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Apoptosis is mediated through the extrinsic or intrinsic path-
way. Key regulators of the intrinsic apoptotic pathway are the
family of B cell lymphoma 2 (Bcl-2) proteins. The activity of the
prototypical Bcl-2 protein is usually considered antiapoptotic.
However, under some conditions, Bcl-2 associates with the
orphan nuclear hormone receptors Nur77 and Nor-1, convert-
ing Bcl-2 into a proapoptotic molecule. Expression of Nur77 and
Nor-1 is induced by a variety of signals, including those leading
to apoptosis. Translocation of Nur77/Nor-1 to mitochondria
results in their association with Bcl-2, exposing the Bcl-2 homo-
logy (BH) 3 domain and causing apoptosis. However, the molec-
ular details of this interaction are incompletely understood.
Here, through extensive Bcl-2 mutagenesis and functional
assays, we identified residues within Bcl-2 that are essential for
its interaction with Nur77/Nor-1. Although an initial report has
suggested that an unstructured loop region between the Bcl-2
BH4 and BH3 domains is required for Bcl-2’s interaction with
Nur77/Nor-1, we found that it is dispensable for this interac-
tion. Instead, we found important interacting residues at the
BH4 domain and crucial interacting residues between the BH1
and BH2 domains. Bcl-2 alanine mutants at this region could no
longer interact with Nur77/Nor-1 and could not initiate Nur77/
Bcl-2–mediated cell death. However, they still retained their
anti-apoptotic capability in two different death assays. These
results establish crucial residues in Bcl-2 required for Nur77/
Nor-1–mediated apoptosis and point to potential new strategies
for manipulating Bcl-2 function.

Apoptosis is an essential cell death program for maintaining
normal tissue homeostasis by removing unwanted and poten-
tially dangerous cells (1–7). Dysregulation of apoptotic path-
ways could lead to human pathological consequences, such as
autoimmunity and cancer (8 –11). Two pathways, extrinsic and
intrinsic, can mediate apoptosis (12–15). The extrinsic pathway
is mediated by death receptors such as Fas and tumor necrosis
factor receptors (5, 16 –18). The intrinsic pathway is mediated
by the conserved family of Bcl-2 proteins, which are important

for regulating apoptosis through mitochondria (4, 19, 20). The
Bcl-2 family members share related regions of sequence and
structural homology and can be subdivided into groups by their
function and by the presence of one to four conserved Bcl-2
homology (BH)2 domains (19). The pro-apoptotic BH3-only
molecules, such as Bcl-2–interacting mediators of cell death
(e.g. Bim and Puma), sense and respond to apoptotic signals and
activate the effectors molecules Bax and Bak (19, 21–23). Bax
and Bak contain the BH1 to BH3 domains and can induce per-
meabilization of the outer mitochondrial membrane to release
cytochrome c, leading to activation of capase-9 and the down-
stream caspases (6, 24 –26). The anti-apoptotic family mem-
bers, which include Bcl-2 and Bcl-X, contain all four BH
domains and can prevent apoptosis by sequestering and inacti-
vating the BH3-only proteins (19, 27). This function requires
intact BH1, BH2, and BH4 domains (28, 29). Overexpression of
Bcl-2 protein is a common mechanism of apoptosis dysregula-
tion (4, 11). Elevated levels of Bcl-2 protein can offer a survival
advantage to cells and has been associated with resistance to
chemotherapy and a poor prognosis (30). Hence, an ongoing
chemotherapeutic strategy in cancer has been to target Bcl-2 to
restore the ability of cancer cells to undergo apoptosis (30 –35).

