
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
To observe or to bet? Investigating purely exploratory and purely exploitative actions in 
children, adults, and computational models.

Permalink
https://escholarship.org/uc/item/2x7300qr

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Yiu, Eunice
Sandbrink, Kai J
Gopnik, Alison

Publication Date
2024
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2x7300qr
https://escholarship.org
http://www.cdlib.org/


 

To observe or to bet? Investigating purely exploratory and purely exploitative 
actions in children, adults, and computational models. 

Eunice Yiu (ey242@berkeley.edu) 
Department of Psychology, University of California, Berkeley 

Berkeley, CA 94704 USA 
 

Kai Sandbrink (kai.sandbrink@lmh.ox.ac.uk) 
Department of Experimental Psychology, University of Oxford,  

Oxford, United Kingdom 
 

Alison Gopnik (gopnik@berkeley.edu) 
Department of Psychology, University of California, Berkeley 

Berkeley, CA 94704 USA 
 

 

Abstract 

Autonomous agents often need to decide between choosing 
actions that are familiar and have previously yielded positive 
results (exploitation) and seeking new information that could 
help uncover more effective actions (exploration). We present 
an “observe or bet” task that separates “pure exploration” from 
“pure exploitation”: 75 five-to-seven-year-old children, 60 
adults and computational agents have to decide either to 
observe an outcome without reward, or to bet on an action 
without immediate feedback at varying probability levels. 
Their performances were measured against solutions from the 
partially observable Markov decision process and meta-RL 
models. Children and adults tended to choose observation more 
than both algorithm classes would suggest. Children also 
modulated their betting policy based on the probability 
structure and amount of evidence, exhibiting “hedging 
behavior” a strategy not evident in standard bandit tasks. The 
results provide a benchmark for reasoning about reward and 
information in humans and neural network models. 

Keywords: decision-making, exploration, probabilistic 
learning, reinforcement learning 

Introduction 

From hunting and foraging to achieving complex skills and 
tasks, agents need to autonomously search through a vast 
space of possible actions. As a result, an agent must strike a 
fine balance between the exploration of different options or 
opportunities and the exploitation of rewards (Cohen et al., 
2017; Cook et al., 2013). This balance is commonly referred 
to as the exploration-exploitation trade-off. Understanding 
the specific kinds of heuristics and strategies that humans 
employ to solve this problem over the course of their 
development remains an open question in cognitive science. 
    Researchers have long argued that children are active and 
exploratory information seekers (e.g., Gopnik, 2020; Schulz, 
2012; Piaget, 2013). However, previous studies used 
environments in which the reward and information that 
participants receive on each trial are confounded (e.g., Giron 
et al., 2023; Liquin & Gopnik, 2022; Meder et al., 2021;  
 

Schulz et al., 2019). In these experiments, exploratory actions 
lead to reward and exploitative moves result in information 
gain. There is no clear test that investigates how children 
select between reward and information when they are 
presented as independent options across varying 
probabilities. We investigated the behavior of children in a 
setting where "pure exploration" (i.e. actions that do supply 
any reward at all) was juxtaposed with "pure exploitation" 
(i.e. actions that do not supply any information at all). 
Previous work has shown that adults in similar versions of 
this task initially also observe more than is optimal (Tversky 
& Edwards, 1966), but can learn near-optimal exploratory 
behavior over several repetitions in the task (Navarro et al., 
2016). 
     In the current studies we add child participants to 
investigate whether children will be particularly exploratory 
in these tasks. We also differentiate between two kinds of 
betting actions, those that correspond to the option that has 
received the strongest evidence so far (which would be 
chosen to maximize the expected value of reward) and the 
alternative option that goes against the current evidence 
which we call "hedging": occasionally choosing this option 
on some trials will lead to a pattern more like “probability 
matching” than “maximizing expected value,” which can act 
as a “hedge” against future changes in the outcomes (Siegel 
and Goldstein, 1959; Gassmaier and Schooler, 2008; Rivas, 
2013). 
     The study is the first to disambiguate the motives 
underlying exploratory and exploitative behavior in human 
children, in an observe vs bet task, and to make direct 
comparisons with human adults and state-of-the-art 
computational models on a level playing field.  

