They prove the existence of such arguments based on a pair

of non-standard assumptions which we call KEA1 and KEA2 (for “Knowledge-of-

Exponent Assumptions”). In Chapter 4 of this dissertation, we show that KEA2

is false. This renders vacuous the results of [59, 60]. We recover these results,

however, under a suitably modified new assumption called KEA3.

What we believe is most interesting about these results is that we show that

it is possible to “falsify” assumptions such as KEA2 that, due to their nature

and quantifier structure, do not lend themselves easily to “efficient falsification”

(Naor [70]) and do not appear to be even “somewhat falsifiable” [70]. Indeed, KEA2

(and KEA1) is an assumption of the form: “For every adversary there exists an

extractor such that ...”. To show that KEA2 is false, we must show that there is

an adversary for which there exists no extractor. It is not difficult to identify an

adversary for which there does not appear to exist an extractor, but how can one

actually prove that none exists?

12

In contrast, most standard assumptions require that the probability that an

adversary produces a certain output given certain inputs is negligible. (For ex-

ample, DLA is of this type, asking that the probability that a polynomial-time

adversary can output the discrete logarithm of a random group element is negligi-

ble.) To falsify such an assumption, one can present an “attack,” in the form of an

adversary whose success probability is not negligible. (For example, a polynomial-

time algorithm that computes discrete logarithms.) Alas, we cannot apply this

strategy for falsification of KEA2.

The approach we use instead is to define an adversary such that if there exists

an extractor for it, then this extractor can be used to solve DLP. Hence our result

is conditional: we show that if DLA holds, then KEA2 is false. We also observe

that DLA is necessary to falsify KEA2.

The fact that KEA2 is false renders vacuous the proof of existence of 3-round

negligible-error ZK arguments for NP presented in [60]. Constructing such ZK

protocols (or proving that they only exist for BPP languages) has proved to be

difficult thus far, so we would like to recover the result of [60]. To this end, we

propose a modification of KEA2 that addresses the weakness we found in this

assumption. We call the new assumption KEA3. The Hada-Tanaka protocol has

a small bug that renders it unsound. We fix it and then prove that the resulting

protocol is a 3-round, negligible-error ZK argument for NP under DLA, KEA3,

and the variant of KEA1 used in [60] to prove the ZK property of the protocol.

Caveats. In recovering the results of [60] on 3-round ZK, we have not weakened the

assumptions on which it is based, for KEA3 certainly remains a strong assumption

of the same non-standard nature as KEA1.

The knowledge-of-exponent assumptions have been criticized for assuming

that one can perform what some people call “reverse engineering” of an adversary.

These critiques are certainly valid. Our results do not offer insight into this aspect

of the assumptions, but by showing that such assumptions can be falsified, we open

13

the door to further analyses.

We emphasize that we have not found any weaknesses in KEA1. Recently,

Dent [38] proved that this assumption is true in the generic-group model (cf. [81])

(where adversaries are restricted to be algorithms that do not exploit any special

property of the encoding of group elements), thus providing some evidence for its

validity.

KEA1 was proposed by Damg̊ard [36], who used it to construct a public-

key encryption scheme secure against certain chosen-ciphertext attacks. In the

last chapter of this dissertation, we show that Damg̊ard’s scheme actually satis-

fies a stronger notion of security, namely, plaintext awareness, based on the same

assumption.

Plaintext-aware public-key encryption is discussed in the following section.

1.4.4 Plaintext awareness

Encryption protocols are used to guarantee privacy when parties communi-

cate through insecure channels. In the setting of public-key cryptography, a sender

wishing to privately transmit data to a receiver, uses the receiver’s public key to

encrypt a message (aka plaintext). The resulting ciphertext is sent to the receiver,

who uses its secret key to decrypt it and obtain the original message. Numer-

ous such public-key encryption schemes have been constructed. The best-known

examples are RSA [76], ElGamal [42], and Cramer-Shoup [33, 35].

The strongest notion of security for public-key encryption schemes suggested

to date is plaintext awareness. Intuitively, an encryption scheme is plaintext aware

if the “only” way to efficiently produce a valid ciphertext is to encrypt a message;

hence, the creator of a ciphertext must “know” the corresponding plaintext. This

notion was first defined by Bellare and Rogaway [22] who provided a formaliza-

tion in the random-oracle (RO) model [21], where a random function is accessible

through oracle calls to all parties, adversary included. The definition was enhanced

14

in [7] to show that security against chosen-plaintext attack (IND-CPA) coupled

with plaintext awareness (PA) implies security against adaptive chosen-ciphertext

attack (IND-CCA2), currently the target notion of security for public-key encryp-

tion schemes in practice.

The natural counterpart standard (i.e., non-RO) model definitions of PA are

not achievable without sacrificing privacy.

Our results

Chapter 5 of this dissertation addresses the problem of defining and achieving

plaintext-aware encryption in the standard public-key setting. We provide defini-

tions for a hierarchy of notions of increasing strength: PA0, PA1 and PA2, cho-

sen so that IND-CPA+PA1 → IND-CCA1 (security against non-adaptive chosen-

ciphertext attacks) and IND-CPA+PA2 → IND-CCA2.

Towards achieving the new notions of plaintext awareness, we show that the

scheme due to Damg̊ard [36] mentioned above, which we refer to as DEG, and

the “lite” version of the Cramer-Shoup scheme [35] (CSL) are both PA0 under a

variant of the assumption KEA1 [36] discussed in Section 1.4.3, and PA1 under an

extension of this assumption. As a result, DEG is the most efficient scheme proven

IND-CCA1.

Dent [37] recently showed that some specific hybrid encryption schemes ob-

tained using the Cramer Shoup scheme are PA2 under the assumption we used to

prove that CSL is PA1. His result shows that PA2 is achievable, albeit under a

strong assumption.

2 Preliminaries

In this chapter we introduce notation and definitions that will be used in

several places throughout the dissertation.

2.1 Notation and terminology

We let N = {1, 2, 3, . . .} be the set of positive integers. For N ∈ N, ZN

denotes the ring of integers modulo N , Z
∗
N denotes the multiplicative group of

integers modulo N , and ≡
N

denotes congruence modulo N . If N ≥ 1 is an

integer, then |N | denotes the length of its binary encoding, i.e., the unique integer

ℓ such that 2ℓ−1 ≤ N < 2ℓ.

If S is a set, then |S| denotes its size and s
$← S denotes the operation of

selecting an element s ∈ S uniformly at random.

We denote by {0, 1}∗ the set of all binary strings of finite length. The empty

string is denoted ε. If x is a binary string, then we denote by |x| its length and

by x̄ its bitwise complement. We denote by “‖” the string-concatenation operator,

and by 1k the string of k ∈ N ones.

If A is a deterministic algorithm, then a← A(x, y, . . .) denotes the operation

of assigning to a the outcome of the experiment of running A on inputs x, y,

If A is a randomized algorithm, then A(x, y, . . . ; R) denotes its output on inputs

x, y, . . . and coins R; a
$← A(x, y, . . .) denotes the result of picking R at random and

15

16

setting a = A(x, y, . . . ; R); and [A(x, y, . . .)] denotes the set of all points having

positive probability of being output by A on inputs x, y,

For k ∈ N, we say that an algorithm A is poly(k)-time if given inputs of

length bounded by a polynomial in k, A halts in time bounded by a polynomial

in k. A function ν : N → [0, 1] is negligible if it approaches zero faster than the

reciprocal of any polynomial, that is, for every c ∈ N there exists kc ∈ N such that

ν(k) ≤ k−c for all k ≥ kc.

2.2 Definitions

We first recall the formal definitions of the RSA, discrete-logarithm (DL), and

decisional Diffie-Hellman (DDH) assumptions. Then in Section 2.2.2, we review

the random-oracle model, which we will refer to in Chapter 5.

2.2.1 RSA, DL, and DDH assumptions

Assumption 2.2.1 [RSA one-wayness] Let Krsa be a randomized, poly(k)-

time algorithm that on input security parameter k ∈ N, returns a triple (N, e, d)

where N is the product of two distinct primes, |N | = k, e < ϕ(N), gcd(d, ϕ(N)) =

1, and ed ≡
ϕ(N)

1. Let I be a randomized, polynomial-time algorithm that takes

input N, e, y, where y ∈ Z
∗
N , and returns x ∈ Z

∗
N . We call I an rsa-ow-adversary.

We associate to Krsa, I, and any k ∈ N the following experiment:

Experiment Exprsa-ow
Krsa, I (k)

(N, e, d)
$← Krsa(k) ; x

$← Z
∗
N ; y ← xe mod N ; x′ $← I(N, e, y)

If (x′ = x) then return 1 else return 0

We let

Advrsa-ow
Krsa, I (k) = Pr

[
Exprsa-ow

Krsa, I (k) = 1
]

denote the rsa-ow-advantage of I, the probability being over the coins of Krsa, the

choice of x, and the coins of I. We say that RSA one-wayness holds (or RSA is

17

one-way) for Krsa if the function Advrsa-ow
Krsa, I (·) is negligible for any rsa-ow-adversary

I of time complexity polynomial in k.

We adopt the convention that the time complexity of an rsa-ow-adversary I

is the execution time of the entire experiment above.

Assumption 2.2.2 [DL assumption] Let Kdl be a randomized, poly(k)-time

algorithm that on input security parameter k ∈ N, returns a pair (q, g) where q is

a prime such that q | p− 1 for a prime p with |p| = k, and g is a generator of Gq, a

subgroup of Z
∗
p of order q. Let I be a randomized, polynomial-time algorithm that

takes input q, g, X, where X ∈ Gq, and returns x′ ∈ Zq. We call I a dl-adversary.

We associate to Kdl, I, and any k ∈ N the following experiment:

Experiment Expdl
Kdl, I

(k)

(q, g)
$← Krsa(k) ; x

$← Zq ; X ← gx ; x′ $← I(q, g, X)

If (gx′
= X) then return 1 else return 0

We let

Advdl
Kdl, I

(k) = Pr
[
Expdl

Kdl, I
(k) = 1

]

denote the dl-advantage of I, the probability being over the coins of Kdl, the

choice of x, and the coins of I. We say that DLA holds (or DLP is hard) for Kdl

if the function Advdl
Kdl, I

(·) is negligible for any dl-adversary I of time complexity

polynomial in k.

We adopt the same convention regarding time complexity as in the case of

an rsa-adversary.

Assumption 2.2.3 [DDH assumption] Let Kddh be a randomized, poly(k)-

time algorithm that on input security parameter k ∈ N, returns a triple (p, q, g)

where p, q are primes with |p| = k and p = 2q + 1, and g is a generator of Gq, a

subgroup of Z
∗
p of order q. Let D be a randomized, polynomial-time algorithm that

takes input p, q, g, X, Y, Z, where X, Y, Z ∈ Gq, and returns a bit d. We call D a

ddh-adversary. We associate to Kddh, D, and any k ∈ N the following experiments:

18

Experiment Expddh-1
Kddh,D(k)

(p, q, g)
$← Krsa(k)

x
$← Zq

y
$← Zq

z ← xy mod q
X ← gx ; Y ← gy ; Z ← gz

d
$← D(p, q, g, X, Y, Z)

Return d

Experiment Expddh-0
Kddh,D(k)

(p, q, g)
$← Krsa(k)

x
$← Zq

y
$← Zq

z
$← Zq

X ← gx ; Y ← gy ; Z ← gz

d
$← D(p, q, g, X, Y, Z)

Return d

We let

Advddh
Kddh,D(k) = Pr

[
Expddh-1

Kddh,D(k) = 1
]
− Pr

[
Expddh-0

Kddh,D(k) = 1
]

denote the ddh-advantage of D, the probability being over the coins of Kddh, the

choices of x, y, z, and the coins of D. We say that the DDH assumption holds

(or DDH is hard) for Kddh if the function Advddh
Kddh,D(·) is negligible for any ddh-

adversary D of time complexity polynomial in k.

We adopt the convention that the time complexity of a ddh-adversary D is

the execution time of the worst-case experiment above.

2.2.2 Random-oracle model

A random-oracle (RO) model scheme is one whose algorithms have oracle

access to a random function. Its security is evaluated with respect to an adversary

with oracle access to the same function. An “instantiation” of such a scheme is

the standard-model scheme obtained by replacing this function with a member of

a polynomial-time computable family of functions, described by a short key. The

security of the scheme is evaluated with respect to an adversary given the same key.

In the random-oracle paradigm, as enunciated by Bellare and Rogaway [21], one

first designs and proves secure a scheme in the RO model, and then instantiates it

to get a (hopefully still secure) standard-model scheme.

The RO model is quite popular and there are now numerous practical schemes

designed and proved secure in this model. A proof in the RO model, however,

19

does not guarantee security in the standard model. Numerous examples have been

provided of uninstantiable schemes, i.e., schemes that meet their cryptographic

goal in the RO model, but such that no instantiation of the scheme meets the goal

in question (e.g., [29, 70, 57, 6]). Thus, we know that RO model schemes might

not provide real-world security guarantees at all. Hence proofs of security in the

standard model are usually considered preferable to RO-model proofs.

3 GQ and Schnorr

Identification Schemes

3.1 Introduction

The Guillou-Quisquater (GQ) [58] and Schnorr [79] identification schemes

are amongst the most efficient and best known Fiat-Shamir [45] follow-ons, but

the question of whether they can be proved secure against impersonation under

active attack has remained open. This chapter addresses this question, as well as

its extension to even stronger attacks, namely concurrent ones. We begin with

some background.

3.1.1 Identification schemes and their security

An identification (ID) scheme enables a prover holding a secret key to identify

itself to a verifier holding the corresponding public key. Fiat and Shamir (FS) [45]

showed how the use of zero-knowledge techniques [56] in this area could lead to

efficient schemes, paving the road for numerous successors including [58, 79], which

are comparable to FS in computational cost but have much smaller key sizes.

The accepted framework for security notions for identification schemes is that

of Feige, Fiat and Shamir [43]. As usual, one considers adversary goals as well as

adversary capabilities, or attacks. The adversary goal is impersonation: playing

20

21

the role of prover but denied the secret key, it tries to make the verifier accept. To-

wards this goal, one can allow it various attacks on the honest, secret-key equipped

prover which, as per [43], take place and complete before the impersonation at-

tempt. The weakest reasonable attack is a passive attack in which the adversary

obtains transcripts of interactions between the prover and the verifier. The attack

suggested by [43] as defining the main notion of security, however, is an active

attack in which the adversary plays the role of cheating verifier, interacting with

the prover numerous times before the impersonation attempt. An identification

scheme is secure if all such adversaries have a negligible probability of success.

Security against impersonation under active attack has been the classical goal

of identification schemes. Interest has been growing, however, in stronger attacks,

namely concurrent ones. Here, the adversary still plays the role of cheating verifier

prior to impersonation, but it can interact with many different prover “clones”

concurrently. The clones all have the same secret key but are initialized with inde-

pendent coins and maintain their own state. Security against impersonation under

concurrent attack implies security against impersonation under active attack.

Analyses often approach the establishment of security against impersonation

via consideration of whether or not the protocol is a proof of knowledge [9], honest-

verifier zero knowledge [13], witness indistinguishable [44], and so on. These auxil-

iary properties are important and useful tools, but not the end goal, which remains

establishing security against impersonation.

3.1.2 The GQ scheme and our results about it

GQ is RSA based. The prover’s public key is (N, e, X), where N is an RSA

modulus, e is a prime RSA exponent, and X ≡
N

xe where x ∈ Z
∗
N is the prover’s

secret key. As typical for practical ID schemes, the protocol, depicted in Figure 3.4,

has three moves: the prover sends a “commitment,” the verifier sends a random

challenge, the prover sends a “response,” and the verifier then accepts or rejects.

22

The protocol is honest-verifier zero knowledge and a proof of knowledge of x [58],

and it follows easily that it is secure against impersonation under passive attack,

assuming RSA is one-way.

The main question is whether the protocol is secure against impersonation

under active attack. No attack has been found. However, no proof of security has

been provided either. Furthermore, it is difficult to imagine such a proof being

based solely on the assumption that RSA is one-way. (The prover response is the

RSA inverse of a point that is a function of the verifier challenge, giving a cheating

verifier some sort of limited chosen-ciphertext attack capability, something one-

wayness does not consider.) In other words, the protocol seems to be secure against

impersonation under active attack, but due to properties of RSA that go beyond

mere one-wayness.

The research community is well aware that RSA has important strengths

beyond one-wayness, and have captured some of them with novel assumptions.

Examples include the strong RSA assumption, introduced in [4, 47] and exploited

in [49, 34]; the dependent-RSA assumptions [73]; and the one-more-RSA-inversion

assumption [16]. The intent, or hope, of introducing such assumptions is that

they underlie not one but numerous uses or protocols. Thus our approach is to

attempt to build on this existing experience, and prove security based on one of

these assumptions.

We prove that the GQ identification scheme is secure against impersonation,

under both active and concurrent attacks, if the one-more-RSA-inversion assump-

tion holds. The precise statement of the result is Corollary 3.4.3. Let us now

explain the assumption.

The one-more-RSA-inversion assumption, as introduced in [16], considers an

adversary given input an RSA public key N, e, and access to two oracles. The

challenge oracle takes no inputs and returns a random target point in Z
∗
N , chosen

anew each time the oracle is invoked. The inversion oracle given y ∈ Z
∗
N returns

yd mod N , where d is the decryption exponent corresponding to e. The assump-

23

tion states that it is computationally infeasible for an adversary to output correct

inverses of all the target points if the number of queries it makes to its inversion

oracle is strictly less than the number of queries it makes to its challenge oracle.

(When the adversary is allowed to make only one challenge query and no inversion

queries, this is the standard one-wayness assumption, which is why the one-more-

RSA-inversion assumption is considered an extension of the standard one-wayness

assumption.) This assumption was used in [16] to prove the security of Chaum’s

RSA-based blind-signature scheme [32] in the random-oracle model [21]. (Our re-

sults, however, do not involve random oracles.) It was also used in [17] to prove the

security of an RSA-based transitive signature scheme due to Micali and Rivest [67].

Our result is based on a relatively novel and strong assumption that should

be treated with caution. But the result still has value. It reduces the security of

the GQ identification scheme to a question that is solely about the security of the

RSA function. Cryptanalysts need no longer attempt to attack the identification

scheme, but can instead concentrate on a simply stated assumption about RSA,

freeing themselves from the details of the identification model. Furthermore, our

result helps clarify and unify the global picture of protocol security by showing

that the properties of RSA underlying the security of the GQ identification scheme,

Chaum’s RSA-based blind-signature scheme, and Micali and Rivest’s RSA-based

transitive signature scheme are the same. Thus our result brings the benefit we

usually expect with a proof of security, namely reduction of the security of many

cryptographic problems to a single number-theoretic problem. Finally, a proof

under a stronger-than-standard assumption is better than no proof at all in the

context of a problem whose provable security has remained an open question for

more than ten years.

24

3.1.3 The Schnorr scheme and our results about it

The Schnorr identification scheme is discrete-logarithm based. The prover’s

public key is (q, g, X), where g is a generator of a suitable group of prime order

q, and X = gx where x is the prover’s secret key. The protocol, having the

usual three-move format, is depicted in Figure 3.6. Again the protocol is honest-

verifier zero knowledge and a proof of knowledge of x [79], and it follows easily

that it is secure against impersonation under passive attack, assuming hardness of

computation of discrete logarithms in the underlying group. (That is, one-wayness

of the discrete-exponentiation function.) As with GQ, the scheme appears to be

secure against impersonation under active attack in the sense that no attacks are

known, but proving security has remained open.

We prove that the Schnorr scheme is secure against impersonation, un-

der both active and concurrent attacks, if the one-more-discrete-logarithm as-

sumption holds in the underlying group. The precise statement of the result is

Corollary 3.5.3. The assumption, also introduced in [16], is the natural analogue

of the one we used for RSA. The adversary gets input the generator g. Its chal-

lenge oracle returns a random target point in the group, and its inversion oracle

computes discrete logarithms relative to g. The assumption states that it is com-

putationally infeasible for an adversary to output correct discrete logarithms of all

the target points if the number of queries it makes to its inversion oracle is strictly

less than the number of queries it makes to its challenge oracle. (When the adver-

sary is allowed to make only one challenge query and no inversion queries, this is

the standard discrete-logarithm assumption, meaning the standard assumption of

one-wayness of the discrete-exponentiation function.)

The benefits of this result are analogous to those for GQ. Although the as-

sumption is relatively novel and strong, our result reduces the security of the

Schnorr identification scheme to a question about the hardness of a number-

theoretic problem, thereby freeing a cryptanalyst from consideration of attacks

25

ID Scheme POK HVZK WI IMP-PA IMP-AA IMP-CA

Fiat-Shamir Yes Yes Yes Yes Yes Yes
GQ Yes Yes No Yes YES YES

2m-th root No Yes No Yes Yes Unknown
Ong-Schnorr No Yes No Yes Yes Unknown

Schnorr Yes Yes No Yes YES YES
Okamoto Yes Yes Yes Yes Yes Yes

Figure 3.1 Properties of popular ID schemes. Results presented in this chap-

ter are highlighted. The assumptions on which proofs of security against imper-

sonation are based are described in Section 3.1.4.

related to the identification problem itself.

3.1.4 Discussion and related work

Within the large class of FS follow-on identification schemes, proven security

properties vary. Some, like GQ and Schnorr, did not have proofs of security against

active or concurrent attacks. The FS scheme itself, however, can be proved secure

against impersonation under active and concurrent attacks assuming factoring is

hard by exploiting its witness-indistinguishability (WI) and proof-of-knowledge

(POK) properties. Okamoto’s discrete-logarithm-based scheme [71] is also WI and

a POK, and can thus be proved secure against impersonation under active and

concurrent attacks, assuming hardness of the discrete-logarithm problem. Simi-

lar results hold for other schemes having the WI and POK properties. GQ and

Schnorr, however, are not WI, since there is only one secret key corresponding to

a given public key, so these techniques do not work for them. On the other hand,

they are preferable in terms of cost. Both have smaller key size than FS, and

Schnorr is more efficient than Okamoto.

The so-called 2m-th root identification scheme can be viewed as the analogue

of the GQ scheme with the RSA encryption exponent e replaced by a power of

two, or as a special case of the Ong-Schnorr scheme [72]. The 2m-th root scheme

26

and the Ong-Schnorr scheme have been proved secure against impersonation under

active attack assuming factoring is hard [83, 80]. As far as we know, their security

against impersonation under concurrent attack is an open question.

The security properties of the aforementioned schemes are summarized in

Figure 3.1, where IMP-PA, IMP-AA, and IMP-CA denote, respectively, security

against impersonation under passive, active, and concurrent attack.

Shoup [81] had proved that the Schnorr identification scheme is secure against

impersonation under active attack in the generic-group model, where the attacker

is restricted to be an algorithm that does not exploit any special property of the

encoding of group elements. Our results are in the standard and less restrictive

model where the adversary is an arbitrary algorithm.

The signature schemes obtained from the GQ and Schnorr identification

schemes via the Fiat-Shamir transform are already known to be provably secure in

the random-oracle model assuming, respectively, the one-wayness of RSA and the

hardness of the discrete-logarithm problem [74], yet the security of the ID schemes

against impersonation under active attack has remained open. This is not a con-

tradiction, since the security of the signature scheme in the random-oracle model

relies on relatively weak security properties of the ID scheme, namely the security

of the latter against impersonation under passive attack [1].

Bellare et al. [15] showed that the GQ scheme can be transformed into an

identity-based identification scheme, called GQ-IBI, via a random-oracle-using

transform that preserves security. As observed in that paper, our result implies

that GQ-IBI is secure against impersonation under active and concurrent attacks

in the random-oracle model, if the one-more-RSA-inversion assumption holds. Bel-

lare et al. also showed how to turn the signature scheme obtained from the GQ

scheme via the Fiat-Shamir transform into an identity-based signature scheme,

called GQ-IBS, using a security-preserving transform. It follows that GQ-IBS is

provably secure in the random-oracle model assuming one-wayness of RSA. We

comment that the schemes originally proposed by Guillou and Quisquater [58] are

27

actually GQ-IBI and GQ-IBS. In contrast, the Schnorr identification scheme has

no counterpart identity-based identification or signature scheme.

Reset attacks (where the cheating verifier can reset the internal state of prover

clones with which it interacts [30, 8]) are not considered here since GQ and Schnorr,

as with all proof-of-knowledge-based schemes, are insecure against these attacks.

3.2 Definitions

3.2.1 ID schemes

An identification (ID) scheme ID = (K, P, V) is a triple of randomized

algorithms. On input security parameter k ∈ N, the poly(k)-time key-generation

algorithm K returns a pair consisting of a public key pk and a matching secret

key sk. P and V are polynomial-time interactive algorithms that implement the

prover and verifier, respectively. We require the natural correctness condition,

namely that the boolean decision produced by V in the interaction in which P has

input pk, sk and V has input pk, is 1 with probability one. This probability is

over the coin tosses of both parties. We assume that the first and last moves in

the interaction always belong to the prover.

The following security notion uses the basic two-phase framework of [43] in

which, in a first phase, the adversary attacks the secret-key equipped P , and then,

in a second phase, plays the role of cheating prover, trying to make V accept. We

define and prove security only for impersonation under concurrent attack, since

the usual (serial) active attack [43] is a special case of a concurrent attack.

3.2.2 Impersonation under concurrent attack

An imp-ca-adversary A = (V̂ , P̂) is a pair of randomized polynomial-time

algorithms, the cheating verifier and cheating prover, respectively. We consider

a game having two phases. In the first phase, K is run on input k to produce

28

(pk, sk), a random tape is chosen for V̂ and it is given input pk. It then interacts

concurrently with different clones of prover P , all clones having independent ran-

dom tapes and being initialized with pk, sk. Specifically, we view P as a function

that takes an incoming message and current state and returns an outgoing message

and updated state. Cheating verifier V̂ can issue a request of the form (ε, i). As

a result, a fresh random tape Ri is chosen, the initial state St i of clone i is set

to (pk, sk, Ri), the operation (Mout, St i)← P (ε; St i) is executed, Mout is returned

to V̂ , and the updated St i is saved as the new state of clone i. Subsequently, V̂

can issue a request of the form (M, i), in which case message M is sent to clone

i, who computes (Mout, St i) ← P (M ; St i), returns Mout to V̂ , and saves the up-

dated state St i. These requests of V̂ can be arbitrarily interleaved. Eventually,

V̂ outputs some state information St and stops, ending the first phase. In the

second phase of the game, the cheating prover P̂ is initialized with St , verifier V

is initialized with pk and freshly chosen coins, and P̂ and V interact. We say that

adversary A wins if V accepts in this interaction, and the imp-ca-advantage of A,

denoted

Advimp-ca
ID,A (k)

is the probability that A wins, taken over the coins of K, the coins of V̂ , the coins

of the prover clones, and the coins of V . (There is no need to give P̂ separate

coins, or even pk, since it can get them from V̂ via St .) We say that ID is secure

against impersonation under concurrent attack (IMP-CA-secure) if the function

Advimp-ca
ID,A (·)

is negligible for all imp-ca-adversaries A of time complexity polynomial in the

security parameter k.

We adopt the convention that the time complexity of imp-ca-adversary A

does not include the time taken by the prover clones and the verifier to compute

replies to the adversary’s requests. Rather we view these as oracles, each returning

replies in unit time. Barring this, the time complexity of A is the execution time

29

of the entire two-phase game, including the time taken for key generation and

initializations. This convention simplifies concrete security considerations.

An active attack [43] is captured by considering cheating verifiers that interact

serially, one by one, with prover clones. (This means the cheating verifier initializes

a clone and finishes interacting with it before starting up another one.)

3.2.3 Comments

We clarify that we do not allow reset attacks such as considered in [30,

8]: although V̂ can interact concurrently and in interleaved fashion with the prover

clones, the internal state of a clone progresses in a normal serial fashion and cannot

be reset by V̂ . Indeed, the GQ and Schnorr protocols, object of our study, are both

insecure under reset attacks.

We also clarify that we stay within the two-phase framework of [43] even

while considering concurrent attacks, in the sense that the first phase (in which

the adversary mounts a concurrent attack on the secret-key equipped P) is assumed

to be completed before the start of the second phase (in which the adversary plays

the role of cheating prover and tries to make V accept). This reflects applications

such as smart card based identification for ATMs [43]. For identification over

the Internet, it is more suitable to consider adversaries that can interact with

the prover or prover clones even while they are interacting with the verifier in

an attempt to make the latter accept. With this, one moves into the domain of

authenticated key-exchange protocols which is definitionally more complex (see for

example [20, 19, 82, 31]) and where identification without an associated exchange

of a session-key is of little practical value.

3.3 Reset lemma

We refer to a three-move protocol of the form depicted in Figure 3.2 as

canonical. The prover’s first message is called its commitment. The verifier selects

30

Prover Q Verifier

Initial State St = (q, R)

(Cmt, St)← Q(ε; St)

Cmt
-

Ch
$← ChSetv

Ch
�

(Rsp, St)← Q(Ch; St)

Rsp
-

d← DECv(Cmt,Ch,Rsp)

Figure 3.2 A canonical protocol. Prover Q has input q and random tape R,

and maintains state St . The verifier has input v and returns boolean decision d.

a challenge uniformly at random from a set ChSetv associated to its input v, and,

upon receiving a response Rsp from the prover, applies a deterministic decision

predicate DECv(Cmt,Ch,Rsp) to compute a boolean decision. The verifier is

said to be represented by the pair (ChSet, DEC) which, given the verifier input v,

defines the challenge set and decision predicate.

A prover is identified with a function Q that given an incoming message Min

(this is ε when the prover is initiating the protocol) and its current state St , returns

an outgoing message Mout and an updated state. The initial state of the prover is

(q, R), where q is an input for the prover and R is a random tape.