Nur77 and Nor-1 belong to the family of orphan nuclear
hormone steroid receptors and have been implicated as pro-
apoptotic factors in developing T cells and cancer cells (36 –38).
During T cell development, thymocytes expressing T cell
receptors with high affinity for self-antigens induce Nur77 and
Nor-1 expression to a level that correlates with apoptosis
accompanying negative selection (36, 37, 39). Prior studies have
shown that a constitutively active form of either Nur77 or
Nor-1 in thymocytes leads to increased apoptosis, whereas
overexpression of a dominate-negative Nur77 protein, which
can effectively inhibit the activity of all Nur77 family members,
can rescue thymocytes undergoing cell death during negative
selection (36, 37, 39 – 42). How Nur77 and Nor-1 are able to
initiate apoptosis is still not completely clear, and delineating
the mechanism has long been under investigation. We and oth-
ers have shown that Nur77 may initiate apoptosis by modulat-
ing the activity of Bcl-2 (38, 39, 43, 44). Although Bcl-2 is known
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as an anti-apoptotic molecule, several reports have highlighted
the fact that Bcl-2 can be converted into a pro-apoptotic pro-
tein under certain circumstances (38, 41, 44). In thymocytes,
strong T cell receptor signals induce Nur77 and Nor-1 translo-
cation to the mitochondria, which then associate with Bcl-2, an
event originally described in several cancer cells upon apoptotic
stimuli (39, 44). This association leads to a conformational
change that exposes Bcl-2’s BH3 domain. This may convert
Bcl-2’s normal anti-apoptotic activity into a killer pro-apopto-
tic protein, possibly through saturation binding of Bcl-x (44,
45). The importance of the Bcl-2 BH3 domain was demon-
strated in transgenic mice engineered to express a Bcl-2 protein
with its BH3 domain mutated in T cells (46). This Bcl-2 mutant
exhibits increased anti-apoptotic activity and rescues more
autoreactive T cells compared with transgenic wildtype Bcl-2.
Most strikingly, unlike wildtype Bcl-2 transgenic mice, these
mice exhibited accelerated death because of multiorgan auto-
immunity (46).

Showing the in vivo significance of Bcl-2 conversion by
Nur77/Nor-1 interaction has nevertheless been elusive, pri-
marily because the molecular details of this interaction have not
yet been fully elucidated. The essential residues within Bcl-2 for
Nur77/Nor-1 interaction are unresolved. Early publications
have reported that Nur77 associates with Bcl-2 through a linker
region between the BH4 and BH3 domains (i.e. an unstructured
loop domain) (44, 47). However, Nur77 is also capable of inter-
acting with other Bcl-2 family members, Bcl-b and Bcl-2a1 (45,
48). Given that neither Bcl-b nor Bcl-2a1 contain a BH4 –BH3
linker region (49 –51), how Nur77 may convert them into pro-
apoptotic molecules is not clear. This also raises the question of
whether the loop domain in Bcl-2 is even necessary for interaction
with Nur77. Recently, the existence of a novel Nur77 binding
pocket for Bcl-b was reported (52). However, whether this Nur77-
binding pocket pertains to Bcl-2 has not been addressed.

Here we identify Bcl-2 mutants that abrogate the interaction
for both Nur77 and Nor-1 through extensive Bcl-2 mutagene-
sis. In contrast to prior observations, we report that the Bcl-2
loop domain is dispensable for Nur77/Nor-1 interaction. We
also find that mutating a cluster of residues located in an inter-
vening sequence between the BH1 and BH2 domain can abolish
Nur77 and Nor-1 interaction. Mutations at this site do not
affect the Bcl-2 normal anti-apoptotic function but can block
Nur77-mediated apoptosis. Our study further refines the
molecular details of Nur77/Nor-1 and Bcl-2 interaction.

Results

Bcl-2 Tyr-18 and Tyr-21 are essential for a truncated but not
the full-length Bcl-2 to interact with Nur77 and its family
member Nor-1

To identify amino acids in Bcl-2 required for its interaction
with Nur77 and Nor-1, we initially focused our attention on the
loop between the BH4 and BH3 domains. This unstructured
loop domain of Bcl-2 (amino acids 31 to 92) was reported to be
a region where Bcl-2 interacts with Nur77 (44, 47). However, a
precise location within the loop necessary for Nur77 interac-
tion has not been defined. To investigate this further, we engi-
neered constructs containing a truncated Bcl-2 fused to GFP

with only the BH4 and loop domain (2–92) as well as progres-
sive C- and N-terminal deletions within this BH4 loop fragment
(Fig. 1A). A tagged Bcl-2 was used because we discovered that
the epitope for monoclonal antibodies against Bcl-2 (clone C-2,
Santa Cruz Biotechnology) is located within the Bcl-2 loop
region (data not shown). For Nur77, we used a FLAG-tagged
Nur77 lacking a DNA-binding domain (Nur77�DBD) as
described previously (43–45). This allows us to bypass the
requirement to stimulate the cells to initiate Nur77 nucleus-to-
mitochondrion translocation (53). These constructs were then
transfected into HEK293T cells and FLAG co-immunoprecipi-
tation (FLAG-IP) assays were performed to test for the mutant
Bcl-2/Nur77�DBD interaction. Briefly, we used anti-FLAG
antibodies to immunoprecipitate Nur77 from the cell lysates,
and the presence of co-immunoprecipitated Bcl-2 was detected
on a Western blot using GFP-specific antibodies. Surprisingly,
and in contrast to previous reports (44, 47), the Bcl-2/F(11– 60)
mutant lacking much of the loop was still able to interact with
Nur77 (Fig. 1B). Several other C-terminal deletions up to 35
amino acids also interacted with Nur77 (Fig. 1B).

