
Lawrence Berkeley National Laboratory
Recent Work

Title
ELECTRICAL PROPERTIES OF NEOTRON-TRANSMUTA-TION-DOPED GERMANIUM

Permalink
https://escholarship.org/uc/item/2x75p84d

Author
Rodder, M.

Publication Date
1982-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2x75p84d
https://escholarship.org
http://www.cdlib.org/


. 
. .. 

.·.i~ • ., 

LBL-16216 
~'~ 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA r<EC~:!VED 

BEPK ,-, c .. · .. · , i' :.,<").' TflRy 

Engineering & Technical AUG 20 1983 

Services 0 ivision LiBRAR: AND 

DOCUMENTS SECTION 

ELECTRICAL PROPERTIES OF 
NEUTRON-TRANSMUTATION-DOPED GERMANIUM 

M. Rodder 
(M.S. Thesis) 

August 1982 

----~~ ---- -------- -- - " r------- ----- -- \ 
I 
I 
I 
I 

TWO-WEEK LOAN COpy 

This is a Library Circulating Copy 
which may be borrowed for two weeks. 

I 

For a personal retention copy, call 

Tech. Info. Division, Ext. 6782. 
J.... 

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 

\ 
\]\J 
r-
{ 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain COlTect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



ELECTRICAL PROPERTIES OF NEUTRON­
TRANSMUTATION-DOPED GERMANIUM 

Mari lyn Rodder 

Department of Materials Science and Mineral Engineering and 
Department of Instrument of Sc ience and E'ngi neeri ng 

Lawrence Berkeley Laboratory, University of California 
Berkeley, California 94720 

August 1982 

LBL-16216 

This work was supported by NASA Contract No. W-14,606 under Interagency 
Agreement with the Director's Office of Energy Research, Office of Health and 
Environmental Research, U.S. Department of Energy under Contract No. 
DE-AC03-76SF00098. 



ACKNOWLEDGMENTS 

I am especially grateful to Eugene Haller for the generous support, 
time, and patience that he devoted to this project. I want to extend 
many thanks to J.M. Meese at the University of Missouri Research 
Reactor, who kindly did the neutron transmutation doping of our sam­
ples. I am also indebted to Ernst Kreysa of the Max Planck Institut 
fur Radioastronomie, Germany, who did resistivity measurements in the 
very low temperature limits. I also want to thank everyone who aided 
and encouraged me in the lab, especially Dick Davis, Nick Pa1aio, Bill 
Hansen, and Blair Jarrett. Finally, special thanks go to Lynne Dory 
who dedicated many hours to typing this paper, and to Colleen Quigley, 
who helped me in the final stages. 

Thi s work was supported by the Di rector's Office of Energy 
Research, Office of Health and Environmental Research, U.S. Department 
of Energy under Contract No. DE-ACOJ-76SF00098. 

i 



TABLE OF CONTENTS 

Abstract 

1. Background 
1.1 Introduction 
1.2 Crystal Structure 
1.3 Energy Bands 
1.4 Density of States 
1.5 Intrinsic Semiconduction 
1.6 Extrinsic Semiconduction 
1.7 Band Structure of Real Semiconductors 
1.8 Calculating Energy Bands: The Tight Binding 

Approx imati on 
1.9 Anderson Localization 

1 

2 

2 

2 

3 

6 

7 

9 

13 

15 
16 

2. Electrical Conduction in Doped Semiconductors 18 
2.1 Introduction 18 
2.2 Temperature Dependence of the Conductivity: 

Low Concentration « 1015cm-3) 19 
2.3 High Concentration (> 1015cm-3) 21 

3. Impurity Doping Methods 
3.1 Introduction 
3.2 Purification 
3.3 Doping During Crystal Growth 
3.4 Neutron Transmutation Doping 

i i 

23 
23 
23 
26 
28 



4. Measurement Techniques 
4.1 Resistivity Measurements 
4.2 Hall Effect 

5. Experimental and Data 
5.1 Sample Preparation 
5.2 Contact Preparation 
5.3 Measurement 
5.4 Data 

6. Theories for Electrical Conduction in 
Semiconductors 

6.1 Low Temperature Impurity Conduction 

34 

34 

35 

39 

39 

42 
43 

43 

51 

Mechanisms 51 
6.2 Characteristic Concentration Regions 53 
6.3 Density of States for the Metal-Insulator 

Transition 
6.4 Effects of Compensation 
6.5 Theories of the Metal-to-Insulator 

Transiti on 

7. Conc 1 us i on 

Appendix: Sample Preparations 

References 

iii 

55 
58 

58 

62 

64 

67 



ELECTRICAL PROPERTIES OF NEUTRON­
TRANSMUTATION-DOPED GERMANIUM 

Marilyn Rodder 

Department of Materials Science and Mineral Engineering and 
Department of Instrument Science and Engineering, 

Lawrence Berkeley Laboratory, University of California 
Berkeley, California 94720 

Abstract 

Electrical properties of neutron-transmutation-doped germanium 

(NTD Ge) and nearly uncompensated gallium-doped germanium have been 

measured as functions of net-impurity concentration (2 x 1015cm-3 

~ NA - ND ~ 5 x 1016cm-3) and temperature (0.3 K ~ T ~ 300 K). 

The method of impurity conduction as a function of carrier concen-

tration and compensation was investigated in the low temperature hop­

ping regime. For nearest neighbor hopping, the resistivity is expected 

to vary as p = poexP(6/T) while Mottls theory of variable range hoo­

ping predicts that p = poexP(6/T)1/4 in the low temperature limit. 

In contrast, our results show that the resistivity can best be approx­

imated by p = poexP(6/T)1/2 in the hopping regime down to 0.3 K. 



1. Background 

1.1 Introduction 

Although semiconductors have been studied for many years, they 

actually became popular only after Schockley, Bardeen and Brattain 

invented the transistor1 in 1947. Because of this invention, 

2 

research and development of semiconductors was heavily pursued. Their 

most direct uses take advantage of their unique electrical behavior, 

as in transistors, amplifiers and memory devices. Other applications 

include those which combine electrical and optical effects such as . ., 

sensing devices, for example, in strain gauges, nuclear radiation 

sensing devices and low temperature semiconducting bolometers used for 

detection of far infrared radiation. 

1.2 Crystal Structure 

Semiconductors are extremely versatile in their applications 

because their electrical conductivities range from metallic to insu-

lating depending on temperature and doping. Besides the elemental 

semiconductors, Si and Ge, there are many compound semiconductors such 

as GaAs, GaP and InSb. Ternary and quaternary compound semi conductors 

are becoming very important for solid state lasers, photodiodes and 

light-emitting diodes. The elemental semiconductors (Group IV) all 

crystallize in the diamond structure, in which each atom is surrounded 

by four covalently bonded neighboring atoms, forming a regular tetra­

hedron as shown in Fig. 1a. The Group III-V compounds crystallize in 

the zincblende structure. Thus in GaAs, each Ga atom is heteropolarly 

surrounded by four As atoms as in Fig. lb. 
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(a) (b) 
XBL828-11222 

Fig. 1. Tetrahedral bonds in Ge and GaAs. Black dots represent coval­
ently bonded electrons. 

1.3 Energy Bands 

Electrical conduction in crystalline solids--semiconduction--can 

be understood quantitatively in terms of energy bands, that is, elec­

tron energies versus k-space. A common method of describing electron 

energies is to use a model which starts with a free assembly of elec­

trons2, and then to consider the changes in their movement resulting 

from the restrictions presented by the crystal lattice. 

First, consider a free electron in space. The time independent 

Schrodinger equation for the free electron is: 

(1.1 ) 

where ~ is the wave function, and E is the energy of the electron. 

Then: 

~ = A exp(i~~) + B exp(-t~~) (1. 2) 

where k is the wave vector describing the momentum of the electron, r 
is the position vector, and 1~12 is the probability of finding the 

electron anywhere in space. The energy, in the one-dimensional case 

is: 

(1.3) 
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as shown in Fig. 2a3• But unlike electrons in free space, the values 

that k can have are quantized, due to the de Broglie relationship 

between the ele~tron wavelength, 1, and its momentum, P: 

1 = hlp 

p = (2mE)1/2 

such that k, equal to 2w/1 is: 

k = (2mE)1/2 /h = 2w/1. 
E E 

\ f 
~ . /1: ! \ I 

L1JLJ l ·k 
o ~ ----->O ......... --I_k 

(a) (b) 

E 

(1.4a) 

(1.4b) 

(1.4c) 

~ 
I I I 

!Vf'J! I I 

f"-.jLJ ~ k 
-Tria 0 Tria 

(c) 

XBL 828-11223 

Fig. 2. E vs. k in one dimension for (a) free electrons, (b) electrons 
moving in a periodic potential, and (c) E vs. reduced wave 
number. The scale of k in Fig. 2c has been expanded for visu­
al clarification. 

Bloch extended this model to that of a crystal lattice in which 

there is a periodically varying potential due to the charges at the 

lattice sites4, as in Fig. 3. 

ZrZ\1-8Z8 lax 

V(x) 

~_~ ______ -~~ ________ ~ _________ ~~ ___ ~x 

Fig. 3. The variation in crystal potential with distance between lat­
tice sites. 
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Bloch showed that solutions to the one-dimensional wave functions would 

be: 

'l'k = ukexp(ikx) (1.5a) 

and 'l'(x * a) = exp(:ika)'l'(x) (1.5b) 

where a is the lattice periodicity, exp(ikx) represents a plane wave 

and uk(x) has the same periodicity as the lattice. Thus, if there 

are N lattice sites and 'l'(x + Na)= 'l'(x), then exp(ikNa) = 1. The 

resulting allowed k are: 

k = 2~n/Na n = (0,*1,*2,*3 ••• ). (1.6 ) 

This leads to discontinuities in E versus k which occur at the values 

k = n~/a, as shown in Fig. 2b. These discontinuities can be understood 

as follows. For an electron of wavelength A = 2a such that k = ~/a, we 

have the condition of Bragg reflection. Such an electron can no longer 

be represented as a traveling wave. Instead, it should be represented 

as a standing wave comprised of two waves, exp(ikx) and exo(-ikx), 

which travel in opposite directions. The summation of the two waves 

leads to two solutions of different allowed energies at k = ~/a. The 

allowed energy states thus fall into bands separated by forbidden gaps. 