The following lemma, which we call the Reset Lemma, upper bounds the

probability that a (cheating) prover Q can convince the verifier to accept as a

function of the probability that a certain experiment based on resetting the prover

yields two accepting conversation transcripts. We will use this lemma in our proofs

of security of both the GQ and the Schnorr schemes at the time of exploiting

their proof-of-knowledge properties. In the past such analyses were based on the

31

techniques of [43] who considered certain “execution trees” corresponding to the

interaction, and their “heavy nodes.” The Reset Lemma provides a slightly better

bound, has a simple proof, and is general enough to be applicable in numerous

settings, saving the need to apply the techniques of [43] from scratch in each

analysis, and may thus be of independent interest. Note that the lemma makes

no mention of proofs of knowledge; it is just about relating two probabilities. The

formulation and proof of the lemma generalize some analyses in [14].

Lemma 3.3.1 [Reset Lemma] Let Q be a prover in a canonical protocol with

a verifier V represented by (ChSet, DEC). Let IG be a randomized algorithm that

takes a security parameter k ∈ N and returns a pair of strings (q, v). We call IG

an input generator. For any (q, v) ∈ [IG(k)], associate the experiments defined in

Figure 3.3 to Q, V, q, v. For k ∈ N, let

acc(k) = Pr
[
Expacc

Q,V (q, v) = 1 : (q, v)
$← IG(k)

]
,

res(k) = Pr
[
Expreset

Q,V (q, v) = 1 : (q, v)
$← IG(k)

]
, and

c(k) = min{ |ChSetv| : there exists q such that (q, v) ∈ [IG(k)] } .

Then

res(k) ≥ acc(k)

(
acc(k)− 1

c(k)

)
. (3.1)

Alternatively,

acc(k) ≤ 1

c(k)
+

√
res(k) . (3.2)

To prove Lemma 3.3.1 we will use the following standard fact, which can be

derived from Jensen’s inequality or as a consequence of the fact that the variance of

any random variable is non-negative. For the sake of self-containment, we provide

a direct proof based on the latter approach.

Lemma 3.3.2 Let X be a real-valued random variable. Then E [X2] ≥ E [X2].

Proof of Lemma 3.3.2: Let µ = E [X]. The random variable (X − µ)2 is

non-negative. Thus

0 ≤ E
[
(X − µ)2

]
= E

[
X2

]
−2µE [X]+µ2 = E

[
X2

]
−2µ2+µ2 = E

[
X2

]
−µ2 ,

32

Experiment Expacc
Q,V (q, v) // (q, v) ∈ [IG(k)]

Choose random tape R for Q ; St ← (q, R) ; (Cmt, St)← Q(ε; St)

Ch
$← ChSetv ; (Rsp, St)← Q(Ch; St) ; d← DECv(Cmt,Ch,Rsp)

Return d

Experiment Expreset
Q,V (q, v) // (q, v) ∈ [IG(k)]

Choose random tape R for Q ; St ← (q, R) ; (Cmt, St)← Q(ε; St)

Ch1
$← ChSetv ; (Rsp1, St1)← Q(Ch1; St) ; d1 ← DECv(Cmt,Ch1,Rsp1)

Ch2
$← ChSetv ; (Rsp2, St2)← Q(Ch2; St) ; d2 ← DECv(Cmt,Ch2,Rsp2)

If (d1 = 1 AND d2 = 1 AND Ch1 6= Ch2) then return 1 else return 0 EndIf

Figure 3.3 Experiments used to define functions acc and res in the Reset Lemma

(Lemma 3.3.1).

and hence E [X2] ≥ µ2.

Proof of Lemma 3.3.1: Fix k ∈ N. We will first establish Equation (3.1) and

then show that it implies Equation (3.2). For (q, v) ∈ [IG(k)], let

acc(q, v) = Pr
[
Expacc

Q,V (q, v) = 1
]

and res(q, v) = Pr
[
Expreset

Q,V (q, v) = 1
]
.

We will show that for all (q, v) ∈ [IG(k)] :

res(q, v) ≥ acc(q, v)2 − 1

|ChSetv|
· acc(q, v) . (3.3)

Therefore, if E denotes the expectation taken over (q, v)
$← IG(k), then

res(k) = E [res(q, v)] ≥ E

[
acc(q, v)2 − 1

|ChSetv|
· acc(q, v)

]

≥ E
[
acc(q, v)2

]
− E

[
1

c(k)
· acc(q, v)

]

≥ E [acc(q, v)]2 − 1

c(k)
· E [acc(q, v)]

= acc(k)2 − 1

c(k)
· acc(k)

= acc(k)

(
acc(k)− 1

c(k)

)
,

33

where the third inequality above follows from Lemma 3.3.2. This establishes

Equation (3.1).

We now prove that Equation (3.3) holds for all (q, v) ∈ [IG(k)]. Fix such (q, v)

and let r denote the length of the prover’s random tape. For R ∈ {0, 1}r and

Ch ∈ ChSetv, let d(R,Ch) denote the verifier’s boolean decision when Q has

input q and random tape R, and V has input v and selects challenge Ch. We

define functions X, Y : {0, 1}r → [0, 1] as follows. For each R ∈ {0, 1}r, let

X(R) = Pr [d(R,Ch) = 1] ,

the probability being over a random choice of Ch from ChSetv. For each R ∈
{0, 1}r, let

Y(R) = Pr [d(R,Ch1) = 1 ∧ d(R,Ch2) = 1 ∧Ch1 6= Ch2] ,

the probability being over random and independent choices of Ch1 and Ch2 from

ChSetv. Then for any R ∈ {0, 1}r,

Y(R) = Pr [d(R,Ch1) = 1] · Pr [d(R,Ch2) = 1 ∧Ch1 6= Ch2 | d(R,Ch1) = 1]

= X(R) · Pr [d(R,Ch2) = 1 ∧Ch1 6= Ch2 | d(R,Ch1) = 1]

≥ X(R) · (Pr [d(R,Ch2) = 1 | d(R,Ch1) = 1] −

Pr [Ch1 = Ch2 | d(R,Ch1) = 1])
≥ X(R) · (Pr [d(R,Ch2) = 1]− Pr [Ch1 = Ch2])

= X(R) ·
(

X(R)− 1

|ChSetv|

)

We view X, Y as random variables over the sample space {0, 1}r of coins of Q.

Then letting p = 1/|ChSetv| and using the above we have

res(q, v) = E [Y] ≥ E [X · (X− p)]

= E
[
X2

]
− p ·E [X]

≥ E [X]2 − p · E [X]

= acc(q, v)2 − p · acc(q, v) .

34

Algorithm K(k)

(N, e, d)← Krsa(k)

x
$← Z

∗
N

X ← xe mod N

pk ← (N, e, X)

sk ← (N, x)

Return (pk, sk)

Prover P Verifier V

y
$← Z

∗
N

Y ← ye mod N
Y

-

c
$← {0, 1}l(k)

c
�

z ← yxc mod N
z

-

d← (ze ≡
N

Y Xc)

Figure 3.4 GQ identification scheme. Prover P has input pk = (N, e, X) and

sk = (N, x). Verifier V has input pk and returns boolean decision d.

In the third line above, we used Lemma 3.3.2. This completes the proof of

Equation (3.3) and thus of Equation (3.1).

We now show how to obtain Equation (3.2). Using Equation (3.1) we have

(
acc(k)− 1

2c(k)

)2

= acc(k)2 − 1

c(k)
· acc(k) +

1

4c(k)2
≤ res(k) +

1

4c(k)2
.

Taking the square-root of both sides of the above, and using the fact that
√

a + b ≤
√

a +
√

b for all real numbers a, b ≥ 0, we get

acc(k)− 1

2c(k)
≤

√

res(k) +
1

4c(k)2
≤

√
res(k) +

√
1

4c(k)2
=

√
res(k) +

1

2c(k)
.

Re-arranging terms and simplifying gives us the desired conclusion.

3.4 Security of GQ under concurrent attack

A randomized, poly(k)-time algorithm Krsa is said to be a prime-exponent

RSA key generator if on input security parameter k ∈ N, its output is a triple

(N, e, d) where N is the product of two distinct primes, |N | = k (N is k bits long),

35

e < ϕ(N) is an odd prime, gcd(d, ϕ(N)) = 1, and ed ≡
ϕ(N)

1. We do not pin down

any specific such generator. Rather it is a parameter of the GQ identification

scheme, and security is proved based on an assumption about it.

3.4.1 GQ identification scheme

Let Krsa be a prime-exponent RSA key generator and let l : N → N be a

polynomial-time computable, polynomially bounded function such that 2l(k) < e

for any e output by Krsa on input k. The GQ identification scheme associated

to Krsa and challenge length l is the ID scheme whose constituent algorithms are

depicted in Figure 3.4. The prover’s commitment is a random element Y ∈ Z
∗
N . For

any verifier input pk = (N, e, X), ChSetpk = {0, 1}l(k). A challenge c ∈ ChSetpk

is interpreted in the natural way as an integer in the set
{
0, . . . , 2l(k) − 1

}
in the

ensuing computations. Due to the assumption that 2l(k) < e, the challenge is in

Ze. The verifier’s decision predicate DECpk(Y, c, z) evaluates to 1 if and only if z

is the RSA-inverse of Y Xc mod N .

3.4.2 RSA assumption

We recall the one-more-RSA-inversion assumption [16], RSA-OMI.

Assumption 3.4.1 [One-more-RSA-inversion: RSA-OMI] Let Krsa be a

prime-exponent RSA key generator. Let I be a randomized, polynomial-time

algorithm that takes input N, e and has access to two oracles. The first is an

RSA-inversion oracle (·)d mod N that given Y ∈ Z
∗
N returns Y d mod N , where d

is the decryption exponent corresponding to e. The second is a challenge oracle

ON that takes no inputs and returns a random challenge point W ∈ Z
∗
N each time

it is invoked. We call I an rsa-omi-adversary. We associate to Krsa, I, and any

k ∈ N the following experiment:

36

Experiment Exprsa-omi
Krsa, I (k)

(N, e, d)
$← Krsa(k) ; w1, . . . , wn

$← I(·)d mod N, ON (N, e)

Let W1, . . . , Wn denote the challenges returned by ON in response to

queries from I, and m denote the number of queries made by I to its

RSA-inversion oracle

If (wi ≡N
W d

i for i = 1, . . . , n AND m < n) then return 1 else return 0

We let

Advrsa-omi
Krsa, I (k) = Pr

[
Exprsa-omi

Krsa, I (k) = 1
]

denote the rsa-omi-advantage of I, the probability being over the coins of Krsa,

the coins of I, and the coins used by the challenge oracle across its invocations.

We say that Krsa is RSA-OMI-secure if the function Advrsa-omi
Krsa, I (·) is negligible for

any rsa-omi-adversary I of time complexity polynomial in k.

We adopt the convention that the time complexity of an rsa-omi-adversary

I is the execution time of the entire experiment, including the time taken for key

generation and one time unit for each reply to an oracle query. (The time taken

by the oracles to compute replies to the adversary’s queries is not included.)

3.4.3 Result

The following theorem shows that the advantage of any imp-ca-adversary

against the GQ scheme can be upper bounded via the advantage of a related rsa-

omi-adversary and a function of the challenge length. The theorem shows the

concrete security of the reduction.

Theorem 3.4.2 Let ID = (K, P, V) be the GQ identification scheme associated

to prime-exponent RSA key generator Krsa and challenge length l. Let A = (V̂ , P̂)

be an imp-ca-adversary of time complexity t(·) attacking ID. Then there exists

37

an rsa-omi-adversary I attacking Krsa such that for every k ∈ N :

Advimp-ca
ID,A (k) ≤ 2−l(k) +

√
Advrsa-omi

Krsa, I (k) . (3.4)

Furthermore, the time complexity of I is 2t(k)+O(k4 +(n(k)+1) · l(k) ·k2), where

n(k) is the number of prover clones with which V̂ interacts.

Based on this theorem, which we will prove later, we can easily provide the

following security result for the GQ scheme. In this result, we assume that the

challenge length l is super-logarithmic in the security parameter, which means that

2−l(·) is negligible. This assumption is necessary, since otherwise the GQ scheme

can be broken merely by guessing the verifier’s challenge.

Corollary 3.4.3 If prime-exponent RSA key generator Krsa is RSA-OMI-secure

and challenge length l satisfies l(k) = ω(log(k)), then the GQ identification scheme

associated to Krsa and l is secure against impersonation under both active and

concurrent attacks.

Proof of Corollary 3.4.3: Let A be an imp-ca-adversary of polynomial time

complexity attacking ID. Then the rsa-omi-adversary given by Theorem 3.4.2 also

has polynomial time complexity. The assumption that Krsa is RSA-OMI-secure

implies that Advrsa-omi
Krsa, I (·) is negligible, and the condition on the challenge length

implies that 2−l(·) is negligible. Equation (3.4) then implies that Advimp-ca
ID,A (·) is

negligible. This shows that any imp-ca-adversary of polynomial time complex-

ity attacking the scheme has a negligible advantage. Since an active attack is a

particular case of a concurrent attack, the conclusion holds.

We proceed to prove Theorem 3.4.2.

Proof of Theorem 3.4.2: We assume wlog that V̂ never repeats a request. Fix

k ∈ N and let (N, e, d) be an output of Krsa running on input k. Adversary I has

access to an RSA-inversion oracle (·)d mod N and a challenge oracle ON that takes

38

no inputs and returns a random challenge point W ∈ Z
∗
N each time it is invoked.

The adversary’s goal is to invert all the challenges returned by ON , while making

fewer queries to its RSA-inversion oracle then the number of such challenges.

A detailed description of the adversary is in Figure 3.5. It first queries its challenge

oracle to obtain a random element W0 ∈ Z
∗
N and uses it to create a public key

pk for the imp-ca-adversary A. It then uses A to achieve its goal by running V̂

and playing the role of the prover clones to answer its requests. In response to a

request of the form (ε, i), I queries its challenge oracle ON and returns the answer

Wi to V̂ . By the definition of prover P , from V̂ ’s perspective, this is equivalent to

picking a random tape Ri for prover clone i, initializing clone i with state pk, Ri,

computing clone i’s commitment Wi, and returning the commitment to V̂ . I is

not in possession of the secret key sk = (N, W d
0 mod N) corresponding to pk,

which the prover clones would use to respond to V̂ ’s requests of the form (c, i),

where c ∈ {0, 1}l(k), but it compensates using its access to the RSA-inversion

oracle to answer these requests. Specifically, in response to request (c, i), I makes

the query WiW
c
0 to its inversion oracle and returns the answer zi to V̂ . Since

zi = (WiW
c
0)d mod N = W d

i (W d
0)c mod N , this is exactly the response that clone

i would return to V̂ . Hence I simulates the behavior of the prover clones perfectly.

If n(k) is the number of prover clones with which V̂ interacts, when V̂ stops I

has made n(k) queries to its RSA-inversion oracle and it needs to invert n(k) + 1

challenge points. It cannot use the inversion oracle to obtain the desired inverses.

Instead, I attempts to extract from P̂ , initialized with the output of V̂ , the RSA-

inverse of challenge W0. It can then use this value to compute the inverse of

each of the other challenge points. To do so, I runs P̂ obtaining its commitment,

selects an l(k)-bit challenge uniformly at random, runs P̂ to obtain its response

to this challenge, and evaluates the verifier’s decision predicate. It then selects

another random challenge, re-runs P̂ (with the same state as before) to obtain

its response to the new challenge, and evaluates the verifier’s decision predicate.

39

Adversary I(·)d mod N,ON (N, e)

Make a query to ON and let W0 be the response ; pk ← (N, e, W0)

Choose a random tape R for V̂ ; Initialize V̂ with (pk, R) ; n← 0

Run V̂ answering its requests as follows:

When V̂ issues a request of the form (ε, i) do

n← n + 1 ; Make a query to ON , let Wi be the response and

return Wi to V̂

When V̂ issues a request of the form (c, i), where c ∈ {0, 1}l(k), do

ci ← c ; Make query WiW
ci

0 to (·)d mod N , let zi be the response and

return zi to V̂

Until V̂ outputs state information St and stops

R← ε ; St ← (St , R) ; (Y, St)← P̂ (ε; St)

Ch1
$← {0, 1}l(k) ; (Rsp1, St1)← P̂ (Ch1; St) ; d1 ← (Rsp

e
1 ≡N

Y WCh1
0)

Ch2
$← {0, 1}l(k) ; (Rsp2, St2)← P̂ (Ch2; St) ; d2 ← (Rsp

e
2 ≡N

Y WCh2
0)

If (d1 = 1 AND d2 = 1 AND Ch1 6= Ch2) then

z ← Rsp1 ·Rsp
−1
2 mod N ; (d, a, b)← EGCD(e,Ch1 −Ch2)

w0 ← W a
0 zb mod N ; For i = 1 to n do wi ← ziw

−ci

0 mod N

Return w0, w1, . . . , wn

else Return ⊥ EndIf

Figure 3.5 Rsa-omi-adversary I for the proof of Theorem 3.4.2. EGCD is a

routine that implements the extended Euclid algorithm which given x, y returns

(d, a, b) such that d = gcd(x, y) and ax + by = d.

If the decision predicate evaluates to 1, meaning P̂ makes the verifier accept, on

both accounts and the challenges are different, then I extracts the inverse of W0

as follows. It computes the quotient mod N of the cheating prover’s responses

to the challenges and sets z to this value. We observe that ze ≡
N

WCh1−Ch2
0 .

Then I uses the routine EGCD, which implements the extended Euclid algorithm,

to compute (d, a, b), where d = gcd(e,Ch1 − Ch2) and a, b ∈ Z are such that

ae + b(Ch1 −Ch2) = d. By the assumptions that e is prime and 2l(k) < e (which

implies Ch1,Ch2 ∈ Ze), d = 1. Hence ae + b(Ch1−Ch2) = 1. Therefore, we have

W0 ≡N
W ae

0 W
b(Ch1−Ch2)
0 ≡

N
W ae

0 (WCh1−Ch2
0)b ≡

N
W ae

0 (ze)b ≡
N

(W a
0 zb)e .

40

This shows that w0 = W a
0 zb mod N is the RSA-inverse of W0. For i = 1, . . . , n(k),

I computes the inverse of the i-th challenge point as wi = ziw
−ci

0 mod N . To prove

that this computation yields the desired RSA-inverse, we show that we
i ≡N

Wi.

Since zi is the inverse of WiW
ci

0 and w0 is the inverse of W0,

we
i ≡N

(ziw
−ci

0)e ≡
N

ze
i (w

e
0)

−ci ≡
N

WiW
ci

0 W−ci

0 ≡
N

Wi .

If the decision predicate does not evaluate to 1 on both occasions or the challenges

coincide, then I fails. Therefore, I wins if and only if d1 = 1, d2 = 1 and Ch1 6=
Ch2. We proceed to relate the probability of this event with the imp-ca-advantage

of adversary A.

We observe that pk has the same distribution as in the two-phase game that

defines a concurrent attack. Since I simulates the environment provided to V̂ in

that game perfectly, V̂ behaves as it does when performing a concurrent attack

against ID, and P̂ is given state information with the same distribution as in that

case. Therefore, the probability that d1 = 1 is exactly Advimp-ca
ID,A (k).

To relate this probability with the probability that I wins, we will apply the Reset

Lemma to the deterministic cheating prover P̂ , verifier V, implemented by I, and

the input generator IG defined below, which returns a pair (St , pk) consisting of

the output St of V̂ on input pk and the public key pk.

Algorithm IG(k)

(N, e, d)
$← Krsa(k)

W0
$← Z

∗
N ; pk ← (N, e, W0)

Choose a random tape R for V̂ ; Initialize V̂ with (pk, R) ; n← 0

Run V̂ answering its requests as follows:

When V̂ issues a request of the form (ε, i) do

n← n + 1 ; Wi
$← Z

∗
N ; return Wi to V̂

When V̂ issues a request of the form (c, i), where c ∈ {0, 1}l(k), do

ci ← c ; zi ← (WiW
ci

0)d mod N ; return zi to V̂

41

Until V̂ outputs state information St and stops

Return (St , pk)

We observe that the environment provided to V̂ by IG perfectly simulates the one

provided by I in Exprsa-omi
Krsa, I (k). Let acc, res, and c be defined as in Lemma 3.3.1.

Note that c(k) = 2l(k). Comparing the definitions of I and IG, it is easy to see that

acc(k) = Advimp-ca
ID,A (k) and res(k) = Advrsa-omi

Krsa, I (k). Applying the Reset Lemma,

we have

Advimp-ca
ID,A (k) ≤ 2−l(k) +

√
Advrsa-omi

Krsa, I (k) .

To complete the proof of Theorem 3.4.2, it remains to justify the claim about the

time complexity of adversary I. Consider the experiment that defines the rsa-omi-

advantage of I. Our conventions for measuring time complexity imply that the

cost of all the steps of this experiment before the execution of the final “If” in the

algorithm of adversary I is at most 2t(k) plus the cost of evaluating the verifier’s

decision predicate twice. The latter involves computing two exponentiations of

|e|-bit exponents and two exponentiations of l(k)-bit exponents. Since e is at

most k bits long, this is O(k3 + l(k) · k2). We now calculate the cost of the

remaining operations performed by I. The computation of the quotient mod N

of the cheating prover’s responses has cost O(k2). The extended Euclid algorithm

runs in time the product of the lengths of its inputs. Hence the cost of computing

(d, a, b) is O(|e| · |Ch1−Ch2|), which is O(k2) because Ch1,Ch2 ∈ Ze and |e| ≤ k.

The lengths of a and b cannot exceed the running time of EGCD, and they are

exponents in the computation of w0. Therefore, the cost of this computation is

O(k2 ·k2) = O(k4). The “For” loop has cost n(k)·O(l(k)·k2). The time complexity

of I is then 2t(k) + O(k4 + (n(k) + 1) · l(k) · k2).

42

Algorithm K(k)

(q, g)← Kdl(k)

x
$← Zq

X ← gx

pk ← (q, g, X)

sk ← (q, x)

Return (pk, sk)

Prover P Verifier V

y
$← Zq

Y ← gy

Y
-

c
$← {0, 1}l(k)

c
�

z ← y + cx mod q
z

-

d← (gz = Y Xc)

Figure 3.6 Schnorr identification scheme. Prover P has input pk = (q, g, X)

and sk = (q, x). Verifier V has input pk.

3.5 Security of Schnorr under concurrent attack

A randomized, poly(k)-time algorithm Kdl is said to be a discrete-logarithm

parameter generator if given security parameter k ∈ N, it outputs a pair (q, g)

where q is a prime such that q | p− 1 for a prime p with |p| = k (p is k bits long),

and g is a generator of Gq, a subgroup of Z
∗
p of order q. As before, we do not pin

down any specific such generator. The generator is a parameter of the Schnorr

scheme, and security is proved based on an assumption about it.

3.5.1 Schnorr identification scheme

Let Kdl be a discrete-logarithm parameter generator and let l : N → N be a

polynomial-time computable, polynomially bounded function such that 2l(k) < q

for any q output by Kdl on input k. The Schnorr identification scheme associated

to Kdl and challenge length l is the ID scheme whose constituent algorithms are

depicted in Figure 3.6. The prover’s commitment is a random element Y ∈ Gq. For

any verifier input pk = (q, g, X), ChSetpk = {0, 1}l(k). A challenge c ∈ ChSetpk is

interpreted as an integer in the set
{
0, . . . , 2l(k) − 1

}
in the ensuing computations.

43

The assumption that 2l(k) < q implies that the challenge is in Zq. The verifier’s

decision predicate DECpk(Y, c, z) evaluates to 1 if and only if z is the discrete

logarithm of Y Xc.

3.5.2 DL assumption

We recall the one-more-discrete-logarithm assumption [16], OMDL.

Assumption 3.5.1 [One-more-discrete-logarithm: OMDL] Let Kdl be a

discrete-logarithm parameter generator. Let I be a randomized, polynomial-time

algorithm that takes input q, g and has access to two oracles. The first is a discrete-

logarithm oracle DLogGq,g(·) that given Y ∈ Gq returns y ∈ Zq such that gy = Y .

The second is a challenge oracle ON that takes no inputs and returns a random

challenge point W ∈ Gq each time it is invoked. We call I an omdl-adversary. We

associate to Kdl, I, and any k ∈ N the following experiment:

Experiment Expomdl
Kdl, I

(k)

(q, g)
$← Krsa(k) ; w1, . . . , wn

$← IDLogGq,g(·),ON (q, g)

Let W1, . . . , Wn denote the challenges returned by ON in response to

queries from I, and m denote the number of queries made by I to its

discrete-logarithm oracle

If (gwi = Wi for i = 1, . . . , n AND m < n) then return 1 else return 0

We let

Advomdl
Kdl, I

(k) = Pr
[
Expomdl

Kdl, I
(k) = 1

]

denote the omdl-advantage of I, the probability being over the coins of Kdl, the

coins of I, and the coins used by the challenge oracle across its invocations. We

say that Kdl is OMDL-secure if the function Advomdl
Kdl, I

(·) is negligible for any omdl-

adversary I of time complexity polynomial in k.

We adopt the same convention regarding time complexity as in the case of

an rsa-omi-adversary.

44

3.5.3 Result

The following theorem guarantees that the advantage of any imp-ca-adversary

attacking the Schnorr scheme can be upper bounded via the advantage of a related

omdl-adversary and a function of the challenge length.

Theorem 3.5.2 Let ID = (K, P, V) be the Schnorr identification scheme asso-

ciated to discrete-logarithm parameter generator Kdl and challenge length l. Let

A = (V̂ , P̂) be an imp-ca-adversary of time complexity t(·) attacking ID. Then

there exists an omdl-adversary I attacking Kdl such that for every k ∈ N :

Advimp-ca
ID,A (k) ≤ 2−l(k) +

√
Advomdl

Kdl, I
(k) . (3.5)

Furthermore, the time complexity of I is 2t(k) + O(k3 + (l(k) + n(k)) · k2), where

n(k) is the number of prover clones with which V̂ interacts.

Before proving this theorem we note that it implies the following security

result for the Schnorr scheme.

Corollary 3.5.3 If discrete-logarithm parameter generator Kdl is OMDL-secure

and challenge length l satisfies l(k) = ω(log(k)), then the Schnorr identification

scheme associated to Kdl and l is secure against impersonation under both active

and concurrent attacks.

As in the case of the GQ scheme, the assumption that the challenge length

l is super-logarithmic in the security parameter is necessary since otherwise the

Schnorr scheme can be broken by guessing the verifier’s challenge. The proof of

this corollary is completely analogous to the proof of Corollary 3.4.3.

We proceed to prove Theorem 3.5.2.

Proof of Theorem 3.5.2: The proof is similar to the proof of Theorem 3.4.2.

We assume wlog that V̂ never repeats a request. Fix k ∈ N and let (q, g) be an

output of Kdl running on input k. Adversary I has access to a discrete-logarithm

45

Adversary IDLogGq,g(·),ON (q, g)

Make a query to ON and let W0 be the response ; pk ← (q, g, W0)

Choose a random tape R for V̂ ; Initialize V̂ with (pk, R) ; n← 0

Run V̂ answering its requests as follows:

When V̂ issues a request of the form (ε, i) do

n← n + 1 ; Make a query to ON , let Wi be the response and

return Wi to V̂

When V̂ issues a request of the form (c, i), where c ∈ {0, 1}l(k), do

ci ← c ; Make query WiW
ci

0 to DLogGq ,g(·), let zi be the response and

return zi to V̂

Until V̂ outputs state information St and stops

R← ε ; St ← (St , R) ; (Y, St)← P̂ (ε; St)

Ch1
$← {0, 1}l(k) ; (Rsp1, St1)← P̂ (Ch1; St) ; d1 ←

(
gRsp1 = Y WCh1

0

)

Ch2
$← {0, 1}l(k) ; (Rsp2, St2)← P̂ (Ch2; St) ; d2 ←

(
gRsp2 = Y WCh2

0

)

If (d1 = 1 AND d2 = 1 AND Ch1 6= Ch2) then

w0 ← (Rsp1 −Rsp2)(Ch1 −Ch2)
−1 mod q

For i = 1 to n do wi ← zi − ciw0 mod q

Return w0, w1, . . . , wn

else Return ⊥ EndIf

Figure 3.7 Omdl-adversary I for the proof of Theorem 3.5.2.

oracle DLogGq,g(·) and a challenge oracle ON that takes no inputs and returns a

random challenge point W ∈ Gq each time it is invoked. The adversary attempts

to invert all the challenges returned by ON , while making fewer queries to its

discrete-logarithm oracle then the number of challenge points.

A detailed description of the adversary is in Figure 3.7. I simulates an interaction

between V̂ and the prover clones. To do so, it first queries its challenge oracle

obtaining a random group element W0 ∈ Gq and uses it to create a public key

pk for the imp-ca-adversary A. It then runs V̂ and answers its requests. In

response to a request of the form (ε, i), I queries its challenge oracle ON and

returns the answer to V̂ . By the definition of prover P , from V̂ ’s perspective, this

is equivalent to picking a random tape Ri for prover clone i, initializing clone i with

46

state pk, Ri, computing clone i’s commitment Wi, and returning the commitment

to V̂ . I is not in possession of the secret key sk = (q, DLogGq,g(W0)) corresponding

to pk, which the prover clones would use to respond to V̂ ’s requests of the form

(c, i), where c ∈ {0, 1}l(k), but it compensates using its access to the discrete-

logarithm oracle to answer these requests. Specifically, in response to request

(c, i), I makes the query WiW
c
0 to its discrete-logarithm oracle and returns the

answer zi to V̂ . This is exactly the response that clone i would return to V̂

because zi = DLogGq,g(WiW
c
0) = DLogGq ,g(Wi) + c DLogGq,g(W0) mod q. Hence I

simulates the behavior of the prover clones perfectly.