Methods: Human Experiments 
Participants. 75 child participants aged between 5 and 

7 years old (Mage = 6.05 years, SD = .85, 43 females) were 
recruited and tested on Zoom. Four additional children 
were tested but excluded from the sample analysis as they 
either did not pass the comprehension checks (n = 2) or 
did not complete all the test trials (n = 1). This could be 
due to inattention or inability to understand the task. We 
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target this age group as our pilot study suggested that only 
children aged 5 and above could reliably comprehend the 
complexity of the task. In addition, we also recruited 60 
adult participants aged 20 to 36 years old (Mage = 28.43 
years, SD = 4.79, 29 females) on Prolific. The study was 
preregistered on AsPredicted [https://aspredicted.org/TG5_Q8B 
for children and https://aspredicted.org/BC8_YJM for adults]. 

Stimuli and Procedure. Following the structure of the 
observe or bet task (Tversky & Edwards, 1966), we 
presented participants with a computer game featuring a 
rewarding character and a non-rewarding character. Each 
character hid behind a separate door. Participants received 
one virtual coin if they found the rewarding character (a 
“kind elf” or a “kind princess”) and did not gain or lose 
anything if they found the other non-rewarding character (a 
“mean monster” or a “mean thief”). They were explicitly 
given the goal of winning as many coins as possible. In 
every trial, participants were then given the option of either 
observing which doors the characters were hiding behind, 
or placing a bet on one of two probabilistically rewarding 
doors, without receiving feedback until the end of the 
experiment (Figure 1). Exactly one of the two doors paid 
out on every trial. Throughout the trials, the underlying 
payout probabilities remained constant. However, the 
payout probabilities varied between participants. We 
randomly assigned 25 children and 20 adults to the setting 
where the payout probability of the higher-paying door ρ 
was 1.0, 25 children and 20 adults to ρ = 0.75, and 25 
children and 20 adults to ρ = 0.5. Although participants 
were not given the exact quantitative probability, they 
received a verbal description of their assigned environment: 
the environment was (i) "always the same" (ρ = 1.0), (ii) 
having a preferably higher-paying door even though it 
might "sometimes change" (ρ = 0.75), or (iii) "always 
changing, no one can tell" which door was higher-paying 
(ρ = 0.5). Prior to the experiment, participants watched 
narrated videos that explained the instructions of the game. 
Next, they had to answer ten questions from four rounds of 
comprehension checks correctly before they could proceed. 
If the participant failed to answer any one of the ten 
questions correctly, they would not be able to move on. 

Practice Trials. Participants played a practice game 
consisting of 4 trials to familiarize themselves with the 
setup. These practice trials had the same setup as the 
subsequent test trials except that they involved visually 
different characters (e.g., a kind elf and an evil monster). 
Participants received feedback on the actual outcomes and 
reward they had accumulated at the end of the practice. The 
practice trials ensured that participants' decision-making 
was informed and reflective of the verbally described 
probabilistic scenarios. 

Test Trials. Participants then proceeded to play the 
actual game, consisting of 12 test trials, which included two 
new characters who were visually different than the 
practice trials. They were told that this game had the same 
probability structure as the practice game. At the end of the 
test trials, they were asked to quantitatively express their 

perceived probability of receiving a reward from the left 
door versus the right using a slider. Feedback regarding the 
number of coins participants accumulated in the test trials 
was provided only after the participants stated their 
estimated probabilities. This ensures that participants’ 
estimations were based on their exploratory behavior rather 
than the ground-truth results. 

 
 

Figure 1. An example of a trial. Participants choose 
between “betting" with feedback delayed (outcome 

revealed at the end of the game) or “observing." Betting 
circles the chosen door without further feedback; 

observing reveals the respective locations of the kind 
character (left door) and the mean character (right door). 

