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Abstract 

A major challenge facing statistical agencies is the problem of adjusting price and quantity 

indexes for changes in the availability of commodities. This problem arises in the scanner data 

context as products in a commodity stratum appear and disappear in retail outlets. Hicks 

suggested a reservation price methodology for dealing with this problem in the context of the 

economic approach to index number theory.  Hausman used a linear approximation to the 

demand curve to compute the reservation price, while Feenstra used a reservation price of 

infinity for a CES demand curve, which will lead to higher gains. The present paper evaluates 

these approaches, comparing the CES gains to those obtained using a quadratic utility function 

using scanner data on frozen juice products.  We find that the CES gains from new frozen juice 

products are about five times greater than those obtained using the quadratic utility function. 
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1. Introduction 

One of the more pressing problems facing statistical agencies and economic analysts is 

the new goods (and services) problem; i.e., how should the introduction of new products and the 

disappearance of (possibly) obsolete products be treated in the context of forming a consumer 

price index? Hicks (1940) suggested a general approach to this measurement problem in the 

context of the economic approach to index number theory. His approach was to apply normal 

index number theory but estimate hypothetical prices that would induce utility maximizing 

purchasers of a related group of products to demand 0 units of unavailable products.1 With these 

reservation (or virtual2) prices in hand, one can just apply normal index number theory using the 

augmented price data and the observed quantity data. The practical problem facing statistical 

agencies is: how exactly are these reservation prices to be estimated? 

Following up on the contribution of Hicks, many authors developed bounds or rough 

approximations to the bias that might result from omitting the contribution of new goods in the 

consumer price index context. Thus Rothbarth (1941) attempted to find some bounds for the bias 

while Hofsten (1952; 47-50) discussed a variety of approximate methods to adjust for quality 

change in products, which is essentially the same problem as adjusting an index for the 

contribution of a new product. Additional bias formulae were developed by Diewert (1980; 498-

501) (1987; 779) (1998; 51-54) and Hausman (2003; 26-28). Hausman proposes taking a linear 

approximation to the demand curve at the point of consumption, and computing the consumer 

surplus gain to a new product under this linear demand curve. Provided that the demand curve is 

convex, then this linear approximation will be a lower bound to the consumer surplus gain. We 

will compare that proposal to other methods of dealing with new goods. 

Researchers have also relied on some form of econometric estimation in order to form 

estimates of the welfare cost (or changes in the true cost of living index) of changes in product 

                                                 
1 “The same kind of device can be used in another difficult case, that in which new sorts of goods are introduced in 
the interval between the two situations we are comparing. If certain goods are available in the II situation which were 
not available in the I situation, the p1’s corresponding to these goods become indeterminate. The p2’s and q2’s are 
given by the data and the q1’s are zero. Nevertheless, although the p1’s cannot be determined from the data, since the 
goods are not sold in the I situation, it is apparent from the preceding argument what p1’s ought to be introduced in 
order to make the index-number tests hold. They are those prices which, in the I situation, would just make the 
demands for these commodities (from the whole community) equal to zero.” J.R. Hicks (1940; 114). Hofsten (1952; 
95-97) extended Hicks’ methodology to cover the case of disappearing goods as well.  
2 Rothbarth introduced the term “virtual prices” to describe these hypothetical prices in the rationing context: “I shall 
call the price system which makes the quantities actually consumed under rationing an optimum the ‘virtual price 
system’.” E. Rothbarth (1941; 100).  
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availability. The two main contributors in this area are Feenstra (1994) and Hausman (1996).3 

Feenstra assumes a constant elasticity of substitution (CES) utility or cost function, while 

Hausman assumes an almost ideal demand system (AIDS). The CES functional form is not fully 

flexible (in contrast to the AIDS), so that is one drawback of Feenstra’s approach.4 He adopts 

that case because it has a particularly simple form of the reservation prices: in the CES case, the 

demand curve never touches the price axis and so the reservation price is infinity. As we will 

show in the following sections, however, the area under demand curve is bounded provided that 

the elasticity of substitution is greater than unity, and it can be computed with information on the 

expenditure on the new goods and the elasticity. So Feenstra’s methodology side-steps the issue 

of estimating the reservation prices, but instead, requires that we estimate the elasticity of 

substitution. Feenstra (1994) provides a robust double-differencing method to estimate that 

elasticity that can be applied to a dataset with many new and disappearing goods, as typically 

occur with scanner data.  

To summarize, there are two problems with Feenstra’s CES methodology for measuring 

the net benefits of changes in the availability of products: (i) the CES functional form is not fully 

flexible; and (ii) the reservation price that induces a potential consumer to not purchase a product 

is equal to plus infinity, which seems high. Thus, the CES methodology may overstate the 

benefits of increases in product availability. Against these drawbacks, a benefit is that the 

elasticity of substitution can be estimated quite easily using the double-differencing method, and 

the elasticity along with the expenditure share on the items are sufficient information to compute 

the consumer benefits from new products. 

In section 2, we begin with the simple example of a partial equilibrium, constant- 

elasticity demand curve, which has a reservation price of infinity. We show that the consumer 

surplus under a constant-elasticity demand curve is at least twice the consumer surplus under a 

linear approximation to the demand curve. This result is our first illustration of the extent to 

which a constant-elasticity case will lead to greater gains than a linear demand curve, i.e. by 

about a factor of at least two when the elasticity of demand is the same for the two demand 

curves and reasonably high. While these results in section 2 are suggestive, they are not rigorous 

                                                 
3 See also Hausman (1999) (2003) and Hausman and Leonard (2002)  
4 See Diewert (1974) (1976) for the definition of a flexible functional form. Feenstra (2010) shows that the CES 
methodology discussed here to measure the gains from new goods can be extended to the AIDS case. 
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because they rely on a partial equilibrium demand curve with a single new good. Our general 

goal is to measure total consumer utility (not just consumer surplus) and when there are 

potentially many new and disappearing goods. Accordingly, in section 3 we examine a constant 

elasticity of substitution (CES) utility function, and show that the exact gains from new goods 

are still at least twice as high as those obtained from a linear approximation to that demand 

curve.  In addition to the CES utility function, we also examine the quadratic flexible functional 

form that was initially due to Konüs and Byushgens (1926; 171). That utility function can be 

used to justify the Fisher (1922) price index, and so we will also call it the KBF functional form. 

The demand curves for both the CES and KBF demand curves are convex under weak 

conditions, but the CES demand is more convex.  

In section 4, we turn to the econometric estimation of the demand system for the CES and 

KBF utility functions, using scanner data for frozen juice in one grocery store, as described in 

section 4.1. The estimation of the CES demand curves can be simplified using a double-

differencing method due to Feenstra (1994), which eliminates all unknown parameters except the 

elasticity of substitution. In sections 4.2–4.4, we show that this method performs very well on the 

scanner data. In comparison, estimation of the demand curves corresponding to the quadratic 

utility function is more difficult because it inherently has more free parameters, i.e. N (N+1)/2 

free parameters in a symmetric matrix with N goods. We solve this degrees of freedom problem 

by introducing a semiflexible version of the flexible quadratic functional form.5 This new 

methodology is explained and implemented in sections 4.5–4.7.  

In section 4.8, we compare the results obtained from the CES and KBF utility functions 

for the consumer benefits from new goods. According to our theoretical results in section 3, we 

would expect that the CES gains should be not much more than twice as high as the KBF gains 

(because the KBF gains exceed those from a linear approximation), provided that those demand 

curves have the same elasticity at the point of consumption. In fact, that is not what we find: the 

CES gains are more than five times the size of the KBF gains. The reason for this result is that 

the implied elasticities of demand for the two preferences systems, evaluated at the same point of 

consumption for the new goods, are actually quite different: the KBF preferences give demand 

                                                 
5 Our new semiflexible functional form has properties that are similar to the semiflexible generalization of the 
Normalized Quadratic functional form introduced by Diewert and Wales (1987) (1988). In section 4.4 below, we 
also show how the correct curvature conditions can be imposed on our semiflexible quadratic functional form.  
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that is at least twice as elastic as the CES demand for the new varieties of frozen juice. This 

finding highlights an important difference between the CES and KBF utility functions: because 

the former has a single estimation parameter, and the latter has a whole matrix of parameters, it 

will not in general be the case that they have the same elasticity of demand when estimated. 

Indeed, this result is implied by the limitation that the CES utility function is not fully flexible. 

That theoretical limitation becomes an important simplification for estimation, however. We 

believe that it is practical for statistical agencies to implement the double-differenced estimation 

of the CES system, but it would be much more challenging for them to implement the estimation 

of the KBF system, at least for most datasets. In the end, we are left with a trade-off between the 

practicality of using the CES system against the challenge of estimating a more flexible utility 

function to obtain a more general measure of gains. Further conclusions are provided in section 

5. The dataset is listed in Appendix A, so that other researchers can use it to test out possible 

improvements to our methods, and certain results are proved in Appendices B and C. 

 
2. Constant-Elasticity Demand Curve 

Consider a constant-elasticity demand curve of the form 1 1q kp−σ= , where q1 denotes 

quantity of good 1, p1 denotes its price, and k > 0 is parameter. In period t this good is newly 

available at the price of p1t and the chosen quantity q1t. The demand curve is illustrated in Figure 

1 and it approaches the vertical axis as the price approaches infinity, which means that the 

reservation price of the good is infinite. But provided that the elasticity of demand σ is greater 

than unity, the area under the demand curve, as shown by the regions A+B+C in Figure 1, is 

bounded above.  Region A is the expenditure on the good, while B+C is the consumer surplus. 

The consumer surplus is calculated as the area to the left of the demand curve between its price 

of p1t and infinity, and relative to total expenditure Et
 on all goods it equals: 

(1)     
1t

1t 1t
p

t t t

1tqB C 1 kp dp ,   1
E E E (

p s
1) ( 1)

∞ −σ+
= = = σ >

σ− σ−∫ ,     

where 1t 1t 1t ts p q / E≡ denotes the share of spending on good 1. We see that this expression for 

the consumer gains from the new good shrinks as the elasticity of substitution is higher, 

indicating that the new good is a closer substitute for an existing good.     

One might worry that calculating the consumer gains this way, with a reservation price of  
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infinity, results in gains that are too large. A suggestion given by Hausman (2003) is to use a 

linear approximation to the demand curve, as shown by the dashed line in Figure 1. The linear 

approximation to the demand function goes through the price axis at the reservation price p1
*, 

where p1
* ≡ p1t + αq1t and α ≡ (p1

* − p1t)/q1t  > 0 is the absolute value of the slope of the inverse 

constant-elasticity demand curve evaluated at q1 = q1t. Hausman took the area of the triangle 

below the linear approximation to the true demand curve but above the line  p1 = p1t as his lower-

bound measure of the gain in consumer surplus that would occur due to the new product. That 

consumer surplus area is region B in Figure 1, which is less than the area under the constant 

elasticity demand curve, B+C. Indeed, we now show that the consumer surplus B following 

Hausman’s method is less than one-half of the true consumer surplus region B+C. 

The consumer surplus B relative to total expenditure on the product Et is obtained by 

computing the area of that triangle,  

(2)   
* 2
1

t t t

1t 1t 1t 1t 1t 1t 1t 1

t

t(p )q (q ) (q / p )p q sB ,  
E 2E 2E 2

p
E 2

=
− α α

= = =
σ

   

where the second equality follows from the definition of the slope α ≡ (p1
* − p1t) / q1t of the 

inverse demand curve; the third equality from algebra; and the fourth equality because we have 

assumed the slope of the constant-elasticity demand curve and its linear approximation are equal 

at the point of consumption, so it follows that the inverse elasticity of demand must also be 

equal, α(q1t /p1t) = 1/σ. Comparing equations (1) and (2), the ratio of the consumer surplus from 

the linear approximation to that from the constant-elasticity demand curve is less than one-half,  

B/(B+C) = (σ − 1)/2σ < 1/2. Those two measures of gain are summarized in Table 1 for s1t = 0.1 

and various values of σ. 

Column two in Table 1 consists of the constant-demand elasticity gain in (1) and column 

three shows the Hausman approximate gain in (2), while column four takes their ratio. While 

there results give us a first illustration that the gains in the constant-demand-elasticity case, they 

lack rigor by dealing with consumer surplus for a partial equilibrium demand curve with only 

one new good. Accordingly, in the next section we extend our results to many new (and 

disappearing) goods while using a constant-elasticity-of-substitution (CES) utility function. We 

will find that the constant-demand-elasticity and CES cases give quite similar results. 
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Table 1: Consumer Gains from a New Product with Share= 0.1  
(Percent of Expenditure) 

 

σ (B+C)/Et B/Et Ratio GCES GH,CES Ratio 

2 10.0 2.50 0.25 11.1 2.78 0.25 
3 5.00 1.67 0.33 5.40 1.85 0.34 
4 3.33 1.25 0.37 3.58 1.39 0.39 
5 2.50 1.00 0.40 2.66 1.11 0.42 
6 2.00 0.83 0.42 2.12 0.93 0.44 
10 1.12 0.50 0.45 1.18 0.56 0.47 

Notes: Column two computes the constant-demand-elasticity gain in (1); column three computes the Hausman gain 
(2) as a lower bound to the constant-demand-elasticity case; column four computes the ratio of the previous two 
columns; column five computes the CES gain (15); column six computes the Hausman gain (18) as a lower bound to 
the CES case; and column seven computes the ratio of the previous two columns. 
  

3. Utility-based Approach 

3.1  Utility Function Approach 

We begin with a CES utility function for the consumer,6 defined by, 

(3)    
t

/( 1)
( 1)/

t t t i it
i I

U U(q , I ) a q ,   1
σ σ−

σ− σ

∈

 
= = σ > 

  
∑ ,  t=1,…,T.  

  

where ai > 0 are parameters and tI {1,..., N}⊆  denotes the set of goods or varieties that are 

available in period t=1,…,T at the prices pit. We will treat this set of goods as changing over time 

due to new or disappearing varieties. The unit-expenditure function is defined as the minimum 

expenditure to obtain utility of one. For the CES utility function, the unit-expenditure function is: 

(4)   
t

1/(1 )
1

t t i it i i
i I

e(p , I ) b p ,   1, b a ,
−σ

−σ σ

∈

 
= σ > ≡ 
  
∑   t=1,…,T. 

It follows that total expenditure needed to obtain utility of Ut is Et = Ut e(pt, It).  

From Shepard’s Lemma, we can differentiate the expenditure function with respect to pit  

to obtain the Hicksian demand qit for that good, 

                                                 
6  The CES function was introduced into the economics literature by Arrow, Chenery, Minhas and Solow (1961), 
and in the mathematics literature it is known as a mean of order r ≡ 1 − σ; see Hardy, Littlewood and Polyá  (1934; 
12-13). Rather than being a utility function for a consumer, equation (1) could instead be a production function for a 
firm. In that case, we would replace utility Ut by output Yt. 
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(5)   1

t

1
it t t t i it i iti Iq (p ,U ) U b p b p ,

σ
−σ−σ −σ

∈
 =   ∑    t = 1,...,T; i∈It.   

Multiplying by pit and dividing by expenditure Et to obtain expenditure shares,  

(6)    
t

1
it it i it

it 1
t n ntn I

p q b ps ,
E b p

−σ

−σ
∈

≡ =
∑

   t = 1,...,T; i∈It.   

Notice that the quantity qit approaches zero as pit→∞, in which case the share in (5) also 

approaches zero provided that σ > 1. Differentiating −ln qit from (5) with respect to ln pit, we 

obtain the (positive) Hicksian own-price elasticity corresponding to the CES utility function, 

(7)    it
it it

it

ln q (1 s ). 
ln p

∂
η ≡ − = σ −

∂U
U

     

This elasticity is not constant as was assumed for the partial equilibrium, constant-elasticity 

demand curve in the previous section. Rather, the elasticity in (7) varies between an upper-bound 

of σ when pit→∞ and the share in (6) approaches zero, and a lower-bound of zero when the share 

of this product approaches one.7  

 Initially, we consider the case where there is no change in the set of goods over time, so 

t 1 tI I I.− = ≡  Our goal is to measure the ratio of the unit-expenditure functions with a formula 

depending only on observed prices and quantities, which will then correspond to an “exact” price 

index (Diewert, 1974). We maintain throughout the assumption that the observed quantities are 

optimally chosen for the prices, i.e. that they correspond to the shares given in (6). When these 

shares are computed over the goods i∈I, we denote them as:  

(8)    i i i n nn Is (I) p q p qτ τ τ τ τ∈
≡ ∑ ,   τ = t − 1,t; i∈I.  

 Then dividing sit(I) by sit-1(I) from (6), raising this expression to the power 1/(σ −1), making use 

of (4) and rearranging terms slightly, we obtain: 

                                                 
7 The fact that the elasticity is close to zero for shares approaching unity suggests that the Hicksian CES demand 
curve cannot be globally convex for all shares: very inelastic demand must be concave in a region as prices rise and 
the demand curve bends towards the price axis. Nevertheless, it is shown in Appendix C that the Hicksian demand 
curve in (5) is strictly convex provided sit ≤ 0.5. 



8 
 

(9)   ( )
( )

1
1

it it

it 1 it

t

t 1 1

e p , I
e p ,

s (I) p
s I(I) p

−σ

−− −

   
=   

   
,     i∈I.  

To simplify (9) further, we make use of the weights wi(I) defined by, 

(10)  it it 1 nt nt 1
i

it it 1 nt nt 1n I

s (I) s (I) s (I) s (I)w (I)
ln s (I) ln s (I) ln s (I) ln s (I)

− −

− −∈

   − −
≡    − −   

∑ ,   i∈I.  

The numerator in (10) is the logarithmic mean of the shares its (I)  and it 1s (I)− , and lies in-

between these two shares,8 while the denominator ensures that the weights iw (I)  sum to unity.  