Since n(k) is the number of prover clones V̂ interacts with, when V̂ stops, I has

made n(k) queries to its discrete-logarithm oracle and it needs to find the discrete

logarithm of n(k) + 1 challenge points. I attempts to extract from P̂ , initialized

with the output of V̂ , the discrete logarithm of challenge W0. It can then use this

value to compute the discrete logarithm of each of the other challenge points. To

do so, I runs P̂ obtaining its commitment, selects a challenge uniformly at random

from {0, 1}l(k), runs P̂ to obtain its response to this challenge, and evaluates the

verifier’s decision predicate. It then selects another random challenge, re-runs P̂

(with the same state as before) to obtain its response to the new challenge, and

evaluates the verifier’s decision predicate. If the decision predicate evaluates to

1, meaning P̂ makes the verifier accept, on both accounts and the challenges are

different, then I extracts the discrete logarithm of W0 as w0 = (Rsp1−Rsp2)(Ch1−
Ch2)

−1 mod q. We observe that since Ch1 6= Ch2 and q is prime, Ch1 −Ch2 has

a multiplicative inverse in Zq. To prove that the computation yields the desired

value, we show that gw0 = W0. Since Rsp1 is the discrete logarithm of Y WCh1
0

and Rsp2 is the discrete logarithm of Y WCh2
0 , we have

gw0 = g(Rsp1−Rsp2)(Ch1−Ch2)−1 mod q

=
(
gRsp1

(
gRsp2

)−1
)(Ch1−Ch2)−1 mod q

=
(
Y WCh1

0

(
Y WCh2

0

)−1
)(Ch1−Ch2)−1 mod q

47

=
(
WCh1−Ch2

0

)(Ch1−Ch2)−1 mod q

= W0 .

For i = 1, . . . , n(k), I computes the discrete logarithm of the i-th challenge point

as wi = zi − ciw0 mod q. To prove that this computation is correct, we show

that gwi = Wi. Since zi is the discrete logarithm of WiW
ci

0 and w0 is the discrete

logarithm of W0, we have

gwi = gzi−ciw0 mod q = gzi (gw0)−ci = WiW
ci

0 W−ci

0 = Wi .

If the decision predicate does not evaluate to 1 on both occasions or the challenges

coincide, then I fails. Therefore, I wins if and only if d1 = 1, d2 = 1 and Ch1 6=
Ch2. We proceed to relate the probability of this event with the imp-ca-advantage

of adversary A.

We observe that pk has the same distribution as in the two-phase game that

defines a concurrent attack. Since I simulates the environment provided to V̂ in

that game perfectly, V̂ behaves as it does when performing a concurrent attack

against ID, and P̂ is given state information with the same distribution as in that

case. Therefore, the probability that d1 = 1 is exactly Advimp-ca
ID,A (k).

To relate this probability with the probability that I wins, we will apply the Reset

Lemma to the deterministic cheating prover P̂ , verifier V , implemented by I, and

the input generator IG defined below, which returns a pair (St , pk) consisting of

the output St of V̂ on input pk and the public key pk.

Algorithm IG(k)

(q, g)
$← Kdl(k)

w0
$← Zq ; W0 ← gw0 ; pk ← (q, g, W0)

Choose a random tape R for V̂ ; Initialize V̂ with (pk, R) ; n← 0

Run V̂ answering its requests as follows:

When V̂ issues a request of the form (ε, i) do

48

n← n + 1 ; wi
$← Zq ; Wi ← gwi ; return Wi to V̂

When V̂ issues a request of the form (c, i), where c ∈ {0, 1}l(k), do

ci ← c ; zi ← wi + ciw0 mod q ; return zi to V̂

Until V̂ outputs state information St and stops

Return (St , pk)

The environment provided to V̂ by IG perfectly simulates the one provided by

I in Expomdl
Kdl, I

(k). Let acc, res, and c be defined as in Lemma 3.3.1. Note that

c(k) = 2l(k). Comparing the definitions of I and IG, it is easy to see that acc(k) =

Advimp-ca
ID,A (k) and res(k) = Advomdl

Kdl, I
(k). Applying the Reset Lemma, we have

Advimp-ca
ID,A (k) ≤ 2−l(k) +

√
Advomdl

Kdl, I
(k) .

To complete the proof of Theorem 3.4.2, it remains to justify the claim about the

time complexity of adversary I. Consider the experiment that defines the omdl-

advantage of I. Our conventions for measuring time complexity imply that the

cost of all the steps of this experiment before the execution of the final “If” in the

algorithm of adversary I is at most 2t(k) plus the cost of evaluating the verifier’s

decision predicate twice. The latter involves computing two exponentiations of

|q|-bit exponents and two exponentiations of l(k)-bit exponents. Since p is k bits

long and q is at most k bits long, this is O(k3 + l(k) · k2). We now calculate the

cost of the remaining operations performed by I. The computation of w0 has cost

O(|q|2) = O(k2). The “For” loop has cost n(k) ·O(k2). The time complexity of I

is then 2t(k) + O(k3 + (l(k) + n(k)) · k2).

This chapter, in part, is a reprint of the material as it appears in M. Bellare

and A. Palacio, “GQ and Schnorr Identification Schemes: Proofs of Security against

Impersonation under Active and Concurrent Attacks,” Advances in Cryptology -

Crypto 2002 Proceedings, Lecture Notes in Computer Science Vol. 2442, M. Yung

ed., Springer-Verlag, 2002.

4 Knowledge-of-Exponent

Assumptions and 3-round

Zero-Knowledge Protocols

4.1 Introduction

A classical question in the theory of zero knowledge (ZK) [56] is whether

there exist 3-round, negligible-error ZK proofs or arguments for NP. The difficulty

in answering this question stems from the fact that such protocols would have to be

non-black-box simulation ZK [52], and there are few approaches or techniques to

this end. A positive answer has, however, been provided by Hada and Tanaka [59,

60]. Their result (a negligible-error, 3-round ZK argument for NP) requires a pair

of non-standard assumptions that we will denote by KEA1 and KEA2.

4.1.1 The assumptions, roughly

Let q be a prime such that 2q + 1 is also prime, and let g be a generator of

the order q subgroup of Z
∗
2q+1. Suppose we are given inputs q, g, ga and want to

output a pair (C, Y) such that Y = Ca. One way to do this is to pick some c ∈ Zq,

let C = gc, and let Y = (ga)c. Intuitively, KEA1 can be viewed as saying that this

is the “only” way to produce such a pair. The assumption captures this intuition

49

50

by saying that any adversary outputting such a pair must “know” an exponent c

such that gc = C. The formalization asks that there be an “extractor” that can

return c. Roughly:

KEA1: For any adversary A that takes inputs q, g, ga and returns (C, Y) with

Y = Ca, there exists an “extractor” Ā, which given the same inputs as

A returns c such that gc = C.

Suppose we are given inputs q, g, ga, gb, gab and want to output a pair (C, Y)

such that Y = Cb. One way to do this is to pick some c ∈ Zq, let C = gc,

and let Y = (gb)c. Another way is to pick some c ∈ Zq, let C = (ga)c, and let

Y = (gab)c. Intuitively, KEA2 can be viewed as saying that these are the “only”

ways to produce such a pair. The assumption captures this intuition by saying

that any adversary outputting such a pair must “know” an exponent c such that

either gc = C or (ga)c = C. The formalization asks that there be an “extractor”

that can return c. Roughly:

KEA2: For any adversary A that takes inputs q, g, ga, gb, gab and returns (C, Y)

with Y = Cb, there exists an “extractor” Ā, which given the same

inputs as A returns c such that either gc = C or (ga)c = C.

As per [59, 60], adversaries and extractors are poly-size families of (de-

terministic) circuits. See Assumption 4.3.1 for a formalization of KEA2, and

Assumption 4.4.2 for a formalization of KEA1.

4.1.2 History and nomenclature of the assumptions

KEA1 is due to Damg̊ard [36]. Variants of this assumption are used by Hada

and Tanaka [59, 60] to prove that their protocol satisfies various notions of ZK.

To prove soundness of their protocol, they introduce and use KEA2. (In addition,

they make the Discrete-Logarithm Assumption, DLA.) The preliminary version of

their work [59] referred to the assumptions as SDHA1 and SDHA2 (Strong Diffie-

Hellman Assumptions 1 and 2), respectively. The full version [60], however, points

51

out that the formalizations in the preliminary version are flawed, and provides

corrected versions called non-uniform-DA1 and non-uniform-DA2. The latter are

the assumptions considered in this chapter, but we use the terminology of Naor [68]

which we feel is more reflective of the content of the assumption: “KEA” stands

for “Knowledge-of-Exponent Assumption”, the exponent being the value c above.

4.1.3 Falsifying KEA2

In this chapter we show that KEA2 is false. What is interesting about this

—besides the fact that it renders the results of [59, 60] vacuous— is that we are

able to “falsify” an assumption whose nature, as pointed out by Naor [68], does

not lend itself easily to “efficient falsification.” Let us explain this issue before

expanding more on the result itself.

The most standard format for an assumption is to ask that the probability

that an adversary produces a certain output on certain inputs is negligible. For

example, the Factoring assumption is of this type, asking that the probability that

a polynomial-time adversary can output the prime factors of an integer (chosen by

multipling a pair of random primes) is negligible. To show that such an assumption

is false, one can present an “attack,” in the form of an adversary whose success

probability is not negligible. (For example, a polynomial-time factoring algorithm.)

KEA1 and KEA2 are not of this standard format. They involve a more complex

quantification: “For every adversary there exists an extractor such that ...”. To

show that KEA2 is false, we must show that there is an adversary for which there

exists no extractor. As we will see later, it is relatively simple to identify an

adversary for which there does not appear to exist an extractor, but how can we

actually show that none of the infinite number of possible extractors succeeds?

52

4.1.4 An analogy

The difficulty of falsifying an assumption with the quantifier format of KEA2

may be better appreciated via an analogy. The definition of ZK has a similar

quantifier format: “For every (cheating) verifier there exists a simulator such that

...”. This makes it hard to show that a protocol is not ZK, for, even though we may

be able to identify a cheating-verifier strategy that appears hard to simulate, it is

not clear how we can actually show that no simulator exists. (For example, it is

hard to imagine how one could find a simulator for the cheating verifier, for Blum’s

ZK proof of Hamiltonian Cycle [23], that produces its challenges by hashing the

permuted graphs sent by the prover in the first step. But there is to date no proof

that such a simulator does not exist). It has been possible, however, to show that

protocols are not black-box simulation ZK [52], taking advantage of the fact that

the quantification in this definition is different from that of ZK itself. It has also

been possible to show conditional results, for example that the parallel version

of the Fiat-Shamir [45] protocol is not ZK, unless there is no hash function that,

when applied to collapse this protocol, results in a secure signature scheme [77].

Our result too is conditional.

4.1.5 Falsification result

At an intuitive level, the weakness in KEA2 is easy to see, and indeed it is

surprising that this was not noted before. Indeed, consider an adversary A that

on inputs q, g, ga, gb, gab picks c1, c2 in some fashion, and outputs (C, Y) where

C = gc1(ga)c2 and Y = (gb)c1(gab)c2. Then Y = Cb but this adversary does not

appear to “know” c such that either gc = C or (ga)c = C. The difficulty, however,

as indicated above, is to prove that there does not exist an extractor. We do this

by first specifying a particular strategy for choosing c1 and c2 and then showing

that if there exists an extractor for the resulting adversary, then this extractor can

be used to solve the discrete-logarithm problem (DLP). Thus, our result (cf. The-

53

orem 4.3.2) is that if DLP is hard (equivalently, DLA holds) then KEA2 is false.

Note that if DLP is easy, then KEA2 is true, for the extractor can simply compute

a discrete logarithm of C and output it, and thus the assumption that it is hard

is necessary to falsify KEA2.

4.1.6 Remark

We emphasize that we have not found any weaknesses in KEA1, an assump-

tion used not only in [36, 59, 60] but also elsewhere.

4.1.7 KEA3

Providing a 3-round, negligible-error ZK protocol for NP is a challenging

problem that has attracted considerable research effort. The fact that KEA2 is

false means that we “lose” one of the few positive results [59, 60] that exist on

this subject. Accordingly, we would like to “recover” it. To this end, we propose a

modification of KEA2 that addresses the weakness we found. The new assumption

is, roughly, as follows:

KEA3: For any adversary A that takes inputs q, g, ga, gb, gab and returns (C, Y)

with Y = Cb, there exists an “extractor” Ā, which given the same

inputs as A returns c1, c2 such that gc1(ga)c2 = C.

Before proceeding to use this assumption, we note a relation that we con-

sider interesting, namely, that KEA3 implies KEA1 (cf. Proposition 4.4.3).1 This

relation means that KEA3 is a natural extension of KEA1.

1 KEA2 was not shown by [60] to imply KEA1. Our proof of Proposition 4.4.3 can be adapted
to establish this, but the point is moot since KEA2 is false (if DLP is hard) and hence, of course,
implies everything anyway.

54

4.1.8 Recovering the ZK results

Let HTP denote the 3-round protocol of Hada and Tanaka, which they claim

to be sound (i.e., have negligible error) and ZK. The falsity of KEA2 invalidates

their proof of soundness. This does not mean, however, that HTP is not sound; per-

haps it is and this could be proved under another assumption, such as KEA3. This

turns out to be almost, but not quite, true. We identify a small bug in HTP based

on which we can present a successful cheating-prover strategy, showing that HTP

is not sound. This is easily fixed, however, to yield a protocol that we call PHTP

(Patched HTP). The proof of soundness of HTP provided in [60] extends with

very minor modifications to prove soundness of PHTP based on KEA3 and DLA

(cf. Lemma 4.5.3). On the other hand, PHTP is close enough to HTP that the

proofs of ZK (based on variants of KEA1) are unchanged.

To prove that HTP has ZK properties, Hada and Tanaka use variants of

KEA1 that consider an adversary and an extractor who are given an auxiliary

input. We formalize KEA1-A(p), where p is a polynomial restricting the length of

the auxiliary input, in Assumption 4.5.7. The proponents of HTP show that this

protocol is non-uniform ZK if KEA1-A(p) holds for a particular polynomial p, and

it is auxiliary-input non-uniform ZK if KEA1-A(p) holds for every polynomial p.

They also consider uniform variants of KEA1. We formalize UKEA1-A(p), where

p is a polynomial restricting the length of an auxiliary input given to the adversary

and the extractor, in Assumption 4.5.8. Hada and Tanaka show that HTP is ZK

if UKEA1-A(p) holds for a particular polynomial p, and it is auxiliary-input ZK

if UKEA1-A(p) holds for every polynomial p. PHTP inherits these ZK properties,

under the same assumptions.

In summary, assuming KEA3 and DLA, there exists a 3-round, negligible-

error argument for NP that is non-uniform ZK if KEA1-A(p) holds for a polynomial

p specified in Section 4.5, auxiliary-input non-uniform ZK if KEA1-A(p) holds

for every polynomial p, ZK if UKEA1-A(p) holds for a polynomial p specified in

55

Section 4.5, and auxiliary-input ZK if UKEA1-A(p) holds for every polynomial p.

4.1.9 Strength of the assumptions

The knowledge-of-exponent assumptions are strong and non-standard ones,

and have been criticized for assuming that one can perform what some people call

“reverse engineering” of an adversary. These critiques are certainly valid. Our fal-

sification of KEA2 does not provide information on this aspect of the assumptions,

uncovering, rather, other kinds of problems. By showing that such assumptions

can be falsified, however, we open the door to further analyses.

We also stress that in recovering the result of [60] on 3-round ZK we have not

succeeded in weakening the assumptions on which it is based, for KEA3 certainly

remains a strong assumption of the same non-standard nature as KEA1 and its

variants.

4.1.10 Related work

Since [59, 60] there has been more progress with regard to the design of non-

black-box simulation ZK protocols, most notably [3]. That work, however, does

not provide a 3-round, negligible-error ZK protocol for NP. To date, there have

been only two positive results in this regard. One is that of [59, 60], broken and

recovered in this dissertation. The other, which builds a proof system rather than

an argument, is reported in [65] and further documented in [64]. It also relies on

non-standard assumptions, but these are of a different nature than the Knowledge-

of-Exponent ones. Roughly, the authors assume the existence of a hash function

such that a certain discrete-logarithm-based protocol, that uses this hash function

and is related to the non-interactive oblivious-transfer protocol of [14], is a proof

of knowledge.

56

4.2 Preliminaries

If q is a prime number such that 2q + 1 is also prime, then we denote by Gq

the subgroup of quadratic residues of Z
∗
2q+1. (Operations are modulo 2q+1 but we

will omit writing “mod 2q + 1” for simplicity.) Recall that this is a cyclic group

of order q. If g is a generator of Gq then we let DLogq,g : Gq → Zq denote the

associated discrete-logarithm function, meaning DLogq,g(g
a) = a for any a ∈ Zq.

We let

GL = { (q, g) : q, 2q + 1 are primes and g is a generator of Gq } ,

and for every n ∈ N, we let

GLn = { (q, g) ∈ GL : |2q + 1| = n } .

Assumptions and problems in [59, 60] involve circuits. A family of circuits

C = {Cn}n∈N contains one circuit for each value of n ∈ N. It is poly-size if there

is a polynomial p such that the size of Cn is at most p(n) for all n ∈ N. Unless

otherwise stated, circuits are deterministic. If they are randomized, we will say so

explicitly. We now recall DLA, following [60].

Assumption 4.2.1 [DLA] Let I = {In}n∈N be a family of randomized circuits,

and ν : N→ [0, 1] a function. We associate to any n ∈ N and any (q, g) ∈ GLn the

following experiment:

Experiment Expdl
I
(n, q, g)

a
$← Zq ; A← ga ; ā

$← In(q, g, A) ; If a = ā then return 1 else return 0

We let

Advdl
I
(n, q, g) = Pr

[
Expdl

I
(n, q, g) = 1

]

denote the advantage of adversary I on inputs n, q, g, the probability being over

the random choice of a and the coins of In, if any. We say that I has success bound

ν if

∀n ∈ N ∀(q, g) ∈ GLn : Advdl
I
(n, q, g) ≤ ν(n) .

57

We say the Discrete-Logarithm Assumption (DLA) holds (i.e., the Discrete-Log-

arithm Problem (DLP) is hard) if for every poly-size family of (deterministic)

circuits I there exists a negligible function ν such that I has success bound ν.

The above formulation of DLA, which, as we have indicated, follows [60], has

some non-standard features that are important for their results. Let us discuss

these briefly.

First, we note that the definition of the success bound is not with respect to

(q, g) being chosen according to some distribution as is standard, but rather makes

the stronger requirement that the advantage of I is small for all (q, g).

Second, we stress that the assumption only requires poly-size families of

deterministic circuits to have a negligible success bound. However, in their proofs,

which aim to contradict DLA, Hada and Tanaka [59, 60] build adversaries that

are poly-size families of randomized circuits, and then argue that these can be

converted to related poly-size families of deterministic circuits that do not have a

negligible success bound. We will also need to build such randomized adversaries,

but, rather than using ad hoc conversion arguments repeated across proofs, we

note the following more general proposition, which simply says that DLA, as per

Assumption 4.2.1, implies that poly-size families of randomized circuits also have

a negligible success bound. We will appeal to this in several later places in this

chapter.

Proposition 4.2.2 Assume DLA, and let J = {Jn}n∈N be a poly-size family of

randomized circuits. Then there exists a negligible function ν such that J has

success bound ν.

As is typical in such claims, the proof proceeds by showing that for every n

there exists a “good” choice of coins for Jn, and by embedding these coins we get

a deterministic circuit. For completeness, we include the proof below.

Proof of Proposition 4.2.2: Let K = { n ∈ N : GLn 6= ∅ }. For each n ∈ K,

58

let (qn, gn) ∈ GLn be such that

∀(q, g) ∈ GLn : Advdl
J
(n, q, g) ≤ Advdl

J
(n, qn, gn) . (4.1)

For n ∈ K, let R(n) denote the set from which Jn draws its coins on inputs n, qn, gn.

We say that r ∈ R(n) is n-good if

Pr
[

gā = A : A
$← Gqn

; ā← Jn(qn, gn, A; r)
]
≥ Advdl

J
(n, qn, gn) .

Claim 4.2.3 For each n ∈ K there exists r ∈ R(n) such that r is n-good.

Proof of Claim 4.2.3: Define X : Gqn
× Zqn

→ {0, 1} as follows:

X(A, r)

ā← Jn(qn, gn, A; r)

If gā = A then return 1 else return 0

Then we have:

∑

r∈R(n)

1

|R(n)| · Pr
[

gā = A : A
$← Gqn

; ā← Jn(qn, gn, A; r)
]

=
∑

r∈R(n)

1

|R(n)|
∑

A∈Gqn

1

qn

·X(A, r)

=
∑

A∈Gqn

1

qn

∑

r∈R(n)

1

|R(n)| ·X(A, r)

= Advdl
Jn

(n, qn, gn) .

This means that there must exist r ∈ R(n) such that

Pr
[

gā = A : A
$← Gqn

; ā← Jn(qn, gn, A; r)
]
≥ Advdl

Jn
(n, qn, gn) ,

which proves the claim.

We now define a poly-size family I = {In}n∈N of (deterministic) circuits, as follows.

Let n ∈ N. If n 6∈ K then we define In arbitrarily. If n ∈ K then Claim 4.2.3

tells us that there exists a string, which we denote by rn, that is n-good. We then

define In as follows:

59

In(q, g, A)

If q 6= qn or g 6= gn then abort EndIf

ā← Jn(qn, gn, A; rn)

Return ā

Since I is a poly-size family of deterministic circuits, the assumption that DLP is

hard says that there is a negligible function ν such that I has success bound ν.

Now putting this together with Equation (4.1) and Claim 4.2.3 we have

∀n ∈ K ∀(q, g) ∈ GLn :

Advdl
J
(n, q, g) ≤ Advdl

J
(n, qn, gn) ≤ Advdl

I
(n, qn, gn) ≤ ν(n) .

This means that J also has success bound ν, which proves the proposition.

4.3 KEA2 is false

We begin by recalling the assumption. Our presentation is slightly different

from, but clearly equivalent to, that of [60]: we have merged the two separate

conditions of their formalization into one. Recall that in [60], this assumption was

referred to as “non-uniform-DA2,” and it was referred to, under a different and

incorrect formalization, as SDHA2 in [59].

Assumption 4.3.1 [KEA2] Let A = {An}n∈N and Ā = {Ān}n∈N be families of

circuits, and ν : N→ [0, 1] a function. We associate to any n ∈ N, any (q, g) ∈ GLn,

and any A ∈ Gq the following experiment:

Experiment Expkea2
A,Ā(n, q, g, A)

b
$← Zq ; B ← gb ; X ← Ab

(C, Y)← An(q, g, A, B, X) ; c← Ān(q, g, A, B, X)

If (Y = Cb AND gc 6= C AND Ac 6= C) then return 1 else return 0

60

We let

Advkea2
A,Ā(n, q, g, A) = Pr

[
Expkea2

A,Ā(n, q, g, A) = 1
]

denote the advantage of adversary A relative to Ā on inputs n, q, g, A. We say

that Ā is a kea2-extractor for A with error bound ν if

∀n ∈ N ∀(q, g) ∈ GLn ∀A ∈ Gq : Advkea2
A,Ā(n, q, g, A) ≤ ν(n) .

We say that KEA2 holds if for every poly-size family of circuits A there exist a

poly-size family of circuits Ā and a negligible function ν such that Ā is a kea2-

extractor for A with error bound ν.

We stress again that in the above formulation, following [60], both the ad-

versary and the extractor are families of deterministic circuits. One can consider

various variants of the assumption, including an extension to families of random-

ized circuits, and we discuss these following the theorem below.

Theorem 4.3.2 If DLA holds then KEA2 is false.

The basic idea behind the failure of the assumption, as sketched in

Section 4.1, is simple. Consider an adversary given inputs q, g, A, B, X, where

A = ga, B = gb and X = gab. The assumption says that there are only two ways

for the adversary to output a pair C, Y satisfying Y = Cb. One way is to pick

some c, let C = gc and let Y = Bc. The other way is to pick some c, let C = Ac

and let Y = Xc. The assumption thus states that the adversary “knows” c such

that either C = gc (i.e., c = DLogq,g(C)) or C = Ac (i.e., c = DLogq,A(C)). This

ignores the possibility of performing a linear combination of the two steps above.

In other words, an adversary might pick c1, c2, let C = gc1Ac2 and Y = Bc1Xc2.

In this case, Y = Cb but the adversary does not appear to necessarily know

DLogq,g(C) = c1 + c2DLogq,g(A) or DLogq,A(C) = c1DLogq,A(g) + c2.

Going from this intuition to an actual proof that the assumption is false,

however, takes some work, for several reasons. The above may be intuition that

61

there exists an adversary for which there would not exist an extractor, but we need

to prove that there is no extractor. This cannot be done unconditionally, since

certainly if DLP is easy, then in fact there is an extractor: it simply computes

DLogq,g(C) and returns this value. Accordingly, our strategy will be to present an

adversary A for which we can prove that if there exists a kea2-extractor Ā then

there is a method to efficiently compute the discrete logarithm of A.

An issue in implementing this is that the natural adversary A arising from

the above intuition is randomized, picking c1, c2 at random and forming C, Y as

indicated, but our adversaries must be deterministic. We resolve this by designing

an adversary that makes certain specific choices of c1, c2. We now proceed to the

formal proof.

4.3.1 Proof of Theorem 4.3.2

Assume to the contrary that KEA2 is true. We show that DLP is easy. The

outline of the proof is as follows. We first construct an adversary A for the KEA2

problem. By assumption, there exists for it a kea2-extractor Ā with negligible

error bound. Using Ā, we then present a poly-size family of randomized circuits

J = {Jn}n∈N for DLP, and show that it does not have a negligible success bound.

By Proposition 4.2.2, this contradicts DLA.

The poly-size family of circuits A = {An}n∈N is presented in Figure 4.1.

Now, under KEA2, there exist a poly-size family of circuits Ā = {Ān}n∈N and

a negligible function ν such that Ā is a kea2-extractor for A with error bound

ν. Using Ā, we define the poly-size family of circuits J = {Jn}n∈N shown in

Figure 4.1.

Claim 4.3.3 For all n ∈ N, all (q, g) ∈ GLn and all A ∈ Gq :

Pr
[

gā 6= A : ā
$← Jn(q, g, A)

]
≤ ν(n) .

Note that this claim says much more than what we need. Indeed, J does

62

An(q, g, A, B, X)

C ← gA

Y ← BX

Return (C, Y)

Jn(q, g, A)

b
$← Zq ; B ← gb ; X ← Ab

c← Ān(q, g, A, B, X)

C ← gA

If gc = C then ā← (c− 1) mod q EndIf

If Ac = C then ā← (c− 1)−1 mod q EndIf

Return ā

Figure 4.1 Adversary A = {An}n∈N for KEA2 and adversary J = {Jn}n∈N for

DLP, for the proof of Theorem 4.3.2.

not merely have a success bound that is not negligible. In fact, it succeeds with

probability almost one.

Proof of Claim 4.3.3: We let Pr[·] denote the probability in the experiment

of executing Jn(q, g, A). We first write some inequalities leading to the claim and

then justify them.

Pr [gā 6= A] ≤ Pr [gc 6= C ∧Ac 6= C] (4.2)

≤ Advkea2
A,Ā(n, q, g, A) (4.3)

≤ ν(n) . (4.4)

We justify Equation (4.2) by showing that if gc = C or Ac = C then gā = A. First

assume gc = C. Since C = gA, we have gc = gA, whence A = gc−1. Since we

set ā = (c − 1) mod q, we have A = gā. Next assume Ac = C. Since C = gA,

we have Ac = gA, whence Ac−1 = g. Now observe that c 6= 1, because otherwise

Ac = A 6= gA. (Since g is a generator, it is not equal to 1). Since c 6= 1 and q is

prime, c − 1 has an inverse modulo q which we have denoted by ā. Raising both

sides of the equation “Ac−1 = g” to the power ā we get A = gā.

Expkea2
A,Ā(n, q, g, A) returns 1 exactly when Y = Cb and gc 6= C and Ac 6= C.

By construction of A, we have C = gA and Y = BX, and thus Y = Cb, so

Expkea2
A,Ā(n, q, g, A) returns 1 exactly when gc 6= C and Ac 6= C. This justifies

Equation (4.3).

63

Equation (4.4) is justified by the assumption that Ā is a kea2-extractor for A with

error bound ν.

Claim 4.3.3 implies that J does not have a negligible success bound, which,

by Proposition 4.2.2, shows that DLP is not hard, contradicting the assumption

made in this theorem. This completes the proof of Theorem 4.3.2.

4.3.2 Extensions and variants

There are many ways in which the formalization of Assumption 4.3.1 can be

varied to capture the same basic intuition. Theorem 4.3.2, however, extends to

these variants as well. Let us discuss this briefly.

As mentioned above, we might want to allow the adversary to be randomized.

(In that case, it is important that the extractor get the coins of the adversary as an

additional input, since otherwise the assumption is clearly false.) Theorem 4.3.2

remains true for the resulting assumption, in particular because it is stronger than

the original assumption. (Note however that the proof of the theorem would be

easier for this stronger assumption.)

Another variant is that adversaries and extractors are uniform, namely stan-

dard algorithms, not circuits. (In this case we should certainly allow both to

be randomized, and should again give the extractor the coins of the adversary.)

Again, it is easy to see that Theorem 4.3.2 extends to show that this variant of

the assumption is also false.