To further locate the Nur77-interacting site(s) in this Bcl-2
region, we generated progressive N-terminal deletions (Fig.
1A). As shown in Fig. 1C, Bcl-2/F(2–92), Bcl-2/F(11–92), and
Bcl-2/F(15–92) were able to interact with Nur77, but deletion
to amino acid 21 (Bcl-2/F(21–92)) abolished its ability to inter-
act with Nur77 (Fig. 1C, lane 7). Similar results were obtained
using Nor-1, with the exception that Bcl-2/F(15–92) consistent-
ly exhibited reduced interaction with Nor-1 (Fig. 1C, lane 11).
We concluded that Bcl-2 can interact with Nur77 and Nor-1
through the N-terminal region at amino acids 15 through 21 in
the BH4 domain but that the loop region between BH4 and BH3
domain is not required for this interaction.

To refine the region within BH4 required for interaction with
Nur77/Nor-1, multiple alanine scan mutants along amino acids
15 to 21 within the BH4 loop fragment were generated. These
include Bcl-2/F(Ala(11–14)), Bcl-2/F(Ala(15–18)), and Bcl-2/
F(Ala(19 –21)), which, respectively, replace amino acids 11–14,
15–18, or 19 –21 with alanines. As shown in Fig. 1D, although
each alanine scan mutant was able to co-immunoprecipitate
with Nur77 to some extent, the largest reduction in interaction
was observed with Bcl-2/F(Ala(15–18) and Bcl-2/F(Ala(19 –
21)) (Fig. 1D, lanes 6 and 7). Single amino acid alanine substi-
tutions were then generated for residues 15 to 21, but each was
able to co-immunoprecipitate with Nur77 (data not shown).
Notably, Y18A or Y21A alone was observed to reduce, but not
fully prevent, Nur77 interaction (Fig. 1E, lanes 5 and 6). A sig-
nificant loss of interaction with Nur77 was only observed in the
Bcl-2 BH4 loop fragment containing both the Y18A and Y21A
mutations (Fig. 1E, lane 4). The Bcl-2/F(Y18A,Y21A) protein
completely lost its ability to interact with Nor-1 (Fig. 1E, lane 9).
To see whether Y18A and Y19A within a full-length Bcl-2 pro-
tein were sufficient to abrogate Nur77 family binding, a GFP-
fused WT Bcl-2 or Bcl-2 containing the double Tyr-18 and
Tyr-21 alanine mutation (Bcl-2/Y18A,Y21A) was generated. In
contrast to the Bcl-2/F(2–92) Tyr-18/Tyr-21 mutant, however,
an interaction with Nur77 or Nor-1 persisted in the context of
the full-length protein Bcl-2/Y18A,Y21A (Fig. 2A, lanes 4 and
7), suggesting that there might be multiple Bcl-2 regions that
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interact with Nur77. We also found that deletion of the Bcl-2
loop region (Bcl-2/�31–51, Bcl-2/�52–71, and Bcl-2/�72–92)
in the context of the full protein has no effects on its ability to
interact with Nur77 (Fig. 2B). Taken together, these data pro-
vide evidence that the loop domain is dispensable but that
Tyr-18 and Tyr-21 are essential for Nur77/Nor-1 interaction in
the context of a truncated Bcl-2 protein.

Identification of Bcl-2 mutants that do not interact with Nur77
and Nor-1

Consequently, we reasoned that Bcl-2 could contain multiple
interacting residues with Nur77/Nor-1 because combined ala-
nine substitution of Tyr-18 and Tyr-21 in a full-length Bcl-2
protein was unable to abrogate binding. These putative alterna-
tive sites could compensate for the loss of Tyr-18 and Tyr-21 to
allow interaction with Nur77/Nor-1. Consistent with this
notion, multiple Nur77-binding sites were recently found in
Bcl-b, a member of the Bcl-2 family that can also undergo anti-
to pro-apoptotic conversion by Nur77 (52). Utilizing NMR
spectroscopy– based methods with a Nur77-derived peptide,
the authors reported that Nur77 may interact with Bcl-b
through several novel interaction sites adjacent to the BAX-