If the energy of a state is described in terms of a reduced wave 

number restricted to the range -~/a ~ k ~ ~/a, and a quantum number to 

describe the band to which the state belongs, then the band structure 

will have the form in Fig. 2c. In order to describe the electron 

* energies as a.function of k, one defines the effective mass m : 

and 

(1.7a) 

(1.7b) 
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The inverse value of the effective mass is the curvature in the E 

versus k dependence shown in Fig. 2c. 

1.4 Density of States 

Proceeding from the concept of quantization, a "density of states" 

can be introduced5• In three-dimensional k-space, the number of 

states in a volume element dk = dkxdkydk z is: 

(L3)dk/8'1r3 (1.8) 

where we consider a cubic volume of side Land k = 2'1rn/L (n = 

O,±1,±2, ••• ). Then, the number of states between k and (k + dk) is: 

(1. 9) 

The density of states per unit energy range and volume, for given spin 

direction, is N(E). For a volume L3 = 1, 

(1.10) 

Since E = h2k2/2m*, the density of states is then 

(1.11) 

The concentration of electrons per unit volume can be found by inte-

grating over the density of states Fermi distribution product. The 

Fermi-Dirac distribution function is defined bi: 

f(E) = [eXP{(E - EF)/kT}+ 1]-1 (1.12) 

where f(E) is the probability that a state of energy E is occupied, 

EF is the Fermi energy, k ;s Boltzmann's constant, and T is the 

absolute temperature. EF is the energy value which is defined at 

absolute zero temperature so that the integral over N(E) and f(E), up 
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to EFequals the number ,of all the electrons, n, per unit volume EF is 

given bi: 

(1.13) 

The number of electrons in each orbital state can be two, one for each 

spin direction, which leads to the factor 2 before the integral. f(E) 

versus E is shown in Fig. 4. 

lr---------------~~ 

. f(E) 1/2 

O~--------------~~--~----E 
XBL 828-11225 

Fig. 4. The Fermi-Dirac distribution function versus the energy of an 
electron state. At T = 0, f = 1 for E < EF and f = ° for 
[> EF, so that all the ·electrons fall into the lowest 

. ~nergy states. For T >0, the distribution function is 
exactly 1/2 at E = EF. 

1.5 Intrinsic Semi conduction 

From the previous section, we know that current cannot flow in a 

pure semiconductor at zero temperature because all the states below 

EF are filled, with no unoccupied states for electrons to flow. 

However, for T > 0, an electron can be freed from the covalent bond by 

means of thermal excitation. This creates both a conducting electron 

and a hole, which can be thought of as a positively charged particle 

whose motion results from a shift of a valence electron. Under an 

applied field, the motion of electrons and holes is in opposite direc-

tions giving rise to electrical conductivity. Thus, we have "intrin-

sic" semi conduction in a p~re semiconductor. 
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The energies of electrons and holes can be described in terms of the 

energy bands of section 1.3. The "valence band" is defined as the high­

est occupied band at T = 0, and the "conduction band" is the lowest unoc-

cupied band at T = O. Thus, the energy necessary to free an electron 

from a bond is given by the energy gap, EG, between the two bands. For 

T > 0 then, those electrons with enough energy to cross the forbidden 

energy gap will conduct in the lowest available conduction band states, 

whereas the holes conduct in the valence band, as in Fig. 5. 

Ee Ee 

CB 

VB + + + + + + 
X X 

(a) (b) 
XBL 828-11226 

Fig. 5. Intrinsic semiconductor (a) at low temperatures and (b) at 
higher temperature where electrons can be excited across the 
bandgap. 

A second way to excite electrons across the bandgap is by photon 

absorption. If the light is of a wavelength such that hv > EG, 

electron-hole pairs will be generated, and photoconduction will occur. 

The concentration of electrons n and holes p in thermal semi con-

duction is dominated by generation and recombination. At equilibrium, 

the following relatio~ship holds3 : 

n + p ~ (np) (1.14) 

where (np) refers to the unexcited state, or recombination. For nand 

p small compared to the number of states in the crystal, thermodynamics 

predicts: 

np = K (1.15) 



where K is a function of temperature only. Then, by defining 

n = p = ni , we have for intrinsic material: 

2 np = ni • 

9 

(1.16) 

Using Eq. 1.12 one can approximate f(E), the so-called "Boltzmann tail" 

for (E - EF) » kT, to be: 

f(E} = exp[(EF -E}/kT]. 

USing this result and Eq. 1.11, we have: 

for 

n = ni = Sf(E)N(E}dE = Ncexp[(EF - Ec)/kT] 

N = 2(2nm*kT/h2}3/2 
c e 

(loll) 

( 1.18a) 

(1.18b) 

wheren is the concentration of electrons and Nc is the density of 

states in the conduction band (CB). Similarly, the concentration of 

holes in the valence band (VB) is: 

(1.19a) 

for (1.19b) 

where NV is the density of states in the valence band. Combining 

Eqs. 1.18a and 1.19a, we have for the intrinsic concentration: 

1.6 Extrinsic Semiconduction 

The discussion of conduction in section 1.5 applies to a pure 

semiconductor. In most applications, however, semiconductors are 

(1.20 ) 

doped with impurities which supply most of the carriers, thereby pro-

vi ding "extrinsic" semiconduction. Typical technologically important 

concentrations range from 1010cm-3 to more than 1020cm-3• 
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The most commonly encountered doping concentrations lie around 1015cm-3 

or - 100 ppb, a very pure substance indeed! The most common dopants for 

S i and Ge a re those element s of Group I II and V. 

1.6.1 Elemental Donors in Si and Ge - The Group V elements (As, P, 

Bi, Sb) have five valence electrons. Four of .the electrons contri- bute 

to the tetrahedral bond of the host crystal (usually Group IV), while the 

fifth electron migrates through the crystal, as with P in a Ge crystal as 

shown in Fig. 6. 

- Ge=Ge=Ge-
II n / n 

-Ge= P ==Ge-
II II D 

- Ge == Ge ==Ge-
I I I 

Fig. 6. Substitutional dopant atom positions in an elemental semicon­
ductor for a donor with extra electron. 

In the case of a phosphorus impurity, the impurity consists of a 

positive ion, p+ binding an electron in its Coulomb field. However, 

the Coulomb attraction between the p+ and a free electron is weak 

due to the large relative dielectric constant of the semiconductor 

crystal. The Coulomb potential is: 

V (r) (1.21) 

where €r is the relative dielectric constant of the medium. The 

values of €r for Si and Ge are 11.7 and 16.0, respectively, showing 
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a decrease in the interaction force. This screening is responsible 

for the small binding energy of the electron at the donor site. Using 

the Bohr modell, we find that this small binding energy is related 

* to the Bohr radius of the donor electron, a : 

* +:2 * 2 a = n KIm e (1.22) 

w he re K = 4 1TE: rEo' In E q. 1. 22, m * , i s the ef fec' t i ve mas s, and 1; and 

EO are constants. This is essentially the result of what is called the 

effective mass' theo'ry, which predicts surprisingly well both binding 

energies and Bohr radii. Donors which can be described with this 

simple model are called in analogy to hydrogen, II hydrogenic".A typi­

cal binding energy corresponding to thegtound state of the donor in 

Ge is ED= 0.01 eV. This is small compared to the bandgap, EG, which 

is 0.7 eV for Ge at room temperature. As shown in Fig. 7, the level is 

so close to the conduction ba'nd that almost all donors lose their elec-

trons, i. e~, are i oni zed at roomtefnperature. 

E t@¥m,pWJ.~~:rFt%ig\f§1k:WW.:l;qB,nt§tfmt*r~N1 CB 
c 

ED ,--- DONORS ----

EA - - -ACCEPTORS- - - -

Ev VB 

Fig. 7. Donor level position at conduction band edge, and (b) accep­
tor level, position at valence band edge at room temperature. 
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The concentration of electrons n is for a11 practical purposes, equal 

to the concentration of donors NO' if NO »n i • From Eq. 1.16: 

n :::: NO » ni (1.23a) 

2 
p = ni /NO (1.23b) 

1.6.2 Acceptors - In order to make the host crystal conducting 

with holes instead of electrons, Group III acceptors (B, Al, Ga, In) 

which are trivalent impurities and which accept electrons to complete 

the tetrahedraJ bond of the host are used. When the vacancy of the 

electron bond is filled by an electron moving into the site from an-

other bond, a hole is introduced in the latter bond. The hole then 

migrates throughout the crystal. The acceptor is negatively charged 

since it has entrapped the additional electron. The positively charged 

hole i~ attracted and bound by the acceptor with a small binding energy 

of - 0.01 eV, in close analogy to the "hydrogenic" model used for 

donors. Thus, essentially all the acceptors are ionized at room tern-

perature. The acceptor level lies just above the valence band edge, 

as in Fig. 7. This level corresponds to the hole being captured by 

the acceptor. When an acceptor is ionized (i.e., by an electron ex­

cited from the top of the valence band to fill the hole), the hole 

jumps to the top of the valence band and becomes a free carrier. 