4.4 The KEA3 assumption

The obvious fix to KEA2 is to take into account the possibility of linear

combinations by saying that this is the only thing the adversary can do. This

leads to the following.

64

Assumption 4.4.1 [KEA3] Let A = {An}n∈N and Ā = {Ān}n∈N be families of

circuits, and ν : N→ [0, 1] a function. We associate to any n ∈ N, any (q, g) ∈ GLn,

and any A ∈ Gq the following experiment:

Experiment Expkea3
A,Ā(n, q, g, A)

b
$← Zq ; B ← gb ; X ← Ab

(C, Y)← An(q, g, A, B, X) ; (c1, c2)← Ān(q, g, A, B, X)

If (Y = Cb AND gc1Ac2 6= C) then return 1 else return 0

We let

Advkea3
A,Ā(n, q, g, A) = Pr

[
Expkea3

A,Ā(n, q, g, A) = 1
]

denote the advantage of adversary A relative to Ā on inputs n, q, g, A. We say

that Ā is a kea3-extractor for A with error bound ν if

∀n ∈ N ∀(q, g) ∈ GLn ∀A ∈ Gq : Advkea3
A,Ā(n, q, g, A) ≤ ν(n) .

We say that KEA3 holds if for every poly-size family of circuits A there exist a

poly-size family of circuits Ā and a negligible function ν such that Ā is a kea3-

extractor for A with error bound ν.

We have formulated this assumption in the style of the formalization of KEA2

of [60] given in Assumption 4.3.1. Naturally, variants such as discussed above are

possible. Namely, we could strengthen the assumption to allow the adversary to be

a family of randomized circuits, of course then giving the extractor the adversary’s

coins as an additional input. We do not do this because we do not need it for what

follows. We could also formulate a uniform-complexity version of the assumption.

We do not do this because it does not suffice to prove the results that follow. These

extensions or variations, however, might be useful in other contexts.

We now recall KEA1 and show that KEA3 is a natural extension of this

assumption. Our formalization follows [60], but we apply the same simplifications

as we did for KEA2, merging their two conditions into one.

65

Assumption 4.4.2 [KEA1] Let A = {An}n∈N and Ā = {Ān}n∈N be families

of circuits, and ν : N → [0, 1] a function. We associate to any n ∈ N and any

(q, g) ∈ GLn the following experiment:

Experiment Expkea1
A,Ā(n, q, g)

b
$← Zq ; B ← gb

(C, Y)← An(q, g, B) ; c← Ān(q, g, B)

If (Y = Cb AND gc 6= C) then return 1 else return 0

We let

Advkea1
A,Ā(n, q, g) = Pr

[
Expkea1

A,Ā(n, q, g) = 1
]

denote the advantage of adversary A relative to Ā on inputs n, q, g. We say that

Ā is a kea1-extractor for A with error bound ν if

∀n ∈ N ∀(q, g) ∈ GLn : Advkea1
A,Ā(n, q, g) ≤ ν(n) .

We say that KEA1 holds if for every poly-size family of circuits A there exist a

poly-size family of circuits Ā and a negligible function ν such that Ā is a kea1-

extractor for A with error bound ν.

Proposition 4.4.3 KEA3 implies KEA1.

Proof of Proposition 4.4.3: Let A = {An}n∈N be a poly-size family of circuits

for KEA1. We need to show that there exist a poly-size family of circuits Ā =

{Ān}n∈N and a negligible function ν such that Ā is a kea1-extractor for A with

error-bound ν.

We begin by constructing from A an adversary A′ = {A′
n}n∈N for KEA3 as follows:

Adversary A′
n(q, g, A, B, X)

(C, Y)← An(q, g, B)

Return (C, Y)

66

We have assumed KEA3. Thus there exist an extractor Ā′ = {Ā′
n}n∈N and a

negligible function ν such that Ā′ is a kea3-extractor for A′ with error bound ν.

We define an extractor Ā = {Ān}n∈N for A as follows:

Extractor Ān(q, g, B)

(c1, c2)← Ā′
n(q, g, 1, B, 1)

Return c1

We claim that Ā is a kea1-extractor for A with error bound ν. To see this,

assume that Ā′
n(q, g, 1, B, 1) is successful, meaning gc11c2 = C. Then gc1 = C, so

Ān(q, g, B) is successful as well.

4.5 Three-round zero knowledge

The falsity of KEA2 renders vacuous the result of [59, 60] saying that there

exists a negligible-error, 3-round ZK argument for NP. In this section we look at

recovering this result.

We first consider the protocol of [59, 60], here called HTP – Hada-Tanaka

Protocol. What has been lost is the proof of soundness (i.e., of negligible error).

The simplest thing one could hope for is to re-prove soundness of HTP under

KEA3 without modifying the protocol. We identify a bug in HTP, however, that

renders it unsound. This bug has nothing to do with the assumptions on which

the proof of soundness was or can be based.

The bug is, however, small and easily fixed. We consider a modified protocol

which we call PHTP – Patched HTP. We are able to show that it is sound (i.e.,

has negligible error) under KEA3 and DLA. Since we have modified the protocol,

we need to re-establish ZK under variants of KEA1 as well, but this is easily done.

67

4.5.1 Arguments

We begin by recalling some definitions. An argument for an NP language

L [28] is a two-party protocol in which a polynomial-time prover tries to “convince”

a polynomial-time verifier that their common input x belongs to L. (A party is

said to be polynomial time if its running time is polynomial in the length of the

common input.) In addition to x, the prover has an auxiliary input a. The protocol

is a message exchange at the end of which the verifier outputs a bit indicating its

decision to accept or reject. The probability (over the coin tosses of both parties)

that the verifier accepts is denoted AccP,a
V (x). The formal definition follows.

Definition 4.5.1 [Argument] A two-party protocol (P, V), where P and V are

both polynomial time, is an argument for L with error probability δ : N→ [0, 1], if

the following conditions are satisfied:

Completeness: For all x ∈ L there exists w ∈ {0, 1}∗ such that AccP,w
V (x) = 1.

Soundness: For all probabilistic polynomial-time algorithms P̂ , all sufficiently

long x /∈ L, and all a ∈ {0, 1}∗ : Acc
bP ,a
V (x) ≤ δ(|x|).

We say that (P, V) is a negligible-error argument for L if there exists a negligible

function δ such that (P, V) is an argument for L with error probability δ.

4.5.2 Canonical arguments

The 3-round protocol proposed by [59, 60], which we call HTP, is based on

a 3-round argument (P̄ , V̄) for an NP-complete language L with the following

properties:

(1) The protocol is of the form depicted in Figure 4.2. The prover is identified

with a function P̄ that given an incoming message Min (this is ε when the

prover is initiating the protocol) and its current state St , returns an outgo-

ing message Mout and an updated state. The initial state of the prover is

68

Prover P̄ Verifier V̄

Initial State St = (x, w, R)

((Cmt, q, g), St)← P̄ (ε; St) d← 1
(Cmt, q, g)

-

n← |x|
If (q, g) /∈ GLn then d← 0 EndIf

r
$← Z

∗
q ; Ch← gr

Ch
�

(Rsp, St)← P̄ (Ch; St)
Rsp

-

If DECx((Cmt, q, g),Ch,Rsp) = 0
then d← 0 EndIf

Figure 4.2 A 3-round argument. The common input is x. Prover P̄ has aux-

iliary input w and random tape R, and maintains state St . Verifier V̄ returns

boolean decision d.

(x, w, R), where x is the common input, w is an auxiliary input and R is

a random tape. The prover’s first message is called its commitment. This

is a tuple consisting of a string Cmt, a prime number q and an element g,

where (q, g) ∈ GL|x|. The verifier selects a challenge Ch uniformly at ran-

dom from Gq, and, upon receiving a response Rsp from the prover, applies

a deterministic decision predicate DECx((Cmt, q, g),Ch,Rsp) to compute a

boolean decision.

(2) For any x /∈ L and any commitment (Cmt, q, g), where (q, g) ∈ GL|x|, there

is at most one challenge Ch ∈ Gq for which there exists a response Rsp ∈
{0, 1}∗ such that DECx((Cmt, q, g),Ch,Rsp) = 1. This property is called

strong soundness.

(3) The protocol is honest-verifier zero knowledge (HVZK), meaning there ex-

ists a probabilistic polynomial-time simulator S such that the following two

69

ensembles are computationally indistinguishable:

{S(x)}x∈L and
{
View

P̄ , W (x)

V̄
(x)

}

x∈L
,

where W is any function that given an input in L returns a witness to its

membership in L, and View
P̄ , W (x)

V̄
(x) is a random variable taking value

V̄ ’s internal coin tosses and the sequence of messages it receives during an

interaction between prover P̄ , with auxiliary input W (x), and verifier V̄ on

common input x.

If (P̄ , V̄) is a 3-round argument for an NP-complete language, meeting the three

conditions above, then we refer to (P̄ , V̄) as a canonical argument. In what follows,

we assume that we have such canonical arguments. They can be constructed in

various ways. For example, a canonical argument can be constructed by modifying

the parallel composition of Blum’s zero-knowledge protocol for the Hamiltonian

circuit problem [23], as described in [59, 60].

4.5.3 The Hada-Tanaka protocol

Let (P̄ , V̄) be a canonical argument for an NP-complete language L, and let

DEC be the verifier’s decision predicate. The Hada-Tanaka protocol HTP = (P, V)

is described in Figure 4.3. Note that V ’s decision predicate does not include the

highlighted portion of its code.

We now observe that HTP is unsound. More precisely, there exist canonical

arguments such that the Hada-Tanaka protocol based on them does not have neg-

ligible error. This is true for any canonical argument (P̄ , V̄) satisfying the extra

condition that for infinitely many x 6∈ L there exists a commitment (Cmtx, qx, gx)

for which there is a response Rspx to challenge 1 that will make the verifier accept.

There are many such canonical arguments. For instance, a canonical argument

satisfying this condition results from using an appropriate encoding of group el-

ements in Hada and Tanaka’s modification of the parallel composition of Blum’s

zero-knowledge protocol for the Hamiltonian circuit problem.

70

Prover P Verifiers V, V ′

Initial State St = (x, w, R)

((Cmt, q, g), St)← P̄ (ε; St)

a
$← Zq ; A← ga d← 1

(Cmt, q, g, A)
-

n← |x|
If (q, g) /∈ GLn then d← 0 EndIf

b
$← Z

∗
q ; B ← gb ; X ← Ab

(B, X)
�

If X 6= Ba then abort EndIf

c
$← Z

∗
q ; C ← gc ; Ch← Bc

(Rsp, St)← P̄ (Ch; St)
(Rsp, C,Ch)

-

If Ch 6= Cb ∨ Ch = 1 ∨
DECx((Cmt, q, g),Ch,Rsp) = 0

then d← 0 EndIf

Figure 4.3 HTP and PHTP. Verifier V of HTP = (P, V) does not include the

highlighted portion. Verifier V ′ of PHTP = (P, V ′) does.

Proposition 4.5.2 Let HTP be the Hada-Tanaka protocol based on a canonical

argument satisfying the condition stated above. Then there exists a polynomial-

time prover for HTP that can make the verifier accept with probability one for

infinitely many common inputs not in L.

Proof of Proposition 4.5.2: Let (P̄ , V̄) be the canonical argument and let

V be the verifier of the corresponding protocol HTP. Consider a cheating prover

P̂ that on initial state (x, ((Cmtx, qx, gx),Rspx), ε) selects an exponent a ∈ Zqx

uniformly at random, and sends (Cmtx, qx, gx, g
a
x) as its commitment to verifier

V . Upon receiving a challenge (B, X), it checks if X = Ba. If not, it aborts.

Otherwise, it sends (Rspx, 1, 1) as its response to V . By the assumption about

protocol (P̄ , V̄), for infinitely many x 6∈ L there exists an auxiliary input y =

((Cmtx, qx, gx),Rspx) ∈ {0, 1}∗ such that Acc
bP ,y
V (x) = 1.

71

4.5.4 Protocol PHTP

The above attack can be avoided by modifying the verifier to include the

highlighted portion of the code in Figure 4.3. We call the resulting verifier V ′.

The following guarantees that the protocol PHTP = (P, V ′) is sound under KEA3,

if DLP is hard.

Lemma 4.5.3 If KEA3 holds, DLA holds, and (P̄ , V̄) is a canonical argument for

an NP-complete language L, then PHTP = (P, V ′) as defined in Figure 4.3 is a

negligible-error argument for L.

Proof of Lemma 4.5.3: The proof is almost identical to that of Lemma 5.2 in

[60]. For completeness, however, we provide it.

Completeness follows directly from the completeness of protocol (P̄ , V̄). To

prove soundness, we proceed by contradiction. Assume that PHTP is not

sound, i.e., there is no negligible function δ such that the soundness condition

in Definition 4.5.1 holds with respect to δ. We show that DLP is easy under

KEA3.

By the assumption that PHTP is not sound and a result of [5], there exists a

probabilistic polynomial-time algorithm P̂ such that the function

Err bP (n) = max{Acc
bP,a
V ′ (x) : x ∈ {0, 1}n ∧ x 6∈ L ∧ a ∈ {0, 1}∗ }2

is not negligible. Hence there exist a probabilistic polynomial-time algorithm P̂ ,

a polynomial p, and an infinite set S = { (x, a) : x ∈ {0, 1}∗ \ L ∧ a ∈ {0, 1}∗ }
such that for every (x, a) ∈ S :

Acc
bP ,a
V ′ (x) > 1/p(|x|) , (4.5)

and { x ∈ {0, 1}∗ : ∃a ∈ {0, 1}∗ such that (x, a) ∈ S } is infinite.

2We note that this set is finite since P̂ is a polynomial-time algorithm and Acc
bP,a

V ′ (x) depends

only on the first t bP
(|x|) bits of a, where t bP

(·) is the running time of P̂ .

72

Since P̂ takes an auxiliary input a, we may assume, without loss of generality, that

P̂ is deterministic. We also assume that, if (Cmt, q′, g′, A′) is P̂ ’s commitment

on input ε when the initial state is (x, a, ε), for some x, a ∈ {0, 1}∗ with |x| = n,

then (q′, g′) ∈ GLn. (There exists a prover P̂ ′ for which Acc
bP ′,a
V ′ (x) = Acc

bP,a
V ′ (x)

for every x, a ∈ {0, 1}∗ and this assumption holds.) We will use P̂ to construct

an adversary A for the KEA3 problem. By assumption, there exists for it a

kea3-extractor Ā with negligible error bound. Using Ā and P̂ , we then present

a poly-size family of randomized circuits J = {Jn}n∈N for DLP and show that it

does not have a negligible success bound. By Proposition 4.2.2, this implies that

DLP is not hard.

Let K = { n ∈ N : ∃ (x, a) ∈ S such that |x| = n }. We observe that K is an

infinite set. For each n ∈ K, fix (xn, an) ∈ S such that |xn| = n. The poly-size

family of circuits A = {An}n∈N for KEA3 is presented in Figure 4.4. Now, under

KEA3, there exist a poly-size family of circuits Ā = {Ān}n∈N and a negligible

function ν such that Ā is a kea3-extractor for A with error bound ν. For each

n ∈ K, let a′
n = DLogq′,g′(A

′), where (Cmt, q′, g′, A′) is P̂ ’s commitment on input

ε when the initial state is (xn, an, ε). Using Ā, we define the poly-size family of

circuits J = {Jn}n∈N shown in Figure 4.4. The following claim implies that J does

not have a negligible success bound.

Claim 4.5.4 For infinitely many n ∈ N there exists (q, g) ∈ GLn such that for

every A ∈ Gq :

Pr
[

gā = A : ā
$← Jn(q, g, A)

]
>

1

p(n)2
− 8

2np(n)
− 2ν(n) .

Before proving Claim 4.5.4, we use it to complete the proof of the lemma. The

claim and Proposition 4.2.2, DLP is not hard. This contradicts the assumption

made in Lemma 4.5.3.

Proof of Claim 4.5.4: We let Pr[·] denote the probability in the experiment

of executing Jn(q, g, A). We show that for every n ∈ K such that n ≥ 4, if

73

An(q, g, A, B, X) // n ∈ K

St ← (xn, an, ε) ; ((Cmt, q′, g′, A′), St)← P̂ (ε; St)

If q′ 6= q ∨ g′ 6= g ∨A′ 6= A then return (1, 1)

else ((Rsp, C,Ch), St)← P̂ ((B, X); St) ; return (C,Ch) EndIf

An(q, g, A, B, X) // n 6∈ K

Return (1, 1)

Jn(q, g, A) // n ∈ K

St ← (xn, an, ε) ; ((Cmt, q′, g′, A′), St)← P̂ (ε; St)

If q′ 6= q ∨ g′ 6= g then return ⊥ EndIf

b
$← Zq ; B ← A · gb ; X ← Ba′

n

((Rsp, C,Ch), St1)← P̂ ((B, X); St) ; (c1, c2)← Ān(q, g, A′, B, X)

If DECxn
((Cmt, q, g),Ch,Rsp) = 0 ∨Ch 6= Bc1Xc2 then return ⊥ EndIf

b′
$← Zq ; B′ ← gb′ ; X ′ ← B′a′

n

If B = B′ then ā← b′ − b mod q ; return ā EndIf

((Rsp
′, C ′,Ch

′), St ′1)← P̂ ((B′, X ′); St) ; (c′1, c
′
2)← Ān(q, g, A′, B′, X ′)

If DECxn
((Cmt, q, g),Ch

′,Rsp
′) = 0 ∨Ch

′ 6= B′c′1X ′c′2 then

return ⊥ EndIf

If c1 + a′
nc2 6≡ 0 (mod q) then

ā← (b′c′1 + b′a′
nc′2 − bc1 − ba′

nc2) · (c1 + a′
nc2)

−1 mod q ; return ā

else return ⊥ EndIf

Jn(q, g, A) // n 6∈ K

Return ⊥

Figure 4.4 Adversary A = {An}n∈N for KEA3 and adversary J = {Jn}n∈N for

DLP, for the proof of Lemma 4.5.3.

(Cmt, q, g, A′) is P̂ ’s commitment on input ε when the initial state is (xn, an, ε),

then for every A ∈ Gq :

Pr [gā = A] >
1

p(n)2
− 8

2np(n)
− 2ν(n) .

Since K is infinite and, by our assumption about the output of P̂ , q, g are such

that (q, g) ∈ GLn, this proves the claim.

74

Fix n ∈ K such that n ≥ 4. Let (Cmt, q, g, A′) be P̂ ’s commitment on input ε

when the initial state is (xn, an, ε), and let A ∈ Gq. We first write some inequalities

leading to the claim and then justify them:

Pr [gā = A]

≥ Pr [DECxn
((Cmt, q, g),Ch,Rsp) = 1 ∧Ch = Bc1Xc2 ∧ B 6= B′ ∧

DECxn
((Cmt, q, g),Ch

′,Rsp
′) = 1 ∧Ch

′ = B′c′1X ′c′2 ∧

c1 + a′
nc2 6≡ 0 (mod q)] (4.6)

≥ Pr [DECxn
((Cmt, q, g),Ch,Rsp) = 1 ∧Ch = Bc1Xc2 ∧Ch 6= 1 ∧

B 6= B′ ∧

DECxn
((Cmt, q, g),Ch

′,Rsp
′) = 1 ∧Ch

′ = B′c′1X ′c′2 ∧Ch
′ 6= 1] (4.7)

≥ Pr [DECxn
((Cmt, q, g),Ch,Rsp) = 1 ∧Ch = CDLogq,g(B) ∧Ch 6= 1 ∧

B 6= B′ ∧

DECxn
((Cmt, q, g),Ch

′,Rsp
′) = 1 ∧Ch

′ = C ′DLogq,g(B′) ∧Ch
′ 6= 1]

−
(

Pr [Ch 6= Bc1Xc2 ∧Ch = CDLogq,g(B)] +

Pr [Ch
′ 6= B′c′1X ′c′2 ∧Ch

′ = C ′DLogq,g(B′)]
)

(4.8)

≥
(
Acc

bP ,an

V ′ (xn)
)2

− 1

q − 1
Acc

bP ,an

V ′ (xn) − 2Advkea3
A,Ā(n, q, g, A′) (4.9)

>
1

p(n)2
− 1

(q − 1)p(n)
− 2ν(n) (4.10)

≥ 1

p(n)2
− 8

2np(n)
− 2ν(n) . (4.11)

We justify Equation (4.6) by showing that if DECxn
((Cmt, q, g),Ch,Rsp) = 1,

Ch = Bc1Xc2, B 6= B′, DECxn
((Cmt, q, g),Ch

′,Rsp
′) = 1, Ch

′ = B′c′1X ′c′2 and

c1 + a′
nc2 6≡ 0 (mod q) then gā = A. Assume that the former statement holds. By

the strong soundness property of protocol (P̄ , V̄), Ch = Ch
′, whence Bc1Xc2 =

B′c′1X ′c′2. Thus we have

75

gā = g(b′c′1+b′a′
nc′2−bc1−ba′

nc2)·(c1+a′
nc2)−1 mod q =

(
gb′c′1+b′a′

nc′2
)(c1+a′

nc2)−1

g−b

=
(
B′c′1X ′c′2

)(c1+a′
nc2)−1

g−b = (Bc1Xc2)(c1+a′
nc2)−1

g−b

=
(
Bc1Ba′

nc2
)(c1+a′

nc2)−1

g−b =
(
Bc1+a′

nc2
)(c1+a′

nc2)−1

g−b

= Bg−b = A,

as desired.

To justify Equation (4.7) we observe that if Ch = Bc1Xc2 and Ch 6= 1 then

c1 + a′
nc2 6≡ 0 (mod q), and that adding the condition Ch

′ 6= 1 can only decrease

the probability further.

Now Equation (4.8) is justified as follows.

Pr [DECxn
((Cmt, q, g),Ch,Rsp) = 0 ∨Ch 6= Bc1Xc2 ∨Ch = 1 ∨B = B′ ∨

DECxn
((Cmt, q, g),Ch

′,Rsp
′) = 0 ∨Ch

′ 6= B′c′1X ′c′2 ∨Ch
′ = 1]

≤ Pr [DECxn
((Cmt, q, g),Ch,Rsp) = 0 ∨Ch 6= CDLogq,g(B) ∨Ch = 1 ∨

B = B′ ∨

DECxn
((Cmt, q, g),Ch

′,Rsp
′) = 0 ∨Ch

′ 6= C ′DLogq,g(B′) ∨Ch
′ = 1 ∨

(Ch 6= Bc1Xc2 ∧Ch = CDLogq,g(B)) ∨
(Ch

′ 6= B′c′1X ′c′2 ∧Ch
′ = C ′DLogq,g(B′))]

≤ Pr [DECxn
((Cmt, q, g),Ch,Rsp) = 0 ∨Ch 6= CDLogq,g(B) ∨Ch = 1 ∨

B = B′ ∨

DECxn
((Cmt, q, g),Ch

′,Rsp
′) = 0 ∨Ch

′ 6= C ′DLogq,g(B′) ∨Ch
′ = 1] +

Pr [Ch 6= Bc1Xc2 ∧Ch = CDLogq,g(B)] +

Pr [Ch
′ 6= B′c′1X ′c′2 ∧Ch

′ = C ′DLogq,g(B′)] .

Expkea3
A,Ā(n, q, g, A′) returns 1 exactly when Y = CDLogq,g(B) and gc1A′c2 6= C. By

construction of A, we have Y = Ch, and thus Ch = CDLogq,g(B) ∧ Ch 6= Bc1Xc2

implies that Expkea3
A,Ā(n, q, g, A′) returns 1. Similarly, Ch

′ = CDLogq,g(B′) ∧ Ch 6=
B′c′1X ′c′2 implies that Expkea3

A,Ā(n, q, g, A′) returns 1. To justify Equation (4.9) it

76

remains to show that

Pr [DECxn
((Cmt, q, g),Ch,Rsp) = 1 ∧Ch = CDLogq,g(B) ∧Ch 6= 1 ∧

B 6= B′ ∧

DECxn
((Cmt, q, g),Ch

′,Rsp
′) = 1 ∧Ch

′ = C ′DLogq,g(B′) ∧Ch
′ 6= 1]

≥
(
Acc

bP ,an

V ′ (xn)
)2

− 1

q − 1
Acc

bP ,an

V ′ (xn) . (4.12)

Let RES denote the event in the experiment of executing Jn(q, g, A) whose prob-

ability is bounded from below in Equation (4.12). Note that the corresponding

sample space is Z
∗
q ×Z

∗
q . Let ACC denote the event that in an interaction between

P̂ (with initial state (xn, an, ε)) and V ′ (with input xn), the latter accepts (i.e.,

Pr [ACC] = Acc
bP ,an

V ′ (xn)). The sample space of the corresponding experiment is

Z
∗
q . We observe that if b ∈ ACC, b′ ∈ ACC and b 6= b′ then (b, b′) ∈ RES. Therefore,

|RES| ≥ |ACC|(|ACC| − 1) and

Pr [RES] =
|RES|
|Z∗

q × Z∗
q |
≥ |ACC|

|Z∗
q|

(|ACC|
|Z∗

q |
− 1

|Z∗
q|

)

=
(
Acc

bP ,an

V ′ (xn)
)2

− 1

q − 1
Acc

bP ,an

V ′ (xn) .

Equation (4.10) is justified by Equation (4.5) and the assumption that Ā is a

kea3-extractor for A with error bound ν.

The assumption that (q, g) ∈ GLn implies that |2q+1| = n, i.e., 2n−1 ≤ 2q+1 < 2n,

and hence q − 1 ≥ 2n−3 (recall that n ≥ 4). This justifies Equation (4.11).

4.5.5 Zero knowledge of PHTP

Having modified HTP, we need to revisit the zero knowledge. We observe that

PHTP modifies only the verifier, not the prover. Furthermore, only the decision

predicate of the verifier is modified, not the messages it sends. This means that the

view (i.e., the internal coin tosses and the sequence of messages received during an

77

interaction with a prover P) of verifier V ′ of PHTP is identical to that of verifier V

of HTP. Thus, whatever zero knowledge property HTP has is inherited by PHTP,

under the same assumptions.

We recall the notions of zero knowledge considered by Hada and Tanaka: zero

knowledge (ZK) [56], auxiliary-input ZK [54], non-uniform ZK [51], and auxiliary-

input non-uniform ZK [51]; and the assumptions they used to prove zero knowledge

of HTP, namely KEA1-A(p) and UKEA1-A(p), where p is a polynomial.

Definition 4.5.5 [ZK and Auxiliary-input ZK] Let (P, V) be an argument for

an NP language L. We say that (P, V) is ZK (respectively, auxiliary-input ZK) for

L if for every probabilistic polynomial-time algorithm V̂ there exists a probabilistic

simulator SbV
, that runs in time polynomial in the length of its first input, such

that the following two ensembles are computationally indistinguishable:

{
SbV

(x, ε)
}

x∈L
and

{
View

P, W (x)
bV , ε

(x)
}

x∈L

(
respectively,

{
SbV (x, z)

}
x∈L, z∈{0,1}∗

and
{
View

P, W (x)
bV , z

(x)
}

x∈L, z∈{0,1}∗

)
,

where W is any function that given an input in L returns a witness to its mem-

bership in L, and View
P, W (x)
bV , z

(x) is a random variable taking value V̂ ’s internal

coin tosses and the sequence of messages it receives during an interaction between

prover P , with auxiliary input W (x), and verifier V̂ , with auxiliary input z, on

common input x.

Definition 4.5.6 [Non-uniform ZK and Auxiliary-input non-uniform ZK]

Let (P, V) be an argument for an NP language L. We say that (P, V) is non-

uniform ZK (respectively, auxiliary-input non-uniform ZK) for L if for every poly-

size family of circuits {Vn}n∈N there exists a poly-size family of randomized circuits

{Sn}n∈N such that the following two ensembles are indistinguishable by poly-size

circuits:
{
S|x|(x, ε)

}
x∈L

and
{
View

P, W (x)
V|x|, ε

(x)
}

x∈L

78

(
respectively,

{
S|x|(x, z)

}
x∈L, z∈{0,1}∗

and
{
View

P, W (x)
V|x|, z

(x)
}

x∈L, z∈{0,1}∗

)
,

where W and View
P, W (x)
V|x|, z

(x) are as in Definition 4.5.5.

In the following formalizations of assumptions KEA1-A(p) and UKEA1-A(p),

we merge the two conditions specified in [60] into one, as we did for KEA1.

Assumption 4.5.7 [KEA1-A] Let A = {An}n∈N and Ā = {Ān}n∈N be families

of circuits, p a polynomial, and ν : N → [0, 1] a function. We associate to any

n ∈ N, any (q, g) ∈ GLn, and any σ ∈ {0, 1}p(n) the following experiment:

Experiment Expkea1-a
A,Ā (n, q, g, σ)

b
$← Zq ; B ← gb

(C, Y)← An(q, g, B, σ) ; c← Ān(q, g, B, σ)

If (Y = Cb AND gc 6= C) then return 1 else return 0

We let

Advkea1-a
A,Ā (n, q, g, σ) = Pr

[
Expkea1-a

A,Ā (n, q, g, σ) = 1
]

denote the advantage of adversary A relative to Ā on inputs n, q, g, σ. We say

that Ā is a kea1-a(p)-extractor for A with error bound ν if

∀n ∈ N ∀(q, g) ∈ GLn ∀σ ∈ {0, 1}p(n) : Advkea1-a
A,Ā (n, q, g, σ) ≤ ν(n) .

We say that KEA1-A(p) holds if for every poly-size family of circuits A there

exist a poly-size family of circuits Ā and a negligible function ν such that Ā is a

kea1-a(p)-extractor for A with error bound ν.