Then we take the geometric mean of both sides of (9) using the weights wi(I), to obtain:  

(11)   
iw (I)

t it t

t 1 it 1 t 1i I

e(p , I) s (I) e(p , I) ,
e(p , I) s (I) e(p , I)− − −∈

 
= 

 
∏  since 

iw (I)
it

it 1i I

s (I) 1
s (I)−∈

 
= 

 
∏ , 

=
iw (I)

it
SV

it 1i I

pP (I) ,
p −∈

 
≡  

 
∏   using (9).   

The result on the first line of (11) that the product shown equals unity follows from taking the 

log of this expression and using the weights defined in (10), along with the fact that 

it 1i I s (I)−∈
=∑ iti I s (I) 1

∈
=∑  from (8). Then it follows from (11) that the ratio of the unit-

expenditure functions equals the term SVP (I)  defined as shown, which is the price index due to 

Sato (1967) and Vartia (1967) constructed over the (constant) set of goods I. 

With this result in hand, let us now consider the case where the set of goods is changing 

over time but some of the goods are available in both periods, so that t 1 tI I .− ∩ ≠ ∅   We again let 

e(pτ,I) denote the expenditure function defined over the goods within the set I, which is the set of 

goods available in both periods, t 1 tI I I .−≡ ∩  We refer to the set I as the “common” set of goods 

because they are available in both periods.9 The ratio e(pt,I)/e(pt-1,I)  is still measured by the 

                                                 
8  Treating sit-1(I) as a fixed number, it is straightforward to show using L’Hôpital’s rule that as sit(I) → sit-1(I)  then 
the numerator of (10) also approaches sit-1(I). So the Sato-Vartia weights are well defined even as the shares 
approach each other. The concavity of the natural log function can be used to show that the numerator of the Sato-
Vartia weights lie in-between  sit(I) and sit-1(I) for all goods i∈I. 
9 Feenstra (1994) shows that we can instead define I as a non-empty subset of the goods available in both periods, 
and obtain the same results as shown below, but we do not pursue that generalization here. Later in the paper, we 
will refer to the price index constructed with these common goods as the maximum overlap index. 
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Sato-Vartia index as in expression (11). Our interest, however, is in the ratio e(pt,It)/ e(pt-1,It-1)  

that incorporates new and disappearing goods.  To measure this ratio we return to the share 

equation (6), which applies for all goods i∈It. Notice that these shares can be re-written as: 

(12)   i i
i

n nn I

p qs
p q

τ

τ τ
τ

τ τ∈

≡
∑

,       τ = t − 1,t; i∈It .ρ  

Now we can proceed in the same fashion as (9), using (4), (6) and (12) to form the ratio, 

(13)   
( )
( )

1
1

it t it

it 1 t 1 it

t

1 1t

s (I) p
s (I) p

e p , I
e p , I

−σ

− −− −

   λ
=   λ   

,    i∈I.  

Once again, we take the geometric mean of both sides of (13) using the weights wi(I), and 

shifting the terms λt and λt-1 to the right, we obtain in the same manner as equation (11): 

(14)      t t

t 1 t 1

e(p , I )
e(p , I )− −

=
1/( 1)

t
SV

t 1
P (I) .

σ−

−

 λ
 λ 

     

 This result shows that the exact price index for the CES utility and expenditure function 

is obtained by modifying the Sato-Vartia index, constructed over the common set of goods, by 

the ratio of the terms λτ(I) < 1. Each of these terms can be interpreted as the period τ expenditure 

on the goods in the common set I, relative to the period τ total expenditure.  Alternatively, λt(I) 

is interpreted as one minus the period t expenditure on new goods (not in the set I), relative to the 

period t total expenditure, while λt-1(I) is interpreted as one minus the period t-1 expenditure on 

disappearing goods (not in the set I), relative to the period t-1 total expenditure. When there is a 

greater expenditure share on new goods in period t than on disappearing goods in period t-1, then 

the ratio λt(I)/ λt-1(I) will be less than unity, which leads to a fall in the exact price index in (14) 

by an amount that depends on the elasticity of substitution.  

 The importance of the elasticity of substitution can be seen from Figure 2, where we 

suppose that the consumer minimizes the expenditure needed to obtain utility along the 

indifference curve AD. If initially only good 1 is available, then the consumer chooses point A 

with the budget line AB. When good 2 becomes available, the same level of utility can be 

obtained with consumption at point C. Then the drop in the cost of living is measured by the 

inward movement of the budget line from AB to the line through C, and this shift depends on the 

convexity of the indifference curve, or the elasticity of substitution.  
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 To relate the CES result in (14) back to equation (1), suppose that: only good 1 is newly 

available in period t so that λt(I)=1 − s1t; there are no disappearing goods so that λt-1(I)=1; and 

the prices of all other goods do not change so that PSV=1. We follow Hausman (2003) in 

constructing the expenditure that would be needed to give the consumer the same utility level Ut  

even if good 1 is not available. That expenditure level is  *
t t t t 1E U e(p , I ).−≡ Then taking the  

difference between *
tE  and Et, we have the compensating variation for the loss of good 1: 

(15)  
*

1/( 1)t t t t 1 t t
CES 1t

t t t

E E e(p , I ) e(p , I )G (1 s ) 1
E e(p , I )

− σ−−− −
≡ = = − − , 

using the formula for e(pt, It-1)/e(pt, It) from (14). Taking a second-order Taylor series expansion  

around s1t = 0, this gain can be expressed as: 

(16)  ( )
2

1/( 1) 1t 1t
CES 1t 1t 1t2

s sG 1 s 1 , for 0 s s ,
( 1) 2( 1)

− σ− σ
= − − = + ≤ ≤

σ− σ−



  

     1ts ,
( 1)

≥
σ−

  since 2
1ts 0.≥  

We see that the second line of (16) is identical to (1), which is therefore a lower-bound to the 

CES gains. In the fifth column of Table 1, we show the CES gains from (15), which are slightly 

above the constant-demand-elasticity gains from (1). Our results in this section show that the 

CES gains with many new (and disappearing) goods give a generalization of the simple, 

consumer surplus calculation of section 2. In the next section we compare these CES gains to an 

approximation of the measure of total consumer utility gain due to Hausman (2003). 

 
3.2 Hausman Lower Bound to the Welfare Gain 

Hausman (1999; 191) (2003; 27) proposed a very simple methodology for calculating a 

lower bound to the gain from the appearance of a new good. We illustrated that approach for a 

demand curve with elasticity of σ in section 2, but Hausman argues that it holds more generally 

for any Hicksian demand curves with constant utility. Letting 1tη
U

 denote the (positive) 

compensated demand derivative for good 1 when it first appears, we obtain the generalization of 

(2) by replacing σ with the Hicksian elasticity: 
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(17)    1t
H

1t

sG
2

=
η

U

. 

 For the CES demand curve, we can calculate the lower bound to the welfare gain using 

the elasticity of demand for the CES system, as calculated in (7), and we obtain, 

(18)     1t
H,CES

1t

sG
2 (1 s )

=
σ −

  .    

In column six of Table 1 we calculate the Hausman lower-bound gains in (18) using the Hicksian 

elasticities for CES demand, and in column seven we show the ratio of the CES gain in (15) and 

the Hausman lower-bound in (18). Similar to what we found for the constant-demand-elasticity 

case in the previous section, the Hausman lower bound calculation in (18) is less than one-half of 

the CES gains in (15), and approaches one-half of those gains for elasticities of substitution that 

are reasonably high. 

We next derive the formula for the Hausman lower-bound formula in (17) for a general 

form of utility even when the Hicksian demand curves are not well-behaved and differentiable. 

That will turn out to be the case for quadratic utility that we consider in the next section, which 

will give rise to well-behaved inverse demand curves (prices as a function of quantities), but not 

necessarily well-behaved direct demand curves (quantities as a function of prices). So this 

derivation focusing on inverse demand curves will be important for the rest of the paper. 

Denote the utility function by U = f(q) ≥ 0, where f(q) is non-decreasing, concave and 

homogeneous of degree one for q ≡ (q1,...,qN) ≥ 0N, and twice continuously differentiable for q 

>>0N. We suppose that the consumer faces positive prices pt ≡ (p1t,...,pNt) >> 0N in period t and 

maximizes utility: 

(19)    max q≥0 {f(q) : pt⋅q ≤ Et},    

where pt⋅q is the inner product. The first order necessary conditions for an interior maximum10 

with the period t quantity vector qt >> 0N solving (19) are: 

(20)    ∇f(qt) = λtpt ,    

(21)        pt⋅qt = Et, 

                                                 
10 Since f(q) is a concave function of q over the feasible region, these conditions are also sufficient for an interior 
maximum. In the following sections we will characterize the conditions for a maximum on the boundary of the 
feasible region, with some quantities equal to zero. 
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where ∇f(qt) is the vector of partial derivatives fi(qt) ≡ ∂f(qt)/∂qi evaluated at qt, and λt is the 

Lagrange multiplier on the budget constraint. Take the inner product of both sides of (21) with qt 

and solve the resulting equation for λt = qt⋅∇f(qt)/pt⋅qt = qt⋅∇f(qt)/Et  where we have used (21). 

Euler’s Theorem on homogeneous functions implies that qt⋅∇f(qt) = f(qt) and so λt = f(qt)/Et.  

Using this result in equation (21), we obtain the first-order condition: 

(22)    ∇f(qt)/f(qt) = pt/Et.    

To simplify the notation in the rest of this section, we consider only N=2 commodities:  

good 1 is potentially new in period t, and good 2 represents all other expenditure. In addition, for 

this section we also scale the utility level so that it equals expenditure for period t:  

(23)     f(q1t, q2t) = Et.  

It follows that the first-order condition (22) becomes ∇f(qt) = pt , and specializing to the case of 

two goods these conditions become:  

(24)    pit = fi(q1t,q2t) ≡ ∂f(q1t,q2t)/∂qi ,  i=1,2.  

We will derive a second-order Taylor series approximation to the utility loss if good 1 were 

removed, and compare that approximation to the Hausman measure defined by (17).  

To make this calculation we reduce purchases of q1 down to 0 in a linear fashion, holding 

prices fixed at their initial levels, p1t, p2t. Thus we travel along the budget constraint until it 

intersects the q2 axis. Hence q2 is an endogenous variable; it is the following function of q1 where 

q1 starts at q1 = q1t and ends up at q1 = 0: 

(25)    q2(q1) ≡ [Et − p1tq1]/p2t.     

The derivative of q2(q1) evaluated at q1t is q2′(q1t) ≡ ∂q2(q1t)/∂q1 = −(p1t/p2t), a fact which we will 

use later. Define utility as a function of q1 for 0 ≤ q1 ≤ q1t, holding expenditures on the two 

commodities constant at Et, as follows: 

(26)   U = u(q1) ≡ f(q1,q2(q1)) = f(q1, [Et − p1tq1]/p2t).  

 We use the function u(q1) to measure the consumer loss of utility as we move q1 from its 

original equilibrium level of q1t to 0. Alternatively, the difference between the utility levels u(q1t) 
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and u(0) is the gain of utility due to the appearance of product 1, defined as a share of 

expenditure: 

(27)  GU ≡ [u(q1t) − u(0)]/Et.      

We express u(0) by a second-order Taylor series expansion around the point q1t: 

(28)  21
1 1 1 1t 1t2u(0) u(q ) u (q )(0 q ) u (q )(0 q )′ ′′= + − + − .  

The term 1tu (q )′  is computed as: 

(29)  u′(q1t) = f1(q1t,q2t) + f2(q1t,q2t)∂q2(q1t)/∂q1, differentiating (26) 

= f1(q1t,q2t) + f2(q1t,q2t)(−p1t/p2t),        differentiating (25) 

                    = 0,     using (24)  

so this term vanishes as an envelope theorem result. It follows from (28) and (29) that a second-

order approximation to the consumer gain from good 1 in (27) is, 

(30)  GH = 21
1t 1t t2 u (q )q / E′′− .   

In Appendix B, we calculate the second derivative 1tu (q )′′  and we show that it is non-

positive, so that the first term on the right of (30) is a non-negative gain. Furthermore, we define 

an inverse demand function, p1 = D1(q1) that is consistent with our model, i.e. holding other 

variables constant. The variables that Hausman holds constant are the utility level Ut and the 

price of product 2, p2t. Endogenous variables are q1, q2 and E while the driving variable is p1 

which goes from p1t to the reservation price p1
* = D1(0) when q1 goes from q1t to 0.  Because 

utility is held constant we regard this derived inverse demand curve as a Hicksian demand curve. 

We show that the slope of this inverse demand curve at q1t equals 1t 1tD (q ) u (q )′ ′′=  and so the 

inverse demand curve is convex if and only if 1u (q ) 0.′′′ ≥  Convexity of the demand curve 

implies that the Hausman approximation in (30) is a lower bound to the consumer gain from the 

introduction of good 1.  

Substituting the result that 1t 1tD (q ) u (q )′ ′′=  in (30), we have therefore established that 

the Hausman gain GH due to the availability of good 1 is: 

(31)           GH = − 21
1t2 q 1tD (q )′ /Et . 

                   = − 1
2 s1t 1t 1t 1t[D (q )(q / p )]′ ,      
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where the final term appearing in brackets in (31) is the elasticity of the constant-utility inverse 

demand curve. In Appendix B we solve for this elasticity for particular utility functions, and in 

the CES case we find that it is precisely the inverse of the price elasticity of the Hicksian demand 

curve 
U1tη , as shown in (7). More generally, we likewise expect that 1t 1t 1t[D (q )(q / p )]′  equals 

the inverse of 
U1tη  whenever the Hicksian demand is well-behaved and differentiable. Our 

results in this section are therefore an alternative proof of the Hausman approximation in (17), 

but we have obtained these results even in cases where the Hicksian demand elasticity  does not 

exist and instead the inverse demand functions are well-behaved and differentiable. This result 

will be very useful as we explore a quadratic utility function in the next section. 

 
3.3  Konüs-Byushgens-Fisher (KBF) Utility Function  

The functional form for the consumer’s utility function f(q) that we will consider next is 

the following quadratic form:11 

(32)    U = f(q) = (qTAq)1/2,      

where the N by N matrix A ≡ [aik] is symmetric (so that AT = A) and thus has N(N+1)/2 

unknown aik elements. We also assume that A has one positive eigenvalue with a corresponding 

strictly positive eigenvector and the remaining N−1 eigenvalues are negative or zero.12 These 

conditions ensure that the utility function has indifference curves with the correct curvature.  

Konüs and Byushgens (1926) showed that the Fisher (1922) “ideal” quantity index    

QF(pt-1,pt,qt-1,qt) ≡ [(pt-1⋅qt /pt-1⋅qt-1)(pt⋅qt/ pt⋅qt-1)]1/2 is exactly equal to the aggregate utility ratio 

f(q1)/f(q0), provided that the consumer maximizes the utility function defined by (32) in periods 

t-1 and t, where pt-1 and pt are the price vectors with chosen quantities qt-1 and qt. Diewert (1976) 

elaborated on this result by proving that the utility function defined by (32) was a flexible 

functional form; i.e., it can approximate an arbitrary twice continuously differentiable linearly 

homogeneous function to the accuracy of a second-order Taylor series approximation around an 

arbitrary positive quantity vector q*. Since the Fisher quantity index gives exactly the correct 

                                                 
11 We assume that vectors are column vectors when matrix algebra is used. Thus qT denotes the row vector which is 
the transpose of q. 
12 Diewert and Hill (2010) show that these conditions are sufficient to imply that the utility function defined by (32) 
is positive, increasing, linearly homogeneous and concave over the regularity region S ≡ {q: q >> 0N and Aq >> 0N}. 
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utility ratio for the quadratic functional form defined by (32), he labelled the Fisher quantity 

index as a superlative index and we shall call (32) the KBF functional form. 

Assume that all products are available in period t and consumers face the positive prices 

pt >> 0N. The first order conditions (22) to maximize the utility function in (32) become: 

(33)    pt = EtAqt/(qt
TAqt) .                                                                                                   

While these are the conditions for an interior maximum with qt >> 0N, we can obtain the 

condition for a zero optimal quantity qit=0 if we impose that value on the right of (33) and then 

define the left-hand side for good i as the reservation price *
itp . Then for all prices pit ≥ *

itp , the 

consumer will optimally choose qit = 0. We see that an advantage of the quadratic functional 

form is that the corresponding reservation price can be calculated very easily from (33), for any 

good where the quantity happens to equal 0 in the period under consideration.  

In order to characterize demand, it is useful to work with the expenditure function. 

Assume for the moment that the matrix is of full rank, and denote A* = A-1. Then the minimum 

expenditure to obtain one unit of utility when the optimal qt >> 0N is, 

(34)    e(pt) = (pt
TA*pt)1/2,      

The total expenditure function is then Et = Ute(pt), and Hicksian demand is obtained by 

differentiating with respect to pit,  

(35)   
N *

in ntn 1
it t t t T *

t
1/2

t

a p
q (p , U ) U ,

(p A p )
=

 
 =
  

∑      i = 1,...,N,   

where *
ina  are the elements of A*. Differentiating −ln qit with respect to ln pit, we obtain the 

(positive) Hicksian elasticity, 

(36)  
N ** *

it in ntit ii it ii itn 1
it itN T * N* *

it tin nt in ntntn 1 1

p a pln q a p a p s ,
ln p p Aa p ap p

=

= =

∂ − −
η ≡ − = + = +

∂
∑

∑ ∑U
U

   

where sit is the share of expenditure on good i.  Notice that the denominator of the first ratio on 

the right of (36) must be positive to obtain positive demand in (35), but it aproaches zero as the 

quantity qit approaches zero in a neighborhood of the reservation price as pit → pit
* and qit → 0.  



16 
 

Because the share then approaches zero, it follows that the Hicksian elasticity of demand in (36) 

remains positive if and only if  *
iia 0,<  i = 1,…,N, which we assume is the case.  