That donors and acceptors lie in the bandgap does not contradict 

the model described in section 1.3 because the model was for a pure 

crystal. Extrinsic semiconductors contain impurity states, or imper-

fections. Furthermore, impurity states which are bound states are 

localized, not delocalized as are Bloch electrons. Impurity states 

are thus nonconducting. 
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1.6.3 Compensation - Compensation is the result of the presence 

of both donors and acceptors and can· be achieved by introducing Group 

III acceptors into n-type material or Group V donors into p-type mate­

rial. Compensation K is defined as the ratio of the concentration of 

minority impurities to majority impurities. Thus, in a semiconductor 

with NA acceptors and NO donors, with NA > NO' the compensation is: 

K = NO/NA (1.24) 

The effects of compensation will be explained in chapter six. 

1.7 Band Structure of Real Semiconductors 
-

In section 1.3, a conduction band centered at k = a was assumed. 

However, the band structures of real semiconductors have regions where 

the energy E(k) is not quadratic in k, so that those states cannot be 

represented by a single effectivi mass introduced in section 1.3. 

Figure Ba shows the band structure in germanium5• 

Ge 

(a) (b) 

XBL 828-11238 

Fig. B. (a) Band structure of Ge plotted along the [100J and [111J 
directions, and (b) ellipsoidal energy surface corresponding 
to primary valleys along the <111> directions. 
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The conduction band has its minimum along the [111] direction at the 

zone edge~ Due to the cubic symmetry in the kx-' ky- and kz- direc­

tions, the energy band must have tetrahedral symmetry. Thus, there are 

actually eight minima, shown in Fig. 8b. This modifies Eq. 1.22, so 

* that m will be some average between the respective longitudinal and 

transverse masses of ml = 1.6 mo and mt = 0.082 mo for germanium. 

This gives a value of a = 45A for Ge, where the dielectric constant is 

k = 16 and the lattice constant is 5.65 A. This is a large radius, so 

that impurity orbits overlap at relatively low impurity concentrations. 

Because we have eight conduction band minima in Ge, there are then 

eight solutions to the lowest energy state. This degeneracy is not 

allowed by the symmetry of the lattic:e; thus, corrections need to be 

made in calculating the effective mass for the ground state. 

The behavior of an electron in a crystalline solid is determined 

by the Schrodinger equation4 : 

(1.25) 

where V(~) is the crystal potential "seen" by the electron, and ,(~) 

and E are respectively, 'the state function and energy of the electron. 

If Eq. 1.25 is modified to account for the longitudinal and transverse 

masses, ml and mt , the result for the ground ~tate is: 

{(--n2/2ml ) v2(x) + "C-n2/2mt)[v2(y) + v2(z)] + V(~)}'l'(r) = 

(1.26) 

It is always possible to write the solution to Eq. 1.25 as: 

(1.27) 

where u(r) has the same symmetry as the lattice and f(r) is a hydrogen-
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like envelope function. It can be shown6 that the ground state enve­

lope function f(~) which satisfies ~q. 1.26 for the ground state 

function is: 

* f(r) - exp(-r/a ) (1.28) 

where r > ra and 4nr!/3 is the atomic volume •. Eqtiations 1.26 to 1.28 

then, represent the modifications to the ground state energy states of 

a donor impurity. The other singly bound energy states can be repre­

sented by Eqs. 1.25, 1.27 and 1.28. 

1.8 Calculating Energy Bands: The Tight-Binding Approximation 

One method used to calculate Eq. 1.25 is by the "tight-binding" 

methodS. This method assumes a crystalline array of N potential 

wells, as shown. 
V(x) 

j-l j j+l 
~---~~---------.------------.-----x 

XBL B2B-11227 

Fig. 9 •. The potential energy of an ,electron in a crystal, where Wo, 
WI and W2 are energy levels. 

In each well, the electrons have bound states with energies WO' WI' 

••• Wn and wave functions PO' 61, ••• 6n• When the electron moves 

from one well to another, a band containing N states is formed from 

each bound state of a single well. The wave function describing this 

motion is: 
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. N 
'l'nk = N-1/ 2 " exp(ikX .)O .(r - x.) .LJ 1 J nJ J 

J = 

(1.29) 

where Xj describes the position of the jth atom and 6nj (r - Xj ) is the 

atomic orbital centered around the jth atom. The energy of the elec-

tron described by 'l'k is given, according to quantum mechanics13, by: 

E (k) = < 'l' k I H I 'l'k> ( 1. 30 ) 

where H is the Hamiltonian of the electron. The value En(k) of the 

energy of an electron with this wave function is: 

(1.31) 

where b.Vis the difference between the potential energy V and that of 

the simple well. If it is assumed that only nearest-neighbor inter­

actions give the most significant overlap integrals, then for a simple 

cubic lattice with lattice constant, a: 

(1.32a) 

where (1.32b) 

and I is the "overlap energy integral", where 

*. 3 I = - (0 i+t b.V0 i )d x (1.32c) 

Thus, according to the tight-binding approximation, the spread between 

the minimum and maximum energies of the band is proportional to the 

overlap integral I. The bandwidth B in this approximat~on is B = 2zI, 

where z is the number of nearest neighbors in the lattice4• 

1.9 Anderson Localization 

The tight-binding model above assumes that the donor sites form a 

periodic lattice. Although the impurity sites occupy substitutional 
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positions of the host crystal, they have a low enough concentration 

that we can regard them as randomly distributed. This. is known as 

lateral disorder. The value of the overlap integral I in Eq. 32c will 

then change from site to site due to the random donor distribution. 

Anderson7 considered the effect of the fluctuations by consider­

ing what happens when a potential V is added to each lattice site in 

the tight-binding approximation. V was allowed to lie between the 

limits = Va' as shown in Fig. 10. 

Vb===t=i====td====tj====== ; 
(a) 

V(x) 

b LJ D D 
.. x 

(b) 
XBL 828-112~O 

Fig. 10. One-dimensional random potential energy introduced by 
Anderson for (a) Vo = a and (b) Vo/B large. 

Anderson showed that there exists a critical value (VO/B)crit such 

that the solutions to the Schrodinger equation will lead to "local ized" 

wave functions, where localization means that no conductivity can occur 

in the lattice at absolute zero temperature. He then proved, using the 

Born approximation for the mean free path, that for (Va/B) just less 

than (VO/B)crit, the minimum value for the conductivity will be: 

(1.33) 

where dc is the average distance between impurity centers. Calcula­

tions estimate that (VO/B)crit = 2. The effect of disorder is to 

produce localization of states, even though there may be strong over­

lap between wave functions of adjacent states. 
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Thus, if the Anderson criterion of Va ~ 2B is satisfied for a 

particular band, all states in the band will be local ized. If the 

Anderson criterion is not satisfied, then the states are localized in 

one range of energies and not localized in another where the two 

ranges are separated by a critical energy Ec. The effects of Ander­

son localization will be further discussed in Chapter 6. 

2. Electrical Conduction in Doped Semiconductors 

2.1 Introduction 

The most fundamental electronic property of materials is electrical 

conductivity. Both electrons and holes contribute to electrical cur­

rent. For a sample with only one type of carrier--for example, elec­

trons--the electrical conductivity a is defined as: 

where Le is the average time between collisions of an electron. The 

electrical conductivity of a material depends on two factors: 1) the 

number of current carriers per unit volume, and 2) the mobility of the 

carriers under an applied field. The electrical mobility Pe is de­

fined as the ratio ve/e, the velocity per unit field strength. Since 

the drift velocity in the field is: 

* ve = -e Lee/me , (2.2a) 

* (2.2b) then, Pe = e Le/me 

and ae = nep e (2.2c) 

-:. 

-. 
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Analogously, in a sample which is p-type we have the conductivity of 

holes a h: 

(2.3) 

for hole mobility ~h and average time between collisions of a hole 

L h• If there are both electrons and holes in a sample, their cur­

rents and conductivities are additive. The total conductivity a is: 

A second commonly used parameter is the resistivity p: 

p = l/a = l/ne~e (for n-type) (2.5a) 

= l/pe~h . (for p-type) (2.5b) 

2.2 Temperature Dependence of the Conductivity: Low Concentration 

«1015cm-3) 

The temperature dependences of the resistivity and carrier con­

centration of semiconductors doped with low impurity concentrations 

(- 1014cm-3) are shown in Figs. 11a and lIb. The resistivity changes 

with temperature primarily as a result of the change in carrier concen­

tration n. At temperatures far above room temperature, there is appre-

ciable intrinsic carrier concentration, and 1n n will vary inversely to 

the temperature with a slope of (-EG/2k), as seen from Eq. 1.20. The 

T3/ 2 dependence of Nc in Eq. 1.18b is generally small compared to the 

exponential dependence of T in Eq. 1.18a. As the temperature decreases, 

the thermal energy of the intrinsic carriers decreases, such that their 

concentration decreases and the resistivity increases. This is shown in 

segment 1 of Figs. 11a and lIb. 
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Fig. 11. (a) Carrier concentration and (b) resistivity relationships 
as a function of temperature. 

At about room temperature, extrinsic impurity conduction dominates and 

there is complete ionization of donors (in n~type material) or acceptors 

(in p-type material). Thus, in segment 2 of Fig. 11a, we find: 

n = INO - NA\ in the extrinsic reg~on. The drop in resistivity in 

this range is due to the temperature dependence of the mobility p. The 

carrier mobility increases with decreasing temperature due to a decrease 

in "lattice scattering". Lattice vibrations lead to shorter mean free 

paths for carriers and carriers travel faster at higher temperatures, thus 

shortening the time between collisions. Both factors decrease the mobil-

i ty at hi gh temperatures. 

As the temperature drops below about 100 K, the carriers begin to 

freeze out on the donor/acceptor·centers in n~type/p-type material. The 

free carrier concentration then drops, as. in segment 3 of Fig. 11a and the 

resistivity corr:espondingly. increases. The slopes of segments 3 and 4 in 

the freeze-out region of the concentration curve are described by approxi­

mations3• Consider, for example, and. n-type semiconductor (NO> NA). 