Methods: Computational Modelling 
      In this study, we employ a partially observable Markov 
decision process solver, which operates with precise 
probability levels, juxtaposed with a meta-reinforcement 
learning (meta-RL) model that does not have such explicit 
probabilistic information. These computational models serve 
as benchmarks for human behavior. Human participants were 
not provided with exact probability values, but they were 
informed in qualitative terms that conditions may either never 
change, sometimes change, or always change. We 
hypothesize that human performance will surpass that of the 
meta-RL model due to this inferred knowledge, but human 
estimations may not achieve the numerical exactitude that 
characterizes the POMDP solver's performance.     
      Formulation of the partially observable Markov 
decision process. To quantify optimal performance on the 
task, we first formulated the problem as a partially observable 
Markov decision process (POMDP, Åström, 1965; Kaelbling 
et al., 1998). A POMDP is a 7-tuple ⟨S, A, Ω, O, T, r, γ⟩, 
where S is the (finite) non-empty state space, A is the (finite) 
non-empty action space, Ω is the (finite) non-empty 
observation space, O : S → P(Ω) is the observation function, 
T : S × A → P(S) is the probabilistic state-transition function, 
r : S × A → P(R) is a bounded reward function, and 0 ≤ γ ≤ 1 
is the discount factor. We formalize the observe or bet task 
by defining the set of states as the product space given by the 
number of steps along with the two possibilities for which is 
the high-paying door. The set of actions is to observe, to bet 
on the left door, or to bet on the right door. The set of 
observations are given by the product of the set of the number 
of steps and the possible observations per step, no 
observation, observing a payout on the left door, and 
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observing a payout on the right door. We set the discount 
factor γ := 1. 
    As an upper bound of performance, we calculated the 
reward-maximizing policy for an agent aware of the 
probability structure of the task by using the JuliaPOMDP 
framework (Egorov et al., 2017) to calculate successive 
approximations of the reachable state under optimal policies 
(SARSOP, Kurniawati et al, 2008), a state-of-the-art solver 
for problems that require active information gathering (Ma & 
Pineau, 2015; Silver & Veness, 2010). We calculated for 
every trial the belief threshold at which one should switch 
from observing to betting for each probability setting. 
      Neural network architecture and training procedure. 
We also trained deep RL meta-agents on different probability 
levels of the same task and thus were unsure of the payout 
probability (Sandbrink & Summerfield, 2023). The neural 
networks had a standard architecture with an input layer, 
followed by an LSTM layer of 48 units, a fully connected 
layer of 24 units, and a softmax output layer of 3 units that 
correspond to the three possible actions. We used ReLU 
activation functions for the hidden layers. The state encoding 
at the input contained the following elements: one-shot 
encoding of the action chosen on the previous time step, the 
time remaining in the trial (scaled between 1 and 0, with 1 
corresponding to the first time step in an episode), zero-to-
one-shot feedback corresponding to the observation on the 
two doors (1 if the rewarding character was observed at the 
door on the previous time step; 0 if either that the agent did 
not observe or that the agent observed but this door did not 
contain the rewarding character). 
   We trained the neural network using the REINFORCE 
algorithm (Sutton et al., 1999) with a baseline of 1/3 
(corresponding to the expected value of a random action) 
following the meta-reinforcement learning procedure (Duan 
et al., 2016; Wang et al., 2016; Wang et al., 2018). We meta-
train the networks across the distribution of POMDPs defined 
by sampling ρ ∼ U[0.5, 1]. To avoid biasing in a particular 
direction for comparing with the human data, we did not hold 
out any area of the training region. We trained the networks 
for 500000 episodes using a batch size of 50. The recurrent 
units of the LSTM layer were reset to 0 at the start of a new 
episode. We used the Adam optimizer with a learning rate of 
1e-3. We started training with entropy regularization with 
coefficient 5, which we annealed to 0 geometrically over the 
course of 150000 episodes. We ran five instantiations of the 
RL neural networks, which learned to perform near-optimally 
on the task (Figure 2).  
 

 

Figure 2: Learning curves for the task-driven five RL neural 
network models for (thick: aggregated), smoothed with a 

moving average window over 1000 episodes. 
 