The fact that the KBF utility function has finite reservation prices suggests that it lies in-

between the demand curves for the CES utility function (which have infinite reservation prices) 

and the linear approximation illustrated in Figure 1. That conjecture can be established more 

formally, as we show in Appendix C. We compute the second derivatives of the Hicksian 

demand curves for the quadratic utility function and show that so long as the demand curve is 

downward sloping, then it will be convex. In Appendix C we also compare the second derivative 

of the demand curve in the KBF case with that obtained in the CES case. Provided that the first 

derivatives of the demand curves are equal at the point of consumption (pit, qit), and that the 

expenditure share satisfies sit < 0.5, then the second derivative of the CES Hicksian demand 

curves will exceed the second derivatives of those quadratic demand curves.  This means that the 

demand curves for the quadratic utility function lie in-between the constant-elasticity demand 

curves considered in the previous section and the straight-line Hausman approximation.13 

 Using the expenditure function (34) with coefficients A* = A-1, where A is the matrix of 

coefficients for the direct utility function in (32), requires that the matrix A has full rank so that it 

is invertible. It is quite possible that A can have less than full rank, however, which means that 

there are certain goods in the utility function (or linear combinations of goods) that are perfect 

substitutes with other goods (or their combinations). In that case, at certain prices the demand for 

goods will not be uniquely determined, so we cannot work with demand as a function of prices 

or with the expenditure function. Instead, it makes sense to go back to the utility function in (32) 

and work with the inverse demand functions which are defined by (33), where prices (on the left) 

are a function of quantities and expenditure (on the right). The matrix of coefficients A will be of 

less than full rank in our empirical application of the KBF utility function, as we shall explain in 

sections 4.6 and 4.7, so we shall use the inverse demand functions in (33) for estimation. 

Fortunately, even in this case we can define a constant-utility Hicksian inverse demand curve, as 

we denoted by p1t = D(q1t) in section 3.2. Then our analysis of the Hausman approximation in 

that section continues to hold. Indeed, we show in Appendix B that in this case the elasticity of  

                                                 
13  While we formally establish this result in Appendix C in a neighborhood of the consumption point, we expect 
that it will hold for all prices up to the reservation price, which is finite for the quadratic demand curves but infinite 
for the CES demand curve.  
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the inverse demand curve is: 

(37)            ( )1t 1t 11
2 2

1t 1t 1

1 s a 1
ln q (

ln D q
1 s ) p

 
= − 

∂ −  

∂
, 

which can be used in (31) to obtain the Hausman approximation to the gain from good 1 in the 

KBF case: 

(38)           GH,KBF  
2

1t 11
2

1t 1

s a1 1
2 1 s p

  
= − −  −   

.      

 
4.  Empirical Illustration using CES and KBF Utility Functions 

4.1  Scanner Data for Sales of Frozen Juice 

We use the data from Store Number 514 in the Dominick’s Finer Foods Chain of 100 

stores in the Greater Chicago area on 19 varieties of frozen orange juice for 3 years in the period 

1989-1994 in order to test out the CES and quadratic utility functions explained in the previous 

two sections. The micro data from the University of Chicago (2013) are weekly quantities sold of 

each product and the corresponding unit value price. However, our focus is on calculating a 

monthly index and so the weekly price and quantity data need to be aggregated into monthly 

data. Since months contain varying amounts of days, we are immediately confronted with the 

problem of converting the weekly data into monthly data. We decided to side step the problems 

associated with this conversion by aggregating the weekly data into pseudo-months that consist 

of 4 consecutive weeks.     

In Appendix A, the “monthly” data for quantities sold and the corresponding unit value  

prices for the 19 products are listed in Tables A1 and A2.15 There were no sales of Products 2 

and 4 for month 1-8 and there were no sales of Product 12 in month 10 and in months 20-22. 

Thus there is a new and disappearing product problem for 20 observations in this data set. Later 

in this paper, we will impute Hicksian reservation prices for these missing products and these 

estimated prices are listed in Table A2 in italics. The corresponding imputed quantity for a 

missing observation is set equal to 0.  

Expenditure or sales shares, sit ≡ pitqit/ 19
n 1=Σ pntqnt, were computed for products i = 1,...,19  

                                                 
14 This store is located in a North-East suburb of Chicago. 
15 In what follows, we will describe our 4 week “months” as months. 
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and months t = 1,...,39. We computed the sample average expenditure shares for each product. 

The best selling products were products 1, 5, 11, 13, 14, 15, 16, 18 and 19. These products had a 

sample average share which exceeded 4% or a sample maximum share that exceeded 10%. There 

is tremendous volatility in product prices, quantities and sales shares for both the best selling and 

least popular products.  

In the following sections, we will use this data set in order to estimate the elasticity of 

substitution σ for the CES utility and unit-expenditure functions, making differing assumptions 

on the errors underlying the price and expenditure share data. 

 
4.2. Estimation of the CES Utility Function with Error in Prices 

In this section and the next, we will use double differencing approach that was 

introduced by Feenstra (1994) to estimate the elasticity of substitution. His method requires that 

product shares be positive in all periods. In order to implement his method, we drop the products 

that are not present in all periods. Thus, we drop products 2, 4 and 12 from our list of 19 frozen 

juice products since products 2 and 4 were not present in months 1-8 and product 12 was not 

present in months 20-22. Thus in our particular application, the number of always present 

products in our sample will equal 16. We also renumber our products so that the original Product 

13 becomes the Nth product in this section. This product had the largest average sales share. If 

we assume that purchasers are choosing all 19 products by maximizing CES preferences over the 

19 products, then this assumption implies that they are also maximizing CES preferences 

restricted to the always present 16 products.   

There are 3 sets of variables in the model (i = 1,...,N; t = 1,...,T): 

• qit is the observed amount of product i sold in period t; 

• pit is the observed unit value price of product i sold in period t and 

• sit is the observed share of sales of product i in period t that is constructed using the 

quantities qit and the corresponding observed unit value prices pit. 

In our particular application, N = 16 and T = 39. We aggregated over weekly unit values to 

construct pseudo-monthly unit value prices. Since there was price change within the monthly 

time period, the observed monthly unit value prices will have some time aggregation errors in 

them. Any time aggregation error will carry over into the observed sales shares. Interestingly, as 

we aggregate over time, the aggregated monthly quantities sold during the period do not suffer 
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from this time aggregation bias. In this section, we will allow for measurement error in the log 

shares due to the measurement error in prices and, in the next section, we shall also add 

measurement error in the share due to changing tastes. 

Our goal is to estimate the elasticity of substitution for a CES direct utility function (3) 

that was discussed in section 3.1 above. The system of share equations that corresponds to this 

consumer utility function was shown as (6) when expressed as a function of prices. An 

alternative expression for the shares as a function of quantities can be obtained by denoting the 

CES utility function by f(qt) and using the first-order condition (22) for good i multiplied by qit 

to obtain the share equations:  

 (39)   
t

( 1)/
it it i it

it ( 1)/
t n ntn I

p q a qs ,
E a q

σ− σ

σ− σ
∈

≡ =
∑

  i = 1,...,N; t = 1,...,T,  

where T = 39 and N = 16. This system of share equations corresponds to the consumers’ system 

of inverse demand equations for always present products, which give monthly unit value prices 

as functions of quantities purchased.  We take natural logarithms of both sides of the equations in 

(39) and add error terms uit to reflect the measurement error in prices and therefore in shares, 

 (40)  N( 1) ( 1)/
it i it n nt itn 1ln s ln a ln q a q u ,σ− σ− σ

σ == + − +∑   i = 1,...,N; t = 1,...,T  

where by assumption the qit are measured without error and the error terms uit have 0 means and  

a classical (singular) covariance matrix for the shares within each time period and the error terms 

are uncorrelated across time periods. The unknown parameters in (40) are the positive 

parameters ai and the elasticity of substitution σ > 1. 

The Feenstra double-differenced variables are defined in two stages. First, we difference 

the logarithms of the sit with respect to time; i.e., define ∆lnsit as follows: 

(41)   ∆lnsit ≡ ln(sit) − ln(sit-1) ,   i = 1,...,N; t = 2,3,...,T.  

Now pick product N as the numeraire product and difference the ∆lnsit with respect to product N,  

giving rise to the following double differenced log variable, ∆2lnsit: 

(42)        ∆2lnsit ≡ ∆lnsit − ∆lnsNt ,    i = 1,...,N−1; t = 2,3,...,T  

              = ln(snt) − ln(snt-1) − ln(sNt) − ln(sNt-1). 

Define the double-differenced log quantity variables in a similar manner: 
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(43)       ∆2lnqit ≡ ∆lnqit − ∆lnqNt ;       i = 1,...,N−1; t = 2,3,...,T 

                 = ln(qnit) − ln(qit-1) − ln(qNt) − ln(qNt-1). 

Finally, define the double-differenced error variables ∆2uit as follows: 

(44)   ∆2uit ≡ uit − uit-1 − uNt + uNt-1 ,    i = 1,...,N−1; t = 2,3,...,T.  

Using definitions (41)-(44) and equation (40), it can be verified that the double-differenced log 

shares ∆2lnsit satisfy the following system of (N−1)(T−1) estimating equations: 

(45)   ∆2lnsit = ( 1)σ−
σ ∆2lnqit + ∆2uit ,     i = 1,...,N−1; t = 2,3,...,T 

where the new residuals, ∆2uit, have means 0 and a constant covariance matrix with 0 

covariances for observations which are separated by two or more time periods. Thus we have a 

system of linear estimating equations with only one unknown parameter across all equations, 

namely, σ. This is almost16 the simplest possible system of estimating equations that one could 

imagine. 

Using the data listed in Appendix A, we have 15 product estimating equations of the form 

(45) which we estimated using the NL system command in Shazam.17 The resulting estimate for 

(σ−1)/σ  was 0.865 (with a standard error of 0.007) and thus the corresponding estimated σ is 

equal to 7.40. The standard error on (σ−1)/σ was tiny using the present regression results so σ 

was very accurately determined using this method. The equation-by-equation R2 for the 15 

products i = 1,…,N-1 were as follows: 0.994, 0.990, 0.991, 0.991, 0.987, 0.982, 0.962, 0.956, 

0.986, 0.991, 0.993, 0.994, 0.991, 0.992 and 0.989. The average R2 is 0.986, which is very high 

for share equations or for transformations of share equations. The results are all the more 

remarkable considering that we have only one unknown parameter in the entire system of 

(N−1)(T−1) = 570 observations.18 This double differencing method for estimating the elasticity 

of substitution worked much better than any other method that we tried.19  

 
                                                 
16 The variance covariance structure is not quite classical due to the correlation of residuals between adjacent time 
periods. We did not take this correlation into account in our empirical estimation of this system of estimating 
equations; i.e., we just used a standard systems nonlinear regression package that assumed intertemporal independence 
of the error terms.  
17 See White (2004). 
18 The results are dependent on the choice of the numeraire product. Ideally, we want to choose the product that has 
the largest sales share and the lowest share variance. 
19 See our working paper, Diewert and Feenstra (2019), for other methods. 
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4.3. Estimation of the CES Utility Function with Errors in Prices and Tastes 

In the previous section, the error terms in equations (40) and (45) reflected time 

aggregation errors in forming the monthly unit value prices, which we assumed were reflected in 

the expenditure share but not in the quantities. But in reality, errors in the unit values can arise 

due to inaccurate measurement of quantities themselves, creating inaccurate unit values when 

dividing expenditure on a barcode item by the quantity. Such measurement error in quantities is 

therefore reflected in the unit values but not in the expenditure shares. We could expect, 

however, that other errors in expenditure shares could arise because our assumed CES functional 

form for the consumer’s utility function may not be correct. One way to model that situation is to 

allow the consumer taste parameters to change over time, while retaining the rest of the CES 

structure. In that case we obtain an error in the share equations due to taste change. However, we 

will assume that the error in shares due to taste change is uncorrelated with the measurement 

error in prices. 

We now make that measurement error in prices explicit by assuming that the natural log 

of the unit values pit are related to the true prices ρit by: 

 (46)       lnpit = lnρit
 + uit ,   i = 1,...,N; t = 1,...,T 

where uit is the measurement error in the log unit values, which is assumed to be uncorrelated 

with the logarithms of the true prices, lnρit. 

Consider the share equations (6) but replace the unit value prices pit by the true prices ρit. 

In addition, we will allow the taste parameters bi appearing in (6) to vary over time, and so we 

replace them by bit, i = 1,…,N. We assume that the taste parameters have an error term:   

(47)       lnbit = lnbi
 + εit .   i = 1,...,N; t = 1,...,T 

With these changes to the share equation (6), we take natural logarithms to obtain:  

(48)  N (1 )
it i it nt nt itn 1ln s ln b (1 ) ln ln b ,−σ

=
 = + −σ ρ − ρ + ε
 ∑   i = 1,...,N; t = 1,...,T  

As explained, the error term εit can arise due to movements in the share variable that does not 

reflect CES behavior with fixed taste parameters on the part of the representative consumer. A 
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good example for our frozen juice data − or other scanner data − would be sales that lead to 

shopping for inventories, which is behavior that lies outside our model.20  

We will make the usual assumption that the errors in the share equations (48) are 

uncorrelated with the “true” prices ρit in (46), i.e. these “true” prices are exogenous to the 

consumer.21 Furthermore, we shall assume that the measurement errors uit in the unit values is 

uncorrelated with the errors εit in the share variables. The challenge now is to obtain a consistent 

estimate for the elasticity of substitution in the presence of (independent) errors in both the share 

and the unit value data. Once again, we rely on the double-differencing method due to Feenstra 

(1994). As in the previous section, for any variable x we define the double difference over time 

and with respect to the product N as ∆2lnxit  ≡ ∆lnxit – ∆lnxNt. 

The share equation in (48) is simplified by taking first-differences over time to eliminate 

the nuisance parameter bi, and then by taking an additional difference with respect to a reference 

product N to eliminate the summation term:22 

(49)      ∆2lnsit  ≡ ∆lnsit – ∆lnsNt       i = 1,...,N-1; t = 2,...,T 

= (1–σ) ∆2lnρit
 + ∆2εit,            from (48)   

= (1–σ) ∆2lnpit
  – (1–σ) ∆2uit

  + ∆2εit,   from (46). 

To proceed further, it is convenient to define second and cross-moments of the errors and data. 

These will be used to express our assumptions about terms being uncorrelated, and they will be 

used in the estimation. For any two variables x and y, define their cross-moment in the data 

(differenced over time and differenced with respect to product N) as:   

(50)    Mi(x,y) ≡ (1/T) (Σt ∆2xit
  ∆2yit ) .  i=1,...,N-1,  

If x = y then the cross moment defined in (50) becomes a second moment of the variable x. For 

whatever choice of the variables x and y that we make, the moments are constructed by 

averaging over time as in (50) for each of the products i=1,…,N-1, so then using the panel nature 

of the dataset we have a cross-section of such moments for i = 1,...,N-1.  

                                                 
20 Feenstra and Shapiro (2003) analyze inventory stockpiling behavior for canned tuna. 
21  The estimator in Feenstra (1994) allows for upward sloping supply curves, so that prices become endogenous, but 
we ignore that feature of the estimator here. 
22  We assume that the reference product N is available in every period, and in practice, we choose it as the product 
with highest cumulative sales that is available in every period. In our data set, this is product 13. Our estimation 
method is somewhat sensitive to the choice of the reference product. The ideal reference product has a large share in 
every period and a small period to period variance in the shares. 
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With this definition, our assumptions that certain terms are uncorrelated can be expressed 

conveniently as, 

(51)   E[Mi(ε,lnρ)]=0,  E[Mi(u,lnρ)]=0 and E[Mi(ε,u)]=0,    i=1,...,N-1, 

where E denotes the expected value. The first of these assumptions is that prices are exogenous  

to the consumer; the second is that the measurement error in the unit values is uncorrelated with 

the true prices, and the third is that the errors in the shares and in the unit values are uncorrelated. 

We now show how these moment conditions can be combined to obtain a consistent estimate of 

the elasticity of substitution. 

The cross-moment between the errors in shares and in unit values can be written as:  

(52)   Mi(ε,u) ≡ (1/T) [Σt (∆2εit
 ∆2uit

 )] 

= (1/T)[Σt ∆2εit (∆2lnpit
  – ∆2lnρit

 )]  

= (1/T) [Σt (∆2lnsit – (1–σ)∆2lnpit
  + (1–σ)∆2uit

 ) ∆2lnpit
 ] – Mi(ε,ln ρ) 

= Mi(lns,lnp) – (1–σ)Mi(lnp,lnp)+ (1–σ)Mi(u,lnp) – Mi(ε,lnρ) 

= Mi(lns,lnp) – (1–σ)Mi(lnp,lnp) + (1–σ)Mi(u,lnρ) + (1–σ)Mi(u,u) – Mi(ε,lnρ), 

where the second line uses (48) to express the measurement error ∆2uit; the third follows by re-

expressing that error ∆2εit in full using (49), and combining the share error ∆2εit with the term 

∆2lnρit to obtain Mi(ε,lnρ); the fourth line follows from definition of the various cross-moments; 

and the last line follows because Mi(u,lnp) = Mi(u,lnρ) + Mi(u,u), from (46). It is convenient to 

rewrite (52) as, 

 (53)   Mi(lnp,lnp)  = 1
(1 )−σ Mi(lns,lnp) + Mi(u,u) + Errori,              for i=1,…,N, i≠N,  

where Errori is defined as follows: 

(54)   Errori ≡ Mi(u,lnρ) – 1
(1 )−σ  [Mi(ε,lnρ)+ Mi(ε,u)]. 

What we have obtained in (53) is a simple linear regression involving moments of the 

data, which can be run over the products i=1,…,N-1. The error in this regression, defined in (54), 

consists of a sum of the moment conditions that we have discussed in (51) and which we 

assumed are zero in expected value. It follows that minimizing the squared error by running OLS 

on (54) is a generalized method of moments estimator. 
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Examining regression (53) more closely, the dependent variable is the second moment of 

the log unit values (differenced with respect to time and with respect to product N). The first 

term on the right is the cross moment of the market shares and unit values, and the coefficient of 

this term is 1/(1–σ).The second term on the right is the sample variance of the measurement error 

in the unit values for the products. That variance is not observed in the data, but we assume that 

this (population) variance is constant across the products, so that this second term is replaced by 

a constant term in the regression.  