Charge neutrality requires that:. 

where NA and NO are the total concentrations of acceptor and donor 

centers; and PA and nO are the concentrations of holes and electrons 

", 
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on centers. Thus, the concentration of electrons in donor centers is 

no = NOf(EO)' The rate of loss of electrons from donor centers to the 

conduction band is: 

(2.7) 

where NC is the number of empty conduction band states, (NO - NA - n) 

is the number of filled,or neutral, donors and k1 is a proportional­

ity constant. The rate of return of electrons to the donors is: 

At equilibrium, 

and 

n(n + NA)/NC(NO - NA .,. n), = k1/k2 = K 

K = exp(Eo - EC)/kT 

For n » NA, and n < NO' Eq. 2.9a reduces to: 

n = (NcNo)1/2exp(Eo - EC)/2kT 

while for n « NA, 

(2.8) 

(2.9a) 

(2.9b) 

(2.10) 

n = NC[(NO - NA)/NA]exp(EO - EC)/kT (2.11) 

Equation 2.10 applies to segment 3 of the 1n n versus T-1 curve where 

n > NA and n (ED - EC)/2kT. As n decreases to n < NA, the slope 

increases as in Eq. 2.11 to n (ED - EC)/kT, shown in segment 4. 

2.3 Temperature Dependence of the Conductivity: High Concentration 

(> 1Q15cm-3) 

The effects of increased impurity concentration on the carrier 

concentration and resistivity curves as a function of temperature, are 

shown in Figs. 12a and b. As NO increases, (NO - NA) increases in the 

extrinsic region, and the resistivity correspondingly decreases. The 
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relationship between the resistivity and impurity concentration at low 

temperatures becomes more complicated. As the impurity concentration 

is increased, a point is reached where charge transport is no longer 

due to free carriers, but is instead due to charge transport between 

impurities, known as impurity conduction8• At medium impurity con­

centrations (- 1Q15cm-3), "hopping" transport occurs as electrons hop 

from occupied to unoccupied local ized donor centers. The resistivity 

then follows the exponential relationship, p = poexP(A/Tn) for 

0.25 ~ n ~ 1.9 The value of n depends upon whether variable range or 

nearest-neighbor hopping occurs. At high concentrations (> 1017cm-3), 

"banding" occurs in which impurity state wavefunctions overlap signifi-

cantly and lose their localized character. This leads to a metallic 

type of conduction, with conduction occurring at all temperatures. 

Theories concerned with hopping and'banding transport in impurity 

bands, as well as the effects of compensation will be presented in 

Chapter 6. 
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Fig. 12. Effects on high impurity concentration on (a) carrier concen­
tration and (b) resistivity curves as a function of tempera­
ture. 



3. Impurity Doping Methods 

3.1 Introduction 
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Semiconductor doping is accomplished by introducing desired impuri­

ties into specified areas of a semiconductor device. Due to the vari­

ety of doping requirements needed for moder,nelectronic devices, sever­

al doping methods have been developed. Two methods, impurity diffusion 

and ion implantation, are commonly. used to, dope standard thin layer 

devices of thicknesses of about 1000 A or less. This discussion of 

doping, however, will emphasize bulk techniques used to dope devices of 

greater thickness. The two most common bulk doping methods are doping 

during crystal growth and neutron transmutation doping (NTD). 

Because device performance and reliability are critically affected 

by impurity levels,there 'is a strong incentive to first develop large, 

ultra-pure semiconductor single crystals. Once the starting semicon­

ductor material has been purified of foreign atoms, it is then doped 

deliberately to the desired impurity level. In the case of ultra-pure 

germanium, a net concentration of shallow impurity centers of about 

1010cm-3, corresponding to a net-impurity concentration of one in 

more than 1012 germanium atoms ,has been achievedlO • 

3.2 Purification 

CommerCially produced polycrystalline germanium ,used as starting 

material normally contains boron,. phosphorus and ,aluminum at levels of 

- 1012 to 1Q13cm-3. In order to reduce these impurity concentrations 

by two to three orders of magnitude, one can use the principle of solid­

liquid impurity segregation. Thus, for a given impurity there is a 

specific ratio of concentrations found in the liquid CL, and in the 
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solid Cs when the phases are in equilibrium1 (Fig. 13~). This ratio, 

called the segregation coefficient, k, is defined as: 

The value of k in Eq. 3.1 is appropriate only when the interface is at 

equilibrium. Because the segregation is therefore alter~d by any fi­

nite growth velocity such that impurities must diffuse through a dif­

fusion layer at the interface, an effective segregation coefficient 

keff is found to be: 

keff = [l+(l/ko - 1) exp(~ f6/D)]-1 , (3.2) 

where 0 is the diffusivity of impurities in the 1 iquid, f is the growth 

rate and 8 is the width of the diffusion layer. 
C C 

CL ' i, I CL -c'iio-
Cs Cs 

L..-.----'---....... x x 
(a) (b) 

XSl828-11l39 

Fig. 13. Solute concentrations at (a) equilibrium and (b) finite 
growth rate at the sOlid-liquid interface. 

Zone purification and multiple "normal freeze" growth are most 

commonly used to purify germanium. In zone purification1, a narrow 

liquid zone of germanium is melted by means of an RF field which is 

passed slowly along a long bar of germanium contained in a "boat" 

(Fig. 14). The molten zone is moved from one end of the bar to the 

other end, and the process is repeated several times in order to col-

lect the impurities by segregation into one end of the bar. 
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Fig. 14. Schematic of zone purification process. 
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Fig. 15. Schematic of normal freeze growth method. 

In the "normal freeze" method shown in Fig. 15, impurities wi th 
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k < 1 become concentrated in the melt. This results in a high concen­

tration of impurities in the tail end of the crystal. The pure "seed" 

ends of preceding crystals are then used to grow subsequent crystals 

of higher purity. 

Although both zone purification and the multiple normal freeze 

growth method can be theoretically used to produce perfectly pure 

crystals~ there are practical limitatinns. Interactions between the 

molten germanium, the container and the ambient in the zone refiner 

or crystal puller limit the purification to concentrations of 109 to 

1010cm-3. In the case of the purest graphite containers available, 
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phosphorus and boron are found to contaminate germanium10 to concen­

trations > 1011cm-3• Synthetic quartz, a more suitable material, con­

taminates germanium with - 1010cm-3 phosphorus and higher order com­

pounds of oxygen, aluminum and si1icon10• 

In addition, the composition of the atmosphere surrounding the melt 

controls the equilibrium between formation and dissociation of impurity 

complexes, and the mobility of undesirable impurities. High vacuum ;s 

generally not the preferred ambient because of the very long mean free 

paths of atoms and molecules. The long mean free path increases the 

probability for an impurity to reach the melted germanium. As a 

result, a reducing gas ambient such as hydrogen is usually preferred. 

3.3 Doping During Crystal Growth 

Doping can also be achieved during single crystal growth. The 

most common growth technique for germanium is the Czochra1ski method. 

Doping is achieved either by adding the intended dopant element in 

pure form to the melt or by adding a piece of heavily doped semicon­

ductor called the "master dopant" to the melt. The former method is 

seldomly used because it is difficult to control accurately the ex-

tremely small amounts of added dopant. Oxidation, evaporation or 

interaction with the crucible and atmosphere can reduce the elemental 

dopant drastically. Impurity segregation causes a variation of im­

purity concentration along the crystal axis. Impurity striations-­

local fluctuations "in the impurity concentration--occur in all crystals 

grown from the melt. Various methods have been devised to obtain con-

stant impurity concentration profiles. Depending on the segregation 

coefficient (k < 1), one can add more dopant (k > 1) or more pure 

'. 
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semiconductor material (k < 1). These fluctuations are caused by 

three effects11 • First, crystal rotation occurs in a non-perfectly 

cylindrical group of isotherms since the isotherms must be shaped so 

that a single high-purity crystal of the desired diameter can be grown. 

For each revolution, the solid/liquid interface may pass through a 

"hot" or "cold" point, thereby modifying the crystal growth rate and 

effective segregation coefficient. This results in variations of im­

purity concentration. Secondly, incorporation of impurities changes 

the melting point, which can cause oscillations in the growth rate and 

effective segregation coefficient, as in Fig. 16a andb. The third 

cause of impurity striations is due to formation of convection cells 

in the melt. These cells stir the melt in patterns which affect the 

homogeneity of the impurity concentration. To break these convection 

cells, one can use magnetic field gradients--which cause eddy currents 

in the melt--to reduce impurity striations11 • However, the problem 

of producing homogeneously-doped and compensated semiconductor single 

crystals in melt-doped and grown crystals remains12 • As will be 

seen later, small doping fluctuations become important at low tempera­

tures. At temperatures below about 1-2 K, dopant concentration fluc­

tuations of a few percent lead to resistivity fluctuations of more 

than an order of magnitude. As a result, efforts to eliminate this 

problem have resulted in the development- of a doping technique known 

as neutron transmutation doping (NTO). The NTO process and its advan­

tages will be discussed in the next section. 
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3.4 Neutron Transmutation Doping 

3.4.1 Introduction - As discussed in section 3.3, impurity stria­

tions occur in crystals which have dopants incorporated during growth 

from a melt. Because the resistivity of impurity conduction, intro-

duced in section 2.3, is critically dependent on impurity separation 

and degree of compensation, it is desirable to dope semiconductors by 

a method whi ch allows perfectl y homogeneous doping. 

Fi g. 16. (a) Etched segment of aTe-doped InSb crystal grown in the 
presence of (b) thermal oscillations in the melt. (From "J. 
Electrochem. Soc." 119, 1218 (1972). 

3.4.2 The NTD Process - Neutron transmutation doping13 is based 

upon thermal neutron irradiation of an undoped semiconductor. Because 

neutrons are neutral particles, their penetration range is very long. 

In the absence of any electrical charge, neutrons readily reach the 

nucleus. The number of neutron captures by semiconductor nuclei per 

unit volume N is given by: 

(3.3) 

where NT is the number of target nuclei per unit volume, 0c is the 

capture cross section, and ~ = ~t is the fluence (flux times time). 