Assumption 4.5.8 [UKEA1-A] Let A and Ā be probabilistic polynomial-time

algorithms, p a polynomial, and ν : N → [0, 1] a function. We associate to any

n ∈ N, any (q, g) ∈ GLn, and any σ ∈ {0, 1}p(n) the following experiment:

Experiment Expkea1-au
A,Ā (n, q, g, σ)

b
$← Zq ; B ← gb

79

Choose coins R at random

(C, Y)← A(n, q, g, B, σ; R) ; c← Ā(n, q, g, B, σ; R)

If (Y = Cb AND gc 6= C) then return 1 else return 0

We let

Advkea1-au
A,Ā (n, q, g, σ) = Pr

[
Expkea1-au

A,Ā (n, q, g, σ) = 1
]

denote the advantage of adversary A relative to Ā on inputs n, q, g, σ. We say

that Ā is a ukea1-a(p)-extractor for A with error bound ν if

∀n ∈ N ∀(q, g) ∈ GLn ∀σ ∈ {0, 1}p(n) : Advkea1-au
A,Ā (n, q, g, σ) ≤ ν(n) .

We say that UKEA1-A(p) holds if for every probabilistic polynomial-time algo-

rithm A there exist a probabilistic polynomial-time algorithm Ā and a negligible

function ν such that Ā is a ukea1-a(p)-extractor for A with error bound ν.

Hada and Tanaka proved that if the underlying canonical argument is HVZK

(property (3) above), then HTP is 1) non-uniform ZK if KEA1-A(p) holds for

a polynomial p bounding the length of (x,Cmt), 2) auxiliary-input non-uniform

ZK if KEA1-A(p) holds for every polynomial p, 3) ZK if UKEA1-A(p) holds for

a polynomial p bounding the length of (x,Cmt), and 4) auxiliary-input ZK if

UKEA1-A(p) holds for every polynomial p. By the discussion above, PHTP has

these same properties. For ease of reference, we state this result in the following

lemma.

Lemma 4.5.9 Let (P̄ , V̄) be a canonical argument for an NP-complete language

L, and let PHTP = (P, V ′) be the protocol defined in Figure 4.3. Then

1) PHTP is non-uniform ZK for L if KEA1-A(p) holds for a polynomial p bounding

the length of (x,Cmt),

2) PHTP is auxiliary-input non-uniform ZK for L if KEA1-A(p) holds for every

polynomial p,

80

3) PHTP is ZK for L if UKEA1-A(p) holds for a polynomial p bounding the length

of (x,Cmt),

and

4) PHTP is auxiliary-input ZK for L if UKEA1-A(p) holds for every polynomial

p.

4.5.6 Summary

In summary, we have shown the following:

Theorem 4.5.10 Assuming DLA and KEA3, there exists a 3-round negligible-

error argument for an NP-complete language L that is

1) non-uniform ZK if KEA1-A(p) holds for a particular polynomial p,

2) auxiliary-input non-uniform ZK if KEA1-A(p) holds for every polynomial p,

3) ZK if UKEA1-A(p) holds for a particular polynomial p, and

4) auxiliary-input ZK if UKEA1-A(p) holds for every polynomial p.

Proof of Theorem 4.5.10: The theorem follows immediately from Lemma 4.5.3,

Lemma 4.5.9, and the existence of canonical arguments for NP-complete languages.

The latter can be constructed, for example, by modifying the parallel composition

of Blum’s zero-knowledge protocol for the Hamiltonian circuit problem [23], as

described in [59, 60].

Acknowledgements

Proposition 4.4.3 is due to Shai Halevi and we thank him for permission to

include it.

81

This chapter, in part, is a reprint of the material as it appears in M. Bellare

and A. Palacio, “The Knowledge-of-Exponent Assumptions and 3-Round Zero-

Knowledge Protocols,” Advances in Cryptology - Crypto 2004 Proceedings, Lecture

Notes in Computer Science Vol. 3152, M. Franklin ed., Springer-Verlag, 2004.

5 Plaintext-Aware

Public-Key Encryption

without Random Oracles

5.1 Introduction

The theory of encryption is concerned with defining and implementing no-

tions of security for encryption schemes [55, 66, 50, 69, 75, 40]. One of the themes

in its history is the emergence of notions of security of increasing strength that

over time find applications and acceptance.

Our work pursues, from the same perspective, a notion that is stronger than

any previous ones, namely plaintext awareness. Our goal is to strengthen the

foundations of this notion by lifting it out of the random-oracle model [21] where

it currently resides. Towards this end, we provide definitions of a hierarchy of

notions of plaintext awareness, relate them to existing notions, and implement

some of them. We consider this a first step in the area, however, since important

questions are left unresolved. We begin below by reviewing existing work and

providing some motivation for our work.

82

83

5.1.1 Background

Intuitively, an encryption scheme is plaintext aware (PA) if the “only” way

that an adversary can produce a valid ciphertext is to apply the encryption algo-

rithm to the public key and a message. In other words, any adversary against a

PA scheme that produces a ciphertext “knows” the corresponding plaintext.

Random-oracle model work

The notion of PA encryption was first suggested by Bellare and Rogaway [22],

with the motivation that PA + IND-CPA should imply IND-CCA2. That is, secu-

rity against chosen-plaintext attack coupled with plaintext awareness should imply

security against adaptive chosen-ciphertext attack. The intuition, namely, that if

an adversary knows the plaintext corresponding to a ciphertext it produces, then

a decryption oracle must be useless to it, goes back to [24, 25]. Bellare and Rog-

away [22] provided a formalization of PA in the random-oracle (RO) model. They

asked that for every adversary A taking the public key and outputting a cipher-

text, there exist an extractor that, given the same public key and a transcript of

the interaction of A with its RO, is able to decrypt the ciphertext output by A.

We will refer to this notion as PA-BR.

Subsequently, it was found that PA-BR was too weak for PA-BR + IND-CPA

to imply IND-CCA2. Bellare, Desai, Pointcheval, and Rogaway [7] traced the cause

of this to the fact that PA-BR did not capture the ability of the adversary to obtain

ciphertexts via eavesdropping on communications made to the receiver. (Such

eavesdropping can put into the adversary’s hands ciphertexts whose decryptions it

does not know, lending it the ability to create other ciphertexts whose decryptions

it does not know.) They provided an appropriately enhanced definition (still in the

RO model) that we denote by PA-BDPR, and showed that PA-BDPR + IND-CPA

→ IND-CCA2.

Plaintext awareness is exploited, even though typically implicitly rather than

84

explicitly, in the proofs of the IND-CCA2-security of numerous RO-model encryp-

tion schemes, e.g., [48, 84, 26].

PA and the RO model

By restricting the above-mentioned RO-model definitions to schemes and

adversaries that do not query the RO, one obtains natural counterpart standard

(i.e., non-RO) model definitions of PA. These standard-model definitions turn out,

however, not to be achievable without sacrificing privacy, because the extractor

can simply be used for decryption. This indicates that the use of the RO model in

the definitions of [22, 7] is central.

Indeed, PA as per [22, 7] is “designed” for the RO model in the sense that the

definition aims to capture certain properties of certain RO-model schemes, namely,

the fact that possession of the transcript of the interaction of an adversary with

its RO permits decryption of ciphertexts formed by this adversary. It is not clear

what counterpart this intuition has in the standard model.

The lack of a standard-model definition of PA results in several gaps. One

such arises when we consider that RO-model PA schemes are eventually instan-

tiated to get standard-model schemes. In that case, what property are these in-

stantiated schemes even supposed to possess? There is no definition that we might

even discuss as a target.

PA via key registration

PA without ROs was first considered by Herzog, Liskov and Micali [61], who

define and implement it in an extension of the usual public-key setting. In their

setting, the sender (not just the receiver) has a public key, and, in a key-registration

phase that precedes encryption, proves knowledge of the corresponding secret key

to a key-registration authority via an interactive proof of knowledge. Encryption

is a function of the public keys of both the sender and the receiver, and the PA

extractor works by extracting the sender secret key using the knowledge extractor

85

of the interactive proof of knowledge.

Their work also points to an application of plaintext-aware encryption where

they claim the use of the latter is crucial in the sense that IND-CCA2-secure

encryption does not suffice, namely to securely instantiate the ideal encryption

functions of the Dolev-Yao model [41].

5.1.2 Our goals and motivation

The goal of this work is to provide definitions and constructions for plaintext-

aware public-key encryption in the standard and classical setting of public-key

encryption, namely the one where the receiver (but not the sender) has a public

key, and anyone (not just a registered sender) can encrypt a message for the receiver

as a function of the receiver’s public key. In this setting there is no key-registration

authority or key-registration protocol akin to [61].

Motivations include the following. As in the RO model, we would like a tool

enabling the construction of public-key encryption schemes secure against chosen-

ciphertext attack. We would also like to have some well-defined notion that can

be viewed as a target for instantiated RO-model PA schemes. (One could then

evaluate these schemes with regard to meeting the target.)

Additionally, we would like to enable the possibility of instantiating the ideal

encryption functions of the Dolev-Yao model [41] without recourse to either random

oracles or the key-registration model. (The last is an application where, as per [61],

PA is required and IND-CCA2 does not suffice. However, see also [2].)

As we will see later, consideration of PA in the standard model brings other

benefits, such as some insight, or at least an alternative perspective, on the design

of existing encryption schemes secure against chosen-ciphertext attack. Let us now

discuss our contributions.

86

5.1.3 Definitions

The first contribution of this paper is to provide definitions for plaintext-

aware encryption in the standard model and standard public-key setting.

Overview

We provide a hierarchy consisting of three notions of increasing strength that

we denote by PA0, PA1 and PA2. There are several motivations for this. One is

that these will be seen (in conjunction with IND-CPA) to imply security against

chosen-ciphertext attacks of different strengths. Another is that, as will become

apparent, PA is difficult to achieve, and progress can be made by first achieving

it in weaker forms. Finally, it is useful, pedagogically, to bring in new definitional

elements incrementally.

A closer look

Our basic definitional framework considers a polynomial-time adversary C ,

called a ciphertext creator, that takes input the public key and can query cipher-

texts to an oracle. A polynomial-time algorithm C
∗ is said to be a successful

extractor for C if it can provide replies to the oracle queries of C that are com-

putationally indistinguishable from those provided by a decryption oracle.

An important element of the above framework is that the extractor gets as

input the same public key as the ciphertext creator, as well as the coin tosses of

the ciphertext creator. This reflects the intuition that the extractor is the “sub-

conscious” of the adversary, and begins with exactly the same information as the

adversary itself.

We say that an encryption scheme is PA0 (respectively, PA1) if there exists

a successful extractor for any ciphertext creator that makes only a single oracle

query (respectively, a polynomial number of oracle queries).

Eavesdropping capability in PA2 is captured by providing the ciphertext

87

IND-CPA IND-CCA1 IND-CCA2

PA0+IND-CPA PA1+IND-CPA PA2+IND-CPA

5.4.1
5.4.2

5.4.45.4.3

5.4.5

Figure 5.1 Relations between PA and notions of privacy. An arrow is an

implication, and, in the directed graph given by the arrows, there is a path from

A to B if and only if A implies B. The hatched arrows represent separations. Solid

lines represent results from this paper, while dashed lines represent results from

prior work [7, 40]. The number on an arrow or hatched arrow refers to the theorem

in this paper that establishes this relationship. Absence of a number on a solid

arrow means the result is trivial.

creator C with an additional oracle that returns ciphertexts, but care has to be

taken in defining this oracle. It does not suffice to let it be an encryption oracle

because we want to model the ability of the adversary to obtain ciphertexts whose

decryptions it may not know. Our formalization of PA2 allows the additional oracle

to compute a plaintext, as a function of the query made to it and coins unknown

to C , and return the encryption of this plaintext to C .

Formal definitions of PA0, PA1 and PA2, based on the above ideas, are in

Section 5.3, which includes a discussion of how these definitions compare to the

earlier RO-model ones.

5.1.4 Relations

PA by itself is not a notion of privacy, and so we are typically interested in PA

coupled with the minimal notion of privacy, namely IND-CPA [55, 66]. We consider

six notions, namely, PA0 + IND-CPA, PA1 + IND-CPA and PA2 + IND-CPA, on

the one hand, and the standard notions of privacy IND-CPA, IND-CCA1 [69] and

IND-CCA2 [75], on the other. We provide implications and separations among

these six notions in the style of [7, 40]. The results are depicted in Figure 5.1. For

notions A, B, an implication, represented by A→ B, means that every encryption

88

scheme satisfying notion A also satisfies notion B, and a separation, represented

by A 6→ B, means that there exists an encryption scheme satisfying notion A but

not satisfying notion B. (The latter assumes there exists some encryption scheme

satisfying notion A, since otherwise the question is vacuous.)

Figure 5.1 shows a minimal set of arrows and hatched arrows, but the re-

lation between any two notions is resolved by the given relations. For example,

IND-CCA1 6→ PA1 + IND-CPA, because, otherwise, there would be a path from

IND-CCA2 to PA0 + IND-CPA, contradicting the hatched arrow labeled 5.4.3.

Similarly, we get PA0 6→ PA1 6→ PA2, meaning the three notions of plaintext

awareness are of increasing strength.

The main implications are that PA1 + IND-CPA implies IND-CCA1 and

PA2 + IND-CPA implies IND-CCA2. The PA1 + IND-CPA → IND-CCA1 result

shows that even a notion of PA not taking eavesdropping adversaries into account

is strong enough to imply security against a significant class of chosen-ciphertext

attacks. Since the PA + IND-CPA → IND-CCA2 implication has been a motivat-

ing target for definitions of PA, the PA2 + IND-CPA→ IND-CCA2 result provides

some validation for the definition of PA2.

Among the separations, we note that IND-CCA2 does not imply PA0, mean-

ing even the strongest form of security against chosen-ciphertext attack is not

enough to guarantee the weakest form of plaintext awareness.

5.1.5 Constructions

The next problem we address is to find provably-secure plaintext-aware en-

cryption schemes.

Approaches

A natural approach to consider is to include a non-interactive zero-knowledge

proof of knowledge [78] of the message in the ciphertext. However, as we explain

89

in Section 5.5, this fails to achieve PA.

As such approaches are considered and discarded, it becomes apparent that

achieving even the weaker forms of PA in the standard (as opposed to RO) model

may be difficult. We have been able to make progress, however, under some strong

assumptions that we now describe.

DHK assumptions

Let G be the order q subgroup of Z
∗
2q+1, where q, 2q + 1 are primes, and let

g be a generator of G. Damg̊ard [36] introduced and used an assumption that

states, roughly, that an adversary given ga and outputting a pair of the form

(gb, gab) must “know” b. The latter is captured by requiring an extractor that

given the adversary coins and inputs can output b. We call our formalization of

this assumption (cf. Assumption 5.5.2) DHK0.1 We also introduce an extension of

this assumption called DHK1 (cf. Assumption 5.5.1), in which the adversary does

not just output one pair (gb, gab), but instead interacts with the extractor, feeding

it such pairs adaptively and each time expecting back the discrete logarithm of the

first component of the pair.

The DEG scheme

Damg̊ard presented a simple ElGamal variant that we call DEG. It is efficient,

requiring only three exponentiations to encrypt and two to decrypt.

We prove that DEG is PA0 under the DHK0 assumption and PA1 under

the DHK1 assumption. Since DEG is easily seen to be IND-CPA-secure under

the DDH assumption, and we saw above that PA1 + IND-CPA → IND-CCA1, a

1Another formalization, called DA-1, is used by Hada and Tanaka [60]. (We refer to the full
version of their paper [60], which points out that the formalization of the preliminary version [59]
is wrong.) This differs from DHK0 in being for a non-uniform setting. DA-1 is called KEA1 in
Chapter 3, based on Naor’s terminology [68]: KEA stands for “knowledge of exponent.” Hada
and Tanaka [60] also introduced and used another assumption, that they call DA-2 and is called
KEA2 in Chapter 3, but there we show that this assumption is false. The DHK0/DA-1/KEA1
assumptions, to the best of our knowledge, are not known to be false.

90

consequence is that DEG is IND-CCA1-secure assuming DHK1 and DDH. DEG is

in fact the most efficient IND-CCA1-secure scheme known to date to be provably

secure in the standard model.

Damg̊ard [36] claims that DEG meets a notion of security under cipher-

text attack that we call RPR-CCA1, assuming DHK0 and assuming the ElGamal

scheme meets a notion called RPR-CPA. (Both notions are recalled in Section 5.6,

and are weaker than IND-CCA1 and IND-CPA, respectively). As we explain in

Section 5.6, his proof has a flaw, but his overall approach and intuition are valid,

and the proof can be fixed by simply assuming DHK1 in place of DHK0. In

summary, our contribution is (1) to show that DEG meets a stronger and more

standard notion of security than RPR-CCA1, namely IND-CCA1, and (2) to show

it is PA0 and PA1, indicating that it has even stronger properties, and providing

some formal support for the intuition given in [36] about the security underlying

the scheme.

CSL

CSL is a simpler and more efficient version of the Cramer-Shoup encryption

scheme [35] that is IND-CCA1-secure under the DDH assumption. We show that

CSL is PA0 under the DHK0 assumption and PA1 under the DHK1 assumption.

(IND-CPA-security under DDH being easy to see, this again implies that CSL is

IND-CCA1-secure under DHK1 and DDH, but in this case the conclusion is not

novel.) What we believe is interesting about our results is that they show that some

form of plaintext awareness underlies the CSL scheme, and this provides perhaps

an alternative viewpoint on the source of its security. We remark, however, that

DEG is more efficient than CSL.

Warning and discussion

DHK0 and DHK1 are strong and non-standard assumptions. As pointed out

by Naor [68], they are not efficiently falsifiable. (However, such assumptions can

91

be shown to be false as exemplified in [18]). However standard-model schemes,

even under strong assumptions, might provide better guarantees than RO model

schemes, for we know that the latter may not provide real-world security guarantees

at all [29, 70, 57, 6]. Also, PA without random oracles is challenging to achieve,

and we consider it important to “break ground” by showing it is possible, even if

under strong assumptions.

Achieving PA2

The eavesdropping capability provided to an adversary in the PA2 setting

seems to render the task of finding constructions sonewhat harder. We were not

able to find any, and conjectured that the Cramer-Shoup scheme, already known

to be IND-CCA2-secure, could be proved PA2-secure under some appropriate as-

sumption. (Intuitively, it seems to be PA2.)

Dent [37] recently proved that if DHK1 holds, then the Cramer-Shoup hybrid-

encryption scheme [35] acting on fixed-length messages is PA2-secure. The reader

is referred to Dent’s paper for a precise statement of the result.

Open problems

It would be nice to achieve PA0, PA1, or PA2 under weaker and more stan-

dard assumptions than those used here.

5.2 Notation and standard definitions

We denote by [] the empty list. Given a list L and an element x, L @ x

denotes the list consisting of the elements in L followed by x.

Unless otherwise indicated, an algorithm is randomized.

92

5.2.1 Encryption schemes

We recall the standard syntax. An asymmetric (also called public-key) en-

cryption scheme is a tupleAE = (K, E ,D, MsgSp) whose components are as follows.

The polynomial-time key-generation algorithm K takes input 1k, where k ∈ N is

the security parameter, and returns a pair (pk, sk) consisting of a public key and

matching secret key. The polynomial-time encryption algorithm E takes a public

key pk and a message M to return a ciphertext C. We write C
$← Epk(M) to

represent the operation of executing E on pk and M and letting C denote the

ciphertext returned. The deterministic, polynomial-time decryption algorithm D
takes a secret key sk and a ciphertext C to return either a message M or the

special symbol ⊥ indicating that the ciphertext is invalid. We write M ← Dsk(C)

to represent the operation of executing D on sk and C and letting M denote the

response. The message-space function MsgSp associates to each public key pk a

set MsgSp(pk) called the message space of pk. It is required that for every k ∈ N :

Pr
[

(pk, sk)
$← K(1k) ; M

$← MsgSp(pk) ; C
$← Epk(M) : Dsk(C) = M

]
= 1 .

5.2.2 Standard security notions

We recall the definitions of IND-CPA-, IND-CCA1-, and IND-CCA2-security

that originate in [55], [69], and [75], respectively. We use the formalizations of [7].

Let AE = (K, E ,D, MsgSp) be an asymmetric encryption scheme, let k ∈ N and b ∈
{0, 1}. Let X be an algorithm with access to an oracle. For aaa ∈ {cpa, cca1, cca2},
consider the following experiment

Experiment Expind-aaa-b
AE ,X (k)

(pk, sk)
$← K(1k) ; (M0, M1, St)

$← X
O1(·)(find, pk) ; C

$← Epk(Mb)

d← X
O2(·)(guess, C, St) ; Return d

where

If aaa = cpa then O1(·) = ε and O2(·) = ε
If aaa = cca1 then O1(·) = Dsk(·) and O2(·) = ε
If aaa = cca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)

93

Experiment Exppa1-d
AE ,C,D(k)

(pk, sk)
$← K(1k) ; x

$← C
Dsk(·)(pk) ; d

$← D(x) ; Return d

Experiment Exppa1-x
AE ,C,D,C∗(k)

(pk, sk)
$← K(1k)

Choose coins R[C], R[C∗] for C ,C∗, respectively ; St [C∗]← (pk, R[C])

Run C on input pk and coins R[C] until it halts, replying to its
oracle queries as follows:

– If C makes query Q then

(M, St [C∗])← C
∗(Q, St [C∗]; R[C∗])

Return M to C as the reply EndIf

Let x denote the output of C ; d
$← D(x) ; Return d

Figure 5.2 Experiments used to define PA1 and PA0.

In each case it is required that M0, M1 ∈ MsgSp(pk) and |M0| = |M1|. In the

case of IND-CCA2, it is also required that X not query its decryption oracle with

ciphertext C. We call X an ind-aaa-adversary. The ind-aaa-advantage of X is

Advind-aaa
AE,X (k) = Pr

[
Expind-aaa-1

AE,X (k) = 1
]
− Pr

[
Expind-aaa-0

AE,X (k) = 1
]

.

For AAA ∈ {CPA,CCA1,CCA2}, AE is said to be IND-AAA-secure if the function

Advind-aaa
AE,X is negligible for every polynomial-time ind-aaa-adversary X .

5.3 New notions of plaintext awareness

In this section we provide our formalizations of plaintext-aware encryption.

We provide the formal definitions first and explanations later. We begin with PA1,

then define PA0 via this, and finally define PA2.

Definition 5.3.1 [PA1] Let AE = (K, E ,D, MsgSp) be an asymmetric encryption

scheme. Let C be an algorithm that has access to an oracle, takes as input a public

key pk, and returns a string. Let D be an algorithm that takes a string and returns

a bit. Let C
∗ be an algorithm that takes a string and some state information, and

94

returns a message or the symbol ⊥, and a new state. We call C a ciphertext-creator

adversary, D a distinguisher, and C
∗ a pa1-extractor. For k ∈ N, we define the

experiments shown in Figure 5.2. The pa1-advantage of C relative to D and C
∗

is

Advpa1
AE,C,D,C∗(k) = Pr

[
Exppa1-d

AE ,C,D(k) = 1
]
− Pr

[
Exppa1-x

AE,C,D,C∗(k) = 1
]

.

We say that C
∗ is a successful pa1-extractor for C if for every polynomial-time

distinguisher D the function Advpa1
AE,C,D,C∗ is negligible. We say AE is PA1-secure

if for any polynomial-time ciphertext creator there exists a successful polynomial-

time pa1-extractor.

Definition 5.3.2 [PA0] Let AE be an asymmetric encryption scheme. We call a

ciphertext-creator adversary that makes exactly one oracle query a pa0 ciphertext

creator. We call a pa1-extractor for a pa0 ciphertext creator a pa0-extractor. We

say that AE is PA0-secure if for any polynomial-time pa0 ciphertext creator there

exists a successful polynomial-time pa0-extractor.

We now explain the ideas behind the above formalisms. The core of the

formalization of plaintext awareness of asymmetric encryption scheme AE =

(K, E ,D, MsgSp) considers a polynomial-time ciphertext-creator adversary C that

takes input a public key pk, has access to an oracle and returns a string. The

adversary tries to distinguish between the cases that its oracle is Dsk(·), or it is an

extractor algorithm C
∗ that takes as input the same public key pk. PA1-security

requires that there exist a polynomial-time C
∗ such that C ’s outputs in the two

cases are indistinguishable. We allow C
∗ to be stateful, maintaining state St [C∗]

across invocations. Importantly, C
∗ is provided with the coin tosses of C ; other-

wise, C
∗ would be functionally equivalent to the decryption algorithm and thus

could not exist unless AE were insecure with regard to providing privacy. We

remark that this formulation is stronger than one not involving a distinguisher D,

in which C simply outputs a bit representing its guess, since C
∗ gets the coins of

C , but not the coins of D.

95

Experiment Exppa2-d
AE,C,P,D(k)

(pk, sk)
$← K(1k) ; Clist← []

Choose coins R[C], R[P] for C ,P, respectively ; St [P]← ε

Run C on input pk and coins R[C] until it halts, replying to its
oracle queries as follows:

– If C makes query (dec, Q) then

M ← Dsk(Q) ; Return M to C as the reply EndIf

– If C makes query (enc, Q) then

(M, St [P])← P(Q, St [P]; R[P]) ; C
$← Epk(M)

Clist← Clist@ C ; Return C to C as the reply EndIf

Let x denote the output of C ; d
$← D(x) ; Return d

Experiment Exppa2-x
AE,C,P,D,C∗(k)

(pk, sk)
$← K(1k) ; Clist← []

Choose coins R[C], R[P], R[C∗] for C ,P,C∗, respectively
St [P]← ε ; St [C∗]← (pk, R[C])

Run C on input pk and coins R[C] until it halts, replying to its
oracle queries as follows:

– If C makes query (dec, Q) then

(M, St [C∗])← C
∗(Q,Clist, St [C∗]; R[C∗])

Return M to C as the reply EndIf

– If C makes query (enc, Q) then

(M, St [P])← P(Q, St [P]; R[P]) ; C
$← Epk(M)

Clist← Clist@ C ; Return C to C as the reply EndIf

Let x denote the output of C ; d
$← D(x) ; Return d

Figure 5.3 Experiments used to define PA2.

PA0-security considers only adversaries that make a single query in their

attempt to determine if the oracle is a decryption oracle or an extractor.

Definition 5.3.3 [PA2] Let AE = (K, E ,D, MsgSp) be an asymmetric encryption

scheme. Let C be an algorithm that has access to an oracle, takes as input a public

key pk, and returns a string. Let P be an algorithm that takes a string and some

state information, and returns a message and a new state. Let D be an algorithm

that takes a string and returns a bit. Let C
∗ be an algorithm that takes a string, a

96

list of strings and some state information, and returns a message or the symbol ⊥,

and a new state. We call C a ciphertext-creator adversary, P a plaintext-creator

adversary, D a distinguisher, and C
∗ a pa2-extractor. For k ∈ N, we define the

experiments shown in Figure 5.3. It is required that, in these experiments, C not

make a query (dec, C) for which C ∈ Clist. The pa2-advantage of C relative to

P, D and C
∗ is

Advpa2
AE,C,P,D,C∗(k)

= Pr
[
Exppa2-d

AE ,C,P,D(k) = 1
]
− Pr

[
Exppa2-x

AE ,C,P,D,C∗(k) = 1
]

.

We say that C
∗ is a successful pa2-extractor for C if for every polynomial-

time plaintext creator P and distinguisher D, the function Advpa2
AE,C,P,D,C∗ is neg-

ligible. We say AE is PA2-secure if for any polynomial-time ciphertext creator

there exists a successful polynomial-time pa2-extractor.

In the definition of PA2, the core setting of PA1 is enhanced to model the

real-life capability of a ciphertext creator to obtain ciphertexts via eavesdropping

on communications made by a third party to the receiver (cf. [7]). Providing C

with an encryption oracle does not capture this because eavesdropping puts into

C ’s hands ciphertexts of which it does not know the corresponding plaintext, and,

although we disallow C to query these to its oracle, it might be able to use them

to create other ciphertexts whose corresponding plaintext it does not know and on

which the extractor fails.

Modeling eavesdropping requires balancing two elements: providing C with

a capability to obtain ciphertexts of plaintexts it does not know, yet capturing the

fact that C might have partial information about the plaintexts, or control of the

distribution from which these plaintexts are drawn. We introduce a companion

plaintext-creator adversary P who, upon receiving a communication from C , cre-

ates a plaintext and forwards it to an encryption oracle. The ciphertext emanating

from the encryption oracle is sent to both C and C
∗. C has some control over P

97

via its communication to P, but we ensure this is not total by denying C and C
∗

the coin tosses of P, and also by asking that C
∗ depend on C but not on P.

The extractor C
∗ is, as before, provided with the coin tosses of C . Two types

of oracle queries are allowed to C . Via a query (dec, Q), it can ask its oracle to

decrypt ciphertext Q. Alternatively, it can make a query (enc, Q) to call P with

argument Q, upon which the latter computes a message M and forwards it to the

encryption oracle, which returns the resulting ciphertext to C , and C
∗ in the case

that C ’s oracle is C
∗. We observe that if an asymmetric encryption scheme is

PA2-secure then it is PA1-secure, and if it is PA1-secure then it is PA0-secure.

5.3.1 Comparison

The RO-model definitions PA-BR [22] and PA-BDPR [7] differ from ours in

the following ways.

The RO-model definitions did not give the extractor the coins of the cipher-

text creator. As we indicated above, in the absence of ROs, providing the extractor

with the coins of the ciphertext creator is necessary for the non-triviality of PA,

since otherwise the extractor can be used for decryption and the scheme will not

be IND-CPA-secure. Furthermore, the basic intuition is that the extractor is the

subconscious of the ciphertext creator, and thus should have all the inputs of the

latter, meaning it should be given the public key and the coins that were given to

the ciphertext creator.