Running the OLS regression for the frozen juice data results in σ = 7.99 for weekly data, 

and σ = 5.99 from monthly data. Thus, we see that aggregating over time from weeks to months 

does result in a lower estimate of the elasticity of substitution. But we also see that the estimate 

of σ = 7.40 from the monthly data in the previous section – using quantity on the right of the 

share equation as in (45) – neatly lies in-between the weekly and monthly consistent estimates 

obtained in this section. Accordingly, we are comfortable continuing to use the estimate of σ = 

7.40 when we compute the gains and losses from new and disappearing varieties of frozen juice, 

as we do in the next section. 

 
4.4 Estimation of the Changes in the CES CPI Due to Changing Product Availability 

Recall that the Feenstra methodology to measure the exact CES price index used the 

Sato-Vatio SVP (I) in (11), expressed over the common products, and multiplied that index by the 

terms 1/( 1)
t t 1( / ) σ−

−λ λ  in (14) that captures new and disappearing products. This term will differ 

from 1 if the available products change from the previous period. For our dataset, the term λt is 

less than unity for months 9 (products 2 and 4 become available), 11 (product 12 becomes 

available), and 23 (product 12 again becomes available). The term λt-1 is greater than unity for 

months 10 (product 12 becomes unavailable) and 20 (product 12 again becomes unavailable). 

Computing 1/( 1)
t t 1( / ) σ−

−λ λ using our estimate of σ = 7.403 gives the results shown in the third 

column of Table 2. In the final column, we can invert this term to obtain the gain in CES utility 

(or loss if less than one) due to the availability of goods:23   

(55)    GCES = 1/( 1)
t t 1( / )− σ−

−λ λ .  

                                                 
23 The CES gain in (55) is slightly more general than the compensating variation gain in (11) for a single new good.  
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Table 2: Changes in the Price Level and CES Gains 
due to the Availability of Products, σ = 7.40 

   Availability ( 1/(σ-1)
t t-1λ / λ )   GCES 

9 2 and 4 new      0.9928 1.0073 
10 12 disappears      1.0036 0.9964 
11 12 reappears      0.9957 1.0043 
20 12 disappears      1.0039 0.9962 
23 12 reappears      0.9969 1.0031 

Cumulative Gain                       0.9928 1.0073 
 

Recall that in month 9, products 2 and 4 make their appearance, and Table 2 tells us that 

the effect of this increase in variety is to lower the price level and increase utility for month 9 by 

0.73 percentage points. In month 10 when product 12 disappears from the store, this has the 

effect of increasing the price level and lowering utility by 0.36 percentage points. That product 

comes in and out of the dataset, and the overall effect on the price level of the changes in the 

availability of products is equal to 0.9928×1.0036×0.9957×1.0039× 0.9969 = 0.9928, for a 

decrease in the price level and increase in utility over the sample period of 0.73 percentage 

points. Notice that this overall effect just reflects the introduction of products 2 and 4 in month 9, 

since the net impact of the disappearance and reappearance of product 12 cancels out when 

cumulated. That cancelling of the impact of availability of product 12 is a highly desirable 

feature of these CES results, but it is not a necessary outcome because it depends on the shares of 

product 12: it just so happens that these shares are nearly equal when it exits and re-enters, 

leading to zero net impact. We will explore in later sections whether this desirable result 

continues to hold with other functional forms for utility. 

These results in Table 2 are our first estimates of the gains from increased product 

availability in our frozen juice data. While they are promising results, as we mentioned in section 

1, there are two potential problems with the Feenstra methodology: (i) the CES functional form 

is not fully flexible; and (ii) the reservation prices which induce consumers to demand 0 units of 

products that are not available in a period are infinite, which a priori seems implausible. Thus in 

the following section, we will introduce a flexible functional form that will generate finite 

reservation prices for unavailable products, and hence will provide an alternative methodology 

for measuring the net benefits of new and disappearing products. 
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4.5  Estimation of the KBF Utility Function 

 The quadratic or KBF utility function was introduced in section 3.3, above. Multiply both 

sides of equation i in (33) by qit and pt⋅qt = Et, we obtain the following system of inverse demand 

share equations: 

(56)    
N

it in ntit it n 1
it T

t t t t

q a qp qs ,
p q q Aq

=≡ =
⋅

∑    i = 1,...,N,  

where ain is the element of A that is in row i and column n for i, n = 1,...,N. These equations will 

form the basis for our system of estimating equations in this and the following section. Note that 

they are nonlinear equations in the unknown parameters aik. It turns out to be useful to 

reparameterize the A matrix as follows: 

(57)  A = bbT + B; b >> 0N ; B = BT ; B is negative semidefinite; Bq* = 0N,   

where q* is a positive vector. The vector bT ≡ [b1,...,bN] is a row vector of positive constants and 

so bbT is a rank one positive semidefinite N by N matrix. The symmetric matrix B has N(N+1)/2 

independent elements bnk but the N constraints Bq* reduce this number of independent 

parameters by N. Thus there are N independent parameters in the b vector and N(N−1)/2 

independent parameters in the B matrix so that bbT + B has the same number of independent 

parameters as the A matrix. Diewert and Hill (2010) showed that replacing A by bbT + B still 

leads to a flexible functional form. 

The reparameterization of A by bbT + B is useful in our present context because we can 

use this reparameterization to estimate the unknown parameters in stages. Thus we will initially 

set B = ON×N, a matrix of 0’s. The resulting utility function becomes f(q) = (qTbbTq)1/2 = 

(bTqbTq)1/2 = bTq, a linear utility function. Thus this special case of (32) boils down to the linear 

utility function model, which means that the goods are perfect substitutes for each other. We will 

add the matrix B into our estimation as described below, but restrict it to be of less than full rank, 

so the matrix A will also be of less than full rank. As anticipated earlier (see the end of section 

3.3), this means that A cannot be inverted and it will be necessary to work with the inverse 

demand curves of the KBF system, rather than the expenditure function or the associated 

Hicksian or Marshallian demand curves.   

The matrix B is required to be negative semidefinite. We can follow the procedure used 

by Wiley, Schmidt and Bramble (1973) and Diewert and Wales (1987) and impose negative 
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semidefiniteness on B by setting B equal to −CCT where C is a lower triangular matrix.24 Write 

C as [c1,c2,...,cN] where ck is a column vector for k = 1,...,N. If C is lower triangular, then the first 

k−1 elements of ck are equal to 0, k = 2,3,...,N. Thus we have the following representation for B: 

(58)    B = −CCT  = − 19
k 1=Σ ckckT      

where we impose the following restrictions on the vectors ck in order to impose the restrictions 

Bq* = 0N on B:25 

(59)    ckTq* = 0 ;   k = 1,....,N.    

If the number of products N in the commodity group under consideration is not small, 

then typically, it will not be possible to estimate all of the parameters in the C matrix. 

Furthermore, typically nonlinear estimation is not successful if one attempts to estimate all of the 

parameters at once. Thus we estimated the parameters in the utility function f(q) = (qTAq)1/2 in 

stages. In the first stage, we estimated the linear utility function f(q) = bTq. In the second stage, 

we estimate f(q) = (qT[bbT − c1c1T]q)1/2 where c1T ≡ [c1
1,c2

1,...,cN
1] and c1Tq* = 0. For starting 

coefficient values in the second nonlinear regression, we use the final estimates for b from the 

first nonlinear regression and set the starting c1 ≡ 0N.26 In the third stage, we estimate f(q) = 

(qT[bbT − c1c1T − c2c2T]q)1/2 where c1T ≡ [c1
1,c2

1,...,cN
1], c1Tq* = 0, c2T ≡ [0,c2

2,...,cN
2] and c2Tq* = 

0. The starting coefficient values are the final values from the second stage with c2 ≡ 0N. In the 

fourth stage, we estimate f(q) = (qT[bbT − c1c1T − c2c2T − c3c3T]q)1/2 where c1T ≡ [c1
1,c2

1,...,cN
1], 

c1Tq* = 0, c2T ≡ [0,c2
2,...,cN

2], c2Tq* = 0, c3T ≡ [0,0,c3
3,...,cN

3] and c3Tq* = 0. At each stage, the log 

likelihood will generally increase.27 We stop adding columns to the C matrix when the increase 

in the log likelihood becomes small (or the number of degrees of freedom becomes small). At 

stage k of this procedure, it turns out that we are estimating  the substitution matrices of rank k−1 

that is the most negative semidefinite that the data will support. This is the same type of 

                                                 
24 C = [cnk] is a lower triangular matrix if cnk = 0 for k > n; i.e., there are 0’s in the upper triangle. Wiley, Schmidt and 
Bramble showed that setting B = −CCT where C was lower triangular was sufficient to impose negative 
semidefiniteness while Diewert and Wales showed that any negative semidefinite matrix could be represented in this 
fashion.    
25 The restriction that C be lower triangular means that cN will have at most one nonzero element, namely cN

N. 
However, the positivity of q* and the restriction cNTq* = 0 will imply that cN = 0N. Thus the maximal rank of B is N−1. 
For additional materials on the properties of the KBF functional form, see Diewert (2018). 
26 We also use the constraint c1Tq* to eliminate one of the cn

1 from the nonlinear regression. 
27 If it does not increase, then the data do not support the estimation of a higher rank substitution matrix and we stop 
adding columns to the C matrix. The log likelihood cannot decrease since the successive models are nested.  
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procedure that Diewert and Wales (1988) used in order to estimate normalized quadratic 

preferences and they termed the final functional form a semiflexible functional form. The above 

treatment of the KBF functional form also generates a semiflexible functional form.  

 
4.6 The Estimation of KBF Preferences Using Share Equations 

The estimating equations for the KBF utility function are the following stochastic version 

of the share equations (56) above:  

(60)   sit = qit 19
j 1=Σ aijqjt/[ 19

n 1=Σ 19
m 1=Σ anmqntqmt] + εit              t = 1,...,39; i = 1,...,19  

where the error term vectors εt
T = [ε1t,...,ε19t] are assumed to be distributed as a multivariate 

normal random variable with mean vector 019 and variance-covariance matrix Σ for t = 1,...,39.28 

Because the shares in (60) sum to unity over the i=1,…,19 products for each t, and likewise the 

term on the right-hand side without the error sums to unity, it follows that the error terms εit sum 

to zero over the over the i=1,…,19 products for each t. So the variance-covariance matrix Σ of 

the errors is singular and we drop the last equation for product 19. In order to identify the 

parameters, the normalization  b19 = 1 can be imposed. We also choose the reference vector q* 

=119  as a vector of ones. 

It is possible to estimate (60) as a system of 18 equations, which we attempted in our 

working paper (see Diewert and Feenstra, 2017). But we found that for estimation, it is more 

convenient to stack the 18 estimating share equations listed in equations (60) into a single 

equation.  In the first model, we estimated the 18 unknown parameters in the linear utility 

function with A = bbT, where bT ≡ [b1,b2,...,b19] and b19 = 1, using the single equation Nonlinear  

command in Shazam. The final log likelihood was 2379.4 and the R2 was 0.982.  

An advantage of the single equation approach is that we can now easily drop the 20 

observations where the product was missing.29 Thus for our next model, we dropped the 20 

observations for products 2, 4 and 12 for the months when these products were missing, so the 

number of observations for this new model is equal to (36×18) − 20 = 682. We found that the 

parameter estimates for this new model were exactly the same as the corresponding parameter 

                                                 
28 This is a slightly incorrect econometric specification since εit will automatically equal 0 if product i is not present 
during month t. 
29 The error terms will automatically be 0 for these 20 observations.  
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estimates that we obtained when using all the observations. However, the new log likelihood 

decreased to 2301.7 and the new R2 decreased slightly to 0.981. In the models that follow, we 

continued to drop the 20 observations that correspond to the months when the products were 

missing.  

In our next model, we set A = bbT − c1c1T with the normalizations b19 = 1 and 
18
n 1

1 1
19 nc c== −Σ . We used the final estimates for the components of the b vector from the previous 

model as starting coefficient values for this model and we used 1
nc  = 0.001 for n = 1,...,18 as 

starting values for the components of the c vector. The final log likelihood for this model was 

2445.9, an increase of 144.2 for adding 18 new parameters to the previous model, and the R2 

increased to 0.988. 

We continued on adding new columns ck one at a time to the substitution matrix, using  

the finishing coefficient values from the previous nonlinear regression as starting values for the 

next nonlinear regression. Our final model added the column vector c4 to the previous A matrix.  

Thus we had A = bbT − c1c1T − c2c2T  − c3c3T − c4c4T with c4T = [0,0,0, 4
4c ,..., 4

19c ] and the  

additional normalization 18
n 4

4 4
19 nc c== −Σ . As usual, we used the final estimates for the components 

of the b, c1, c2 and c3 vectors from the previous model as starting coefficient values for this 

model and we used 4
nc = 0.001 for n = 4,...,18 as starting values for the nonzero components of 

the c4 vector. The final log likelihood for this model was 2629.2, an increase of 14.7 for adding 

15 new parameters to the previous model’s parameters. Thus the increase in log likelihood is 

now less than one per additional parameter. The single equation R2 increased to 0.992. The 

comparable R2 for each separate product share equation were as follows:30 0.986, 0.993, 0.977, 

0.985, 0.981, 0.954, 0.976, 0.858, 0.976, 0.969, 0.892, 0.928, 0.991, 0.920, 0.987, 0.957, 0.911 

and 0.965. The average R2 was 0.956, which is a relatively high average when estimating share 

equations.  

Since the present model estimated 84 unknown parameters and we had only 682 degrees 

of freedom, we had only about 8 degrees of freedom per parameter at this stage. Moreover, the 

increase in log likelihood over the previous model was relatively small. Thus, we decided to stop 

                                                 
30 These equation by equation R2 are the squares of the correlation coefficients between the actual share equations for 
product n and the corresponding predicted values from the nonlinear regression. We included the 20 zero share and 
quantity product observations since our model correctly predicts these 0 shares.  
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adding columns to the C matrix at this point. With the estimated b and c vectors (denote them as 

b̂  and kĉ  for k = 1,...,4), form the estimated A matrix as T 1 1T 2 2T 3 3T 4 4Tˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆbb c c c c   c cÂ c c− − −≡ − , 

and denote the ij element of Â  as ijâ  for i,j = 1,...,19. The expenditure share for product i in 

month t is sit defined as follows: 

 (61)              *
its  ≡ qit 19

j 1=Σ ijâ qjt/[ 19
n 1=Σ 19

m 1=Σ nmâ qntqmt] ,     t = 1,...,39; i = 1,...,19.  

The predicted price for product i in month t is defined using (33) as: 

(62)  *
itp  ≡ Et 19

j 1=Σ ijâ qjt/[ 19
n 1=Σ 19

m 1=Σ nmâ qntqmt] ,    t = 1,...,39; i = 1,...,19  

where Et
 ≡  pt⋅qt is period t sales or expenditures on the 19 products during month t. We 

calculated the predicted prices defined by (62) for all products and all months. 

Of particular interest are the predicted prices for products 2 and 4 for months 1-8 and for 

product 12 for months 10 and 20-22 when these products were not available. The predicted 

prices for products 2 and 4 for the first 8 months in our sample period were 1.62, 1.56, 1.60, 

1.52, 1.61, 1.52, 1.70, 1.97 and 1.85, 1.46, 1.80, 1.37, 1.77, 1.83, 1.88, 2.27 respectively. The 

predicted prices for product 12 for months 10 and 20-22 were 1.37, 1.20, 1.22 and 1.28. These 

prices are rather far removed from the infinite reservation prices implied by the CES model. 

However, there is a problem with our model: even though the predicted expenditure 

shares are quite close to the actual expenditure shares, the predicted prices are not particularly 

close to the actual prices. Thus the equation-by-equation R2 for the 19 product prices were as 

follows:31 0.757, 0.823, 0.866, 0.897, 0.903, 0.758, 0.866, 0.002, 0.252, 0.122, 0.000, 0.001, 

0.913, 0.672, 0.461, 0.724, 0.543, 0.815 and 0.423. The average R2 is only 0.568 which is not 

very satisfactory. How can the R2 for the share equations be so high while the corresponding R2 

for the fitted prices are so low? The answer appears to be the following one: when a price is 

unusually low, the corresponding quantity is unusually high and vice versa. Thus the errors in the 

fitted price equations and the corresponding fitted quantity equations tend to offset each other 

and so the fitted share equations are fairly close to the actual shares whereas the errors in the 

fitted price and quantity equations can be rather large but  in opposite directions.  

                                                 
31 For the 20 observations where the product was not available, we used the predicted prices as actual prices in 
computing these R2. Thus for products 2, 4 and 12, the R2 listed are overstated.  
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The above poor fits for the predicted prices caused us to re-examine our estimating 

strategy. The primary purpose of our estimation of preferences is to obtain “reasonable” 

predicted prices for products that are not available. Our primary purpose is not the prediction of 

expenditure shares; it is the prediction of reservation prices! Thus in the following section, we 

will switch from estimating share equations to the estimation of price equations.     

 
4.7 The Estimation of KBF Preferences Using Price Equations 

Our next system of estimating equations used prices as the dependent variables, as was 

shown in (33): 

(63)  pit ≡ Et
19
j 1=Σ aijqjt/[ 19

n 1=Σ 19
m 1=Σ  anmqntqmt] + εit ,  t = 1,...,39; i = 1,...,18  

where the A matrix was defined as A = bbT − c1c1T − c2c2T  − c3c3T − c4c4T and the vectors b and  

c1 to c4 satisfy the same restrictions as the last model in the previous section. We stack up the 

estimating equations defined by (63) into a single nonlinear regression and we drop the 

observations that correspond to products i that were not available in period t. 