'. 
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The magnitudes of the impurity concentrations can thus be varied, 

since they depend on the neutron flux and exposure times. It can be 

shown that for low neutron energies, the capture cross section is re­

lated to the energy b19 : 

-1/2 1 0c (l E (l Iv (3.4) 

where v is the neutron velocity. The cross section is thus related to 

the probability of interaction between the nucleus and the neutron, 

such that the probability of neutron·capture is increased at low neu-

tron energies. 

Since the addition of a neutron causes the nucleus to become ex-

cited, the target nucleus emits high energy gamma radiation after neu­

. tron capture. The energy of gamma rays can be measured accurately. 

The gamma ray spectrum is an accurate and unique signature of a given 

nucleus. Neutron activation analysis14, a tracer technique which is 

sensitive to impurity levels as low as 109cm-3, is based on the 

measurement of gamma ray spectra. If the product isotope is unstable, 

further decay occurs until a stable isotopic state is reached. 

Before discussing neutron transmutation doping of germanium, we 

will consider the simpler case of silicon, which is of major techno-

logical importance •. Of the - 8,000 tons of semiconductor silicon pro­

duced in 1981, 40 tons were neutron transmutation doped22 ,23. Al-

though this is a small percentage of the total silicon market, NTO Si 

is critical to the production of very high voltage, high power devices, 

which are extremely expensive. This is in contrast to the more popu­

lar devices of extremely small voltage and low power used in the semi­

conductor industry. 
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In the case of silicon, three stable isotopes are present. Absorp­

tion of neutrons leads to the following reactions18 : 

29S· 
14 1 
30s· 
14 1 

(92.3%) 
(4.7%) 
(3.1%) 

t~Si(n,y) 

~~Si(n,y) 
fZSi(n ,y) 31S· 31p + - 0 108b 14 1 -+ 15 a, a C = • 

t1/2 = 2.62h 
The first two reactions do not produce dopants. However, the 30Si 

isotope which is 3.1% abundant is transmuted to 31Si which then a-

decays with a half-life of 2.62 h to the stable isotope 31p, a donor. 

The des ired phosphorus isotope further decays: 

31 ( ) 32 32 -
lS P n,y lS P -+ 16'S + B ,ac = 0.19b 

t1/2 = 14.3d 

This, process occurs, however, only after substantial dopant levels 

have been reached. 

The undesirable 32p is the primary source of radioactivity in 

silicon and leads to unwanted sulfur in the crystal. This secondary 

reacti on 1 imits the NTD method to p > 1 1'1 cm for Si. In the range 

p < 5 ncm, the 32p activity can be reduced by using low neutron flux 

densities (- 10 n/cm2sec) because 32p production varies with the 

square of the neutron flux. However, this leads to prolonged irradia­

tion times and unattractively high costs. For higher resistivity 

material, p > 10 ncm, the formation of 32p can be reduced by using 

high neutron flux densities (- 1015n/cm2sec). Due to the use of 

shorter irradiation times, there is incomplete decay of the 31Si 

activity within the radiation time such that there are fewer 31p 

atoms available for production of 32p. 
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Although silicon is the only semiconductor which is commercially 

doped by NTO, the process can be used for other semiconductors. Shown 

below are the neutron capture reactions which yield dopant isotopes in 

germanium and gallium arsenide, respectively: 

TABLE 1. 

Isotope 
Fraction . ·Reaction ac(b) t1/2 Type 

( 20.5%) §gGe(n,y) 71 71 K 
. 32 Ge -+- 32 Ga + 3.25 11.2d p 

( 36.5%) HGe(n,y). 75 75 + B - 0.52 82.8m 32Ge -+- 33As n 
( 7.8%) §~Ge(n,y) 

77 . 77 
n Ge -+- 33As + B- -+- Se + B - 0.16 l1.3h n 

( 60.1 %) ~iGa( n,y) 70Ga 31 -+- §~Ge + B - 1.7 21.1m n 

( 39.9%) nGa(n,y) nGa 72 + B - 4.6 14.1h -+- 32Ge n 

(100.0%) ~~As(n,y) 76 76 + B - 4.4 26.3h 33As -+- 34Se n 

Of the above cases of Si, Ge and GaAs, only germanium yields a 

compensated material,-whilesillcon and gallium ars;enide yield strict­

ly n-type dopants. For germanium, the compensation ratio will be: 

. N 
K = ---NO = [As] + 2[Se] - 0 322 

A EGa] -. 

The values for selenium are counted twice because selenium is a doubly 

charged donor and can thus compensate two acceptors •. We bel ieve that 

the value K = 0.322 is more accurate than the value K = 0.40 used in 

other sources, based on older capture cross section data18,19. 

Following neutron irradiation, the NTO material is thermally an­

nealed of radiation damage caused by residual high-energy neutrons 

present in the thermal neutron beam. The primary sources of radiation 

damage are the fast neutron knock-on displacements and gamma and beta 
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recoil damages which produce massive numbers of atom displacements 

compared to the dopant atoms produced. Typical numbers of displace­

ments for each dopant atom produced are as high as 104 to 106 in 

silicon13• Of these, the displacements from fast neutron knock-on 

recoil can be expected to be about 103 times higher than the damage 

from thermal neutron recoil13• Fast neutrons therefore dominate the 

displacement damage unless thermal-to-fast neutron ratios exceed 

1000:1. Typically, the ratio of thermal-to-fast neutrons is only 

about 10:1 to 50:1, but there are reactors· which can achieve ratios 

higher than 1000:120 • The thermal neutron capture cross sections 

for germanium and gallium arsenide are much larger than those for 

silicon, as shown in Table I. As a result, the displacement damage by 

thermal neutrons, relative to fast neutrons, is greater than it is in 

silicon. 

Radiation damage introduc~s defect levels in the bandgap, which 

causes reductions in free. carrier concentrations, carrier mobility and 

minority free carrier lifetime. Thermal annealing recovers the elec-

trical activity of the dopant impurities by healing the damage. Al-

though the free carrier concentration and mobility can be recovered 

during the annealing cycle, the minority free carrier lifetime is not 

fully recovered. This is not well understood but it is thought that 

the lifetime is strongly affected by the purity of the starting mater­

ial and the cleanliness of the reactor14• For germanium and silicon, 

thermal annealing temperatures of 400-450°C and BOO-850°C, respective­

ly, are commonly used21 • 
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3.4.3 The Advantages of the NTD Process - Using the NTD process, 

one obtains reproducible, homogeneously-doped semiconductors of a known 

compensation such that NTD is advantageous over conventional doping 

methods as discussed i~ section3~3. 

Because all reactors producing NTD material rotate the ingots in 

order to improve radial uniformity, the accuracy in the doping can be 

controlled to better than 1% for small samples14• This is far supe-

rior to conventional methods for which the doping inaccuracy may be as 

high as 25%13. Figure 17 shows the accuracy attainable in terms of 

percentage deviation of mean dopant concentration. Also shown is a 

comparison of the spreading resistance as a function of radial distance 

for both NTD and conventional methods • 

The narrow resistivity variation (as low as % 4%13) attainable 

in NTD material leads to devices of more uniform electrical character-

istics, especially in voltage and switching characteristics. This is 

particularly important in high power silicon devices, which require 

high breakdown voltages. The uniform resistivity allows a uniform 

avalanche breakdown across the device. Finally, the NTD method is 

particularly desirable for infrared detectors in which considerations 

of low operating temperatures and high sensitivity often require close 

compensation of shallow impurities. 
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Fig. 17. Illustration of irradiation target accuracy obtained on sam­
ples irradiated at the University of Missouri Research Reac­
tor. The insert is a schematic of the spreading resistance 
traces across a wafer for conventionally doped and NTO Si. 
[After J.M. Meese, Neutron Transmutation Doping in Semicon­
ductors,. Plenum Press, New York, 3 (1979)]. 

4. Measurement Techniques 

4.1 Resistivity Measurements 

The resistivity is the inverse of the conductivity a = ne~, where 

n is the concentration of charge carriers (cm-3), e is the charge of 

the electron (= 1.6 x lolgAs) and ~ is the mobility (cm2/Vs). The 

resistivity p of a homogeneous material is the resistance R of a unit 

cube measured between one pair of parallel faces. With R = pL/A, we 

find p = RA/L(n cm). It can be determined by various methods, for 

example, by using the so-called "four-Doint" probe or the "two-Doint" 
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probe24 , shown respectively in Fig. 18a and b. With the four-point 

probe, one passes a current I through the two outer probes, while the 

two inner probes act as high impedance voltage sensors so that the 

resistivity p is1: 

p = (V/I)1fo/ln2 gcm for 0 « s 

p = (V / I)21fs Q cm for 0 » s 

(4.1a) 

(4.1b) 

where 0 is the sample thickness and s is the thickness between probes. 

Another technique is the two-point probe, used to measure the spreading 

resistance of a sample1,25. This technique allows the local resist-

ivity on a ~m scale to be determined; thus, impurity striations on a 

wafer can be measured. 

(a) (b) 
XBl 828-11241 

Fig. 18. (a) The four-point probe. (b) The two-point probe. Probes 
of a hardened and highly conducting alloy are pressed on the 
sample surface. 

4.2 Hall Effect 

4.2.1 Basic Configuration - The most commonly used method to de­

termine carrier concentration and the type of the ca.rriers (+ or -) is 

the Hall effect technique24• Together with a resistivity measurement, 

the carrier mobility can be determined: ~ = l/pne. The standard Hall 

effect configuration is shown in Fig. 19. A current I is passed 

through the sample in the x-direction. By applying a magnetic field B 

in the z-direction, the Lorentz force acting on electrically charged 

carriers causes displacement of the carriers in the y-direction. 
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There is thus a build-up of an internal electric field (or Hall field) 

EH, which will cancel the effect of the Lorentz forces. 

d 
y 

z 

11:..-___ ...... X 

XBL 828-11244 

Fig. 19. Basic configuration for Hall effect measurements. 