The RO-model definitions required the extractor to return the decryption

of a given ciphertext. We have weakened this requirement, asking only that the

outputs of the extractor be computationally indistinguishable from the outputs

of the decryption oracle, because this weakening preserves the main implications

and applications of PA while increasing the possibility of finding constructions.

However, as discussed below, one can consider a stronger, statistical version of our

definitions which captures requiring the extractor to return correct decryptions,

98

and this might be useful in some contexts.

The RO-model definitions only consider ciphertext creators that output a

single ciphertext which the extractor must decrypt, while we have considered an

oracle-based formulation, corresponding to ciphertext creators that adaptively cre-

ate multiple ciphertexts for the extractor to decrypt.

The most important changes are with regard to modeling eavesdropping. In

PA-BDPR [7], eavesdropping capability was modeled by providing the ciphertext

creator with an encryption oracle but denying it and the extractor the so-called in-

direct random-oracle queries, namely those made by the encryption oracle. Adopt-

ing this approach in the absence of ROs would reduce to providing the ciphertext

creator with an encryption oracle, which, as we discussed above, does not correctly

model eavesdropping because the ciphertext creator knows the decryptions of ci-

phertexts it obtains via an encryption oracle, and we want to provide it a means

of obtaining ciphertexts whose decryptions it may not know. In particular, the

encryption-oracle-based notion seems too weak to prove Theorem 5.4.2. We have

used the plaintext creator instead.

The plaintext extractor in PA-BDPR [7] is black box, meaning there is a single

extractor that works for all ciphertext creators, upon being given the transcript

of interactions of the ciphertext creator with its oracles. We have weakened this

requirement, allowing the extractor code to depend non-uniformly on the code of

the ciphertext creator. Again, this was done in order to increase the possibility

of finding constructions. Evidence of the power of non-black-box formulations is

provided, in another context, by [3].

We note that it is easy to “lift” our standard-model definitions to counterpart

RO-model definitions following the paradigm of [21]. Call these PA0-RO, PA1-RO

and PA2-RO. Given the above, we suggest that these make more suitable RO

model notions than the existing PA-BR [22] and PA-BDPR [7] ones, since they

are rooted in the standard model rather than being RO-model definitions with no

standard-model counterparts. We remark that PA-BR implies PA0-RO and PA-

99

BDPR implies PA2-RO, which says that we have weakened the definitions. Yet

we are still in line with the original intuition and have preserved the important

implications and application potential.

5.3.2 Statistical PA

Stronger versions of our definitions of PA0, PA1 and PA2 are obtained by

requiring that the outputs of the ciphertext creator, in the case where its oracle is

the decryption algorithm and in the case where it is the extractor, are statistically

rather than computationally indistinguishable. Formally, this can be captured by

simply allowing the distinguisher to be computationally unlimited. In other words,

let us say AE is sPA1-secure if for any polynomial-time ciphertext creator C there

exists a polynomial-time extractor C
∗ such that the function Advpa1

AE ,C,D,C∗ is

negligible for every (not necessarily polynomial-time) distinguisher D. We can

define sPA0- and sPA2-security analogously.

The statistical versions of our definitions amount simply to saying that the

extractor must return the correct decryption of any ciphertext it is given, except

with negligible probability. Accordingly, this could certainly have been formulated

in a simpler way without introducing distinguishers at all, and, indeed, it may have

been pedagogically preferable to begin with this simpler and stronger definition and

only then get to our current ones. We preferred the current distinguisher-based

approach because it allows us to fit the computational and statistical settings into

a common definitional framework.

As indicated above, we have chosen to make the computational versions of the

definitions the main ones because they suffice for the applications of Theorems 5.4.1

and 5.4.2, and might make future constructions easier to find. We remark, however,

that the schemes DEG and CSL that we show to achieve PA0- or PA1-security

actually achieve sPA0- and sPA1-security under the same assumptions, meaning

that Theorems 5.5.3, and 5.5.4 are true if we replace PA0 by sPA0 and PA1 by

100

sPA1.

5.4 Relations among notions

We now state the formal results corresponding to Figure 5.1, beginning with

the two motivating applications of our notions of plaintext awareness. The proof

of the following is in Section 5.4.1.

Theorem 5.4.1 [PA1+ IND-CPA ⇒ IND-CCA1] Let AE be an asymmetric

encryption scheme. If AE is PA1-secure and IND-CPA-secure, then it is IND-

CCA1-secure.

The proof of the following is in Section 5.4.2.

Theorem 5.4.2 [PA2+ IND-CPA ⇒ IND-CCA2] Let AE be an asymmetric

encryption scheme. If AE is PA2-secure and IND-CPA-secure, then it is IND-

CCA2-secure.

It is natural to ask whether the converse of Theorem 5.4.2 (resp., Theorem 5.4.1) is

true, namely whether an asymmetric encryption scheme that is IND-CCA2- (resp.,

IND-CCA1-) secure is also PA2- (respectively, PA1-) secure. (It is, of course, IND-

CPA-secure). The answer is no.

The following theorem implies that PA2- (respectively, PA1-) security (in

conjunction with IND-CPA-security) is a strictly stronger requirement than IND-

CCA2- (respectively, IND-CCA1-) security, unless there simply do not exist any

IND-CCA2-secure schemes. The proof is in Section 5.4.3.

Theorem 5.4.3 [IND-CCA2 6⇒ PA0+ IND-CPA] Assume there exists an

IND-CCA2-secure asymmetric encryption scheme. Then there exists an IND-

CCA2-secure asymmetric encryption scheme that is not PA0-secure.

We remind the reader that each notion of PA in the absence of IND-CPA

security is trivial to achieve. (In particular, the encryption scheme in which the

101

encryption function sets the ciphertext equal to the plaintext is PA2-secure, but

not IND-CPA-secure.) Thus the fact that the scheme guaranteed by Theorem 5.4.3

is IND-CPA-secure is important.

To complete the picture of implications and separations between the PA +

IND-CPA notions and the IND-AAA notions, we now show that PA1-security

(in conjunction with IND-CPA-security) is not sufficient to achieve IND-CCA2-

security, and PA0-security (in conjunction with IND-CPA-security) is not sufficient

to achieve IND-CCA1-security. The proof of the following is in Section 5.4.4.

Theorem 5.4.4 [PA1+ IND-CPA 6⇒ IND-CCA2] Assume there exists a PA1-

secure and IND-CPA-secure asymmetric encryption scheme. Then there exists a

PA1-secure and IND-CPA-secure asymmetric encryption scheme that is not IND-

CCA2-secure.

The proof of the following is in Section 5.4.5.

Theorem 5.4.5 [PA0+ IND-CPA 6⇒ IND-CCA1] Assume there exists a PA0-

secure and IND-CPA-secure asymmetric encryption scheme. Then there exists a

PA0-secure and IND-CPA-secure asymmetric encryption scheme that is not IND-

CCA1-secure.

5.4.1 Proof of Theorem 5.4.1

Assume that AE is PA1-secure and IND-CPA-secure, and let X be a poly-

nomial-time ind-cca1-adversary attacking AE . We construct a polynomial-time

ciphertext creator C for AE , based on X , and let C
∗ be a successful polynomial-

time pa1-extractor for it. Then we construct a polynomial-time ind-cpa-adversary

Y for AE , based on X and C
∗. Finally, we construct polynomial-time distinguish-

ers D0 and D1 for C , and prove that for every k ∈ N :

Advind-cca1
AE ,X (k) ≤ Advind-cpa

AE,Y (k) + Advpa1
AE ,C,D0,C∗(k) + Advpa1

AE,C,D1,C∗(k) . (5.1)

102

The assumption that AE is PA1-secure and IND-CPA-secure implies that the func-

tion Advind-cca1
AE,X is negligible, and thus that AE is IND-CCA1-secure. We proceed

to the constructions and analysis.

The four algorithms we construct are defined in Figure 5.4. Clearly, they all

run in polynomial time. Ciphertext-creator adversary C is essentially the same

as X(find, ·), except that it returns the public key along with M0, M1, St . By

the assumption that AE is PA1-secure, there is a successful polynomial-time pa1-

extractor C
∗ for C .

A random tape R[C]‖R[C∗] for ind-cpa-adversary Y has two parts, one being

a random tape for C (equivalently, for X) and the other being a random tape for

C
∗. Y (find, ·) initializes and then maintains state for C

∗. It runs X(find, ·), and

if the latter makes a query, then Y (find, ·) runs C
∗ to compute a reply, which it

returns to X(find, ·). When X(find, ·) stops, Y (find, ·) returns the former’s output.

Y (guess, ·) is identical to X(guess, ·).
Consider distinguishers D0 and D1. Intuitively, for b ∈ {0, 1}, when Db is

run on the output of C after the latter has interacted with the decryption oracle,

D0 computes the complement of the outcome of experiment Expind-cca1-0
AE ,X (k), and

D1 computes the outcome of experiment Expind-cca1-1
AE,X (k).

We claim that Equation (5.1) holds for all k ∈ N. To prove this, fix k ∈ N.

We state four claims, conclude the proof given them, and then return to prove

the claims. The first two claims relate the probability that X guesses the value of

challenge bit b, in each of its experiments, to the probability that distinguisher Db

returns 1 when it is run on the output of C after the latter has interacted with

the decryption oracle, in experiment Exppa1-d
AE ,C,Db

(k).

Claim 5.4.6 Pr
[
Expind-cca1-1

AE ,X (k) = 1
]

= Pr
[
Exppa1-d

AE ,C,D1
(k) = 1

]
.

Claim 5.4.7 Pr
[
Expind-cca1-0

AE ,X (k) = 1
]

= 1− Pr
[
Exppa1-d

AE,C,D0
(k) = 1

]
.

The other claims relate the probability that Y guesses the value of challenge bit b,

in each of its experiments, to the probability that distinguisher Db returns 1 when

103

Ciphertext creator C(pk; R[C])

Run X(find, ·) on input pk and coins R[C] until it halts, replying to its

oracle queries as follows:

– If X(find, ·) makes query Q then

Make query Q ; Upon receiving a response M , return M to X(find, ·)
as the reply EndIf

Let (M0, M1, St) denote the output of X(find, ·)
Return (M0, M1, St , pk)

Adversary Y (find, pk; R[Y])

Parse R[Y] as R[C]‖R[C∗] ; St [C∗]← (pk, R[C])

Run X(find, ·) on input pk and coins R[C] until it halts, replying to its

oracle queries as follows:

– If X(find, ·) makes query Q then

(M, St [C∗])← C
∗(Q, St [C∗]; R[C∗]) ; Return M to X(find, ·)

as the reply EndIf

Let (M0, M1, St) denote the output of X(find, ·)
Return (M0, M1, St)

Adversary Y (guess, C, St)

d← X(guess, C, St)

Return d

Distinguisher D0(x) Distinguisher D1(x)

Parse x as (M0, M1, St , pk) Parse x as (M0, M1, St , pk)

C
$← Epk(M0) C

$← Epk(M1)

d← X(guess, C, St) d← X(guess, C, St)

Return d̄ Return d

Figure 5.4 Ciphertext-creator adversary C , ind-cpa-adversary Y , and distin-

guishers D0, D1 for the proof of Theorem 5.4.1.

it is run on the output of C after the latter has interacted with pa2-extractor C
∗,

in experiment Exppa1-x
AE,C,Db,C

∗(k).

Claim 5.4.8 Pr
[
Expind-cpa-1

AE,Y (k) = 1
]

= Pr
[
Exppa1-x

AE ,C,D1,C∗(k) = 1
]
.

Claim 5.4.9 Pr
[
Expind-cpa-0

AE,Y (k) = 1
]

= 1− Pr
[
Exppa1-x

AE,C,D0,C∗(k) = 1
]
.

104

Applying these claims, we obtain Equation (5.1) as follows:

Advind-cca1
AE,X (k)

= Pr
[
Expind-cca1-1

AE,X (k) = 1
]
− Pr

[
Expind-cca1-0

AE ,X (k) = 1
]

= Pr
[
Exppa1-d

AE ,C,D1
(k) = 1

]
−

(
1− Pr

[
Exppa1-d

AE,C,D0
(k) = 1

])

=
(
Pr

[
Exppa1-x

AE ,C,D1,C∗(k) = 1
]
+ Advpa1

AE,C,D1,C∗(k)
)
− 1

+
(
Pr

[
Exppa1-x

AE ,C,D0,C∗(k) = 1
]
+ Advpa1

AE ,C,D0,C∗(k)
)

= Pr
[
Exppa1-x

AE,C,D1,C∗(k) = 1
]
−

(
1− Pr

[
Exppa1-x

AE,C,D0,C∗(k) = 1
])

+Advpa1
AE ,C,D0,C∗(k) + Advpa1

AE,C,D1,C∗(k)

= Pr
[
Expind-cpa-1

AE ,Y (k) = 1
]
− Pr

[
Expind-cpa-0

AE,Y (k) = 1
]

+Advpa1
AE ,C,D0,C∗(k) + Advpa1

AE,C,D1,C∗(k)

= Advind-cpa
AE ,Y (k) + Advpa1

AE,C,D0,C∗(k) + Advpa1
AE ,C,D1,C∗(k) .

It remains to prove the four claims above.

Proof of Claim 5.4.6: Let Scca1-1 denote the sample space underlying

Expind-cca1-1
AE,X (k). A member of this space is a string specifying coin tosses for

all algorithms involved, which in this case means the coins of the key-generation

algorithm, the random tape of X itself, and the coins used by the encryption

algorithm.

A member of the sample space Spa1-d-1 underlying Exppa1-d
AE ,C,D1

(k) is a string spec-

ifying the coins of the key-generation algorithm, the random tape of C , and the

random tape of D1. Claim 5.4.6 follows once we observe that by the definitions

of C and D1, Spa1-d-1 is equal to Scca1-1 (The random tape of C consists of coins

for X , and the random tape of D1 consists of coins for the encryption algorithm.),

and Expind-cca1-1
AE,X (k) = 1 if and only if Exppa1-d

AE ,C,D1
(k) = 1.

Proof of Claim 5.4.7: Similarly to the proof of Claim 5.4.6, it is easy to see

that the sample space underlying Expind-cca1-0
AE,X (k) is identical to the sample space

underlying Exppa1-d
AE,C,D0

(k), and Expind-cca1-0
AE ,X (k) = 1 if and only if Exppa1-d

AE,C,D0
(k) =

105

0.

Proof of Claim 5.4.8: Let Spa1-x-1 denote the sample space underlying

Exppa1-x
AE,C,D1,C∗(k). A member of this space is a string specifying the coins of the

key-generation algorithm, the random tape of C , the random tape of C
∗, and the

random tape of D1. The latter consists of coins for the encryption algorithm.

A member of the sample space Scpa-1 underlying Expind-cpa-1
AE,Y (k) is a string specify-

ing the coins of the key-generation algorithm, the random tape of Y , and the coins

used by the encryption algorithm. The random tape of Y consists of coins for C

and coins for C
∗. Hence Scpa-1 = Spa1-x-1. We observe that Expind-cpa-1

AE,Y (k) = 1 if

and only if Exppa1-x
AE ,C,D1,C∗(k) = 1. Claim 5.4.8 follows.

Proof of Claim 5.4.9: Similarly to the proof of Claim 5.4.8, it is easy to

see that the sample space underlying Expind-cpa-0
AE,Y (k) is identical to the sam-

ple space underlying Exppa1-x
AE,C,D0,C∗(k), and Expind-cpa-0

AE ,Y (k) = 1 if and only if

Exppa1-x
AE,C,D0,C∗(k) = 0.

5.4.2 Proof of Theorem 5.4.2

Assume that AE is PA2-secure and IND-CPA-secure, and let X be a

polynomial-time ind-cca2-adversary attacking AE . We construct a polynomial-

time ciphertext creator C for AE , based on X , and polynomial-time plaintext

creators P0 and P1, and let C
∗ be a successful polynomial-time pa2-extractor for

C . Then we construct a polynomial-time ind-cpa-adversary Y for AE , based on

X and C
∗. Finally, we construct polynomial-time distinguishers D0 and D1 for

C , and prove that for every k ∈ N :

Advind-cca2
AE,X (k)

≤ Advind-cpa
AE ,Y (k) + Advpa2

AE,C,P0,D0,C∗(k) + Advpa2
AE ,C,P1,D1,C∗(k) . (5.2)

The assumption that AE is PA2-secure and IND-CPA-secure implies that the func-

tion Advind-cca2
AE,X is negligible, and thus that AE is IND-CCA2-secure. We proceed

106

Ciphertext creator C(pk; R[C])

Run X(find, ·) on input pk and coins R[C] until it halts, replying to its

oracle queries as follows:

– If X(find, ·) makes query Q then

Make query (dec, Q) ; Upon receiving a response M , return M to

X(find, ·) as the reply EndIf

Let (M0, M1, St) denote the output of X(find, ·)
Make query (enc, (M0, M1)) ; Upon receiving a response C, run X(guess, ·)
on input C, St, until it halts, replying to its
oracle queries as follows:

– If X(guess, ·) makes query Q then

Make query (dec, Q) ; Upon receiving a response M , return M to
X(guess, ·) as the reply EndIf

Let d denote the output of X(guess, ·)
Return d

Plaintext creator P0(Q, St [P]; R[P]) Plaintext creator P1(Q, St [P]; R[P])

Parse Q as (M0, M1) Parse Q as (M0, M1)

Return (M0, St [P]) Return (M1, St [P])

Figure 5.5 Ciphertext-creator adversary C and plaintext-creator adversaries P0,

P1 for the proof of Theorem 5.4.2.

to the constructions and analysis.

The six algorithms we construct are defined in Figure 5.5 and Figure 5.6.

Clearly, they all run in polynomial time. Ciphertext creator C is essentially the

same as X , except that instead of outputting (M0, M1, St), it calls a plaintext

creator with argument (M0, M1) and, upon receiving a response C, it continues the

execution of X by running X(guess, ·) on input C, St . Plaintext creator P0 takes

input a pair of messages, and selects the first message. Plaintext creator P1 takes

input a pair of messages, and selects the second message. We observe that for b ∈
{0, 1}, since in experiment Expind-cca2-b

AE,X (k), X does not query its decryption oracle

with ciphertext C, in experiments Exppa2-d
AE ,C,Pb,Db

(k) and Exppa2-x
AE,C,Pb,Db,C

∗(k), C

does not make a query (dec, Q) for which Q ∈ Clist. By the assumption that AE
is PA2-secure, there is a successful polynomial-time pa2-extractor C

∗ for C .

107

Adversary Y (find, pk; R[Y])

Parse R[Y] as R[C]‖R[C∗] ; St [C∗]← (pk, R[C])

Run X(find, ·) on input pk and coins R[C] until it halts, replying to its

oracle queries as follows:

– If X(find, ·) makes query Q then

(M, St [C∗])← C
∗(Q, St [C∗]; R[C∗])

Return M to X(find, ·) as the reply EndIf

Let (M0, M1, St) denote the output of X(find, ·)
St ′ ← (St , St [C∗], R[C∗])

Return (M0, M1, St ′)

Adversary Y (guess, C, St ′)

Parse St ′ as (St , St [C∗], R[C∗])

Run X(guess, ·) on input C, St until it halts, replying to its oracle queries

as follows:

– If X(guess, ·) makes query Q then

(M, St [C∗])← C
∗(Q, St [C∗]; R[C∗])

Return M to X(guess, ·) as the reply EndIf

Let d denote the output of X(guess, ·)
Return d

Distinguisher D0(x) Distinguisher D1(x)

Return x̄ Return x

Figure 5.6 Ind-cpa-adversary Y and distinguishers D0, D1 for the proof of The-

orem 5.4.2.

A random tape R[C]‖R[C∗] for ind-cpa-adversary Y has two parts, one be-

ing a random tape for C (equivalently, for X) and the other being a random tape

for C
∗. Y (find, ·) initializes and then maintains state for C

∗. It runs X(find, ·),
and if the latter makes a query, then Y (find, ·) runs C

∗ to compute a reply,

which it returns to X(find, ·). When X(find, ·) outputs (M0, M1, St) and stops,

Y (find, ·) computes some state information St ′ that is used by Y (guess, ·) and re-

turns (M0, M1, St ′). Y (guess, ·) runs X(guess, ·), and if the latter makes a query,

then Y (guess, ·) runs C
∗ to compute a reply, which it returns to X(guess, ·). When

X(guess, ·) stops, Y (guess, ·) returns the former’s output.

108

Distinguisher D0 returns the bitwise complement of its input and D1 com-

putes the identity function.

We claim that Equation (5.2) holds for all k ∈ N. To prove this, fix k ∈ N.

We state four claims, conclude the proof given them, and then return to prove

the claims. The first two claims relate the probability that X guesses the value of

challenge bit b, in each of its experiments, to the probability that distinguisher Db

returns 1 when it is run on the output of C after the latter has interacted with

the decryption oracle, in experiment Exppa2-d
AE ,C,Pb,Db

(k).

Claim 5.4.10 Pr
[
Expind-cca2-1

AE ,X (k) = 1
]

= Pr
[
Exppa2-d

AE ,C,P1,D1
(k) = 1

]
.

Claim 5.4.11 Pr
[
Expind-cca2-0

AE ,X (k) = 1
]

= 1− Pr
[
Exppa2-d

AE,C,P0,D0
(k) = 1

]
.

The other claims relate the probability that Y guesses the value of challenge bit b,

in each of its experiments, to the probability that distinguisher Db returns 1 when

it is run on the output of C after the latter has interacted with pa2-extractor C
∗,

in experiment Exppa2-x
AE,C,Pb,Db,C

∗(k).

Claim 5.4.12 Pr
[
Expind-cpa-1

AE,Y (k) = 1
]

= Pr
[
Exppa2-x

AE ,C,P1,D1,C∗(k) = 1
]
.

Claim 5.4.13 Pr
[
Expind-cpa-0

AE,Y (k) = 1
]

= 1− Pr
[
Exppa2-x

AE,C,P0,D0,C∗(k) = 1
]
.

Applying these claims, we obtain Equation (5.2) as follows:

Advind-cca2
AE ,X (k)

= Pr
[
Expind-cca2-1

AE ,X (k) = 1
]
− Pr

[
Expind-cca2-0

AE,X (k) = 1
]

= Pr
[
Exppa2-d

AE,C,P1,D1
(k) = 1

]
−

(
1− Pr

[
Exppa2-d

AE,C,P0,D0
(k) = 1

])

=
(
Pr

[
Exppa2-x

AE,C,P1,D1,C∗(k) = 1
]
+ Advpa2

AE,C,P1,D1,C∗(k)
)
− 1

+
(
Pr

[
Exppa2-x

AE,C,P0,D0,C∗(k) = 1
]
+ Advpa2

AE ,C,P0,D0,C∗(k)
)

= Pr
[
Exppa2-x

AE ,C,P1,D1,C∗(k) = 1
]
−

(
1− Pr

[
Exppa2-x

AE,C,P0,D0,C∗(k) = 1
])

+Advpa2
AE,C,P0,D0,C∗(k) + Advpa2

AE,C,P1,D1,C∗(k)

= Pr
[
Expind-cpa-1

AE,Y (k) = 1
]
− Pr

[
Expind-cpa-0

AE ,Y (k) = 1
]

109

+Advpa2
AE,C,P0,D0,C∗(k) + Advpa2

AE,C,P1,D1,C∗(k)

= Advind-cpa
AE,Y (k) + Advpa2

AE ,C,P0,D0,C∗(k) + Advpa2
AE ,C,P1,D1,C∗(k) .

It remains to prove the four claims above.

Proof of Claim 5.4.10: Let Scca2-1 denote the sample space underlying

Expind-cca2-1
AE,X (k). A member of this space is a string specifying the coins of the

key-generation algorithm, the random tape of X , and the coins used by the en-

cryption algorithm.

A member of the sample space Spa2-d-1 underlying Exppa2-d
AE ,C,P1,D1

(k) is a string

specifying the coins of the key-generation algorithm, the random tape of C , the

random tape of P1, the coins used by the encryption algorithm across its invoca-

tions, and the random tape of D1. Claim 5.4.10 follows once we observe that by

the definitions of C , P1 and D1, Spa2-d-1 is equal to Scca2-1 (The random tape of C

consists of coins for X ; P1 and D1 are deterministic, so their random tapes have

length 0; and in Exppa2-d
AE,C,P1,D1

(k), the encryption algorithm is invoked once.), and

Expind-cca2-1
AE,X (k) = 1 if and only if Exppa2-d

AE,C,P1,D1
(k) = 1.

Proof of Claim 5.4.11: Similarly to the proof of Claim 5.4.10, it is easy to

see that the sample space underlying Expind-cca2-0
AE,X (k) is identical to the sam-

ple space underlying Exppa2-d
AE,C,P0,D0

(k), and Expind-cca2-0
AE ,X (k) = 1 if and only if

Exppa2-d
AE,C,P0,D0

(k) = 0.

Proof of Claim 5.4.12: Let Spa2-x-1 denote the sample space underlying

Exppa2-x
AE,C,P1,D1,C∗(k). A member of this space is a string specifying the coins of

the key-generation algorithm, the random tape of C , the random tape of P1, the

random tape of C
∗, the coins used by the encryption algorithm across its invoca-

tions, and the random tape of D1. We observe that P1 and D1 are deterministic, so

their random tapes have length 0, and that in Exppa2-x
AE ,C,P1,D1,C∗(k), the encryption

algorithm is invoked once.

A member of the sample space Scpa-1 underlying Expind-cpa-1
AE,Y (k) is a string specify-

110

ing the coins of the key-generation algorithm, the random tape of Y , and the coins

used by the encryption algorithm. The random tape of Y consists of coins for C

and coins for C
∗. Hence Scpa-1 = Spa2-x-1. We observe that Expind-cpa-1

AE,Y (k) = 1 if

and only if Exppa2-x
AE ,C,P1,D1,C∗(k) = 1. Claim 5.4.12 follows.

Proof of Claim 5.4.13: Similarly to the proof of Claim 5.4.12, it is easy

to see that the sample space underlying Expind-cpa-0
AE ,Y (k) is identical to the sam-

ple space underlying Exppa2-x
AE,C,P0,D0,C∗(k), and Expind-cpa-0

AE,Y (k) = 1 if and only if

Exppa2-x
AE,C,P0,D0,C∗(k) = 0.

5.4.3 Proof of Theorem 5.4.3

Let AE ′ = (K′, E ′,D′) be an IND-CCA2-secure asymmetric encryption

scheme. We construct an IND-CCA2-secure asymmetric encryption scheme AE =

(K, E ,D) that is not PA0-secure. Let f : {0, 1}∗ → {0, 1}∗ be a length preserving

one-way function. (This exists assuming IND-CCA2-secure asymmetric encryption

schemes exist.) The algorithms constituting AE are defined as follows:

Algorithm K(1k)

(pk ′, sk ′)
$← K′(1k)

u
$← {0, 1}k ; U ← f(u)

pk ← (pk ′, U)
sk ← (sk ′, u)
Return (pk, sk)

Algorithm Epk(x)
Parse pk as (pk′, U)
Return (0, E ′

pk′(x))

Algorithm Dsk(y)
Parse sk as (sk ′, u)
Parse y as (v, y′)
If v = 0 then
return D′

sk′(y′) EndIf
If v = 1 then

If y′ = f(u) then
return u

else return ⊥ EndIf
EndIf

To prove that AE is not PA0-secure, we proceed by contradiction. Assume

that AE is PA0-secure and consider the pa0 ciphertext creator C depicted in

Figure 5.7. Notice that C is deterministic and it runs in polynomial time. Let C
∗

be a successful polynomial-time pa0-extractor for it. We define a polynomial-time

distinguisher D for C and a polynomial-time inverter I for function f as shown

111

Ciphertext creator C(pk; R[C])

Parse pk as (pk ′, U) ; Make query (1, U) ; Upon receiving a response u′,

Return (pk ′, U, u′)

Distinguisher D(x)

Parse x as (pk ′, U, u′) ; If f(u′) = U then return 1 else return 0 EndIf

Inverter I(U)

k ← |U | ; (pk ′, sk ′)
$← K′(1k) ; pk ← (pk ′, U)

Choose coins R[C∗] for C
∗ ; St [C∗]← (pk, ε)

(u′, St [C∗])← C
∗((1, U), St [C∗]; R[C∗])

Return u′

Figure 5.7 Ciphertext-creator adversary C , distinguisher D, and inverter I for

the proof of Theorem 5.4.3.

in Figure 5.7. Fix k ∈ N. The probability that I is successful can be computed as

follows.

Pr
[

U ← {0, 1}k ; u′ $← I(U) : f(u′) = U
]

= Pr
[
Exppa1-x

AE ,C,D,C∗(k) = 1
]

= Pr
[
Exppa1-d

AE,C,D(k) = 1
]
−Advpa1

AE,C,D,C∗(k)

= 1−Advpa1
AE ,C,D,C∗(k) .

Since C
∗ is a successful pa0-extractor, the function Advpa1

AE ,C,D,C∗ is negligible

and hence the probability of success of I is not negligible. This contradicts the

one-wayness of f , as desired.

We proceed to prove that AE is IND-CCA2-secure. Let X be an ind-cca2-

adversary attacking AE . We define an ind-cca2-adversary X
′ attacking AE ′ as

depicted in Figure 5.8. A random tape u‖R[X] for adversary X
′ has two parts.