We used the final estimates for the components of the b, c1, c2, c3 and c4 vectors from the 

previous model as starting coefficient values for the present model. The initial log likelihood of 

our new model using these starting values for the coefficients was 415.6. The final log likelihood 

for this model was 518.9, an increase of 103.5. Thus switching from having shares to having 

prices as the dependent variables did significantly change our estimates. The single equation R2 

was 0.945. We used our estimated coefficients to form predicted prices *
itp  using equations (63) 

evaluated at our new parameter estimates. The equation-by-equation R2 comparing the predicted 

prices for the 19 products with the actual prices were as follows:32 0.830, 0.862, 0.900, 0.916, 

0.899, 0.832, 0.913, 0.035, 0.244, 0.275, 0.024, 0.007, 0.870, 0.695, 0.421, 0.808, 0.618, 0.852 

and 0.287. The average R2 was 0.594. Of particular concern is product 12, which comes in and 

out of the sample, and which has a very low R2 of only 0.007 

  Since the predicted prices are still not very close to the actual prices, we decided to press 

on and estimate a new model which added another rank 1 substitution matrix to the substitution  

                                                 
32 See notes 30 and 31. 
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matrix; i.e., we set A = bbT − c1c1T − c2c2T  − c3c3T − c4c4T − c5c5T where c5T = [0,0,0,0, 5
5c ,..., 5

19c ] 

and the additional normalization 18
n 5

5 5
19 nc c== −Σ  We used the final estimates for the components 

of the b, c1, c2, c3 and c4 vectors from the previous model as starting coefficient values for the 

present model along with cn
5 = 0.001 for n = 5,6,...,18. The initial log likelihood of our new 

model using these starting values for the coefficients was 518.9. The final log likelihood for this 

model was 550.3, an increase of 31.4. The single equation R2 was 0.950.  

Since the increase in log likelihood for the rank 5 substitution matrix over the previous 

rank 4 substitution matrix was fairly large, we decided to add another rank 1 matrix to the A  

matrix. Thus for our next model, we set A = bbT − c1c1T − c2c2T  − c3c3T − c4c4T − c5c5T − c6c6T 

where c6T = [0,0,0,0, 6
6c ,..., 6

19c ] with the additional normalization 18
n 6

6 6
19 nc c== −Σ  We used the 

final estimates for the components of the b, c1, c2, c3, , c4 and c5 vectors from the previous model  

as starting coefficient values for the new model along with 6
nc  = 0.001 for n = 6,7,...,18. The  

final log likelihood for this model was 568.9, an increase of 18.5. The single equation R2 was 

0.953.  The present model had 111 unknown parameters that were estimated (plus a variance 

parameter). We had only 680 observations and it was becoming increasingly difficult for Shazam 

to converge to the maximum likelihood estimates. Thus we stopped our sequential estimation 

process at this point.  

The parameter estimates for the rank 5 substitution matrix are listed below in Table 3.33  

The estimated bn in Table 3 for n = 1,...,18 plus b19 = 1 are proportional to the vector of first 

order partial derivatives of the KBF utility function f(q) evaluated at the vector of ones, ∇qf(119). 

Thus the bn can be interpreted as estimates of the relative quality of the 19 products. Viewing 

Table 3, it can be seen that the highest quality products were products 6, 17 and 4 (b6 = 2.09, b17 

= 1.58, b4 = 1.57) and the lowest quality products were products 9, 10 and 15 (b9 = 0.57, b10 = 

0.59, b15 = 0.71).  
With the estimated b and c vectors in hand (denote them as b̂  and kĉ  for k = 1,...,6), 

form the estimated A matrix as T 1 1T 2 2T 3 3T 4 4T 5 5T 6 6Tˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆbb c c c c   c c c c c cˆ cA c− − − − − −≡ , and again 

denote the ij element of Â  as ijâ  for i,j = 1,...,19. The predicted price for product i in month t is   

                                                 
33 The standard errors for the estimated coefficients are equal to the coefficient estimate listed in Table 3 divided by 
the corresponding t statistic.  
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Table 3: Estimated Parameters for KBF Preferences 
 

Coef Estimate t  Stat Coef Estimate t Stat Coef Estimate t Stat 

b1
 1.35 11.39 c3

2 -0.08 -0.11 c9
4 0.16 0.26 

b2
 1.31 10.77 c4

2 -0.71 -0.72 c10
4 -0.03 -0.05 

b3
 1.43 11.31 c5

2 -0.10 -0.24 c11
4 -0.61 -0.81 

b4
 1.57 11.54 c6

2 -0.64 -1.28 c12
4 -1.59 -1.13 

b5
 1.37 11.23 c7

2 -0.61 -1.38 c13
4 -0.23 -0.31 

b6
 2.09 11.89 c8

2 1.15 1.81 c14
4 -0.16 -0.24 

b7
 1.42 11.40 c9

2 -0.39 -1.35 c15
4 -0.67 -1.69 

b8
 0.82 9.02 c10

2 -0.54 -1.73 c16
4 -0.22 -0.30 

b9
 0.57 9.67 c11

2 1.00 2.14 c17
4 3.27 3.55 

b10
 0.59 9.48 c12

2 1.90 1.67 c18
4 -0.35 -0.44 

b11
 0.80 10.01 c13

2 -0.46 -1.48 c5
5 -0.06 -0.11 

b12
 1.10 9.16 c14

2 -0.73 -1.46 c6
5 -0.04 -0.12 

b13
 1.24 11.14 c15

2 -0.32 -0.80 c7
5 -0.10 -0.06 

b14
 1.61 11.12 c16

2 0.26 0.84 c8
5 -0.25 -0.04 

b15
 0.71 10.12 c17

2 0.02 0.01 c9
5 -0.62 -0.89 

b16
 1.34 11.47 c18

2 -0.50 -1.13 c10
5 -0.56 -0.80 

b17
 1.58 7.97 c3

3 1.36 5.41 c11
5 -0.11 -0.03 

b18
 1.37 11.40 c4

3 1.72 4.41 c12
5 -0.31 -0.04 

c1
1 1.98 10.03 c5

3 1.03 5.10 c13
5 0.63 0.12 

c2
1 1.66 6.65 c6

3 -0.43 -1.09 c14
5 0.05 0.01 

c3
1 -0.25 -1.19 c7

3 0.90 2.43 c15
5 -0.08 -0.02 

c4
1 0.13 0.55 c8

3 -0.46 -0.81 c16
5 0.76 0.13 

c5
1 0.013 0.09 c9

3 -0.01 -0.04 c17
5 0.61 0.23 

c6
1 -0.01 -0.05 c10

3 -0.08 -0.28 c18
5 0.48 0.05 

c7
1 -0.38 -1.92 c11

3 -0.59 -1.06 c6
6 -0.01 -0.03 

c8
1 -0.43 -1.86 c12

3 -0.14 -0.14 c7
6 0.18 0.38 

c9
1 -0.02 -0.11 c13

3 -0.02 -0.09 c8
6 -0.76 -0.30 

c10
1 -0.28 -1.58 c14

3 -0.45 -1.18 c9
6 -0.08 -0.02 

c11
1 -0.96 -4.48 c15

3 -0.46 -2.03 c10
6 0.08 0.02 

c12
1 -0.88 -2.69 c16

3 -0.01 -0.06 c11
6 -0.44 -0.27 

c13
1 0.11 1.52 c17

3 -2.16 -2.38 c12
6 -0.95 -0.23 

c14
1 -0.22 -1.02 c18

3 0.01 0.03 c13
6 -0.60 -0.11 

c15
1 -0.13 -0.85 c4

4 -0.50 -0.71 c14
6 0.47 0.98 

c16
1 0.14 1.25 c5

4 0.49 1.34 c15
6 0.39 0.34 

c17
1 -0.68 -1.54 c6

4 0.27 0.47 c16
6 0.66 0.10 

c18
1 0.08 0.45 c7

4 0.38 0.63 c17
6 0.12 0.00 

c2
2 0.72 1.58 c8

4 -0.11 -0.12 c18
6 1.02 0.26 
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calculated as earlier in (62) but using the new ijâ  estimates. The equation-by-equation R2 that 

compares the predicted prices for the 19 products with the actual prices were as follows:34 0.827, 

0.868, 0.900, 0.917, 0.896, 0.854, 0.905, 0.034, 0.328, 0.424, 0.052, 0.284, 0.865, 0.7280, 0.487, 

0.814, 0.854, 0.848 and 0.321. The average R2 was 0.642, which is a noticeable increase from 

the rank 4 model (average R2 =0.594), and now twelve of the 19 equations had an R2 greater than 

0.70 while 5 of the equations had an R2 less than 0.40 (product 12 has R2 = 0.284).35 

Of particular interest are the predicted prices for products 2 and 4 for months 1-8 and for 

product 12 for months 10 and 20-22 when these products were not available. The predicted 

prices for products 2 and 4 for the first 8 months in our sample period were 1.62, 1.56, 1.60, 

1.52, 1.61, 1.52, 1.70, 1.97 and 1.85, 1.46, 1.80, 1.37, 1.77, 1.83, 1.88, 2.27 respectively. The 

predicted prices for product 12 for months 10 and 20-22 were 1.37, 1.20, 1.22 and 1.28. These 

predicted prices will be used as our “best” reservation prices for the missing products.  

We can use these reservation prices in the calculation of exact price indexes for the KBF 

utility function. As noted earlier in section 3.3, the Fisher quantity index is exactly equal to the 

aggregate utility ratio for the KBF utility function in (32) provided that the quantities qt-1 and qt 

are optimal for the prices pt-1 and pt. Likewise, the Fisher price index defined by PF(pt-1,pt,qt-1,qt) 

≡ [(pt⋅qt-1 /pt-1⋅qt-1)(pt⋅qt/ pt-1⋅qt)]1/2 is exactly equal to the ratio of expenditure functions in (34), 

e(pt)/e(pt-1), provided that quantities qt-1 and qt minimize the expenditure needed to obtain utility 

of one at the prices pt-1 and pt. Initially, we can compute these Fisher price indexes for our data 

by ignoring the products that are not available in two consecutive period t-1 and t, for t=2,…,39. 

We will refer to these indexes as the Fisher maximum overlap price indexes, denoted for  

simplicity by PFM(t−1,t) for t=2,…,39.  

As a second calculation, we can make use of the reservation prices above for the 

unavailable products along with 0 quantities in that period, and we recompute the Fisher prices 

indexes while using these reservation prices. This procedure follows the suggestion of Hicks 

(1940), mentioned as the outset of our paper, for imputing the prices of unavailable products. We 

denote the Fisher index with Hicksian reservation prices by PFH(t−1,t) for t=2,…,39.  

                                                 
34 See notes 30 and 31.   
35 The sample average expenditure shares of these low R2 products was 0.026, 0.026, 0.043, 0.025 and 0.050 
respectively. Thus, these low R2 products are relatively unimportant compared to the high expenditure share products. 
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A third Fisher index that we compute uses the predicted prices for all products and all 

time periods defined by equations (62). The predicted prices for unavailable products equal the 

reservation prices, of course, while for available products the predicted prices differ from actual 

prices due to the estimated error in the regression equation (63). Using these estimated prices for 

all goods ensures that the quantities used in the price index (including the 0 quantities for 

unavailable products) are optimal for those predicted prices. Denote the Fisher index with 

predicted prices by * * * * 1/2
t t 1 t 1 t 1 t t t

*
1 tFP (t 1, t) [( )p q / p q p q / p( )]q− − − −− ≡ ⋅ ⋅ ⋅ ⋅  for t=2,…,39.   

Feenstra’s methodology for measuring the benefits and costs of changing product 

availability in the CES case makes use of a “maximum overlap” Sato-Vartia price index, which 

was denoted by PSV(I) and defined in (11) over the set of goods I that were available in periods   

t-1 and t.  The result in (14) showed that by multiplying that maximum overlap index by the ratio  
1/( 1)

t t 1( / ) σ−
−λ λ  we obtained the exact price index, which is lowered by the availability of new 

goods, and the CES gain in (55) was defined as the inverse of that ratio.  

For the KBF utility function we can make a similar type of calculation. Since new goods 

contribute to lowering the exact price index, we expect that the Fisher price index using the 

Hicksian reservation prices will be less than the maximum overlap Fisher price index in periods 

when new goods appear. Taking the inverse ratio of these indexes, we obtain our first measure of 

gains for the KBF utility function, 

(64)   GKBF(t−1,t) = PFM(t−1,t)/PFH(t−1,t),    t=2,…,39. 

A second measure of gains is obtained by taking the ratio of the maximum overlap price index 

with the Fisher index computed with predicted prices for all goods: 

(65)   *
KBFG (t 1, t)−  = PFM(t-1,t)/ *

FP (t 1, t)− ,   t=2,…,39, 

These measures of gain are calculated for our frozen juice data set. If the availability of products 

is constant over periods t −1 and t, then GKBF(t−1,t) and *
KBFG (t 1, t)− will be equal to 1. Thus the 

periods where these measures differ from unity in our data set are periods 9, 10, 11, 20 and 23, 

with these results shown in Table 4, below.  
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Table 4: Alternative Measures of Gain for the KBF Utility Function, Using Hicksian 
Reservation Prices for Unavailable Products and Using Predicted Prices for All Products 

 

Month Availability KBFG  
*
KBFG  

9 2 and 4 new 1.0004 1.0016 
10 12 disappears 0.9965 0.9988 
11 12 reappears 1.0025 1.0015 
20 12 disappears 0.9998 0.9971 
23 12 reappears 0.9991 1.0001 

Cumulative Gain            0.9983 0.9991 
 

 
We expected GKBF(t−1,t) to be less than 1 for periods 9, 11 and 23 when product 

availability increased and to be greater than 1 for periods 10 and 20 when product availability 

decreased. However, the month 23 value was GKBF  = 0.9991 which is less than unity, so the 

increased availability of product 12 in month 23 led to an decrease in utility rather than an 

increase as expected. Furthermore, the product of the 5 non-unitary values for GKBF was 0.9983 

(see the last row of Table 3) and so the overall increase in the availability of products led to a 

small decrease in utility over the sample period equal to 0.17 percentage points, rather than a 

increase as was expected. 

Since our estimated KBF utility function is not exactly consistent with the observed data, 

these kinds of counterintuitive results can occur. One method for eliminating anomalous results 

is to replace all observed prices by their predicted prices (and of course use predicted prices for 

the missing product prices, equal to their reservation prices). That is what we do in the measure  

of gains *
KBFG (t 1, t)−  defined in (65), and reported in the final column of Table 4.  

Again, we expected *
KBFG  to be greater than 1 for periods 9, 11 and 23 when product 

availability increased and to be less than 1 for periods 10 and 20 when product availability 

decreased. Our expectations were realized: there were no anomalous results for the 5 periods, 

and in particular the month 23 value for *
KBFG  rose to 1.001, indicated a slight utility gain as 

product 12 reappears in the data, as compared to the month 23 value for GKBF which was 0.9991. 

However, the product of the 5 non-unitary values for *
KBFG  turned out to be 0.9991 also, and so 

the overall increase in the availability of products led to a tiny decrease in utility over the sample 

period equal to 0.09 percentage points, rather than an increase as was expected. Unlike the CES 
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results reported in Table 2, where the overall utility gain equaled the initial gain from the entry 

of products 2 and 4 in month 9, for the KBF preferences the repeated exit and entry of product 12 

pulls down the initial gain (of 1.0016 in month 9) to become instead an overall loss. 

The explanation for this anomalous result appears to be that the maximum overlap Fisher 

price index is not well-founded theoretically: because KBF preferences are not strongly 

separable over all goods (as are CES preferences), then if a good is not available in period t-1 it 

is theoretically incorrect to ignore it in period t when calculating the price index. In other words, 

we have not developed any result like in (14), for the CES case, that justifies using the 

“common” (i.e. maximum overlap) set of goods over two periods. We will address this problem 

in the following section, where we work directly with the utility function, to establish an 

analogue to the CES method for measuring the utility gain that is valid for the KBF or other 

functional forms.    

 
4.8 The Gains and Losses Due to Changes in Product Availability Revisited   

In this section, we consider framework for measuring the gains or losses in utility due to 

changes in the availability of products that can be applied to the KBF (or any other) utility 

function. We suppose that we have data on prices and quantities on the sales of N products for T 

periods. The vectors of observed period t prices and quantities sold are pt = (p1t,...,pNt) > 0N and qt 

= (q1t,...,qNt) > 0N  respectively for t = 1,...,T. Sales or expenditures on the N products during 

period t are Et ≡ pt⋅qt for t = 1,...,T.36 We assume that a linearly homogeneous utility function, 

f(q1,...,qN) = f(q), has been estimated where q ≥ 0N.37 If product i is not available (or not sold) 

during period t, the corresponding price and quantity, pit and qit, are set equal to zeros. 

We calculate reservation prices for the unavailable products. We also need to form 

predicted prices for the available commodities, where the predicted prices are consistent with our 

econometrically estimated utility function and the observed quantity data, qt. The period t 

reservation or predicted price for product i, *
itp , is defined as the prices satisfying the first-order 

conditions (22) using partial derivatives of the estimated utility function f(q): 

                                                 
36 We also assume that 19

i 2 it itp q 0= >Σ  for t = 1,...,T. 
37 We assume that f(q) is a differentiable, positive, linearly homogeneous, nondecreasing and concave function of q 
over a cone contained in the positive orthant. The domain of definition of the function f is extended to the closure of 
this cone by continuity and we assume that observed quantity vectors qt are contained in the closure of this cone. 
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(66)   *
itp  ≡ Et [∂f(qt)/∂qi]/f(qt) ,    i = 1,...,N; t = 1,...,T.    

The prices defined by (66) are also Rothbarth’s (1941) virtual prices; they are the prices which 

rationalize the observed period t quantity vector as a solution to the period t utility maximization 

problem. Since f(q) is nondecreasing in its arguments and Et > 0, we see that *
itp  ≥ 0 for all i and 

t.  If the estimated utility function fits the observed data exactly (so that all errors in the 

estimating equations are equal to 0),38 then the predicted prices, *
itp , for the available products 

will be equal to the corresponding actual prices, pit.  