     Fitting human behavior to computational process 
models. To characterize differences in behavior, we fitted the 
computational process model that Navarro et al. (2016) found 
explains adult human behavior best out of four possible 
candidates. This model posits that people use heuristics to 
approximate the ideal solution to the task, by keeping track 
of how much evidence relatively they have accumulated for 
the two doors, and switching from observing to betting once 
this evidence tally crosses a threshold that depends on the 
number of trials left in the episode. Specifically, on each trial, 
participants receive observations 𝑥! ∈ {+1, 	0, 	 − 1} for 
observing the left door, betting, and observing the right door. 
They then update their evidence tally for trial	𝑡 for a 
particular door based on 𝑒! = 𝑥! + (1 − 𝛼) × 𝑒!"# based on 
a forgetfulness factor 𝛼. The decision threshold at each trial 
is a piecewise linear function with initial value 𝑑$ that is 
constant initially but beginning in trial 𝑐 decreases linearly to 
a terminal value 𝑑# at the final trial. Finally, participants are 
modelled as selecting an action stochastically based on the 
interaction of these different terms. The probability of betting 
on the left door is given by: 

𝑃(bet	left) = 𝛷 >
𝑒! − 𝑑!
𝜎 @ 

where 𝜎 is a response stochasticity parameter and Φ is the 
cumulative distribution function of the standard normal 
distribution (Blanchard & Gershman, 2018). Following 
previous works (Navarro et al., 2016; Blanchard & 
Gershman, 2018), we fit five parameters 𝛼, 𝑑$, 𝑑#, 𝑐, and 𝜎 
using hierarchical Bayesian probabilistic programming. 
Since we use the model in a stationary task, the normative 
decay parameter is zero, while the threshold depends on the 
probability structure of the environment, leading to the same 
normative predictions of front-loaded observations. 

Results 
      Humans over-explore and do not modulate 
observations according to probability levels. High 
probability values for the high-paying door (i.e.., ρ closer to 
1.0) in the environment mean that one should be more certain 
about which is the correct door before switching from 
observing to betting. Since the difference in payout rates 
between the two doors is bigger, the benefit from choosing 
the correct door is greater. However, because a higher 
probability level also corresponds to a greater belief update 
when observing, the optimal behavior in this task across 
probability levels, calculated using SARSOP (Figure 3A), is 
to make one observation at the beginning when ρ = 1.0 or ρ 
= 0.75, and to not make any observations when the 
probability is evenly split, i.e., ρ = 0.5. Neural networks that 
were meta-trained across all probability levels (and therefore 
simulate an agent that does not start out with any information 
about probability levels) observed exactly once and only did 
so at the beginning of every episode (Figure 3B).  
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     Children tended to observe more than the optimal 
computational model would suggest. Out of 12 trials, 
children in the ρ = 1.0 condition made an average of 1.88 
observations (SE = 0.25) which was not more the optimal 
solution of 1 observation, t(24) = 1.32, p = 0.20; those in the 
ρ = 0.75 condition made an average of 1.8 observations (SE 
= 0.25) which was marginally more than the optimal solution 
of 1 observation, t(24) = 1.92, p = 0.067; the rest in the ρ = 
0.5 condition made an average of 2.8 observations (SE = 
0.29) which was also significantly more than the optimal 
solution of 0 observation, t(24) = 4.80, p < 0.01. 30 out of 75 
children strictly chose to bet and did not observe at all (n = 
12 in ρ = 1.0, n = 10 in ρ = 0.75, n = 8 in ρ = 0.5). 2 children 
in the ρ = 1.0 condition only chose to observe and did not bet 
at all.  
     Similarly,  out of 12 trials, adults in the ρ = 1.0 condition 
made an average of 1.15 observations (SE = 0.32) when the 
optimal solution was 1 observation, t(19) = 0.47, p = 0.64; 
those in the ρ = 0.75 condition made an average of 1.70 
observations (SE = 0.34) when the optimal solution was 1 
observation, t(19) = 2.05, p = 0.054; the rest in the ρ = 0.5 
condition made an average of 1.35 observations (SE = 0.44) 
when the optimal solution was 0 observation, t(19) = 2.90, p 
< 0.01. 25 out of 60 adults strictly chose to bet and did not 
observe at all (n = 8 in ρ = 1.0, n = 6 in ρ = 0.75, n = 11 in ρ 
= 0.5). No adults strictly chose to observe and did not bet at 
all. Overall, children observed (μ = 2.37, SE = 0.33) 
marginally more than adults did (μ = 1.40, SE = 0.21), t(144) 
= 1.49, p = 0.07. This is consistent with other findings where 
children explored more than adults, though in very different 
tasks (e.g., Giron et al, 2023; Liquin & Gopnik, 2022). 
     