Once equilibrium ha~ been established, in typically less than 10-13sec 

the Hall force is equal to the Lorentz force, and: 

e( v x B) = eEH 

for a current density Jx = Ilbd, and Hall coefficient RH• In the 

general case, where one type of carrier predominates: 

and RH = lIne. 

Above, n is the carrier concentration and e is the charge on an 

electron. If both electrons and holes contribute to conduction, RH 

can be shown to be: 

where b = ~n/~p is the ratio of the electron to hole mobility. 

4.2.1 Van der Pauw Method - In 1958, a method of measuring re­

sistivity and Hall effect of flat, thin samples (lamellae) was intro­

duced by L.J. van der Pauw26-. For this method, the electrical con-
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tacts must be sufficiently small and located at the circumference of 

the sample. Furthermore, the sample should be of constant thickness 

and must not have isolated holes. 

Van der Pauw showed that for an arbitrarily shaped sample of con-

stant thickness 0 with successive contacts A,B,C,D as described above 

and shown in Fig. 20, the resistivity can be expressed as: 

p = (~o/ln2)[(RAB,CD + RBC ,DA)/2] x f. 

RAB,CD is the resistance obtained from the voltage across contacts A and 

B, divided by the current through contacts C and D. RBC,DA is analo-

gous to RAB,CD' and f is a function of the ratio RAB,CD:RBC,DA only 

as shown in Fig. 2126. In the case of a circular or rectangular sample, 

f = 1. 

Fi g. 20. 

o 

.. 
TRANSFORMATION 

Van der Pauw's use of conformal transformation to determine 
the resistivity of an arbitrarily shaped sample of thickness 

f~}!S;J 
1 2 5 10 2 5 102 2 5 103 

(RAB,co/RBC,OA) 
X8L828-11247 

Fig. 21. The function f used to determine the specific resistivity of 
a specimen with an arbitrary contour as a function of the 
resistance ratio R12 34/R23 41. [after L.J. van der 
Pauw, Phillips Res. ~epts.,'13 (1958) 1J. 
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Both the Hall mobility and free carrier concentration can be found by 

measuring the change of resistance, RBD,AC when a magnetic field B is 

applied perpendicular to the sample. The hall coefficient RH is then: 

RH = (oARBD,AC)/B 

ARBD,AC is the change of resistance due to the magnetic field. The 

Hall mobility ~H is then given by: 

~H = (oARBD,AC)/Bp 

and the free carrier concentration is: 

n = B/eoARBD,AC 

Van der Pauw and others have made estimates of the error intro-

duced by using contacts of finite size and not located at the circum­

ference of the sample. It has been shown25 that the van der Pauw 

geometry is quite insensitive to deviations from the ideal geometry. 

In Fig. 22, one sees that the error in sheet resistance is only second 

order dependent on the ratio of contact length to the length of one 

side of a square-shaped sample27 • 

Fig. 22. 

E 0.1 

0.01 f/"---'-----................................. 
0.1 1.0 
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Normalized sheet resistance error E with contacts centered 
on each side of a square specimen with dimensions as shown 
in the insert as a function the ratio of contact length to 
side of the square. [after M.G. Buehler and J.M. David, 
Natl. Bureau of Stds., Special Publ. 400-29 (1967) 64J. 
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5.1 . * Sample Preparatlon 
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Wafers of ultra-pure p-type germanium crystal #516 were cut per­

pendicular to the <113> axis of crystal growth (Fig. 23), and were 

lapped with 600 and 1900 grit lapping compound. The six wafers, taken 

along the lengths 3.3 to 5.2 cm of the 17 cm long crystal, had impur­

ity concentrations of 3.4 x 1010 to 4.0 x 1010 cm-3• Neutron 

transmutation doping (NTD) to gallium concentrations of 2 x 1015cm-3 

~ NA~ 5 x 1016cm-3 was done on the wafers by J.M. Meese at the 

University of Missouri Research Reactor. About one year after 
. . 

neutron irradiation--after the decay of many half-lives of the longer 

1 iving 71Ge (t1/2 = 12d}--two samples from each wafer of size 

3 ** - 7 x 7 x 2 mm were cut with a string saw and lapped This was 

followed by etching (- 15 secs) of the samples in a 3:1 HN03:HF so­

lution and quenching in electronic grade methanol. Next, the samples 

were thermally annealed at 400°C for six hours in dry argon in order 

to heal radiation damage incurred during the NTD process. 

In order to compare NTD germanium (with compensation K = 0.322) 

with nearly uncompensated germanium, wafers of ultra-pure crystal #582 

were cut at lengths 13.2, 14.5 and 15.5 along the crystal as shown in 

Fig. 24. These wafers have gallium concentrations of 2.4 x 1015cm3 

*Details of sample preparation are destribedin the Appendix. 

**Additional samples of size - 0.4 x 0.4 x 0.6 mm3 were later tested 

with resistance as a function of T, identical to that of the larger 

samples. 
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to 1.1 x 1016cm-3, respectively, as shown in the impurity concentra­

tion profiJe. Two samples of size - 7 x 7 x 2 mm3 were cut from each 

wafer. 

5.2 Contact Preparation 

In order to provide ohmic p+ contacts over a large temperature range, 

the samples were doubly implanted at room temperature with boron ions at 

100 keV at a dose of 2 x 1014cm-2 and 130 keV at a dose of 4 x 1014cm-2. 

This was followed by annealing at 250°C for one hour in dry argon. The 

top 500 A of the germanium surface were etched off in a 5% NaOCl solu­

tion for 30 seconds. RF sputtering of 400 A of titanium and 8000 A of 

gold in argon was followed by annealing for 20 minutes at 250°C in 

argon. To obtain contacts in the corners of the samples on both sides, 

one protects the small corner contact area with Picein wax and etches 

the gold in a 1:4 12 +KI solution. The titanium layer stops this 

etchant and protects the underlying boron implanted layer. The titan­

ium was removed ,in a few seconds in 1%' HF. Finally, the p+ layer was 

removed in a 3:1 HF:HN03 etching solution. After removal of the 

Picein wax from the corner contact areas, 5 mil copper wires were 

soldered onto the contact pads using pure, fresh indium without any 

application of flux. Finally, pure indium foil strips were used to 

connect the front and back side contacts in each corner as in Fig. 

25. Charge injection from each double pad is approximating the 

behavior of the ideal contact geometry very well. Ideal contacts 

would have been infinitely narrow, positioned along the edge of each 

corner. 
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Fig. 25. Method of forming electrical contacts on germanium sample. 

5.3 Measurement 

Variable temperature Hall effect measurements (van der Pauw method) 

were made on the p-type Ge samples over the temperature range 0.3 K to 

300 K using liquid helium28• A magnetic field of 6000 gauss was 

used in the temperatUre ,range 300 K - 77 K, while a field of 1200 gauss 

was applied below 77 K. Thus, magnetoresistance effects were mini­

mized. The Hall effect apparatus29 shown in Fig. 26 uses a silicon 

diode thermometer screwed down to ~ copper base which can be used over 

a temperature range of - 1.5 K to 300 K. The samples, positioned along 

the extended copper base shown in Fig. 27, lie in an evacuated chamber 

(- 10-6torr), and are surrounded by three radiation shields to pre­

vent penetration of light or thermal energy. Cigarette paper lined 

with high vacuum grease lies between the cold finger and the sample 

to prevent electrical contact and subsequent short circuit of the Ge 

sample. Helium is passed from a dewar through the. evacuation shroud 

into the sample chamber. For measurements down to 1.5 K, the liquid 

4He bath is pumped on with a rough pump down to below 1 mm. 

5.4 Data 

Plots of resistivity and concentration as a function of inverse 

temperature are shown, respectively, in Figs. 28 and 29. From the 
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resistivity plots, values of ~ and Po which satisfy the relation 

P = poexp(~/Tn) have been derived for the low temperature range 

and have been tabulated in Table II for the NTO Ge samples. 

TABLE 11. 

NA - NO Po 
Sample (cm-3 ) ( n cm) 
NTO 1 2.0x 1015 1.4 x 105 

NTO 2 4.0 x 1015 4000.0 
NTO 3 6.0 x 1015 .1230.0 
NTO 4 9.0 x 1015 430.0 
NTO 5 2.0 x 1016 34.0 
NTO 6 5.0 x 1016 3.3 

UNCOMP 1 2.4 x 1015 

UNCOMP 2 3.0 x 1015 

UNCOMP 3 1.1 x 1016 

Plots of 1n p versus T-n for n equal to 1, 1/2 and 1/3 have been 
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ill 
8 • .95 

-
6.90 
6.72 
4.90 
4.39 
2.82 

made in order to determine the best fit for the value of n. These 

plots are shown for samples NTO Ge 4 and NTO Ge 5 in Figs. 30 and 31, 

respectively. As can be seen, the closest fit is obtained with 

n = 1/2; however, the quality of the fit does not depend critically on 

the value of n. In Fig. 29, the slope of the hole concentration 

versus 103/T is shown to approximately satisfy the relationship 

naexp[(EV - EA)/2kT], as described in section 2.2. The majority 

impurity, gallium, is located 0.0108 eV above the valence band. This 

corresponds to a slope of 0.054 eV for uncompensated material. Our 

data shows a slope of 0.057 eV down to p - 1012cm-3 in very good 

agreement with theory. 
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6. Theories for Electrical Conduction in Semiconductors 

In the following discussion, models incorporating the movement of 

electrons in n-type material will be used, although our experimental 

results have been obtained with p-type Ge. This has been done in an 

effort to describe the conduction processes in a simple manner, by 

avoiding the complications which arise in considering the differences 

between holes and electrons. This has also been done in view of the 

fact that no theories have been developed specifically for the conduc­

tion mechanisms in heavily-doped and compensated p-type semiconductors. 