Imputed expenditures on product i during period t are defined as *
it itp q for i = 1,...,N. Note  

that if product n is not sold during period t, qit = 0 and hence *
it itp q 0= as well. Total imputed  

expenditures for all products sold during period t, *
tE , are defined as the sum of the individual  

product imputed expenditures: 

(67)         *
tE  ≡ N

i 1=Σ *
itp qit ,        t = 1,...,T  

               = N
i 1=Σ  qit Et

 [∂f(qt)/∂qi]/f(qt),      using definition (66) 
               = Et          

where the last equality follows using the linear homogeneity of f(q) since by Euler’s Theorem on 

homogeneous functions, we have f(q) = N
i 1=Σ  qi ∂f(q)/∂qi. Thus period t imputed expenditures, 

Et
*, are equal to period t actual expenditures, Et. 

The above material sets the stage for the main acts: namely how to measure the welfare 

gain if product availability increases and how to measure the welfare loss if product availability 

decreases. Suppose that in period t−1, product 1 was not available (so that q1t-1 = 0) , but in 

period t, it becomes available and a positive amount is purchased (so that q1t > 0). Our task is to 

define a measure of the increase in consumer welfare that can be attributed to the increase in 

commodity availability.  

Define the vector of purchases of products during period t excluding purchases of product 

1 as q∼1t ≡ [q2t,q3t,...,qNt]. Thus qt = [q1t,q∼1t]. Since by assumption, an estimated utility function 

f(q) is available, we can use this utility function in order to define the aggregate level of  

                                                 
38 This assumes that observed prices are the dependent variables in the estimating equations. 
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consumer utility during period t, Ut, as follows: 

(68)    Ut ≡ f(qt) = f(q1t,q∼1t).      

Now exclude the purchases of product 1 and define the (diminished) utility, U∼1t, the utility 

generated by the remaining vector of purchases, q∼1t, as follows: 

(69)   U∼1t ≡ f(0,q∼1t)        

                         ≤ f(q1t,q∼1t) since f (q) is nondecreasing in the components of q 

                         = Ut using definition (68).      

Define the period t imputed expenditures on products excluding product 1, *
~1tE , as follows: 

(70)   *
~1tE ≡ N

i 2=Σ *
itp qit 

                           = Et − *
1tp q1t     using (67) 

                            ≤ Et    since *
1tp ≥ 0 and q1t > 0.      

It will be useful to work with the ratio of *
~1tE to Et, defined as: 

(75)   λ1 ≡ *
~1tE /Et

 ≤ 1 using (70). 

Notice that the scalar λ1 is exactly the same as the term λt  defined in (12), provided that we use 

the “common” set of goods I ≡ {2,…,N} in (12). In other words, this is the period t expenditure 

on the set of goods {2,…,N} that were also available in period t-1, relative to total expenditure. 

Then divide the vector of period t purchases excluding product 1, q∼1t, by the scalar λ1, and 

calculate the resulting imputed expenditures on the vector q∼1t/λ1 as equal to Et: 

(72)  N
i 2=Σ *

itp qit/λ1 = (1/λ1) N
i 2=Σ *

itp qit 

                                    = (1/λ1) *
~1tE      using definition (70) 

                                     = (Et / *
~1tE ) *

~1tE   using definition (71) 
                                     = Et.         

Using the linear homogeneity of f(q) in the components of q, we are able to calculate the utility 

level, UA1t, that is generated by the vector q∼1t/λ1 as follows: 

(73)   UA1t ≡ f(0, q∼1t/λ1) 

                            = (1/λ1) f(0,q∼1t)       using the linear homogeneity of f 

                       = (1/λ1) U∼1t             using definition (69).      



40 
 

Note that λ1 can be calculated using definition (71) and U∼1t can be calculated using definition 

(69). Thus, UA1t can also be readily calculated. 

Consider the following (hypothetical) consumer’s period t aggregate utility maximization 

problem where product 1 is not available and consumers face the imputed prices *
itp  for products 

2,...,N and the maximum expenditure on the N−1 products is restricted to be equal to or less than 

actual expenditures on all N products during period t, which is Et: 

(74) max q’s {f(0,q2,q3,...,qN) : N
i 2=Σ *

itp qit ≤ Et} ≡ U1t 

                                                                              ≥ UA1t ,      

where UA1t is defined by (73). The inequality in (74) follows because (72) shows that q∼1t/λ1
 is a 

feasible solution for the utility maximization problem defined by (74). We also know that the 

actual utility level in period t, Ut exceeds the maximized utility level U1t when good 1 is not 

available, so that we have: 

(75)   Ut ≥ U1t ≥ UA1t.       

We regard UA1t as an approximation (and lower bound) to U1t. Given that an estimated 

utility function f(q) is in hand, it is easy to compute the approximate utility level UA1t when 

product one is not available. The actual constrained utility level, U1t, will in general involve 

solving numerically the nonlinear programming problem defined by (74). For the KBF 

functional form, instead of maximizing (qTAq)1/2
, we could maximize its square, qTAq, and thus 

solving (74) would be equivalent to solving a quadratic programming problem with a single 

linear constraint. For the CES functional form, it turns out that there is no need to solve (74) 

since the strong separability of the CES functional form will imply that U1t = UA1t. In other 

words, for the CES utility function, when good 1 is not available then the consumer will 

optimally choose to inflate the purchases q∼1t by (1/λ1) in order to exhaust the budget Et.  

A reasonable measure of the gain in utility due to the new availability of product 1 in 

period t, G1t, is the ratio of the completely unconstrained level of utility Ut to the product 1 

constrained level U1t i.e., define the product 1 utility gain in period t as: 

(76)   G1t ≡ Ut
 /U1t ≥ 1,      

where the inequality follows from (75). The corresponding product 1 approximate utility gain is 

defined as: 
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(77)   GA1t ≡ Ut
 /UA1t ≥ G1t ≥ 1,      

where the inequalities follow again from (75). Thus in general, the approximate gain is an upper 

bound to the true gain in utility due to the new availability of product 1 in period t.  

Note that for the CES utility function we have GA1t = G1t since U1t = UA1t. Furthermore, 

using the shares in (39) which assumed no measurement error in prices, so that pit = *
itp , we have: 

(78)  t t
A1t 1t

A1t ~1t

U U
U

 G
U

     = = λ  from definitions (73) and (77) 

   
N

iti 2
*
it t

t ~1t

p q
    U

E U
== ∑  from definition (71)  

   
N ( 1)/

i iti 2 t
N ( 1)/

~1ti iti 1

a q U
Ua q

     
σ− σ

=

σ− σ
=

= ∑
∑

 from (39) with pit = *
itp    

   
N ( 1)/

i iti 1

1/( 1)

N ( 1)/
i iti 2

a q

a q

σ− σ
=

σ−

σ− σ
=

 
 =
  

∑
∑

  from (3) with 1
1 11σ

σ− σ−− =  

   ( ) 1/( 1)N
iti 2   s  1

− σ−

=
= −∑       from (39) once again.   

   
So for the CES case, the approximate measure of gain GA1t equals the true gain G1t, and these are 

exactly equal to the CES gain we defined earlier in (55) when applied to the case of new product 

1. In other words, the earlier CES gain is identical to approximate measure of gain that we have 

proposed in this section when applied to that functional form. But our definitions in this section 

also apply to any other functional form for utility, including the KBF form, while recognizing 

that we are using the approximation (and upper bound) GA1t rather than G1t. 

Now consider the case where product 1 is available in period t but it becomes unavailable 

in period t+1. In this case, we want to calculate an approximation to the loss of utility in period 

t+1 due to the unavailability of product 1. It turns out, however, that our methodology will not 

provide an answer to this measurement problem using the price and quantity data for period t+1; 

we have to approximate the loss of utility that will occur in period t due to the unavailability of 

product 1 in period t+1 by instead looking at the loss of utility which would occur in period t if 

product 1 became unavailable. Once we redefine our measurement problem in this way, we can 

simply adapt the inequalities that we have already established for period t utility to the loss of 

utility from the unavailability of product 1 from the previous analysis for the gain in utility.    
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A reasonable measure of the hypothetical loss of utility due to the unavailability of 

product 1 in period t, is the ratio of the product 1 constrained level of utility U1t to the completely 

unconstrained level of utility Ut to the product 1. We apply this hypothetical loss measure to 

period t+1 when product 1 becomes unavailable; i.e., define the product 1 utility loss that can be 

attributed to the disappearance of product 1 in period t+1 as 

(79)    L1,t+1 ≡ U1t/Ut ≤ 1,     

where the inequality follows from (75). The corresponding product 1 approximate utility loss is 

defined as: 

(80)    LA1,t+1 ≡ UA1t/Ut ≤ L1,t+1 ≤ 1, 

where the inequalities again follow from (75). Thus in general, the approximate loss is an lower 

bound to the “true” loss L1,t+1 in utility that can be attributed to the disappearance of product 1 in 

period t+1. As was the case with our approximate gain measure, if f(q) is a CES utility function, 

then LA1,t+1 = L1,t+1.   

It is straightforward to adapt the above analysis from product 1 to product 12 and to 

compute the approximate gains and losses in utility that occur due to the disappearance of 

product 12 in period 10, its reappearance in period 11, its disappearance in period 20 and its final 

reappearance in period 23. These approximate losses and gains for the KBF utility function are 

listed in the third column of Table 5. It is also straightforward to adapt the above analysis to 

situations where two new products appear in a period, which is the case for our products 2 and 4, 

which were missing in periods 1-8 and make their appearance in period 9. The approximate 

utility gain due to the new availability of these products in the KBF case is also listed in the third 

column of Table 5. In the fourth column of Table 5 we repeat the CES gain in utility from Table 

2 for period 9 due to the introduction of products 2 and 4, and the various impacts of the exit and 

entry of product 12. Thus, Table 5 compares the gains and losses in utility for the KBF and CES 

models for the 5 months where there was a change in product availability.   

In month 9, when products 2 and 4 become available, the CES model implies that the 

enhanced product availability increase consumers’ utility by 0.73 percentage points while the 

KBF model implies a much smaller increase of 0.13 percentage points. Following that product 

introduction, we have the disappearance and reappearance of product 12 overall several months. 
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Table 5: The Gains and Losses of Utility Due to Changes in Product Availability 
 

Month Availability GA,KBF    
LA,KBF 

    GCES 

9 2 and 4 new 1.0013 1.0073 

10 12 disappears 0.9975 0.9964 

11 12 reappears 1.0030 1.0043 

20 12 disappears 0.9988 0.9962 

23 12 reappears 1.0008 1.0031 

Cumulative Gain  1.0014 1.0073 
 

 
Recall that in our earlier calculation of the CES gain (see Table 2), the net effect on utility of the 

entry and exit of product 12 cancelled out, so that the overall utility gains came only from the 

initial entry or products 2 and 4. That was not the case for our earlier calculation of the KBF 

utility gains (see Table 4), where the exit and entry of product 12 at its reservation prices had a 

noticeable and lasting impact on utility. That anomalous result not longer appears using our 

methodology of this section, where product 12 now has only a very small impact on overall 

utility, increasing the utility gain from 1.0013 (first row of the third column in Table 5) to 1.0014 

(final row of the third column).  

So product 12 has only a very minor effect on utility, and the principal impact comes 

from the month 9 introduction of products 2 and 4, where the CES gains are more than five times 

higher than the KBF gains in Table 5. That is a surprising result, since our argument throughout 

this paper has been that the CES gains are at least twice as high as the Hausman gains obtained 

from a linear approximation to the demand curve. We have noted in section 3.3 that the demand 

curves of the KBF utility function are convex, and since these convex demand curves lie above 

their linear approximation, the utility gain from a new product with KBF utility should exceed 

the utility gain along linear approximation. It follows CES gains should be not much more than 

twice as high as the KBF gains, provided that those demand curves have the same elasticity at 

the point of consumption. Instead, we are finding in our estimation that we must divide the CES 

gain by more than five to get the estimated KBF gain. 

The resolution to these surprising empirical results is that the KBF and CES demand 

curves must have different slslope at the point of consumption. But there is nothing in our 

estimation that will guarantee that result, and in fact, our KBF utility function has more elastic 
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demand on average for any products – including products 2 and 4 when they are introduced – 

than the estimated CES utility function. To illustrate the more elastic demand for the KBF 

function, we compute the Hausman approximation to the KBF gain as shown in (38) and 

Hausman approximation to the CES gain as shown in (18). To be more specific, we single out 

each product and regard it as a product 1 in the approximate formulae (18) and (38). The 

remaining products are aggregated into product 2. The share of this aggregate product 2 is simply 

s2t ≡ 1 − s1t.39 With these modifications, we can calculate GH, KBF and GH, CES for each product 

and each time period. That is, we pretend that each product is newly introduced in each time 

period, and calculate the corresponding gains. Then we take the mean of these measures for each 

product over the 39 time periods for our estimated KBF and CES functional forms, as reported in 

Table 6.  

 

Table 6: Gains from the Appearance of Each Product for the Estimated  
KBF and CES Utility Functions 

 
Product GH,KBF GH,CES Product GH,KBF GH,CES 

1 0.00407 0.00230 11 0.00335 0.00053 
2 0.00077 0.00294 12 0.00211 0.00070 
3 0.00055 0.00403 13 0.00555 0.00457 
4 0.00081 0.00125 14 0.00092 0.00461 
5 0.00331 0.00091 15 0.00087 0.00120 
6 0.00012 0.00505 16 0.00311 0.00323 
7 0.00054 0.00064 17 0.00194 0.00382 
8 0.00101 0.00185 18 0.00113 0.00420 
9 0.00077 0.00396 19 0.00042 0.00372 
10 0.00053 0.00444 Mean 0.00168 0.00265 

 
 

From Table 6, it can be seen that averaging over all products and all time periods, the 

approximate gain in utility from the introduction of a product is about 0.168 percentage points 

using our estimated KBF utility function and about 0.265 percentage points using our estimated 

CES utility function. So the CES functional form gives a high estimate of the welfare gain by 

                                                 
39 The shares that we use for this exercise are fitted shares; i.e., we use the actual quantities that are observed in period 
t, qit, and the estimated prices pit

* ≡ f1(qt)Et/f(qt) where f(q) is the estimated utility function.  
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nearly a factor of two. The difference between them is explained entirely by the differing 

estimates of the inverse demand elasticities, as can be seen from equation (31). In order to have 

CES gains that are about twice as high on average as the KBF gains, it must be that the elasticity 

of demand for the KBF function is about twice as high as for the CES.40  

With the results shown in Table 6 explaining that the Hausman approximation to the 

gains from a new product are about twice as high for the CES and the KBF functional forms, and 

further, that the actual CES gains are at least twice as high the Hausman approximation to the 

CES gains (as shown in Table 1), it is not surprising that the CES gains (from products 2 and 4) 

are more than five times higher than the KBF gains in Table 5: in very rough terms, about one-

half of this difference comes from having more elastic demand for the KBF than for the CES 

demand functions (so that the Hausman linear approximation to the gains for the CES function 

are twice as high as for the KBF function), while the other half comes from CES demand curves 

being more convex (with infinite reservation price) than KBF demand.   

   
5. Conclusions 

 Determining how to incorporate new goods into the calculation of price indexes is an 

important, unresolved issue for statistical agencies. That issue becomes particularly important 

with the increased availability of scanner data to measure prices and quantities, because new and 

disappearing products at the barcode level occur frequently in such data. Our goal in this paper 

has been to compare several empirical methods to deal with new and disappearing products: the 

proposal by Hausman (1999; 191) (2003; 27) to use a linear approximation to the demand curve 

to compute a lower bound to the consumer surplus, assuming that the true demand curve is 

convex; and with the estimation of two utility functions, the CES case and a quadratic utility 

function that we refer to as the KBF case. We have extended the approach of Hausman to apply 

to the analysis of inverse demand curve (prices as functions of quantities) rather than direct 

demand curves (quantities as functions of prices), as needed in the KBF case. Then we have 

illustrated our results using the barcode data for frozen juice from one grocery store. While 

obviously limited in its scope, there are several tentative conclusions that can be drawn from the 

computations undertaken in this paper: 

                                                 
40 In Appendix B, Table B1, we report some average elasticities for each product that are quite similar to the 
elasticities of inverse demand.   
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• The Feenstra CES methodology for adjusting maximum overlap chained price indexes 

for changes in product availability is dependent on having accurate estimates for the 

elasticity of substitution. The gains from increasing product availability are very large if 

the elasticity of substitution σ is close to one and fall rapidly as the elasticity increases, as 

discussed in section 3.1 

• It is not a trivial matter to obtain an accurate estimate for σ. Section 4.3 and 4.4 of the 

paper developed two methodological approaches to the estimation of the elasticity of 

substitution if purchasers of products have CES preferences. These method adapt 

Feenstra’s (1994) double log differencing technique to the estimation of σ in a systems 

approach where only one parameter needs to be estimated for an entire system of 

transformed CES demand functions.   

• A major purpose of the present paper was the estimation of Hicksian reservation prices 

for products that were not available in a period. In the CES framework, these reservation 

prices turn out to be infinite. But typically, it does not require an infinite reservation price 

to deter a consumer from purchasing a product. Thus, in section 3.3 we discussed the 

utility function f(q) ≡ (qTAq)1/2, which was originally introduced by Konüs and 

Byushgens (1926). They showed that this functional form was exactly consistent with the 

use of Fisher (1922) price and quantity indexes so we called this functional form the KBF 

functional form. The use of this functional form leads to finite reservation prices, which 

can be readily calculated once the utility function has been estimated.  

• We indicated how the correct curvature conditions on this functional form could be 

imposed and we showed that this functional form is a semiflexible functional form which 

is similar to the normalized quadratic semiflexible functional form introduced by Diewert 

and Wales (1987) (1988). 

• In section 4.5 we estimated the unknown parameters in the A matrix using sales shares as 

the dependent variables using a semiflexible approach. This approach required the 

estimation of only one variance parameter.41 This semiflexible approach worked in a 

satisfactory manner. This approach also allowed us to drop the observations that 

                                                 
41 Of course, this approach has the disadvantage of not accounting adequately for heteroskedasticity and possible 
correlation between the various product equation error terms.  
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correspond to the unavailable products. We ended up getting useful estimates for the 

parameters in the A matrix. 