The first part is a k-bit string that X
′ uses to reply to X ’s queries of the form

(1, f(u)). (The answer to such a query in experiment Expind-cca2-b
AE,X (k) would be

the randomly chosen k-bit string u that corresponds to the second component of

the secret key sk.) The second part is a random tape for X . X
′ runs X and

112

Adversary X
′(find, pk ′; R[X ′])

Parse R[X ′] as u‖R[X], where u ∈ {0, 1}k ; U ← f(u) ; pk ← (pk ′, U)

Run X(find, ·) on input pk and coins R[X] until it halts, replying to its

oracle queries as follows:

– If X(find, ·) makes query (v, y′) then

If v = 0 then

Make query y′ ; Upon receiving a response M , return M to

X(find, ·) as the reply EndIf

If v = 1 then

If y′ = U then return u to X(find, ·) as the reply

else return ⊥ to X(find, ·) as the reply EndIf EndIf EndIf

Let (M0, M1, St) denote the output of X(find, ·)
St ′ ← (St , u, U)

Return (M0, M1, St ′)

Adversary X
′(guess, C ′, St ′)

Parse St ′ as (St , u, U) ; C ← (0, C ′)

Run X(guess, ·) on input C, St until it halts, replying to its oracle queries

as follows:

– If X(guess, ·) makes query (v, y′) then

If v = 0 then

Make query y′ ; Upon receiving a response M , return M to

X(guess, ·) as the reply EndIf

If v = 1 then

If y′ = U then return u to X(guess, ·) as the reply

else return ⊥ to X(guess, ·) as the reply EndIf EndIf EndIf

Let d denote the output of X(guess, ·)
Return d

Figure 5.8 Ind-cca2-adversary X
′ for the proof of Theorem 5.4.3.

uses its decryption oracle and the value u to reply to the oracle queries of the

latter. Clearly, X
′ runs in polynomial time. Furthermore, for b ∈ {0, 1} and

k ∈ N, the replies that experiment Expind-cca2-b
AE ′,X ′ (k) computes to X

′’s queries allow

this adversary to respond to X ’s queries exactly as experiment Expind-cca2-b
AE ,X (k)

does. Therefore, Advind-cca2
AE ′,X ′ (k) = Advind-cca2

AE,X (k). The assumption that AE ′ is

IND-CCA2-secure implies that the function Advind-cca2
AE ′,X ′ is negligible, and thus the

113

function Advind-cca2
AE,X is negligible. Hence AE is IND-CCA2-secure.

5.4.4 Proof of Theorem 5.4.4

Let AE ′ = (K, E ′,D′) be a PA1-secure and IND-CPA-secure asymmetric en-

cryption scheme. We construct a PA1-secure and IND-CPA-secure asymmetric

encryption scheme AE = (K, E ,D) that is not IND-CCA2-secure. Notice that the

key-generation algorithm is the same. The encryption and decryption algorithms

are defined as follows:

Algorithm Epk(x)

r
$← {0, 1}

Return (r, E ′pk(x))

Algorithm Dsk(y)
Parse y as (r, y′) ; x← D′

sk(y
′)

Return x

To prove that AE is not IND-CCA2-secure, we define an ind-cca2-adversary

X attacking AE as shown in Figure 5.9. Clearly, X runs in polynomial time and

Advind-cca2
AE,X (k) = 1 for every k ∈ N.

To prove that AE is PA1-secure, let C be a polynomial-time ciphertext cre-

ator attacking AE . We define a ciphertext creator C
′ attacking AE ′ as shown in

Figure 5.9. Clearly, C
′ runs in polynomial time. By the assumption that AE ′ is

PA1-secure, there is a successful polynomial-time pa1-extractor C
′∗ for C

′. We

construct a pa1-extractor C
∗ for C , based on C

′∗ as shown in Figure 5.9. It is

clear that C
∗ runs in polynomial time. Let D be a polynomial-time distinguisher

for C , and fix k ∈ N. It is easy to see that

Pr
[
Exppa1-d

AE,C,D(k) = 1
]

= Pr
[
Exppa1-d

AE ′,C′,D
(k) = 1

]
and

Pr
[
Exppa1-x

AE,C,D,C∗(k) = 1
]

= Pr
[
Exppa1-x

AE ′,C′,D,C′∗(k) = 1
]

.

Therefore,

Advpa1
AE ,C,D,C∗(k) = Advpa1

AE ′,C′,D,C′∗(k) .

Since C
′∗ is a successful pa1-extractor for C

′, for every polynomial-time dis-

tinguisher D, the function Advpa1
AE ′,C′,D,C′∗ is negligible and hence for every

114

Adversary X(find, pk; R[X])

Return (0, 1, ε)

Adversary X(guess, C, St)

Parse C as (r, C ′)

Make query (r̄, C ′) and let M denote the

response

If M = 0 then d← 0 else d← 1 EndIf

Return d

Ciphertext creator C
′(pk; R[C ′])

Run C on input pk and coins R[C ′] until it halts, replying to its

oracle queries as follows:

– If C makes query (r, y′) then

Make query y′ ; Upon receiving a response M , return M to C

as the reply EndIf

Let x denote the output of C ; Return x

Pa1-extractor C
∗(Q, St [C∗]; R[C∗])

Parse Q as (r, y′) ; (M, St [C ′∗])← C
′∗(y′, St [C∗]; R[C∗])

Return (M, St [C ′∗])

Adversary Y
′(find, pk; R[Y ′])

Parse R[Y ′] as r‖R[Y], where r ∈ {0, 1}
(M0, M1, St)

$← Y (find, pk; R[Y])

St ′ ← (St , r)

Return (M0, M1, St ′)

Adversary Y
′(guess, C ′, St ′)

Parse St ′ as (St , r)

C ← (r, C ′)

d← Y (guess, C, St)

Return d

Figure 5.9 Ind-cca2-adversary X , ciphertext-creator adversary C
′, pa1-extractor

C
∗, and ind-cpa-adversary Y

′ for the proof of Theorem 5.4.4.

polynomial-time distinguisher D, the function Advpa1
AE,C,D,C∗ is negligible. Thus

C
∗ is a successful pa1-extractor for C , and AE is PA1-secure.

To prove that AE is IND-CPA-secure, let Y be an ind-cpa-adversary attack-

ing AE . Consider the ind-cpa-adversary Y
′ attacking AE ′ depicted in Figure 5.9.

A random tape r‖R[Y] for adversary Y
′ has two parts. The first part is a bit

that Y
′ uses to compute the challenge ciphertext C for Y . The second part is a

random tape for Y . Y
′ runs Y and returns the output of the latter. Clearly, Y

′

runs in polynomial time and Advind-cpa
AE ′,Y ′ (k) = Advind-cpa

AE,Y (k) for every k ∈ N. The

115

assumption that AE ′ is IND-CPA-secure implies that the ind-cpa-advantage of Y
′

is negligible, and hence it follows that the ind-cpa-advantage of Y is negligible.

Thus AE is IND-CPA-secure.

5.4.5 Proof of Theorem 5.4.5

Let AE ′ = (K, E ′,D′) be a PA0-secure and IND-CPA-secure asymmetric en-

cryption scheme. We construct a PA0-secure and IND-CPA-secure asymmetric

encryption scheme AE = (K, E ,D) that is not IND-CCA1-secure. Its constituent

algorithms are defined as follows:

Algorithm K(1k)

(pk ′, sk ′)
$← K′(1k)

u
$← {0, 1}|sk′|

sk ← (sk ′, u)
Return (pk ′, sk)

Algorithm Epk(x)
Return (0, E ′pk(x))

Algorithm Dsk(y)
Parse sk as (sk ′, u)
Parse y as (v, y′)
If v = 0 then
return D′

sk′(y′) EndIf
If v = 1 then

If y′ = 0 then
return u

else return u⊕ sk ′ EndIf
EndIf

To prove that AE is not IND-CCA1-secure, we define an ind-cca1-adversary

X attacking AE as shown in Figure 5.10. Clearly, X runs in polynomial time and

Advind-cca1
AE,X (k) = 1 for every k ∈ N.

To prove that AE is PA0-secure, let C be a polynomial-time pa0 ciphertext

creator attacking AE . We define a pa0 ciphertext creator C
′ attacking AE ′ as

shown in Figure 5.10. Clearly, C ′ runs in polynomial time. By the assumption that

AE ′ is PA0-secure, there is a successful polynomial-time pa0-extractor C
′∗ for C

′.

We construct a pa0-extractor C
∗ for C , based on C

′∗ as shown in Figure 5.10. It is

clear that C
∗ runs in polynomial time. Let D be a polynomial-time distinguisher

for C , and fix k ∈ N. It is easy to see that

Pr
[
Exppa1-d

AE,C,D(k) = 1
]

= Pr
[
Exppa1-d

AE ′,C′,D
(k) = 1

]
and

Pr
[
Exppa1-x

AE,C,D,C∗(k) = 1
]

= Pr
[
Exppa1-x

AE ′,C′,D,C′∗(k) = 1
]

.

116

Adversary X(find, pk; R[X])

Make query (1, 0) and let M0 denote the

response

Make query (1, 1) and let M1 denote the

response

sk ′ ←M0 ⊕M1 ; Return (0, 1, sk′)

Adversary X(guess, C, St)

Parse C as (0, C ′)

If D′
St

(C ′) = 0 then d← 0

else d← 1 EndIf

Return d

Ciphertext creator C
′(pk; R[C ′])

Parse R[C ′] as u‖R[C]

Run C on input pk and coins R[C] until it halts, replying to its

oracle query as follows:

– When C makes query (v, y′) do

Make query y′ ; Let M denote the response

If v = 1 then M ← u EndIf

Return M to C as the reply

Let x denote the output of C ; Return x

Pa0-extractor C
∗(Q, St [C∗]; R[C∗])

Parse St [C∗] as (pk, R[C]) ; Parse R[C∗] as u‖R[C ′∗] ; Parse Q as (v, y′)

St [C ′∗]← (pk, u‖R[C]) ; (M, St [C ′∗])← C
′∗(y′, St [C ′∗]; R[C ′∗])

If v = 1 then M ← u EndIf

Return (M, St [C ′∗])

Adversary Y
′(find, pk; R[Y ′])

(M0, M1, St)
$← Y (find, pk; R[Y ′])

Return (M0, M1, St)

Adversary Y
′(guess, C ′, St)

C ← (0, C ′) ; d← Y (guess, C, St)

Return d

Figure 5.10 Ind-cca1-adversary X , pa0 ciphertext-creator adversary C
′, pa0-ex-

tractor C
∗, and ind-cpa-adversary Y

′ for the proof of Theorem 5.4.5.

Therefore,

Advpa1
AE ,C,D,C∗(k) = Advpa1

AE ′,C′,D,C′∗(k) .

Since C
′∗ is a successful pa0-extractor for C

′, for every polynomial-time dis-

tinguisher D, the function Advpa1
AE ′,C′,D,C′∗ is negligible and hence for every

polynomial-time distinguisher D, the function Advpa1
AE,C,D,C∗ is negligible. Thus

C
∗ is a successful pa0-extractor for C , and AE is PA0-secure.

117

To prove that AE is IND-CPA-secure, let Y be an ind-cpa-adversary attack-

ing AE . Consider the ind-cpa-adversary Y
′ attacking AE ′ depicted in Figure 5.10.

Clearly, Y
′ runs in polynomial time and Advind-cpa

AE ′,Y ′ (k) = Advind-cpa
AE ,Y (k) for every

k ∈ N. The assumption that AE ′ is IND-CPA-secure implies that the ind-cpa-

advantage of Y
′ is negligible, and hence it follows that the ind-cpa-advantage of

Y is negligible. Thus AE is IND-CPA-secure.

5.5 Constructions

5.5.1 Approaches

Before presenting our results, we discuss some possible approaches to design-

ing PA encryption schemes. One natural approach is based on the use of non-

interactive zero-knowledge proofs of knowledge (NIZK-POKs) [78]. In particular,

a candidate construction is the following. Let the public key have the form (pk, R)

where pk is the public key of some IND-CPA-secure (or even IND-CCA2-secure)

“base” encryption scheme and R is a random reference string. Encryption consists

of providing an encryption of the message under pk via the base scheme, together

with a NIZK-POK of the message relative to reference string R. However, this

type of approach fails to yield even the weakest form of PA. The problem is that

the PA extractor must work with the given public key of the ciphertext creator,

and hence a given reference string, while the NIZK-POK extractor that one would

hope to use to define the PA extractor, creates a simulated reference string with

accompanying trapdoor.

This might lead one to ask why our definition of PA is not relaxed to allow

the extractor to choose or simulate the public key rather than having to work with

the given one. Besides the fact that the intuition captured is quite different, it

is not clear how to make such a relaxation while preserving the PA1 + IND-CPA

→ IND-CCA1 and PA2 + IND-CPA→ IND-CCA2 implications of Theorems 5.4.1

118

and 5.4.2. (In particular, if we allow the extractor to simply choose a public key, it

can choose one whose corresponding secret key it knows, making the notion trivial

to achieve and making the implications fail.)

As such approaches are considered and discarded, it becomes apparent that

achieving even the weaker forms of PA under standard assumptions may be diffi-

cult. We have been able to make progress, however, under some strong assump-

tions, as we now describe.

5.5.2 Prime-order groups

If p, q are primes such that p = 2q + 1, then we let Gq denote the subgroup

of quadratic residues of Z
∗
p. Recall this is a cyclic subgroup of order q. If g is

a generator of Gq then dlogq,g(X) denotes the discrete logarithm of X ∈ Gq to

base g. A prime-order-group generator is a polynomial-time algorithm G that on

input 1k returns a triple (p, q, g) such that p, q are primes with p = 2q + 1, g is a

generator of Gq, and 2k−1 < p < 2k (p is k bits long).

5.5.3 The DHK assumptions

Let G be a prime-order-group generator, and suppose (p, q, g) ∈ [G(1k)]. We

say that (A, B, W) is a DH-triple if there exist a, b ∈ Zq such that A = ga mod p,

B = gb mod p and W = gab mod p. We say that (B, W) is a DH-pair relative to

A if (A, B, W) is a DH-triple. One way for an adversary H taking input p, q, g, A

to output a DH-pair (B, W) relative to A is to pick —and thus “know”— some

b ∈ Zq, set B = gb mod p and W = Ab mod p, and output (B, W). Damg̊ard [36]

makes an assumption which, informally, says that this is the “only” way that a

polynomial-time adversary H can output a DH-pair relative to A. His framework

to capture this requires that there exist a suitable extractor H
∗ that can compute

dlogq,g(B) whenever H outputs some DH-pair (B, W) relative to A.

We provide a formalization of this assumption that we refer to as the DHK0

119

Experiment Expdhk1
G,H ,H∗(k)

(p, q, g)
$← G(1k) ; a

$← Zq ; A← ga mod p

Choose coins R[H], R[H ∗] for H ,H ∗, respectively

St [H ∗]← ((p, q, g, A), R[H])

Run H on input p, q, g, A and coins R[H] until it halts, replying to its

oracle queries as follows:

– If H makes query (B, W) then

(b, St [H ∗])← H
∗((B, W), St [H ∗]; R[H ∗])

If W ≡ Ba (mod p) and B 6≡ gb (mod p) then return 1

else return b to H as the reply EndIf EndIf

Return 0

Figure 5.11 Experiment used to define DHK1 and DHK0.

(DHK stands for Diffie-Hellman Knowledge) assumption. We also present a natural

extension of this assumption that we refer to as DHK1. Here the adversary H ,

given p, q, g, A, interacts with the extractor, querying it adaptively. The extractor

is required to be able to return dlogq,g(B) for each DH-pair (B, W) relative to A

that is queried to it. Below we first present the DHK1 assumption, and then define

the DHK0 assumption via this.

Assumption 5.5.1 [DHK1] Let G be a prime-order-group generator. Let H be

an algorithm that has access to an oracle, takes two primes and two group elements,

and returns nothing. Let H
∗ be an algorithm that takes a pair of group elements

and some state information, and returns an exponent and a new state. We call H

a dhk1-adversary and H
∗ a dhk1-extractor. For k ∈ N we define the experiment

shown in Figure 5.11. The dhk1-advantage of H relative to H
∗ is

Advdhk1
G,H ,H∗(k) = Pr

[
Expdhk1

G,H ,H∗(k) = 1
]

.

We say that G satisfies the DHK1 assumption if for every polynomial-time dhk1-

adversary H there exists a polynomial-time dhk1-extractor H
∗ such that the func-

tion Advdhk1
G,H ,H∗ is negligible.

120

Assumption 5.5.2 [DHK0] Let G be a prime-order-group generator. We call a

dhk1-adversary that makes exactly one oracle query a dhk0-adversary. We call

a dhk1-extractor for a dhk0-adversary a dhk0-extractor. We say that G satisfies

the Diffie-Hellman Knowledge (DHK0) assumption if for every polynomial-time

dhk0-adversary H there exists a polynomial-time dhk0-extractor H
∗ such that

the function Advdhk1
G,H ,H∗ is negligible.

We observe that DHK1 implies DHK0 in the sense that if a prime-order-group gen-

erator satisfies the former assumption then it also satisfies the latter assumption.

5.5.4 Constructions

We would like to build an asymmetric encryption scheme that is PA0-secure

(and IND-CPA-secure) under the DHK0 assumption. An obvious idea is to use

ElGamal encryption. Here the public key is X = gx, where x is the secret key,

and an encryption of message M ∈ Gq has the form (Y, U), where Y = gy mod p

and U = Xy · M mod p = gxy · M mod p. However, we do not know whether

this scheme is PA0-secure. (We can show that it is not sPA0-secure unless the

discrete-logarithm problem is easy, but whether or not it is PA0-secure remains

open.)

We consider a modification of the ElGamal scheme that was proposed by

Damg̊ard [36]. We call this scheme Damg̊ard ElGamal or DEG. It is parame-

terized by a prime-order group generator G, and its components are depicted in

Figure 5.12. The proof of the following is in Section 5.5.6:

Theorem 5.5.3 Let G be a prime-order-group generator and let DEG = (K, E ,
D, MsgSp) be the associated Damg̊ard ElGamal asymmetric encryption scheme

defined in Figure 5.12. If G satisfies the DHK0 and DDH assumptions then DEG

is PA0 + IND-CPA-secure. If G satisfies the DHK1 and DDH assumptions then

DEG is PA1 + IND-CPA-secure.

121

Algorithm K(1k)

(p, q, g)
$← G(1k)

x1
$← Zq ; X1 ← gx1 mod p

x2
$← Zq ; X2 ← gx2 mod p

Return ((p, q, g, X1, X2), (p, q, g, x1, x2))

Algorithm E(p,q,g,X1,X2)(M)

y
$← Zq ; Y ← gy mod p

W ← Xy
1 mod p ; V ← Xy

2 mod p

U ← V ·M mod p

Return (Y, W, U)

Algorithm D(p,q,g,x1,x2)((Y, W, U))

If W 6≡ Y x1 (mod p) then return ⊥
else M ← U · Y −x2 mod p ; Return M

EndIf

MsgSp((p, q, g, X1, X2)) = Gq

Figure 5.12 Damg̊ard ElGamal (DEG) encryption scheme. DEG = (K, E ,
D, MsgSp) is based on prime-order-group generator G.

As a consequence of the above and Theorem 5.4.1, DEG is IND-CCA1-secure

under the DHK1 and DDH assumptions. DEG is in fact the most efficient known

IND-CCA1-secure scheme with some proof of security in the standard model.

Next we consider the “lite” version of the Cramer-Shoup asymmetric encryp-

tion scheme [35]. The scheme, denoted CSL, is parameterized by a prime-order

group generator G, and its components are depicted in Figure 5.13. This scheme

is known to be IND-CCA1-secure under the DDH assumption [35]. We are able to

show the following. (The proof can be found in Section 5.5.7.)

Theorem 5.5.4 Let G be a prime-order-group generator, and let CSL = (K, E ,
D, MsgSp) be the associated Cramer-Shoup Lite asymmetric encryption scheme

defined in Figure 5.13. If G satisfies the DHK0 and DDH assumptions then CSL is

PA0 + IND-CPA-secure. If G satisfies the DHK1 and DDH assumptions then CSL

is PA1 + IND-CPA-secure.

Again, the above and Theorem 5.4.1 imply that CSL is IND-CCA1-secure under

the DHK1 and DDH assumptions. This however is not news, since we already

know that DDH alone suffices to prove it IND-CCA1-secure [35]. However, it

does perhaps provide a new perspective on why the scheme is IND-CCA1-secure,

122

Algorithm K(1k)

(p, q, g1)
$← G(1k) ; g2

$← Gq \ {1}
x1

$← Zq ; x2
$← Zq ; z

$← Zq

X ← gx1
1 · gx2

2 mod p ; Z ← gz
1 mod p

Return

((p, q, g1, g2, X, Z), (p, q, g1, g2, x1, x2, z))

Algorithm E(p,q,g1,g2,X,Z)(M)

r
$← Zq

R1 ← gr
1 mod p

R2 ← gr
2 mod p

E ← Zr ·M mod p

V ← Xr mod p

Return (R1, R2, E, V)

Algorithm D(p,q,g1,g2,x1,x2,z)((R1, R2, E, V))

If V 6≡ Rx1
1 · Rx2

2 (mod p) then return ⊥
else M ← E · R−z

1 mod p ; Return M

EndIf

MsgSp((p, q, g1, g2, X, Z)) = Gq

Figure 5.13 Cramer-Shoup Lite (CSL) encryption scheme. CSL = (K, E ,D,

MsgSp) is based on prime-order-group generator G.

namely that this is due to its possessing some form of plaintext awareness.

In summary, we have been able to show that plaintext awareness without

ROs is efficiently achievable, even though under very strong and non-standard

assumptions.

5.5.5 A lemma

We first state and prove a lemma that will be used in the proofs of the

theorems stated above.

Lemma 5.5.5 Let AE be an asymmetric encryption scheme. Let C be a

polynomial-time ciphertext creator attacking AE , D a polynomial-time distin-

guisher, and C
∗ a polynomial-time pa1-extractor. Let DecOK denote the event

that all C
∗’s answers to C ’s queries are correct in experiment Exppa1-x

AE,C,D,C∗(k).

Then,

Pr
[
Exppa1-x

AE ,C,D,C∗(k) = 1
]
≥ Pr

[
Exppa1-d

AE,C,D(k) = 1
]
− Pr

[
DecOK

]
.

123

Proof: We observe that if experiment Exppa1-x
AE,C,D,C∗(k) returns 0 and event

DecOK occurs, then experiment Exppa1-d
AE,C,D(k) also returns 0. Therefore,

1− Pr
[
Exppa1-x

AE ,C,D,C∗(k) = 1
]

= Pr
[
Exppa1-x

AE ,C,D,C∗(k) = 0
]

= Pr
[
Exppa1-x

AE ,C,D,C∗(k) = 0 ∧DecOK
]
+

Pr
[
Exppa1-x

AE ,C,D,C∗(k) = 0 ∧DecOK
]

≤ Pr
[
Exppa1-d

AE ,C,D(k) = 0
]

+ Pr
[
DecOK

]

= 1− Pr
[
Exppa1-d

AE ,C,D(k) = 1
]

+ Pr
[
DecOK

]

Transposing terms and simplifying completes the proof of the lemma.

5.5.6 Proof of Theorem 5.5.3

We first show that the DHK1 assumption implies DEG is PA1-secure, and

then that the DDH assumption implies it is IND-CPA-secure. Finally we briefly

indicate how to show that the DHK0 assumption implies DEG is PA0-secure.

Let C be a polynomial-time ciphertext creator attacking DEG. We build a

polynomial-time pa1-extractor C
∗ for it. To do so, we first define a polynomial-

time dhk1-adversary H attacking prime-order-group generator G. By the DHK1

assumption, H has a polynomial-time dhk1-extractor H
∗. We then use H

∗ to

build C
∗. The descriptions of H and C

∗ are in Figure 5.14.

The random tape X2‖R[C] of H consists of a choice X2 of an element in

the group Gq together with a random tape R[C] for C . The random tape of

pa1-extractor C
∗ consists of a random tape for dhk1-extractor H

∗. Observe that

extractor C
∗ gets input the random tape R[C] of C , while extractor H

∗ must

get as input the random tape R[H] = X2‖R[C] of H . Clearly, H and C
∗ are

polynomial time. We claim that C
∗ is a successful pa1-extractor for C . To prove

this, let D be a polynomial-time distinguisher for C , and fix k ∈ N. We state a

124

Dhk1-adversary H(p, q, g, A; R[H])

Parse R[H] as X2‖R[C] where X2 ∈ Gq

Run C on input (p, q, g, A, X2) and coins R[C] until it halts, replying to its

oracle queries as follows:

– If C makes query (Y, W, U) then

Make query (Y, W) ; Let b denote the response

If
(
Y 6≡ gb (mod p) or W 6≡ Ab (mod p)

)
then M ← ⊥

else M ← U ·X−b
2 mod p EndIf

Return M to C as the reply EndIf

Halt

Pa1-extractor C
∗(Q, St [C∗]; R[C∗])

If St [C∗] is the initial state then

Parse St [C∗] as ((p, q, g, A, X2), R[C]) ; St [H ∗]← ((p, q, g, A), X2‖R[C])

else Parse St [C∗] as ((p, q, g, A, X2), St [H ∗]) EndIf

Parse Q as (Y, W, U) ; (b, St [H ∗])← H
∗((Y, W), St [H ∗]; R[C∗])

If
(
Y 6≡ gb (mod p) or W 6≡ Ab (mod p)

)
then M ← ⊥

else M ← U ·X−b
2 mod p EndIf

St [C∗]← ((p, q, g, A, X2), St [H ∗])

Return (M, St [C∗])

Adversary Y
′(find, (p, q, g, X); R[Y ′])

Parse R[Y ′] as x1‖R[Y], where x1 ∈ Zq ; X1 ← gx1 mod p

(M0, M1, St)
$← Y (find, (p, q, g, X1, X); R[Y]) ; St ′ ← (St , x1)

Return (M0, M1, St ′)

Adversary Y
′(guess, C ′, St ′)

Parse St ′ as (St , x1) ; Parse C ′ as (Y, U) ; W ← Y x1 mod p ; C ← (Y, W, U)

d← Y (guess, C, St) ; Return d

Figure 5.14 Dhk1-adversary H , pa1-extractor C
∗, and ind-cpa-adversary Y

′ for

the proof of Theorem 5.5.3.

claim, conclude the proof given this claim and Lemma 5.5.5, and then return to

prove the claim.

Claim 5.5.6 Let DecOK denote the event that all C
∗’s answers to C ’s

queries are correct in experiment Exppa1-x
DEG,C,D,C∗(k). Then, Pr

[
DecOK

]
≤

Advdhk1
G,H ,H∗(k) .

125

Applying Lemma 5.5.5 and Claim 5.5.6, we obtain the desired result as follows.

Advpa1
DEG,C,D,C∗(k)

= Pr
[
Exppa1-d

DEG,C,D(k) = 1
]
− Pr

[
Exppa1-x

DEG,C,D,C∗(k) = 1
]

≤ Pr
[
Exppa1-d

DEG,C,D(k) = 1
]
− Pr

[
Exppa1-d

DEG,C,D(k) = 1
]

+ Pr
[
DecOK

]

≤ Advdhk1
G,H ,H∗(k)

By the DHK1 assumption, the function Advdhk1
G,H ,H∗ is negligible and hence for

every polynomial-time distinguisher D, the function Advpa1
DEG,C,D,C∗ is negligible.

Thus C
∗ is a successful pa1-extractor for C , and DEG is PA1-secure. It remains

to prove the claim above.

Proof of Claim 5.5.6: We observe that by the definition of pa1-extractor C
∗

and DEG’s decryption algorithm D, if C
∗’s response M to a query (Y, W, U)

made by C is such that M 6= ⊥ then D(p,q,g,x1,x2)((Y, W, U)) 6= ⊥ and M =

D(p,q,g,x1,x2)((Y, W, U)). Therefore,

Pr
[
DecOK

]
= Pr [C makes a query (Y, W, U) for which C

∗’s response M

is such that M 6= D(p,q,g,x1,x2)((Y, W, U))]

≤ Pr [C makes a query (Y, W, U) for which C
∗’s response M

is such that M = ⊥ ∧D(p,q,g,x1,x2)((Y, W, U)) 6= ⊥]

≤ Pr [C makes a query (Y, W, U) for which C
∗’s response M

is such that Y 6≡ gb (mod p) ∧W ≡ Y dloggA (mod p)]

≤ Advdhk1
G,H ,H∗(k)

The last inequality follows from the definition of dhk1-adversary H .

To prove that DEG is IND-CPA-secure under the DDH assumption, we use

the fact that if this assumption holds, then the ElGamal scheme EG is IND-CPA-

secure. Let Y be an ind-cpa-adversary attacking DEG. Consider the ind-cpa-

adversary Y
′ attacking EG depicted in Figure 5.14. A random tape x1‖R[Y]

126

for adversary Y
′ has two parts. The first part is a choice x1 of an exponent

in Zq that Y
′ uses to compute the public key (p, q, g, X1, X) and the challenge

ciphertext C for Y . The second part is a random tape for Y . Y
′ runs Y

and returns the output of the latter. Clearly, Y
′ runs in polynomial time and

Advind-cpa
EG,Y ′ (k) = Advind-cpa

DEG,Y (k), for every k ∈ N. Since EG is IND-CPA-secure,

the ind-cpa-advantage of Y
′ is negligible, and hence it follows that the ind-cpa-

advantage of Y is negligible. Thus DEG is IND-CPA-secure.

The proof that the DHK0 assumption implies DEG is PA0-secure is analogous

to the proof that the DHK1 assumption implies DEG is PA1-secure. The difference

is that the given ciphertext creator C attacking DEG makes a single oracle query,

and thus the dhk1-adversary H attacking prime-order-group generator G is a dhk0-

adversary. The DHK0 assumption then implies the existence of a polynomial-time

dhk0-extractor H
∗ for H . The extractor C

∗ defined in Figure 5.14 is then a pa0-

extractor. The proof that C
∗ is a successful polynomial-time pa0-extractor for C

is exactly as before.