 
Figure 3: (A) Solutions for a partially observable Markov 
decision process approximated via SARSOP at ρ = 0.5, 

0.75, 1.0, color bar indicates minimum belief for optimal 
betting. (B) Observing probability set by RL neural network 
agents. (C-D) Identical plots for children (C) and adults (D). 

Colored regions indicate the 95% Bayesian credible 
intervals under a Jeffreys prior. 

    Like the neural networks (which started the task without 
information on the task), both children and adults did not 
significantly modulate their observation rates based on the 
probability structure. In a one-way ANOVA test (F(2, 72) = 
0.97, p = 0.39 for children; F(2, 57) = 0.57, p = 0.57 for 
adults); a generalized mixed-effect model with observation as 
a binary outcome did not yield a main effect of probability - 
this is further supported by the three pairwise comparisons of 
estimated marginal means in the three probability structures 
(ρ  = 0.5 vs. ρ = 0.75, ρ  = 0.5 vs. ρ  = 1.0, ρ  = 0.75 vs. ρ  = 
1.0 respectively) via Tukey’s HSD test (p = 0.50, p = 0.40, p 
= 0.98 respectively for children; p = 0.62, p = 0.98,  p = 0.50 
respectively for adults).  
     Contrary to the optimal solution determined by the 
SARSOP model and the neural network solutions, 
children sampled their observations throughout the episode 
and not just on the first trial (Figure 3C). Nonetheless, trial 
number had a significant effect on their likelihood of 
observing in a generalized linear mixed-effects model, β = 
−0.082, z = −2.65, p < 0.01. In other words, as the likelihood 
of observing declined by 8.2% with every increasing trial 
number. Participants could keep track of which trial they 
were on out of the 12 trials. 35 out of 75 children (46.7%) did 
not choose to observe after the first trial. For adults, although 
they also observed at greater-than-optimal rates overall 
(Figure 3D), they attenuated their observation rate more 
strongly across the course of the game. As the trial number 
increased, adults’ tendency to observe, unlike children’s, 
declined significantly β = −0.24, z = −5.79, p < 0.001. 32 out 
of 60 adults (53.3%) did not choose to observe after the first 
trial.  
     Children modulate their betting policy based on the 
probability structure of the environment. We calculated 
the arm with the most evidence of reward as the arm that the 
agent had observed paying out more often, with a tie going to 
the most-recently-observed arm (following at least two 
observations) to account for recency effects. RL neural 
networks that were meta-trained across all probability levels 
were 100% likely to bet on the door with the most rewarding 
evidence in all the trials and across all probability levels 
(Figure 4A).  
     Children’s observations did not differ significantly 
depending on the probability of reward. They were also not 
systematically distributed throughout the episode. However, 
betting behavior was sensitive to the payout structure that 
children observed. This analysis focuses on the 43 out of 75 
children who chose to observe at least once before placing a 
bet (30 chose to strictly bet and 2 chose to strictly observe as 
previously discussed). More specifically, children were most 
likely to place their bets on the door with most rewarding 
evidence in the deterministic setting ρ = 1.0. On average, they 
were μ = 0.93 likely (SE = 0.046) to bet on the door that had 
the strongest evidence of reward (Figure 4B). However, in 
the indeterministic settings, children distributed their bets 
more evenly across the two doors (μ = 0.49, SE = 0.063 for ρ 
= 0.75 and μ = 0.50, SE = 0.046 for ρ = 0.5). A generalized 
linear mixed-effects model revealed a statistically significant 
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effect of ρ = 1.0 relative to ρ = 0.5, β = 2.70, z = 5.20, p < 
0.001. Further pairwise comparisons via Tukey’s HSD test 
showed that children were significantly more likely to bet on 
the most-rewarding-evidence door in the ρ = 1.0 condition 
than in the ρ = 0.5 condition (z = 5.20, p < 0.001) and the ρ = 
0.75 condition (z = 5.03, p < 0.001).  
     By contrast, adults did not significantly modulate their 
bets across the different probability conditions (Figure 4C). 
This analysis focuses on the 35 out of 60 adults who chose to 
observe at least once before placing a bet (25 chose to strictly 
bet as previously discussed).  They did not place absolute bets 
on the same door in the way the meta-RL did either. On 
average, adults placed their bet on the door with most 
rewarding evidence 82% of the time (SE = 0.08) in ρ = 1.0, 
88% of the time (SE = 0.05) in ρ = 0.75, and 67% of the time 
(SE = 0.05) in ρ = 0.5. Pairwise comparisons via Tukey’s 
HSD test showed that adults were not more likely to bet on 
the most-rewarding-evidence door in one probability 
condition compared to another (z = 1.85, p = 0.16 for ρ = 0.75 
vs. ρ = 0.5; z = 1.75, p = 0.19 for ρ = 1.0 vs. ρ = 0.5; z = 
0.017, p = 0.99 for ρ = 1 vs. ρ = 0.75). 
 