• However, when we used our estimated utility function to construct fitted prices for the 

available products (and estimated reservation prices for the unavailable products), in 

section 4.6 above, we found that the fitted prices were not nearly as close to the actual 

prices as were the fitted sales shares to the actual sales shares. This was an unsatisfactory 

development since if the fitted prices are not close to the actual prices for products that 

are present, it is unlikely that the reservation prices for unavailable products would be 

close to the “true” reservation prices. 

• Thus in section 4.7, we switched to using actual prices as the dependent variables. This 

approach generated more satisfactory estimates for the KBF functional form. 

• The results presented in sections 4.8 indicate that the Feenstra CES methodology for 

measuring the benefits of increases in product variety may overstate these benefits as 

compared to our semiflexible methodology. We find that the CES gains are more than 

five times greater than the KBF gains: in very rough terms, about one-half of this 

difference comes from having more elastic demand for the KBF than for the CES demand 

functions (so that the Hausman linear approximation to the gains for the CES function are 

twice as high as for the KBF function), while the other half comes from CES demand 

curves being more convex (with infinite reservation price) than KBF demand.   

 

There is one other functional form that we have not explored in this paper but which 

deserves more attention when examining new goods, and that is the translog expenditure 

function. In its most general form this function is flexible, and under additional conditions the 

demand curves are convex with finite reservation prices for new goods. Feenstra and Shiells 

(1997) have examined the case of a single new good, and assuming that the translog and CES 

demand curves are tangent at the point of consumption, they argue that the gains from the new 

good in the translog case is one-half as large as the CES gains. Feenstra and Weinstein (2017) 

have examined a simplified symmetric translog expenditure function that has the same number of 

free parameters as the CES, i.e. it is not a fully flexible functional form. With that simplification, 

they confirm that the translog case are about one-half as large as the CES gains on a large dataset 

involving new imported products into the United States: they find that the gains from new 
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imports are about one-half as large in the translog case as what Broda and Weinstein (2006) find 

in the CES case. Applying the translog functional form to scanner datasets would be a valuable 

exercise to see whether that method might be an alternative to the CES functional form, and we 

expect that the adjustment for new and disappearing goods will be about one-half as large in the 

translog case as for the CES. 

 Our approach can be compared to the recent work of Redding and Weinstein (2019), who 

also use a CES utility function. They assume that this functional form represents the “true” 

preferences, so that any observed deviation from the CES demand curves must represent a shift 

in tastes. For example, a good with a falling price and a very large increase in demand –a greater 

increase than what would be implied by the elasticity of substitution – must have a shift in tastes 

towards that good. They argue that the consumer gain from that price reduction are greater than 

what we would compute using constant tastes (which is the usual assumption of exact price 

indexes). So in addition to the CES correction for new goods, they would propose a further 

correction to allow for taste change. Our results in this paper show, in contrast, that once we 

move away from the CES case and consider alternative utility functions such as the KBF (or the 

translog case just mentioned), then the gains from new products will be less than that found for 

the CES utility function. 
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Appendix A: The Frozen Juice Data 

We provide here is a listing of the pseudo-monthly quantities sold of 19 varieties of frozen 

juice (mostly orange juice) from Dominick’s Store 5 in the Greater Chicago area, where a pseudo-

month consists of sales for 4 consecutive weeks. 

Table A1: Monthly Quantities Sold for 19 Frozen Juice Products 

Month t q1t
 q2t q3t q4t

 q5t q6t q7t
 q8t q9t 

1 142 0 66 0 369 85 108 163 90 
2 330 0 299 0 1612 223 300 211 171 
3 453 0 140 0 675 206 230 250 158 
4 132 0 461 0 1812 210 430 285 194 
5 87 0 107 0 490 210 158 256 159 
6 679 0 105 0 655 163 182 250 170 
7 53 0 260 0 793 178 232 287 135 
8 141 0 100 0 343 117 115 174 154 
9 442 123 191 108 633 153 145 168 265 

10 524 239 204 125 544 129 184 320 390 
11 34 19 204 179 821 131 225 427 1014 
12 52 32 79 85 243 117 89 209 336 
13 561 247 124 172 698 139 200 340 744 
14 515 266 206 187 660 120 188 144 153 
15 87 56 131 161 240 109 144 141 93 
16 325 111 130 195 372 151 169 176 105 
17 444 154 294 331 1127 146 271 219 127 
18 588 175 203 229 569 159 165 250 133 
19 476 264 122 156 175 130 131 282 85 
20 830 276 198 181 669 132 149 205 309 
21 614 208 166 156 309 115 165 141 186 
22 764 403 172 165 873 94 240 206 585 
23 589 55 144 163 581 118 181 204 1010 
24 988 467 81 122 178 81 128 315 632 
25 593 236 230 184 1039 111 215 240 935 
26 55 42 296 313 1484 81 465 413 619 
27 402 273 113 121 199 114 127 129 849 
28 307 81 390 236 976 107 359 357 95 
29 57 96 157 168 771 105 262 85 116 
30 426 289 188 191 755 121 181 121 211 
31 56 70 399 246 783 116 387 147 105 
32 612 487 110 94 222 109 130 129 118 
33 40 42 552 470 1114 114 574 150 120 
34 342 253 177 265 424 98 235 139 157 
35 224 132 185 230 437 84 211 160 413 
36 78 51 152 214 557 97 231 395 637 
37 345 189 161 130 395 95 173 146 528 
38 76 22 155 237 355 113 172 121 246 
39 89 80 363 242 921 111 363 185 231 
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Month t q10t
 q11t q12t q13t

 q14t q15t q16t
 q17t q18t q19t 

1 45 174 109 2581 233 132 126 107 50 205 
2 109 351 239 983 405 452 1060 207 198 149 
3 118 325 303 1559 629 442 343 199 123 313 
4 143 263 322 1638 647 412 1285 195 324 75 
5 121 514 210 3552 460 265 769 175 471 1130 
6 89 424 206 865 482 314 1001 113 279 652 
7 93 531 232 981 495 280 2466 206 976 59 
8 108 307 201 1752 366 201 932 109 362 503 
9 185 376 189 2035 366 233 170 103 98 658 

10 346 381 0 694 399 290 764 81 236 760 
11 811 286 210 1531 363 273 201 98 81 598 
12 252 511 112 4054 292 295 626 138 171 297 
13 180 569 392 1330 296 277 145 181 98 268 
14 113 424 187 786 367 317 414 93 172 535 
15 99 388 186 2828 242 242 755 109 226 323 
16 68 259 299 1981 392 263 708 177 124 344 
17 58 271 305 888 478 306 750 169 191 54 
18 60 245 303 2217 403 681 1216 97 259 61 
19 52 360 155 2266 309 190 1588 113 424 473 
20 274 232 0 1983 320 214 183 181 105 323 
21 154 1027 0 2152 328 190 720 122 245 49 
22 402 539 0 1514 242 155 1280 95 394 23 
23 841 309 109 1216 271 145 1186 94 170 94 
24 531 272 126 1379 288 143 558 112 208 66 
25 607 290 127 3240 254 125 153 77 53 634 
26 549 314 138 1227 235 128 758 81 354 40 
27 236 391 162 2626 334 155 483 130 437 118 
28 75 265 164 681 361 135 1158 83 628 562 
29 94 329 163 1620 362 159 1030 97 483 608 
30 107 436 185 546 395 154 1161 144 672 1210 
31 72 494 205 1408 368 142 1195 129 701 314 
32 79 482 156 490 318 2522 1208 100 870 337 
33 59 436 169 1265 300 103 401 61 267 151 
34 96 391 171 2112 353 100 546 85 323 112 
35 354 389 175 715 343 83 2342 117 941 346 
36 541 406 141 2523 344 85 340 83 314 155 
37 498 283 109 684 177 64 91 33 107 169 
38 151 305 151 366 259 89 396 94 203 415 
39 237 321 118 1392 218 118 515 100 353 67 

 

It can be seen that there were no sales of Products 2 and 4 for months 1-8 and there were 

no sales of Product 12 in month 10 and in months 20-22. Thus there is a new and disappearing 

product problem for 20 observations in this data set.  

The corresponding monthly unit value prices for the 19 products are listed in Table A2. 
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Table A2: Monthly Unit Value Prices for 19 Frozen Juice Products 

Month t p1t
 p2t p3t p4t

 p5t p6t p7t
 p8t p9t 

1 1.4700 1.7413 1.7718 1.7831 1.7618 2.3500 1.7715 0.9624 0.7553 
2 1.4242 1.5338 1.3967 1.5378 1.4148 2.3500 1.5460 1.0900 0.8300 
3 1.4463 1.5433 1.5521 1.7782 1.5734 2.3000 1.6413 1.0900 0.5856 
4 1.5200 1.5476 1.3753 1.3872 1.4004 2.3000 1.3793 1.0623 0.6701 
5 1.5200 1.5688 1.6900 1.6933 1.6900 2.2929 1.6900 1.0900 0.6208 
6 1.4457 1.3659 1.8854 1.8155 1.8821 2.5895 1.8761 1.0900 0.5900 
7 1.9753 1.7326 1.8546 1.9018 1.8793 2.7500 1.8332 1.0140 0.8300 
8 1.7040 1.9262 2.0900 2.1594 2.0900 2.7415 1.9600 1.0778 0.8300 
9 1.6299 1.9900 1.8575 1.9085 1.8195 2.7437 1.9315 1.0796 0.8089 

10 1.5505 1.5615 1.8410 1.8980 1.8253 2.7500 1.8987 0.9469 0.8148 
11 1.9900 1.9900 1.6763 1.6420 1.6169 2.7500 1.6402 0.9549 0.7061 
12 1.9900 1.9900 2.0900 2.0900 2.0900 2.7500 2.0900 0.9828 0.9509 
13 1.3649 1.3977 1.8682 1.7993 1.7476 2.7500 1.7625 0.8900 0.5866 
14 1.4506 1.5073 1.6992 1.7691 1.7120 2.6200 1.7389 1.0900 0.9600 
15 1.9900 1.9900 1.7648 1.7186 1.7317 2.4900 1.7706 1.0609 0.9600 
16 1.4712 1.4224 1.6305 1.6483 1.6498 2.4900 1.6578 1.0139 0.9600 
17 1.2599 1.2559 1.3500 1.3618 1.3264 2.2600 1.3626 0.9900 0.8053 
18 1.0567 1.0936 1.4213 1.4440 1.4096 2.2600 1.4962 1.0200 0.7880 
19 1.1596 1.1683 1.7000 1.7000 1.7000 2.2600 1.7000 0.9900 0.9600 
20 1.0301 1.0823 1.4442 1.4660 1.3573 2.1800 1.4930 1.0305 0.6120 
21 1.1281 1.2025 1.4536 1.4700 1.4580 2.0104 1.4635 1.0900 1.0234 
22 1.0125 1.0472 1.4437 1.4860 1.4168 2.0079 1.4900 1.0308 0.7609 
23 1.4800 1.4800 1.3969 1.4263 1.3570 2.0200 1.4188 1.0307 0.5900 
24 0.9450 0.9738 1.5100 1.5100 1.5100 2.0200 1.5100 1.0900 0.5900 
25 1.0594 1.1084 1.1844 1.1794 1.0661 2.0200 1.2077 1.0900 0.5900 
26 1.4800 1.4800 1.1127 1.1559 1.1414 2.0200 1.1404 1.0900 0.5900 
27 1.2160 1.2293 1.5100 1.5100 1.5100 2.0200 1.5100 1.0900 0.5900 
28 1.2174 1.3010 1.1100 1.1729 1.0923 2.0200 1.1537 0.6494 0.5900 
29 1.4800 1.4800 1.4278 1.4341 1.3872 2.0200 1.4201 1.1631 0.5900 
30 1.1285 1.1453 1.3092 1.3659 1.2811 2.0200 1.3580 1.0764 0.5900 
31 1.5621 1.5600 1.3231 1.3803 1.3454 2.1457 1.3270 1.1244 0.5900 
32 1.2363 1.2396 1.7900 1.7900 1.7900 2.3900 1.7900 1.1800 0.5900 
33 1.7800 1.7800 1.0770 1.1653 1.0963 2.3900 1.1322 1.1800 0.5900 
34 1.3830 1.3775 1.4778 1.4867 1.5261 2.3900 1.5043 1.1327 0.5900 
35 1.4171 1.4518 1.4543 1.5537 1.5382 2.3900 1.5952 1.1631 0.5900 
36 1.5910 1.5786 1.5532 1.5398 1.4620 2.1500 1.5465 0.8458 0.5900 
37 1.3687 1.3859 1.6586 1.6811 1.6694 2.3492 1.7132 0.9334 0.6464 
38 1.7100 1.7100 1.6161 1.6002 1.5986 2.3700 1.5945 1.3000 0.6500 
39 1.4603 1.4793 1.1428 1.2318 1.1204 2.3700 1.2161 1.0822 0.6500 

          
Month t p10t

 p11t p12t p13t
 p14t p15t p16t

 p17t p18t p19t 
1 0.7553 0.9095 1.2900 1.0522 1.7500 0.6800 1.7900 1.9536 1.7900 1.4939 
2 0.8300 0.9900 1.2900 1.3500 1.7500 0.6800 1.4400 1.7578 1.5637 1.4117 
3 0.5280 0.9900 1.2567 1.2776 1.6112 0.6616 1.6126 1.7528 1.5827 1.3792 
4 0.6685 0.9900 1.2900 1.1900 1.5900 0.6700 1.3081 1.7095 1.3033 1.4200 
5 0.6203 0.8600 1.2900 1.1342 1.5900 0.6700 1.2620 1.7094 1.2607 0.9233 
6 0.5900 0.9386 1.2900 1.3842 1.8386 0.7809 1.1895 2.1489 1.4238 1.0674 
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7 0.8300 0.8393 1.2900 1.4900 1.8900 0.7900 1.2303 2.0555 1.2249 1.9300 
8 0.8300 0.9900 1.2900 1.2886 1.9442 0.8291 1.9709 2.2717 1.9699 1.6333 
9 0.8088 0.9900 1.1900 1.3496 2.0500 0.8500 1.9600 2.4521 1.9600 1.4278 

10 0.8123 0.9900 1.6087 1.5900 2.0500 0.8500 1.6045 2.4394 1.6057 1.4213 
11 0.7201 0.9900 1.2900 1.4443 2.1464 0.8693 1.9600 2.4165 1.9600 1.4451 
12 0.9519 0.8624 1.2900 1.1177 2.1900 0.8900 1.7284 2.3697 1.7579 1.9300 
13 0.7683 0.8392 1.0765 1.4161 2.1900 0.8900 1.9600 2.2900 1.9600 1.5737 
14 0.9600 0.9419 1.2034 1.5822 2.0855 0.8581 1.4810 2.4470 1.5627 1.4748 
15 0.9600 0.9900 1.2900 1.1207 2.0500 0.8500 1.4155 2.3524 1.4374 1.5472 
16 0.9600 1.0403 1.2900 1.2071 2.0500 0.8500 1.3793 2.2900 1.5192 1.4954 
17 0.7881 1.0600 1.1671 1.3867 1.7668 0.8363 1.2925 2.2900 1.3198 1.7467 
18 0.7693 1.0954 1.1179 1.0587 1.6900 0.6332 1.0697 2.0818 1.1456 1.6800 
19 0.9600 1.1300 1.4100 0.9647 1.6900 0.7900 1.0330 1.8900 1.0922 1.3131 
20 0.5834 1.1300 1.5388 0.9677 1.6900 0.7900 1.5000 1.8353 1.5000 1.3311 
21 1.0214 0.9632 1.0364 0.9629 1.5900 0.7500 1.2542 1.8367 1.2507 1.6082 
22 0.7542 1.0334 1.3301 1.0506 1.6239 0.7642 1.0378 1.8900 1.0599 1.5200 
23 0.5900 1.1500 1.4500 1.0693 1.5900 0.7500 1.0352 1.8900 1.1490 1.2094 
24 0.5900 1.1500 1.4500 1.0820 1.5900 0.7500 1.3423 1.8293 1.3476 1.4200 
25 0.5900 1.1500 1.4500 0.8743 1.5900 0.7500 1.5000 1.8212 1.5000 1.0178 
26 0.5900 1.1500 1.4500 1.0347 1.5900 0.7500 1.0331 1.8270 1.1024 1.4200 
27 0.5900 0.9300 1.2300 0.9812 1.5900 0.7500 1.3609 1.8277 1.3589 1.3242 
28 0.5900 0.9300 1.2300 1.2500 1.5900 0.7500 1.0296 1.8900 1.0339 1.0153 
29 0.5900 0.9300 1.2300 1.0406 1.5900 0.7500 1.0489 1.8900 1.0344 1.0204 
30 0.5900 0.9300 1.2300 1.2500 1.5900 0.7500 1.0194 1.8372 1.0219 1.0071 
31 0.5900 0.9300 1.2300 1.1474 1.5900 0.7500 1.0485 2.0130 1.0533 1.0597 
32 0.5900 0.9300 1.2300 1.3500 1.5900 0.4023 1.1019 2.2900 1.0672 1.2422 
33 0.5900 0.9300 1.2300 1.2567 1.5900 0.7500 1.5768 2.2900 1.5630 1.5311 
34 0.5900 0.9300 1.2300 1.0672 1.5900 0.7500 1.4765 2.2900 1.4829 1.5900 
35 0.5900 0.9300 1.2300 1.3500 1.5900 0.7500 1.5100 2.2054 1.5082 1.3474 
36 0.5900 0.9300 1.2300 1.0735 1.5900 0.7500 1.6709 2.2599 1.7327 1.5279 
37 0.6464 1.0146 1.3335 1.2864 1.9099 0.9103 1.7535 2.4782 1.7560 1.4474 
38 0.6500 1.0200 1.3500 1.5300 1.9700 0.9400 1.5549 2.2212 1.5702 1.3701 
39 0.6500 1.0200 1.3500 1.2288 1.9700 0.9400 1.3916 2.3875 1.3794 1.6400 

 

The actual prices p2t and p4t are not available for t =1,2,...,8 since products 2 and 4 were 

not sold during these months. However, in Table A.2, we filled in these missing prices with the 

estimated reservation prices that were estimated in section 4.4. Similarly, p12t was missing for 

months t = 12, 20, 21 and 22 and again, we replaced these missing prices with the estimated 

reservation prices in Table A2. The estimated reservation prices appear in italics.    