5.5.7 Proof of Theorem 5.5.4

CSL is known to be IND-CCA1-secure (and hence IND-CPA-secure) under

the DDH assumption (cf. [35]). Therefore, it is sufficient to prove that it is PA1-

secure under the DHK1 assumption and PA0-secure under the DHK0 assumption.

We begin with the former. Let C be a polynomial-time ciphertext creator

attacking CSL.

We build a polynomial-time pa1-extractor C
∗ for it. First, we construct a

polynomial-time dhk1-adversary H attacking prime-order-group generator G. By

the DHK1 assumption, H has a polynomial-time dhk1-extractor H
∗. We then use

H
∗ to build C

∗. Algorithms H and C
∗ are defined in Figure 5.15.

The random tape g2‖x2‖Z‖R[C] of H consists of a choice g2 of an element

in the group Gq, a choice x2 of an exponent in Zq, a choice Z of an element in

127

Dhk1-adversary H(p, q, g, A; R[H])

Parse R[H] as g2‖x2‖Z‖R[C] where g2 ∈ Gq, x2 ∈ Zq, and Z ∈ Gq

X ← A · gx2
2 mod p

Run C on input (p, q, g1, g2, X, Z) and coins R[C] until it halts, replying

to its oracle queries as follows:

– If C makes query (R1, R2, E, V) then

W ← V ·R−x2
2 mod p ; Make query (R1, W) and let b denote the

response

If
(
R1 6≡ gb

1 (mod p) or R2 6≡ gb
2 (mod p) or V 6≡ Xb (mod p)

)
then

M ← ⊥
else M ← E · Z−b mod p EndIf

Return M to C as the reply EndIf

Halt

Pa1-extractor C
∗(Q, St [C∗]; R[C∗])

If St [C∗] is the initial state then

Parse St [C∗] as ((p, q, g1, g2, X, Z), R[C])

Parse R[C∗] as x2‖R[H ∗] where x2 ∈ Zq

A← X · g−x2
2 mod p ; St [H ∗]← ((p, q, g, A), g2‖x2‖Z‖R[C])

else Parse St [C∗] as ((p, q, g1, g2, X, Z), St [H ∗], R[H ∗]) EndIf

Parse Q as (R1, R2, E, V)

W ← V · R−x2
2 mod p ; (b, St [H ∗])← H

∗((R1, W), St [H ∗]; R[H ∗])

If
(
R1 6≡ gb

1 (mod p) or R2 6≡ gb
2 (mod p) or V 6≡ Xb (mod p)

)
then M ← ⊥

else M ← E · Z−b mod p EndIf

St [C∗]← ((p, q, g1, g2, X, Z), St [H ∗], R[H ∗])

Return (M, St [C∗])

Figure 5.15 Dhk1-adversary H and pa1-extractor C
∗ for the proof of Theo-

rem 5.5.4.

Gq, and a random tape R[C] for C . The random tape x2‖R[H ∗] of pa1-extractor

C
∗ consists of a choice x2 of an exponent in Zq and a random tape for dhk1-

extractor H
∗. C

∗ uses x2 to compute value A and a random tape g2‖x2‖Z‖R[C]

corresponding to H , for H
∗. While extractor C

∗ gets input the random tape R[C]

of C , extractor H
∗ must be given input the random tape R[H] = g2‖x2‖Z‖R[C]

of H . Clearly, H and C
∗ are polynomial time. We claim that C

∗ is a successful

pa1-extractor for C . To prove this, let D be a polynomial-time distinguisher for

128

C , and fix k ∈ N. We state a claim, conclude the proof given this claim and

Lemma 5.5.5, and then return to prove the claim.

Claim 5.5.7 Let DecOK denote the event that all C
∗’s answers to C ’s queries

are correct in experiment Exppa1-x
CSL,C,D,C∗(k). Then there exists a negligible function

νD such that Pr
[
DecOK

]
≤ Advdhk1

G,H ,H∗(k) + νD(k) .

Analogously to the proof of Theorem 5.5.3, Lemma 5.5.5 and Claim 5.5.7 imply

that

Advpa1
CSL,C,D,C∗(k) ≤ Advdhk1

G,H ,H∗(k) + νD(k) .

By the DHK1 assumption, the function Advdhk1
G,H ,H∗ is negligible and hence for

every polynomial-time distinguisher D, the function Advpa1
CSL,C,D,C∗ is negligible.

Thus C
∗ is a successful pa1-extractor for C , and CSL is PA1-secure. It remains

to prove Claim 5.5.7.

Sketch of Proof of Claim 5.5.7: We call (R1, R2, E, V) ∈ G4
q a valid ciphertext

with respect to public key (p, q, g1, g2, X, Z) if dlogg1
R1 = dlogg2

R2, and an invalid

ciphertext otherwise. Cramer and Shoup [35] proved that the decryption algorithm

of their IND-CCA2-secure scheme rejects all invalid ciphertexts generated by an

adversary with all but negligible probability. By slightly modifying their proof,

we can show that the decryption algorithm of CSL rejects all invalid ciphertexts

generated by an adversary with all but negligible probability. Using this fact, we

can prove that

Advpa1
CSL,C,D,C∗(k) ≤ Advdhk1

G,H ,H∗(k) + νD(k) ,

for a negligible function νD. Details are omitted.

The proof that the DHK0 assumption implies CSL is PA0-secure is analogous

to the proof that the DHK1 assumption implies CSL is PA1-secure. The difference

is that the given ciphertext creator C attacking CSL makes a single oracle query,

and thus the dhk1-adversary H attacking prime-order-group generator G is a dhk0-

adversary. The DHK0 assumption then implies the existence of a polynomial-time

129

dhk0-extractor H
∗ for H . The extractor C

∗ defined in Figure 5.15 is then a pa0-

extractor. The proof that C
∗ is a successful polynomial-time pa0-extractor for C

is exactly as before.

5.6 Damg̊ard’s arguments about DEG’s security

We first review Damg̊ard’s security notions and then his proof.

5.6.1 RPR-security

Let AE = (K, E ,D, MsgSp) be an encryption scheme. Damg̊ard [36] consid-

ers security against recovery of a random plaintext under a non-adaptive chosen-

ciphertext attack. Namely, let us say that AE is RPR-CCA1-secure if for every

polynomial time R, the probability that the following experiment returns 1 is

negligible as a function of k:

(pk, sk)
$← K(1k)

St
$← R

Dsk(·)(find, pk) ; M
$← MsgSp(pk) ; C

$← Epk(M) ; M ′ ← R(guess, C, St)

If M = M ′ then return 1 else return 0

One can show that IND-CCA1 → RPR-CCA1 and RPR-CCA1 6→ IND-CCA1,

meaning this notion of security is weaker than IND-CCA1-security. One can define

RPR-CPA-security by not giving R the decryption oracle in the first stage above.

5.6.2 Claim and proof approach

Damg̊ard [36, Theorem 2] claims that DEG is RPR-CCA1-secure assuming

DHK0 and the security of the ElGamal encryption scheme under RPR-CPA. He

first shows that if ElGamal is RPR-CPA-secure then so is DEG [36, Lemma 1]. His

proof of his Theorem 2 [36, Page 453] claims to turn a given rpr-cca1-adversary

into an rpr-cpa-adversary. Applying his Lemma 1, he can conclude. The issue is

how an rpr-cca1-adversary R is turned into an rpr-cpa-adversary. Quoting from

130

the proof of [36, Page 453], with some minor changes for consistency with our

notation:

Let C1, C2, . . . be the sequence of ciphertexts whose decryptions R re-
quests from its oracle. Let Hi be the algorithm that simulates R until
the output of Ci and then stops. We can now show by induction that
for all i, Hi can be simulated without access to a decryption oracle. H1

is clear. To do Hi+1, observe that by induction, Hi can be simulated
without the oracle. Then the DHK0 assumption guarantees us the ex-
istence of an algorithm H

∗
i that outputs y where Ci = (Y, W, U) and

Y = gy, whenever Ci produces a non-null output from the decryption.
Knowledge of y suffices to decrypt Ci, and therefore we can simulate
also the last steps of Ri+1. From R we can therefore build an algorithm
that breaks the system under an RPR-CPA attack, and we are done by
Lemma 1.

The problem is the emphasized text at the end of the quoted proof above. An

algorithm is by definition a finite object. We could view it as a program, or,

more formally, as a Turing machine, but it must have a finite description of size

independent of the size of the input. However, the algorithm resulting from the

above proof contains descriptions of the extractors H
∗
1 ,H ∗

2 , . . . which it must run

as subroutines. We claim this list is infinite, so that the constructed “algorithm”

is actually an object having an infinite description, and not an algorithm at all.

Why is the list of extractors infinite? The list is finite for any given value

of the security parameter. But suppose R makes q(k) = k oracle queries. The

constructed algorithm must work for any value of k. So it must include the list of

extractors corresponding to all values of k, and this list is unbounded.

The easiest fix to the above is to use the DHK1 assumption instead. This

guarantees a single extractor that can interactively take inputs and extract the

appropriate quantities from them. In that case, Damg̊ard’s proof goes through to

show that DEG is RPR-CCA1-secure assuming DHK1 and the RPR-CPA-security

of ElGamal. (Note we show something somewhat stronger, namely IND-CCA1-

security, and we also show PA0, PA1.)

131

We remark that a strategy similar to Damg̊ard’s is used by [7] in their proof

that PA-BDPR + IND-CPA implies IND-CCA2 in the RO model. They can avoid

having their algorithm remember infinitely many extractors because in their defi-

nition of PA-BDPR the extractor does not depend on the adversary.

This chapter, in full, is a reprint of the material as it appears in M. Bellare and

A. Palacio, “Towards Plaintext-Aware Public-Key Encryption without Random

Oracles,” Advances in Cryptology - Asiacrypt 2004 Proceedings, Lecture Notes in

Computer Science Vol. 3329, P. J. Lee ed., Springer-Verlag, 2004.

Bibliography

[1] M. Abdalla, J. An, M. Bellare, and C. Namprempre. “From identification to
signatures via the Fiat-Shamir Transform: Minimizing assumptions for secu-
rity and forward-security”. In Advances in Cryptology – EUROCRYPT 2002
Proceedings. Lecture Notes in Computer Science, Vol. 2332, L. Knudsen ed.,
Springer-Verlag, 2002.

[2] M. Backes, B. Pfitzmann, and M. Waidner. “A composable cryptographic
library with nested operations”. In Proceedings of the 10th Annual Conference
on Computer and Communications Security. ACM, 2003.

[3] B. Barak. “How to go beyond the black-box simulation barrier”. In Pro-
ceedings of the 42nd Symposium on Foundations of Computer Science. IEEE,
2001.

[4] N. Barić and B. Pfitzmann. “Collision-free accumulators and fail-stop sig-
nature schemes without trees”. In Advances in Cryptology – EUROCRYPT
1997 Proceedings. Lecture Notes in Computer Science, Vol. 1233, W. Fumy
ed., Springer-Verlag, 1997.

[5] M. Bellare. “A note on negligible functions”. Journal of Cryptology, 15(4):271–
284, 2002.

[6] M. Bellare, A. Boldyreva, and A. Palacio. “An un-instantiable random oracle
model scheme for a hybrid encryption problem”. In Advances in Cryptology
– EUROCRYPT 2004 Proceedings. Lecture Notes in Computer Science, Vol.
3027, C. Cachin and J. Camenisch ed., Springer-Verlag, 2004.

[7] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. “Relations among
notions of security for public-key encryption schemes”. In Advances in Cryp-
tology – CRYPTO 1998 Proceedings. Lecture Notes in Computer Science, Vol.
1462, H. Krawczyk ed., Springer-Verlag, 1998.

[8] M. Bellare, M. Fischlin, S. Goldwasser, and S. Micali. “Identification protocols
secure against reset attacks”. In Advances in Cryptology – EUROCRYPT 2001
Proceedings. Lecture Notes in Computer Science, Vol. 2045, B. Pfitzmann ed.,
Springer-Verlag, 2001.

132

133

[9] M. Bellare and O. Goldreich. “On defining proofs of knowledge”. In Advances
in Cryptology – CRYPTO 1992 Proceedings. Lecture Notes in Computer Sci-
ence, Vol. 740, E. Brickell ed., Springer-Verlag, 1992.

[10] M. Bellare, R. Guérin, and P. Rogaway. “XOR MACs: New methods for
message authentication using finite pseudorandom functions”. In Advances in
Cryptology – CRYPTO 1995 Proceedings. Lecture Notes in Computer Science,
Vol. 963, D. Coppersmith ed., Springer-Verlag, 1995.

[11] M. Bellare, M. Jakobsson, and M. Yung. “Round-optimal zero-knowledge
arguments based on any one-way function”. In Advances in Cryptology –
EUROCRYPT 1997 Proceedings. Lecture Notes in Computer Science, Vol.
1233, W. Fumy ed., Springer-Verlag, 1997.

[12] M. Bellare, J. Kilian, and P. Rogaway. “The security of cipher block chaining’.
In Advances in Cryptology – CRYPTO 1994 Proceedings. Lecture Notes in
Computer Science, Vol. 839, Y. Desmedt ed., Springer-Verlag, 1994.

[13] M. Bellare, S. Micali, and R. Ostrovsky. “The (true) complexity of statistical
zero-knowledge”. In Proceedings of the 22nd Annual Symposium on the Theory
of Computing. ACM, 1990.

[14] M. Bellare and S. Miner. “A forward-secure digital signature scheme”. In
Advances in Cryptology – CRYPT0 1999 Proceedings. Lecture Notes in Com-
puter Science, Vol. 1666, M. Weiner ed., Springer-Verlag, 1999.

[15] M. Bellare, C. Namprempre, and G. Neven. “Security proofs for identity-
based identification and signature schemes”. In Advances in Cryptology –
EUROCRYPT 2004 Proceedings. Lecture Notes in Computer Science, Vol.
3027, C. Cachin and J. Camenisch eds., Springer-Verlag, 2004.

[16] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. “The one-
more-RSA-inversion problems and the security of Chaum’s blind signature
scheme”. Journal of Cryptology, 16(3):185–215, 2003. Preliminary version,
entitled “The power of RSA inversion oracles and the security of Chaum’s
RSA-based blind signature scheme,” in Financial Cryptography 2001 Proceed-
ings, Lecture Notes in Computer Science, Vol. 2339, P. Syverson ed., Springer-
Verlag, 2001.

[17] M. Bellare and G. Neven. “Transitive signatures: New schemes and proofs”.
IEEE Transactions on Information Theory, 51(6):2133–2151, 2005. Prelimi-
nary version, entitled “Transitive signatures based on factoring and RSA,” in
Advances in Cryptology – ASIACRYPT 2002 Proceedings, Lecture Notes in
Computer Science, Vol. 2501, Y. Zheng ed., Springer-Verlag, 2001.

134

[18] M. Bellare and A. Palacio. “The knowledge of exponent assumptions and
3-round zero-knowledge protocols”. In Advances in Cryptology – CRYPTO
2004 Proceedings. Lecture Notes in Computer Science, Vol. 3152, M. Franklin
ed., Springer-Verlag, 2004.

[19] M. Bellare, D. Pointcheval, and P. Rogaway. “Authenticated key exchange
secure against dictionary attacks”. In Advances in Cryptology – EUROCRYPT
2000 Proceedings. Lecture Notes in Computer Science, Vol. 1807, B. Preneel
ed., Springer-Verlag, 2000.

[20] M. Bellare and P. Rogaway. “Entity authentication and key distribution”.
In Advances in Cryptology – CRYPTO 1993 Proceedings. Lecture Notes in
Computer Science, Vol. 773, D. Stinson ed., Springer-Verlag, 1993.

[21] M. Bellare and P. Rogaway. “Random oracles are practical: A paradigm for
designing efficient protocols”. In Proceedings of the 1st Annual Conference on
Computer and Communications Security. ACM, 1993.

[22] M. Bellare and P. Rogaway. “Optimal asymmetric encryption”. In Advances
in Cryptology – EUROCRYPT 1994 Proceedings. Lecture Notes in Computer
Science, Vol. 950, A. De Santis ed., Springer-Verlag, 1994.

[23] M. Blum. “How to prove a theorem so no one else can claim it”. In Proceedings
of the International Congress of Mathematicians, pages 1444–1451, 1986.

[24] M. Blum, P. Feldman, and S. Micali. “Non-interactive zero-knowledge and its
applications”. In Proceedings of the 20th Annual Symposium on the Theory
of Computing. ACM, 1988.

[25] M. Blum, P. Feldman, and S. Micali. “P roving security against chosen ci-
phertext attacks”. In Advances in Cryptology – CRYPTO 1988 Proceedings.
Lecture Notes in Computer Science, Vol. 403, S. Goldwasser ed., Springer-
Verlag, 1988.

[26] D. Boneh. “Simplified OAEP for the RSA and Rabin functions”. In Advances
in Cryptology – CRYPTO 2001 Proceedings. Lecture Notes in Computer Sci-
ence, Vol. 2139, J. Kilian ed., Springer-Verlag, 2001.

[27] N. Borisov, I. Goldberg, and D. Wagner. “Intercepting mobile communica-
tions: The insecurity of 802.11”. In Proceedings of the ACM SIGMOBILE
7th Annual International Conference on Mobile Computing and Networking,
MOBICOM 2001. ACM, 2001.

[28] G. Brassard, D. Chaum, and C. Crépeau. “Minimum disclosure proofs of
knowledge”. Journal of Computer and System Sciences, 37(2):156–189, 1988.

135

[29] R. Canetti, O. Goldreich, and S. Halevi. “The random oracle methodology,
revisited”. In Proceedings of the 30th Annual Symposium on the Theory of
Computing. ACM, 1998.

[30] R. Canetti, S. Goldwasser, O. Goldreich, and S. Micali. “Resettable zero-
knowledge”. In Proceedings of the 32nd Annual Symposium on the Theory of
Computing. ACM, 2000.

[31] R. Canetti and H. Krawczyk. “Universally composable notions of key-
exchange and secure channels”. In Advances in Cryptology – EUROCRYPT
2002 Proceedings. Lecture Notes in Computer Science, Vol. 2332, L. Knudsen
ed., Springer-Verlag, 2002.

[32] D. Chaum. “Blind signatures for untraceable payments”. In Advances in
Cryptology – CRYPTO 1982 Proceedings. Lecture Notes in Computer Science,
Plenum Press, New York and London, 1983, 1982.

[33] R. Cramer and V. Shoup. “A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack”. In Advances in Cryptology
– CRYPTO 1998 Proceedings. Lecture Notes in Computer Science, Vol. 1462,
H. Krawczyk ed., Springer-Verlag, 1998.

[34] R. Cramer and V. Shoup. “Signature schemes based on the strong RSA as-
sumption”. ACM Transactions on Information and System Security, 3(3):161–
185, 2000. Preliminary version in Proceedings of the 6th Annual Conference
on Computer and Communications Security, ACM, 1999.

[35] R. Cramer and V. Shoup. “Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack”. SIAM
Journal on Computing, 33(1):167–226, 2003.

[36] I. Damg̊ard. “Towards practical public key systems secure against chosen
ciphertext attacks”. In Advances in Cryptology – CRYPTO 1991 Proceedings.
Lecture Notes in Computer Science, Vol. 576, J. Feigenbaum ed., Springer-
Verlag, 1991.

[37] A. W. Dent. “The Cramer-Shoup encryption scheme is plaintext aware in
the standard model”. In Advances in Cryptology – EUROCRYPT 2006 Pro-
ceedings. Lecture Notes in Computer Science, Vol. 4004, S. Vaudenay ed.,
Springer-Verlag, 2006.

[38] A. W. Dent. “The hardness of the DHK problem in the generic group model”.
Cryptology ePrint Archive: Report 2006/156, 2006. http://eprint.iacr.

org/2006/156/.

[39] W. Diffie and M.E. Hellman. “New directions in cryptography’. IEEE Trans-
actions on Information Theory, IT-22(6):644–654, 1976.

136

[40] D. Dolev, C. Dwork, and M. Naor. “Non-malleable cryptography”. SIAM
Journal on Computing, 30(2):391–437, 2000.

[41] D. Dolev and A. Yao. “On the security of public-key protocols”. IEEE Trans-
actions on Information Theory, 29(2):198–208, 1983.

[42] T. ElGamal. “A public key cryptosystem and signature scheme based on dis-
crete logarithms”. IEEE Transactions of Information Theory, IT-31(4):469–
472, 1985.

[43] U. Feige, A. Fiat, and A. Shamir. “Zero knowledge proofs of identity”. Journal
of Cryptology, 1(2):77–94, 1988.

[44] U. Feige and A. Shamir. “Witness indistinguishable and witness hiding pro-
tocols”. In Proceedings of the 22nd Annual Symposium on the Theory of
Computing. ACM, 1990.

[45] A. Fiat and A. Shamir. “How to prove yourself: Practical solutions to iden-
tification and signature problems”. In Advances in Cryptology – CRYPTO
1986 Proceedings. Lecture Notes in Computer Science, Vol. 263, A. Odlyzko
ed., Springer-Verlag, 1986.

[46] S. Fluhrer, I .Mantin, and A. Shamir. “Weaknesses in the key scheduling
algorithm of RC4”. In Selected Areas in Cryptography: 8th Annual Interna-
tional Workshop Proceedings. Lecture Notes in Computer Science, Vol. 2259,
S. Vaudenay and A. M. Youssef ed., Springer-Verlag, 2001.

[47] E. Fujisaki and T. Okamoto. “Statistical zero knowledge protocols to prove
modular polynomial relations”. In Advances in Cryptology – CRYPTO 1997
Proceedings. Lecture Notes in Computer Science, Vol. 1294, B. Kaliski ed.,
Springer-Verlag, 1997.

[48] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. “RSA-OAEP is secure
under the RSA assumption”. In Advances in Cryptology – CRYPTO 2001
Proceedings. Lecture Notes in Computer Science, Vol. 2139, J. Kilian ed.,
Springer-Verlag, 2001.

[49] R. Gennaro, S. Halevi, and T. Rabin. “Secure hash-and-sign signatures with-
out the random oracle”. In Advances in Cryptology – EUROCRYPT 1999
Proceedings. Lecture Notes in Computer Science, Vol. 1592, J. Stern ed.,
Springer-Verlag, 1999.

[50] O. Goldreich. “A uniform-complexity treatment of encryption and zero-
knowledge”. Journal of Cryptology, 6(1):21–53, 1993.

[51] O. Goldreich. “Foundations of Cryptography”, volume Basic Tools. Cambridge
University Press, June 2001.

137

[52] O. Goldreich and H. Krawczyk. “An the composition of zero-knowledge proof
systems”. SIAM Journal on Computing, 25(1):169–192, 1996.

[53] O. Goldreich, S. Micali, and A. Wigderson. “Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems”.
Journal of the ACM, 38(1):691–729, 1991. Preliminary version in Proceedings
of the 27th Symposium on Foundations of Computer Science, IEEE, 1986.

[54] O. Goldreich and Y. Oren. “Definitions and properties of zero-knowledge
proof systems”. Journal of Cryptology, 7(1):1–32, 1994.

[55] S. Goldwasser and S. Micali. “Probabilistic encryption”. Journal of Computer
and System Sciences, 28(2):270–299, 1984.

[56] S. Goldwasser, S. Micali, and C. Rackoff. “The knowledge complexity of
interactive proof systems”. SIAM Journal on Computing, 18(1):186–208, 1989.

[57] S. Goldwasser and Y. Taumann. “On the (in)security of the Fiat-Shamir
paradigm”. In Proceedings of the 44th Symposium on Foundations of Com-
puter Science. IEEE, 2003.

[58] L. Guillou and J. J. Quisquater. “A “paradoxical” identity-based signa-
ture scheme resulting from zero-knowledge”. In Advances in Cryptology –
CRYPTO 1988 Proceedings. Lecture Notes in Computer Science, Vol. 403,
S. Goldwasser ed., Springer-Verlag, 1988.

[59] S. Hada and T. Tanaka. “On the existence of 3-round zero-knowledge proto-
cols”. In Advances in Cryptology – CRYPTO 1998 Proceedings. Lecture Notes
in Computer Science, Vol. 1462, H. Krawczyk ed., Springer-Verlag, 1998. [Pre-
liminary version of [60]].

[60] S. Hada and T. Tanaka. “On the existence of 3-round zero-knowledge pro-
tocols”. Cryptology ePrint Archive: Report 1999/009, 1999. [Final version of
[59]].

[61] J. Herzog, M. Liskov, and S. Micali. “Plaintext awareness via key registration.
In Advances in Cryptology – CRYPTO 2003 Proceedings. Lecture Notes in
Computer Science, Vol. 2729, D. Boneh ed., Springer-Verlag, 2003.

[62] J. Kilian. “A note on efficient zero-knowledge proofs and arguments”. In Pro-
ceedings of the 24th Annual Symposium on the Theory of Computing. ACM,
1992.

[63] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach. “Analysis of an
electronic voting system”. In Proceedings of the Symposium on Security and
Privacy. IEEE, 2004.

138

[64] M. Lepinski. “On the existence of 3-round zero-knowledge proof sys-
tems”. MS Thesis, June 2002. http://theory.lcs.mit.edu/~cis/theses/
lepinski-masters.ps.

[65] M. Lepinski and S. Micali. “On the existence of 3-round zero-knowledge proof
systems”. MIT LCS Technical Memo. 616, April 2001. http://www.lcs.mit.
edu/publications/pubs/pdf/MIT-LCS-TM-616.pdf.

[66] S. Micali, C. Rackoff, and B. Sloan. “The notion of security for probabilistic
cryptosystems”. SIAM Journal on Computing, 17(2):412–426, 1988.

[67] S. Micali and R. Rivest. “Transitive signature schemes”. In Topics in Cryp-
tology – CT-RSA 2002 Proceedings. Lecture Notes in Computer Science, Vol.
2271, B. Preneel ed., Springer-Verlag, 2002.

[68] M. Naor. “On cryptographic assumptions and challenges”. Invited paper and
talk. In Advances in Cryptology – CRYPTO 2003 Proceedings. Lecture Notes
in Computer Science, Vol. 2729, D. Boneh ed., Springer-Verlag, 2003.

[69] M. Naor and M. Yung. “Public-key cryptosystems provably secure against
chosen ciphertext attacks”. In Proceedings of the 22nd Annual Symposium on
the Theory of Computing. ACM, 1990.

[70] J. B. Nielsen. “Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case”. In Advances in Cryptology –
CRYPTO 2002 Proceedings. Lecture Notes in Computer Science, Vol. 2242,
M. Yung ed., Springer-Verlag, 2002.

[71] T. Okamoto. “Provably secure and practical identification schemes and cor-
responding signature schemes”. In Advances in Cryptology – CRYPTO 1992
Proceedings. Lecture Notes in Computer Science, Vol. 740, E. Brickell ed.,
Springer-Verlag, 1992.

[72] H. Ong and C. P. Schnorr. “Fast signature generation with a Fiat Shamir–
like scheme”. In Advances in Cryptology – EUROCRYPT 1990 Proceedings.
Lecture Notes in Computer Science, Vol. 473, I. Damg̊ard ed., Springer-Verlag,
1990.

[73] D. Pointcheval. “New public key cryptosystems based on the dependent-RSA
problems”. In Advances in Cryptology – EUROCRYPT 1999 Proceedings.
Lecture Notes in Computer Science, Vol. 1592, J. Stern ed., Springer-Verlag,
1999.

[74] D. Pointcheval and J. Stern. “Security arguments for digital signatures and
blind signatures”. Journal of Cryptology, 13(3):361–396, 2000.

139

[75] C. Rackoff and D. Simon. “Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack”. In Advances in Cryptology – CRYPTO 1991
Proceedings. Lecture Notes in Computer Science, Vol. 576, J. Feigenbaum ed.,
Springer-Verlag, 1991.

[76] R. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digital
signatures and public-key cryptosystems”. Communications of the ACM,
21(2):120–126, 1978.

[77] K. Sakurai and T. Itoh. “On the discrepancy between serial and parallel
of zero-knowledge protocols”. In Advances in Cryptology – CRYPTO 1992
Proceedings. Lecture Notes in Computer Science, Vol. 740, E. Brickell ed.,
Springer-Verlag, 1992.

[78] A. De Santis and G. Persiano. “Zero-knowledge proofs of knowledge with-
out interaction”. In Proceedings of the 33rd Symposium on Foundations of
Computer Science. IEEE, 1992.

[79] C. P. Schnorr. “Efficient signature generation by smart cards”. Journal of
Cryptology, 4(3):161–174, 1991.

[80] C. P. Schnorr. “Security of the 2t-root identification and signatures”. In
Advances in Cryptology – CRYPTO 1996 Proceedings. Lecture Notes in Com-
puter Science, Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996.

[81] V. Shoup. “Lower bounds for discrete logarithms and related problems”. In
Advances in Cryptology – EUROCRYPT 1997 Proceedings. Lecture Notes in
Computer Science, Vol. 1233, W. Fumy ed., Springer-Verlag, 1997.

[82] V. Shoup. “On formal models for secure key exchange (version 4)”. Cryptology
ePrint Archive: Report 1999/012, 1999. http://eprint.iacr.org/1999/

012/.

[83] V. Shoup. “On the security of a practical identification scheme”. Journal of
Cryptology, 12(4):247–260, 1999.

[84] V. Shoup. “OAEP reconsidered”. Journal of Cryptology, 15(4):223–249, 2002.

[85] A. Stubblefield, J. Ioannidis, and A. D. Rubin. “Using the Fluhrer, Mantin,
and Shamir attack to break WEP”. In Proceedings of the Network and Dis-
tributed System Security Symposium, NDSS 2002. The Internet Society, 2002.