 

Figure 4: (A) Betting probability on the door with most 
rewarding evidence observed, set by RL neural network 
agents for ρ = 0.5, 0.75, 1.0. (B) Same probability for 

children (left) and adults (right). Colored regions represent 
the 95% Bayesian credible intervals under a Jeffreys prior. 

 
Children’s earnings approach that of adults. 
     Overall, across the 12 test trials and all probability 
conditions, children won an average of 5.84 coins (SE = 0.36) 
and adults won an average of 6.50 coins (SE = 0.30). There 
was no significant difference in the number of coins attained 
between the children and adults both in aggregate (75 
children vs. 60 adults) and by probability level (25 children 
vs. 20 adults per level). While there was no effect of 
probability level on the number of coins won by adults, 
children were found to win significantly fewer coins in the ρ 

= 0.5 condition than in the ρ = 1.0 condition, t(40) = 2.25, p 
< 0.05. 

 
Children distinguished between probability levels better 
than adults did.  
     Moreover, children generally differentiated the 
probability levels better than adults (Figure 5). Pairwise 
comparisons via Tukey’s HSD test revealed that children 
estimated that the likelihood of receiving a reward from the 
rewarding door was significantly higher in the ρ = 1.0 
condition (M = 73.7%, SE = 7.52%) than the ρ = 0.5 condition 
(M = 34.9%, SE = 5.62%), z = 4.18, p < 0.01; they also 
estimated a significantly higher likelihood in the ρ = 1.0 
condition (M = 73.7%, SE = 7.52%) than the ρ = 0.5 condition 
(M = 56.7%, SE = 6.43%), z = 3.27, p < 0.01. However, adults 
did not significantly distinguish the likelihood of receiving a 
reward from the rewarding door between the different 
probability conditions. 
 

 
 
Figure 5: (A) Children’s perceived reward likelihood from 
the rewarding door after the 12 test trials. (B) Same measure 
for adults. Error bars represent standard errors of the mean. 
 
A computational process model explains components of 
child and adult behavior. 

     Finally, we found that the full computational process 
model proposed by Navarro et al. (2016) explains the adult 
data better overall than it does the child data, t(133) = -2.25, 
p = < 0.05. In particular, it explained the child data best in the 
ρ = 1.0 setting (Figure 6A), possibly reflecting 
inconsistencies between the behavior of children in the 
lower-probability setting and the expected behavior of the 
model which we will address in the Discussion. The fitted 
forgetfulness parameter 𝛼 was higher for children than for 
adults, t(133) = 3.10, p < 0.05 (Figure 6B), indicating that 
participants preserved evidence most strongly in those cases. 
On the other hand, the only parameter determining the 
decision threshold that was different between children and 
adults was the final decision threshold, which was higher for 
children, t(133) = 3.12, p < 0.05 (Figures 6C-E). This reflects 
the fact that their observe probability does not decay as much 
over time. Children’s choices generally did not exhibit higher 
stochasticity 𝜎 than adults’, t(110) = 1.47, p = 0.14; Figure 
6F), except for their choices in the 0.75 probability level, 
t(35) = -2.61, p < 0.05, suggesting that their betting behavior 
is particularly more volatile in this setting. 
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Figure 6: (A) Likelihood of participant data as determined 
by the fitted process model from Navarro et al. (2016) 