The specific products (and their package size in ounces) are as follows: 1 = Florida Gold 

Valencia (12); 2 = Florida Gold Pulp Free (12); 3 = MM Country Style OJ (12); 4 = MM Pulp Free 

Orange (12); 5 = MM OJ (12); 6 = MM OJ (16); 7 = MM OJ W/CA (12); 8 = MM Fruit Punch 

(12); 9 = HH Lemonade (12); 10 = HH Pink Lemonade (12); 11 = Dom Apple Juice (12); 12 = 

Dom Apple Juice (16); 13 = HH OJ (12); 14 = HH OJ (16); 15 = HH OJ (6); 16 = Tropicana SB 

OJ (12); 17 = Tropicana OJ (16); 18 = Tropicana SB Home Style OJ (12); 19 = Citrus Hill OJ (12). 
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Appendix B: Proof of results in section 3.2 

In the main text, we compute the term 1tu (q )′  as: 

u′(q1t) = f1(q1t,q2t) + f2(q1t,q2t)∂q2(q1t)/∂q1  differentiating (26) 

= f1(q1t,q2t) + f2(q1t,q2t)(−p1t/p2t)]                 differentiating (25) 

 It follows that, 

(B1) u′′(q1t) = f11(q1t,q2t) + 2f12(q1t,q2t)(−p1t/p2t) + f22(q1t,q2t)(−p1t/p2)2 ≤ 0,   

where the inequality follows since the matrix of second order partial derivatives of f(q1t,q2t) is 

negative semidefinite using the concavity of f(q1,q2).   

We can express the second derivative u′′(q1t)  in elasticity and share form if we make a 

few definitions. We know that fi(q1,q2) ≡ ∂f(q1,q2)/∂qi is the marginal utility of product i for i = 

1,2.  Thus fij(q1,q2) ≡ ∂2f(q1,q2)/∂qi∂qj is the derivative of marginal utility i with respect to qj. We 

can turn this second order partial derivative of the utility function into a unit free elasticity of the 

marginal utility, µij(q1,q2), by multiplying fij(q1,q2) by qj/fi(q1,q2): 

(B2)  µij(q1,q2) ≡ [qj/fi(q1,q2)]fij(q1,q2),           i,j = 1,2.   

We also need to make use of some identities that the second order partial derivatives of the 

linearly homogeneous utility function f satisfies. Using Euler’s Theorem on homogeneous 

functions, the following two identities hold: 

(B3)  f11(q1t,q2t)q1t + f12(q1t,q2t)q2t = 0;     

(B4)  f21(q1t,q2t)q1t + f22(q1t,q2t)q2t = 0.     

Young’s Theorem from calculus also implies that f12(q1t,q2t) = f21(q1t,q2t). Using this relationship 

along with (B3) and (B4) implies the following relationships between the second order partial 

derivatives of f: 

(B5)  f12(q1t,q2t) = f21(q1t,q2t) = f11(q1t,q2t)(−q1t/q2t);    

(B6)  f22(q1t,q2t) = f11(q1t,q2t)(−q1t/q2t)2 .      

Now substitute (B5) and (B6) into (B1) in order to obtain the following expression for u′′(q1t):  

(B7)     u′′(q1t) = f11(q1t,q2t) + 2f12(q1t,q2t)(−p1t/p2t) + f22(q1t,q2t)(−p1t/p2t)2   
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                        = f11(q1t,q2t)[1 + 2(p1tq1t/p2tq2t) + (p1tq1t/p2tq2t)2] 

                        = f11(q1t,q2t)[1 + (s1t/s2t)]2        

where sit ≡ pitqit/Et for i = 1,2. Since f11(q1t,q2t) ≤ 0, u′′(q1t) ≤ 0 as well. Using (B2), we can write 

f11(q1t,q2t) in elasticity form as follows: 

(B8)  f11(q1t,q2t) = µ11(q1t,q2t)f1(q1t,q2t)/q1t         

                              = µ11(q1t,q2t)p1t/q1t,   using (24).      

Finally, substitute (B7) and (B8) into (30) and our second order approximation to the gain of 

utility due to the appearance of product 1 becomes: 

(B9)  GU = − [ ]21
1t 11 1t 2t 1t 122 s q ,q 1  s / s( ) ( )µ + .    

  To simplify this expression, we considering some alternative partial equilibrium models 

for the (inverse) demand function for product 1, p1 = D1(q1). We can then calculate the resulting 

partial derivative of this function at our observed equilibrium point, ∂D1(q1t)/∂q1, and then 

evaluate how the approximate Hausman loss defined by (12) compares to our approximate loss 

defined by (B9).  

The two inverse demand functions that give us virtual (or equilibrium) prices as functions 

of quantities purchased and total expenditure e on the two products are the following functions: 

(B10)   p1 = d1(q1,q2,E) ≡ Ef1(q1,q2)/f(q1,q2);      

(B11)   p2 = d2(q1,q2,E) ≡ Ef2(q1,q2)/f(q1,q2).      

We want the partial equilibrium function, p1 = D1(q1) holding other variables constant. The 

variables that Hausman holds constant are the utility level U and the price of product 2, p2. 

Endogenous variables in his framework are q1, q2 and E while the driving variable is p1 which 

goes from p1t to p1
* while q1 goes from q1t to 0. We can adapt his framework in our direct utility 

function model as follows: regard Ut ≡ f(q1t,q2t) and p2t as fixed exogenous variables, p1, q2 and E 

as endogenous variables and q1 as the driving exogenous variable. The constraint that utility 

remain constant as we decrease q1 from q1t to 0 is the following one: 

(B12)   f(q1,q2(q1)) = f(q1t,q2t) = Et.      
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Thus we again scale utility so that initial utility f(q1t,q2t) is equal to initial expenditure, Et. Define 

q2(q1) as the implicit function which satisfies (B12). The derivative of this implicit function is 

defined by differentiating f(q1,q2(q1)) = Et with respect to q1. Thus we find that: 

(B13)  q2′(q1t) = − f1(q1t,q2t)/f2(q1t,q2t) = −p1t/p2t ,                

where the second equation in (B13) follows from (B12) and (B10) and (B11) (our two inverse 

demand functions) evaluated at the initial equilibrium. We take the second inverse demand 

function defined by (B11) and set it equal to the constant, p2t. We solve the resulting equation for 

expenditure as a function of q1, E(q1): 

 (B14)     E(q1) ≡ p2tf(q1,q2(q1))/f2(q1,q2(q1)) 

                    = p2t Et /f2(q1,q2(q1)), using (B12).     

Differentiate (B14) with respect to q1 in order to determine the derivative E′(q1t). We find that 

(B15)    E′(q1t) = − (p2t Et /p2t
2)[f21(q1t,q2t) + f22(q1t,q2t)q2′(q1t)],   using (B10) 

                        = − (Et /p2t)[f21(q1t,q2t) + f22(q1t,q2t)(−p1t/p2t)],   using (B13).   

We can now define our Hausman partial equilibrium inverse demand function p1 = D1(q1) by 

replacing q2 and E in definition (B10) by q2(q1) and E(q1): 

(B16)    D1(q1) ≡ E(q1)f1(q1,q2(q1))/f(q1,q2(q1))  

                       = E(q1)f1(q1,q2(q1))/ Et,     using (B12).     

The derivative of the partial equilibrium inverse demand function defined by (B16) at q1t is: 

(B17)  ∂D1(q1t)/∂q1 = − (p1t/ Et)( Et /p2t)[f21(q1t,q2t) + f22(q1t,q2t)(−p1t/p2t)]          

                                     + [E(q1t)/ Et][f11(q1t,q2t) + f12(q1t,q2t)q2′(q1t)], using (B15) 

              = [f21(q1t,q2t)(−p1t/p2t) + f22(q1t,q2t)(−p1t/p2t)2] + [f11(q1t,q2t) + f12(q1t,q2t)q2′(q1t)] 

              = f11(q1t,q2t) + 2f12(q1t,q2t)(−p1t/p2t) + f22(q1t,q2t)(−p1t/p2t)2                 

              = u"(q1t)                              where u′′(q1t) was defined by (B1) 

              = f11(q1t,q2t)[1 + (s1t/s2t)]2, using (B7).        

Thus from (30), the Hausman lower-bound gains for this partial equilibrium demand derivative 

defined by (B17) turns out to be: 
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(B18)          GH ≡ ( )1 1t
21

1 1t t2 [ ]q / ED q / q∂− ∂                   

= − 21
1t2 q f11(q1t,q2t)[1 + (s1t/s2t)]2/ Et,  using (B17) 

                 = − 1
2 s1tµ11(q1t,q2t)[1 + (s1t/s2t)]2,  using (B8)    

where the elasticity marginal utility elasticity µ11(q1t,q2t) is defined as (q1t/p1t)f11(q1t,q2t). This is a 

rather surprising result: Hausman’s first-order consumer surplus approximate approach to 

measuring the gain from a new product in (B18) turns out to be exactly equal to our second-order 

approximation gain in utility approach in (B9) when there are only 2 products. 

We apply a modification of the above formulae to our data set using our estimated KBF 

and CES utility functions, as described in the main text. That is, we pretend that each product is 

newly introduced in each time period, and calculate the corresponding gains. Denote the mean of 

these measures for each product n over the 39 time periods for our estimated KBF and CES 

functional forms by GH,KBF and GH,CES. We also compute the CES and KBF marginal utility 

elasticities. These are obtained from (B2), which gives the following results for the CES and 

KBF utility functions using (B12): 

(B19)  µCES,nn = − (1 − snt)/σ ,  nn
KBF,nn nt 2

n

as 1
p

 
µ = − 

 
.  

These means are listed in Table B1 below, and the Hausman approximate gains are also reported 

in Table 6 in the main text. 

 
Table B1: Gains from the Appearance of Each Product for the Estimated KBF and CES 

Utility Functions, and the Marginal Utility Elasticities 
 

Product GH,BF GH,CES µKBF,nn µCES,nn Product GH,BF GH,CES µKBF,nn µCES,nn 

1 0.00407 0.00230 -0.130 -0.139 11 0.00335 0.00053 -0.159 -0.140 
2 0.00077 0.00294 -0.043 -0.143 12 0.00211 0.00070 -0.150 -0.143 
3 0.00055 0.00403 -0.031 -0.141 13 0.00555 0.00457 -0.118 -0.115 
4 0.00081 0.00125 -0.046 -0.142 14 0.00092 0.00461 -0.030 -0.136 
5 0.00331 0.00091 -0.076 -0.130 15 0.00087 0.00120 -0.045 -0.143 
6 0.00012 0.00505 -0.007 -0.141 16 0.00311 0.00323 -0.068 -0.130 
7 0.00054 0.00064 -0.028 -0.141 17 0.00194 0.00382 -0.135 -0.142 
8 0.00101 0.00185 -0.074 -0.143 18 0.00113 0.00420 -0.042 -0.139 
9 0.00077 0.00396 -0.042 -0.143 19 0.00042 0.00372 -0.015 -0.139 
10 0.00053 0.00444 -0.035 -0.144 Mean 0.00168 0.00265 -0.067 -0.139 
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From Table B1, it can be seen that averaging over all products and all time periods, the 

approximate gain in utility from the introduction of a product is about 0.168 percentage points 

using our estimated KBF utility function and about 0.265 percentage points using our estimated 

CES utility function. So the CES functional form gives a high estimate of the welfare gain by 

nearly a factor of two. The difference between them is explained entirely by the differing 

estimates of the marginal utility elasticities, which average -0.067 percentage points using our 

estimated KBF utility function and about 0.139 percentage points using our estimated CES utility 

function, or twice as high for the CES as compared to the KBF functional forms.  

The average CES own marginal utility elasticity over all time periods and all products is 

− 0.139 and the corresponding KBF average elasticity is − 0.067. This explains why the CES 

loss is approximately twice as big as the KBF loss. However, note that for products 11, 12 and 

13, the average KBF elasticity is larger in magnitude than the corresponding average CES 

elasticity. Furthermore, the KBF elasticities are quite variable as compared to the corresponding 

CES elasticities. This result follows from the properties of the above formula (B19), where 

CES,nn nt1/ as s 0,µ → − σ →  where the elasticity of substitution σ is common across goods. But 

for the KBF function, KBF,nnµ  depends on the parameters ann which can vary substantially across 

goods, and has the limit KBF,nn nt0 as s 0.µ → →  So it is not surprising that the KBF marginal 

utility elasticities are usually smaller and generally more variable that the CES marginal utility 

elasticities. 

Finally, we note the relationship between the marginal utility elasticities and the elasticity 

of inverse demand. From (B18) we have that,  

(B20)  [∂D1(q1t)/∂q1](q1t/p1t) = µ11(q1t,q2t)[1 + (s1t/s2t)]2,    

   = µ11(q1t,q2t)/(1 − s1t)2 ,  using s2t = 1− s1t 

   = − 1/[σ(1 − s1t)], in the CES case from (B19) 

   = 1t 11
2 2

1t 1

s a 1
(1 s ) p

 
− 

−  
, in the KBF case from (B19). 

The KBF inverse demand elasticity in the final line is used in (37) and (38) of the main text.  
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Appendix C:  Proof of results in section 3.3 

For the CES utility function, the derivative of the share is obtained from (6) as: 

(C1)  
t

1
it it it

it1
it it iti I

ln s b p(1 ) (1 ) (1 )(1 s ).
ln p b p

−σ

−σ
∈

∂
= −σ − −σ = −σ −

∂ ∑
  

Hicksian demand is shown by (5) and the derivative of demand is readily obtained from (7) as: 

(C2)  it it
it

it itU

q q (1 s )
p p
∂

= −σ −
∂

.  

The second derivative of Hicksian demand is then: 

(C3) 

2
it it it it it it

it it2 2 2
it it itit it itUU

it it it it
it it it2 2

it it it itU

q q q q s ln s1 (1 s ) (1 s )
p p ln pp p p

q q q s1 (1 s ) (1 s ) (1 )(1 s ).
p p p p

∂ ∂ σ σ ∂
= −σ − + − +

∂ ∂∂

∂ σ σ
= −σ − + − + −σ −

∂
  

Dividing out 2
it itq / p  and using the Hicksian elasticity it(1 s )σ −  from (7), we obtain, 

(C4)  

2
2 2it

it it it it2
it U

it it it

ln q (1 s ) (1 s ) s (1 )(1 s )
ln p

(1 s )[1 s (1 2s )],

∂
= σ − +σ − +σ −σ −

∂

= σ − + +σ −

  

which is positive for its 0.5≤ . This condition ensures that the final term in (C4) is non-negative, 

so it follows that: 

(C5)  
2

it it
it it it it it2

itit U

ln q ln q(1 s )(1 s ) 3s (1 s ) 3s
ln pln p

∂ ∂
≥ σ − + ≥ σ − = −

∂∂ U

,  

where the second inequality again uses its 0.5≤  so that it it3s 1 s≤ + , and the final equality uses 

the Hicksian elasticity in (7). 

 Turning now to the KBF utility function, Hicksian demand is shown in (35), and the 

derivative of this demand is obtained from (36) as: 
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(C6)  
N **

it in ntit it ii it n 1
N T **

it it tin ntn 1 t

p a pq q a p .
p p p Aa p p

=

=

 ∂  = −
∂   

∑
∑U

  

It follows that the second derivative is: 

N N* *2 * *
it in nt it in ntit it ii it it ii itn 1 n 1

2 N T * 2 N T ** *
itit it t it tin nt in ntn 1 n 1

2
** *

it in ntit ii it ii it
2 N N* *
it in nt in ntn 1 n

t t

1

p a p p a pq q a p q a p1
pp p p A p p Aa p a p

p a pq a p a p
p a p a p

p p
= =

= =

= =

   ∂ ∂    = − − −
   ∂ ∂    

 
 + − −
 
 

∑ ∑
∑ ∑

∑ ∑

U U

2N N ** 2
it in ntii itn 1 n 1

T * T * T *
t t t

2 2N N* ** * * 2
i

t t t

t

t in nt it in ntit ii it it ii it ii itn 1 n 1
2 N T * 2 N T ** *
it t it tin nt in tntn 1 n 1

p a pa p 2
p A p A p A

p a p p a pq a p q a p a p 2
p p A p p A pa p a p

p p p

p p

= =

= =

= =

  
  − +  

   

   
  = − − + −
     

∑ ∑

∑ ∑
∑ ∑

2

T *
t

2N N* ** * 2
it in nt it in ntit ii it ii itn 1 n 1

2 N T * T * T **
it t t tin ntn 1
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it in ntit ii it n 1

it 2 N *
it in nt
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n 1

t

t

A

p a p p a pq a p a p2 3
p p A p A p Aa p

p a pq a

p

p

p3

p

s
p a

p

pp

= =

=

=

=

  
  
  

   
    
    = − − +    

     

 
 = − +
 
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∑ ∑
∑

∑
∑

it
itT *

t it itt

q13s .
A p pp

   ∂   = −
   ∂   U

It follows that for the KBF utility function, 

(C7)  
2

it it
it2

itit U

ln q ln q3s
ln pln p

∂ ∂
= −

∂∂ U

. 

Comparing this result with (C5), it can be seen that the second derivative of the KBF function is 

higher than for the CES function at the consumption point when their compensated demand 

elasticities (and therefore their slopes of demand) are equal.    
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Figure 2:  CES Indifference Curve  