6.1 Low Temperature Impurity Conduction Mechanisms 

Impurity conduction, introduced in section 2.3, was first observed 

by Busch and Labhart30 in SiC and later by Hung and Gleissman8 in 

Ge. Impurity conduction, unlike ordinary semiconduction, increases 

nearly exponentially with impurity concentration. This led Hung8 to 

suggest that, at temperatures below about 5 K in Ge, impurity conduc­

tion occurs because of charge exchanges between impurity sites. For 

impurity centers which have a small overlap of their wavefunctions, 

this exchange occurs due to the probability that a carrier can tunnel 

from an occupied to an unoccupied impurity center. 

This can occur only if there is some compensation in order to pro­

vide unoccupied sites. For low impurity concentrations, the effect of 

adding compensators is to lower the resistivity p of impurity conduc­

tion since there is the creation of more empty centers into which car­

riers can jump, shown in Fig. 32a. At higher degrees of compensation, 

p increases due to the decreasing number of mobile carriers occupying 
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majority centers (Fig. 32b). Finally, in the case of complete compen-

sation, impurity conduction vanishes. Then, as in Fig. 32c, all donors 

are empty and all acceptors are occupied with electrons. Since the 

overlap is small, impurity conduction is noticeable only at low tem-

peratures when the number of carri~rs excited into the conduction band 

is extremely small. 

---.....----CB 

\\\\\ -- - - -VB 
ED -\---
EA _____ _ 

(a) (b) (c) 

XBL 828-11235 
Fig. 32. The effects of (a) low compensation, (b) highe~ compensation 

and (c) complete compensation for low impurity concentrations 
«10I5cm-3). . 

As the concentration of impurities increases, the overlap of the 

wavefunctions of adjacent impurities becomes so strong that carriers 

are ~o longer localized around individual impurities and conduction 

can pr6ceed without compensation •. The resistivity is then expected to 

be finite for zero compensation, and to increase steadily until it 

becomes infinite for complete compensation. 'A metallic type of con­

duction then occurs. Here, metallic refers to those materials whose 

conductivity approaches a flnite value at 'absolute zero temperature. 

"Insulating" materials then, are materials which approach zero conduc-

tivity at absolute zero temperature. 

Mott introduced the idea4 that this transition from tunnelling 

to metallic type of conduction may occur abruptly at a critical con-

centration nc given by: 

n/ 13aH* = 0.26 (6.1) 



* where aH is the effective Bohr radius of the impurity center as 

in Eq. 1.22. For germanium, nc ~ 1.7 x 1017cm-3 and for silicon, 

nc = 1.9 x 1018cm-3. The value of the conductivity when metallic 

conduction occurs was then shown to be: 

where dc' the average distance between impurity centers at nc' is 

* about 2.5 aH• The result for the conductivity in Eq. 6.2 corres-
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(6.2) 

ponds to the value of the conductivity which would be obtained in Eq. 

1.33, for values of (VcfB)crit = 2 and number of nearest neighbors, 

z = 6. That z = 6 is used is based upon the assumption of a random 

distribution of centers. Equations 6.1 and 6.2 apply to impurity con-

centrations just above those of the experimental results. For our 

data which lies in the transition region (- 1015cm-3 to 1016cm-3), 

an explanation of impurity conduction is given in section 6.2. 

6.2 Characteristic Concentration Regions 

Conduction processes in a doped semiconductor generally depend on 

three parameters: temperature, impurit.y concentration and compensa-

tion K. There are three regimes of impurity conduction in the metal-

insulator transition. In the low concentration regime, for which 

dc > 5a~ (corresponding to INA - Nol < 1016cm-3 for Ge), conduction 

occurs in the conduction band9 via electrons excited from the D° donors 

with an activation energy £1' as in Fig. 33, curve A. This is also 

shown experimentally in Fig. 28 in the curves of p versus 103fT in the 

range 100 K < T < 10 K. At low temperatures, conduction occurs by 

phonon-assisted hopping from occupied to unoccupied impurity centers 

with an activation energy £3. 



B 

Inp 

XBL B28-11236 

Fig. 33. Activation energies £1, £2, £3 for the three regimes of 
impurity conduction in the metal-insulator transition. 
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* The intermediate concentration regime, with 5 ~ d/aH > 3, corres-

ponds to 1016cm-3 ~ NA - NO ~ 6 x 1016cm-3. In this regime, there 

are three different energy bands which dominate in the three tempera­

ture regions of Fig. 33, curve B. As before, there is an activation 

energy £1 for conduction to occur in the conduction band at high tem­

peratures. In the intermediate, temperature region (#15 K < T < 4 K), 

conduction occurs with an activation energy, £2' via doubly occupied 

donors in the 0- band. The 0- states correspond to donors which are 

negatively charged by binding an extra electron. The binding energy is 

£0 ~ 0.01 £0' where £0 is that binding energy for an isolated hydrogen­

like donor. Thus~ their energy is larger than that of the 0° states, 

but less than that of the conduction band elettrons. The bands for 

the 0° and 0- states are known as the lower and upper Hubbard bands, 

respectively. The 0- states are only important for conduction in a 

limited concentration region before they merge with the ground states 

and form metallic conduction at high impurity concentrations. This 

activation energy, £2 of the 0- states, is noticeable in Fig. 28, for 

the uncompensated germanium sample of 1.1 x 1016cm-3 impurity concen­

tration. Finally, at low temperatures, hopping conduction occurs with 

an activation energy £3' 
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The metallic impurity band range begins at the edge of the metal­

insulator transition, at the critical concentration nc of Eq. 6.1. 

The corresponding resistivity as a function of temperature is shown in 

curve C of Fig. 33. Values of the activation energies €1' €2 and 

€3 are tabulated in Table III. A plot of activation energy versus 

carrier concentration is shown in Fig. 34. 

TABLE III. 

NA - NO €1 €2 €3 
Sampl e (cm-3 ) ~ .~ ~ 
NTD 1 2.0 x 1015 1.19 x 10-2 7.72 x 10-4 

NTD 2 4.0 x 1015 1.14 x 10-2 5.95 x 10-4 

NTD 3 6.0 ~ 1015 1.12 x 10-2 5.79 x 10-4 

NTD 4 9.0 x 1015 9.91 x 10-3 4.22 x 10-4 

NTD 5 2.0 x 1016 7.89 x 10-3 3.78 x 10-4 

NTD 6 5.0 x 1016 5.63 x 10-3 2.43 x 10-4 

UNCOMP 1 2.4 x 1015 8.64 x 10-3 Undetermined 
UNCOMP 2 3.0 x 1015 7.06 x 10-3 Undetermined 
UNCOMP 3 1.1 x 1016 5.47 x 10-3 3.04 x 10-3 1.31 x 10-3 

6.3 Density of States for the Metal-Insulator Transition 

Density of states diagrams for the concentration regimes of sec­

tion 6.2 are shown9 in Fig. 35. In Fig. 35, n increases by a factor 

of about 50 from (a) to (d), so that the scale of N(E) increases pro-

portionally. In Fig. 35a, for n «nc' the neutral donor states DO 

lie ED below the conduction band edge, while the singlet 0- states 

are barely bound at the band edge. Because their wave functions are 

about four times broader than those of the DO states, they form a 
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Fig. 34. Activation energies, £It £2 and £3, versus carrier concentra­
tion, NA - ND, for both NTD Ge and uncompensated Ge samples. 
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widerband.d The Anderson localization criterion, 'described in section 

1.9, will then no longer hold for the upper Hubbard band. If Ec is 

de,fined as ,the mobil ity edge, of the 0- band, the energy into this 

band is (Ec - ~F). 
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, ,XBL 828-11243 

Fig. 35. oensfty of states N(E) as a function of increasing net 
impurity concentration n. 

As the impurity concentration increases'to n < nc (in Fig. 35b), 

the 0° and O-'bands merge due to stronger overlap of wavefunctions 

and €2 decreases. At n = nc ' Ec = EF and €2 = 0 because the states 

near the Fermi level become extended, and the transition to the metal-' 

lic imp~rity band conduction occurs. As n increases to n > nc' the 

conduction band edge shifts downward due to the screening effect of 
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the positively charged donor ions (as in section 1.6.1), which causes 

the dielectric constant to increase (Fig. 35c). 

There is another transition which occurs at a c~ncentration ncb' 

in which the conduction band edge falls below the Fermi level, and 

very few states are localized (Fig. 35d). Thus, for n ~ ncb' truly 

metallic conduction as is found in an impure material prevails. 

6.4 Effects of Compensation, 

In applying the ideas of sections 6.1 to 6.3, the Fermi level EF 

cannot always be calculated by integrating the product of N(E)F(E) in 

Eq. 1.18 and applying charge neutrality as described in section 1.4. 

This is because the sum of the concentrations [OoJ + [0+] + [0-] = [0] 

must be maintained, and because the relative density of states changes 

with compensation and carrier excitation. For example, compensation 

increases [O+J and decreases [O-J, consequently raising Ec and 

decreasing EF• This increases £2 = (Ec - EF) to the point that conduc­

tion in the 0- band can no longer compete with £3 activated hopping in 

the 0° - 0+ band, and we no lon~er see conduction in the upper Hubbard 

band at high co~pensation. Compensation also decreases the metal-insul­

ator transition because the positively-charged donor sites (in n-type 

material) which are randomly distributed in the material, add to the . 
variation in electri~ fields which act upon the remaining donor sites. 

This produces Anderson localization, as described in section 1.9. 

6.5 Theories of the Metal-to-Insulator Transition 

Theories of the metal-to-insulator transition for doped semicon-

ductors are concerned with impurity conduction in the form of ther­

mally-activated hopping as described in section 6.2. Two types of 

'. 

., 
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hopping can be distinguished: "nearest-neighborU hopping .and "vari­

able range" hopping. 