across various probability levels, with error bars 
representing the standard error of the mean. (B) Mean 

forgetfulness parameters α fitted by the model for children 
and adults. Error bars as before. (C) Initial decision 

threshold for switching from observing to betting. (D) Final 
decision threshold. (E) Threshold-change parameter c. (F) 
Stochasticity parameter σ. All plots from (B) to (F) follow 

the format of (B) with respective parameter changes. 

Discussion 
The current study corroborates the conclusion of older 
observe or bet tasks that adults seek more information than is 
computationally optimal, (Navarro et al., 2016; Tversky & 
Edwards, 1966); We also show a similar pattern in children, 
in fact children appear to be even more likely to choose to 
observe than to bet compared to adults. Children also 
distinguished the ground-truth probability levels better than 
adults did – again consistent with other finding where 
children’s tendency to explore enabled them to learn more 
effectively than adults. Our findings also echo existing work 
demonstrating that children are generally sensitive to 
uncertainty (e.g., Redshaw & Suddendorf, 2016; Robinson et 
al., 2006).  

While our findings demonstrate that even children tend to 
observe beyond computationally optimal, our study leaves 
open the question of what drives this behavior: whether it is 
driven by an intent to gain information or a desire to gain 
validation through repeated positive testing (Lapidow & 

Walker, 2020). Further research is warranted to tease apart 
these motivations.  

To accommodate the limited attention spans of children, 
we designed our experimental horizon to consist of 12 trials. 
This is significantly fewer than the trial counts used in the 
experiments conducted by Tversky & Edwards (1966) as well 
as Navarro et al. (2016). In our task, the optimal strategy or 
both ρ = 1.0 or ρ = 0.75 involved a single early observation. 
Future research will aim to create distinct optimal strategies 
for each probability level (ρ = 1.0, ρ = 0.75 and ρ = 0.5). 
Specifically, we will investigate conditions under which ρ = 
0.75 elicits more exploratory behavior compared to ρ = 1.0 
and ρ = 0.5. Moreover, we are considering the integration of 
restless bandits, which would predict more value in 
exploration as the experiment progresses. 
     More critically, 5-to-7-year-old children behaved 
differently than adults in distinctive ways. Like adults, they 
do not modulate how much they observe, based on the 
probability structure of the environment. But unlike adults 
and computational models, they do modulate how much they 
bet based on the probability condition of the environment, 
diversifying their bets when uncertainty is high. Thus, given 
that children only hedge their bets when uncertainty in the 
environment is high and that they explicitly distinguish 
between probability levels even better than adults can, we 
argue that children are not merely behaving more noisily or 
randomly. 
     Children’s “hedging behavior” is similar to “probability 
matching”, and other studies have shown that children are 
more likely to probability match than adults (Denison et al., 
2013). One alternative explanation for this behavior could be 
that children are trading off the resulting reduction in 
variance of rewards against both information gain and the 
expected value of reward. This strategy is effective in 
contexts in which it is necessary to make decisions under 
uncertainty as diverse as evolution (e.g., Philippi & Seger, 
1989; Starrfelt & Kokko, 2012) and financial markets (e.g., 
Axén & Cortis, 2020).  

     Further studies may explore why children hedge, but not 
adults. In addition, both human children and adults do not 
behave like POMDP and meta-RL models. Further studies 
might also explore whether this apparently suboptimal 
behavior might be beneficial in more subtle ways. These 
differences between human and child behavior mean that the 
process model introduced by Navarro et al. is not as good  a 
model for child behavior, and future studies should consider 
how to update the model to address this. In general, however, 
our results provide yet more support for the idea that children 
prioritize information over reward, and that they prefer to 
hedge their bets, probability matching rather than 
maximizing. 
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