"Nearest-neighbor" or '~Mi ller-Abrahams" hopp,ing31 uses as a 

basis the value of the overlap ~nergy integral I given in Eq. 1.32c. 

It is then assumed that for· hydrogen-like functions, the value of I 

may be written as: 

(6.3) 

wher'e d'c is the distance bet~een impurity centers and a ::: l/aW In 

the theory of Miller and Abrahams, the exponential term of Eq. 6.3 is 

taken'to be small, such that an electron moves only to its nearest 

neighbor,an~the re,sistiv1ty will be.: . 

R'~Po eXP(£3,kT). 

In the above expression, the activation~nergy, £3 is given by: 

£3 = (e2/K)(4~ND/3)1/3(1 - 1.35 K1/3) 

(6.4) 

for compensation K = NA/ND and K < 0.03. For higher K, a more compli­

cated expression is obtained in which £3 reaches a minimum near K = 0.5. 

Their theory is found to be in good agreement only for low impurity con­

centrations « 1015cm-3) in both germanium and'silicon. 

"Vari'able-range" hopping introduced by Mott32 gives a resistivity 

relationship of the form: 

P = A exp(B/T1/4) (6.5) 

where A and B are experimentally determined constants. In this one-

dimensional derivation, Mott considers that in the low temperature 

limit, the probabil,1ty of finding a phonon ofen~rgy large enough to 
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initiate hopping between 'neighboring states of differing energies 

becomes very small. As a result, the electron hops large distances to 

find a state of similar energy. In this theory, charge transport is 

due to the motion of electrons near the Fermi level. An electron is 

found to hop to a site of eriergy E = EF + W at a distance R from the 

initial site, when the hopping rate p is at a maximum: 

p a exp(-2~R - W/kT). (6.6) 

The optimum values of Rand Ware found b~ assuming a density of ,states 

of the formS 7: , 

(6.7) 

where No and yare postive constants and E is the energy difference 

from the Fermi level. The number of sites within a radius R and energy 

W available to an electron near the Fermi level is: 

(6.8) 

If Eq. 6.8 is set equal to one, the distance R that an electron must 

hop to find at least one unoccupied state of energy E ~ EF + W is: 

" R = [3 (y + 1) /41rN W (y + 1) ] 1~ 3 (6.9) 
o 

By substituting Eq. 6.9 into Eq. 6.6, the optimum hopping energy is 

obtained: 

(6.10) 

Thus, the hopping rate and resistivity are related to the temperature: 

ln p = T(y+1)/(y+4) (6.11) 

Sett ing y = 0, Matt IS express'ion (Eq. 6.5) for vari ab 1 e range hopping 

is obtained. However, expressions 6.S through 6.11 neglect intersite 

electron-electron interactions. Soecifically, in the low temperature 
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limit, intersite Coulomb interactions intr~duce a gap at the Fermi 

level fo~o~e-electron hops, so that N(EF) vanishes at EF andi~ 

finite elsewhere. 
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According to Mott, the Coulomb gap of one-electron hops disappears 

as variable range hopping sets in4. He predicts that even in the 

limit as T·~ 0, Eq. 6.5 is still valid, if one uses a smaller, tem­

perature-dependent value of A. Efros34, on the other hand, believes 

that a residual gap remains, even for multi-electron hops. In Efros' 

theory, the density of states with energy near the Fermi 1 eve 1 for 

polaran-like ~xcitations approathes zero as: 

. Efros·then concludes that the low temperature resistivity should be of 

the form: 

p a exp(To/T)1/2 

·2* where To = e /kKa. Only the theory of Efros is consistent with the 

data for the NTD samples, as shown in Figs. 30and 31 of p versus T-n 

for NTD Ge 4 and NTD Ge 5 at T < 5 K. This temperature dependence has 

also been observed in both bulk GaAs 35 and n_Si 36• Using a value of 

a* = 45 for Ge, one obtains T~/2 =8.6 K1/2 which is in fair agree­

ment with the experimental values of Table 1 for the NTD Ge samples. 

However, Efros' theory neglects an explicit explanation of dopant con­

centration and compensation dependence for the value T~/2. In review­

ing the theories of the metal-to-insulator transition for doped semi con-

ductors, it is apparent that the dependence of the critical concentra-

tion nc on compensation is not accounted for. As compensation increases, 
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the effects of disorder and Anderson localization become dominant so 

that compensation clearly needs to be included in the model of hopping 

conduction. However, the role of electron-impurity interactions are 

not well understood, and the various theories of hopping continue to 

be controversial.' As a result, additional low temperature measure-

ments and further studies of the effects of compensation are needed. 

7. Conclusions 

The resistivity of neutron transmutation doped germanium (NTO Ge) 

has been measured as a function of net-impurity concentration. 

(2 x 1015cm-3 < N - N < 5 x 1016cm-3), and temperature 
- A D - , 

(0.3 K ~ T ~ 300 K), at a compensation K = 0.322. The NTO Ge samples 

were compared with ultra-pure gallium-doped samples, which are nearly 

uncompensated (2.4 x 1015cm-3 ~ [Ga] ~ 1.1 x 1016cm-3). 

Our results indicate that the resistivity can be approximated by 

p = kl eXP(A/T1/2) in the hopping conduction regime down to 0.3 K. 

This resistivity dependence on temperature is most consistent with , 

Efros' theory for variable range hopping, where Efros predicts that 

ln p a (To/T)1/2 with To = 74.0 Kl/2 for germanium. However, 

Efros' theory does not include an explicit ~xplanation of dopant con­

centration and compensation dependence for the value T~/2. In 

the NTD Ge samples, for a given NA - NO' we find that k and A are 

constant within the crystals down to dimensions of - 0.3, mm and most 

probably much smaller, and they can be reproduced in any high-purity 

Ge single crystal by a predictable thermal neutron exposure and a 

.' 
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thermal annealing cycle. Neutron transmutation doping is thus advan­

tageous over conventional doping of a crystal during the melt because 

it allows reproducible homogeneous doping at a fixed, knowncompensa­

tion~ This makes NTD Ge a prime candidate for very low temperature 

bolometer applications. 

. ( 
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APPENDIX: SAMPLE PREPARATION 

A. Wafer Preparation 

1. Obtain ultra-pure germanium crystal wafers which have been neutron 
transmutation doped to the desired impurity levels. 

2. About one year after neutron irradiation, after many half-lives of 
the longer living 71Ge (tl/2 = 12 days), the wafers are annealed 
in dry argon gas to heal the radiation damage, according to the 
schedule below: 

400 

~ 
j:: 

25 

0 10 20 30 

TIME(HRS) 
XBL 828-11231 

By slowly cooling the wafers, unwanted impurities such as copper 
are forced to precipitate out of the wafers. 

3. Mount wafers onto a carbon block, using dental wax as the adhesive. 

4. Cut the wafers to the desired size using a wire' saw. (Our sam­
ples were cut, using a 0.010" thick wire saw, to sizes of 
- 7 x 7 x 1.9 mm3). The samples are simultaneously cut and 
lapped by using a suspension of 1900-grit lapping compound in 
mineral oil as an abrasive. 

5. Remove the samples from the carbon block. 

6. Cleanse the samples of the remaining dental wax using pure 
tri-chloroethylene (TCE) which is heated to below its boiling 
point. 

7. Dry the samples in air. 

8. The samples are etched in a 3:1 HN03:HF solution for about 45 
secs - 1 min., or until a shiny, damage-free surface appears. 

9. Quench the wafers in methanol. 

10. Soak the wafers in 1% HF for - 10 min. or until the wafers are 
hydrophobic. 

11. Quickly dry the samples in air. 

• 



" • 

• 

B. Ion Implantation 
( f 

1. The samples are doubly ion implanted on both sides at room 
temperature with boron ions at an energy of: 

100 keV at a dose of 2 x 1014~m:':"2 . 
; and i. 130 keV;:at a dose of.4 x 1014cm-2 

65 

2. The top 500 1\ of Ge is etched off in a '5% NaOCl solution for - 30 
sec in. order ,to reachthedep,th of near max,imum B concentration. 

3., AnneaJ ,the, samples at 250°C for one hour: tn dry·,argon. 

C.' Meta 11 iz ati'on ' ;.: 

<", .. 1 

1. ~~ ~p~itering is used to depos~i 460 1\ of Ti~,followed by 8000 1\ 
of Au on the sample surfaces on both sides. 

2. Samples are etched briefly (- 10 sec) in 3:1 HN03:HF to remove 
surface contamination. 

3. Quench the samples in methanol and dry them in air. 

4. Samples are annealed at 250°C for one hour in dry argon. 

5. The sample corners on the front and backsides are protected with 
Picein wax (S-14975, low T; Sargent Welch). The Picein wax is 
diluted with TCE to the desired consistency, painted onto the 
corners, and allowed to dry. 

6. The bare sides of the samples are lapped gently with 1900-grit 
lapping compound to remove any Au and Ti deposited on them. 

7. The Au, not protected by Picein wax, is removed from the top and 
bottom surfaces in a 4:1 KI:I2 solution. 

8. Similarly, the excess Ti is instantly etched away in a 1% HF 
solution. 

9. The samples are etched for - 20 sec in a 3:1 HN03:HF solution, 
in order to remove the boron implanted layer from the non-contact 
areas. 

10. Quench the samples in methanol. 

11. Transfer the samples to pure TCE, and remove the Picein wax. 



12. Quench and rinse the samples in methanol. 

13. Dry the samples rapidly in air. 

D. Electrical Contact Formation 

1. Using a soldering iron, melt a very small amount of In onto the 
four Au contacts on the front side of the sample. 

2. Cut and tin 5 mil Cu-40 wire lengths with Sn-60 solder flux. 

3. Melt a very small amount of In onto one end of the tinned wire 
1 engths. 

4. Attach one tinned and In-coated wire end to each of the sample 
corners on the front side, by re-heating the corners just long 
enough to re-me 1 t the In. . 

66 
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