binding crevice (52). We sought to test whether the observation
was also applicable to Bcl-2. Because Bcl-2 anti-apoptotic fam-
ily members are structurally similar, we performed an amino
acid sequence alignment between Bcl-b and Bcl-2 and high-
lighted the Bcl-b residues involved in the Nur77 interaction
(Fig. 3A). Interestingly, the Bcl-b residue Tyr-19 involved in the
Bcl-b–Nur77 interaction aligns with Bcl-2 Tyr-21. This is con-
sistent with one of the two essential residues identified above
using the BH4 loop fragment. The alignment also revealed
other potential Bcl-2–interacting residues, which were primar-
ily found within or flanking the BH3 domain. In addition, there
are two Bcl-b–Nur77–interacting residues that align with Bcl-2
residues between BH1 and BH2. To test whether analogous
Bcl-2 residues could be involved in Nur77 interaction, we first
generated two Bcl-2 mutants akin to the Bcl-b mutants
that abolish its interaction with Nur77 (Bcl-b/Y19A,A44L to
Bcl-2/Y21A,D102A,D103A and Bcl-b/R47A,E99A to Bcl-2/
S105A,R106A,V159A,E160A; see Fig. 3B) and performed
FLAG-IPs as described before. Surprisingly, however, both
Bcl-2 analogous mutants (Bcl-2/Y21A,D102A,D103A and Bcl-
2/S105A,R106A,V159A,E160A) were still able to interact with

Figure 1. Bcl-2 Tyr-18 and Tyr-21 within the BH4 domain are essential for a truncated Bcl-2, but not full-length Bcl-2, to interact with the Nur77 family.
A, A schematic of GFP fused to WT Bcl-2 or sequential N- or C-terminal deletions of Bcl-2 containing only the BH4 and loop domains with a C-terminal HA tag.
B, FLAG immunoprecipitation was performed on HEK293T cell lysates that were previously co-transfected with a FLAG-tagged Nur77 lacking a DNA binding
domain (�DBD) and GFP fused to WT Bcl-2 or the indicated Bcl-2 C-terminal loop deletion mutants. The immunoprecipitates were then run on the gels and
blotted with antibodies to the indicated proteins (GFP or FLAG). As controls, the input extracts were also blotted with GFP-, FLAG-, or GAPDH-specific
antibodies. The fragments were tagged with GFP on the N terminus and HA on the C terminus. C–F, FLAG immunoprecipitations were performed similarly as
in B, using a Nur77�DBD or Nor-1�DBD construct co-transfected with the control construct containing only the eGFP (peGFP-C1) or the N-terminal deleted
Bcl-2 fragments (C), alanine scan mutants within the Bcl-2 BH4 loop fragment (D), single or double alanine amino acid substitutions within the Bcl-2 fragment
(E), or Y18A and Y21A mutations within the complete Bcl-2 protein (F). The immunoprecipitates were then run on the gels and blotted with antibodies to the
indicated proteins (GFP or FLAG). As controls, the input extracts were also blotted with GFP-, FLAG-, or GAPDH-specific antibodies. Quantification of co-
immunoprecipitated GFP bands was performed using Image Studio Lite (LI-COR) as described under “Experimental procedures.” The band intensity of
co-immunoprecipitated GFP was normalized to immunoprecipitated FLAG. The normalized GFP signal (NGS) is shown relative to the GFP signal in the WT
Bcl-2:Nur77 sample. All experiments were repeated at least twice with similar results.

Figure 2. Bcl-2 Tyr-18 and Tyr-21 mutations or the Bcl-2 loop domain deletion within a complete full-length Bcl-2 protein are not essential for
interaction with Nur77. A, FLAG immunoprecipitations were performed as described previously in Fig. 1B using the Nur77�DBD or Nor-1�DBD construct
co-transfected with a control construct containing only eGFP or Y18A and Y21A mutations within a complete Bcl-2 protein. The immunoprecipitates were run
on gels and blotted with antibodies to the indicated proteins (GFP or FLAG). B, FLAG immunoprecipitations were performed using the Nur77�DBD construct
co-transfected with control vector pCI or C-terminally MYC-tagged WT Bcl-2 or the indicated Bcl-2 loop deletion mutants. The immunoprecipitates were run on
gels and blotted with antibodies to the indicated proteins (MYC or FLAG). Input extracts were blotted with antibodies specific to GFP, MYC, FLAG, or GAPDH as
a control. All experiments were repeated at least twice with similar results.
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Nur77 (Fig. 3, C, lane 4, and D, lane 3). We then expanded our
search for potential interacting residues within the BH3 domain by
generating Bcl-2 alanine scans. Bcl-2 alanine scan mutants within
this domain were generated in a fashion that was N- or C-terminal
to the core residues (Gly-101, Asp-102, and Asp-103) to avoid dis-
rupting the potential pro-apoptotic function of BH3 (41). These
included Bcl-2/Ala(93–96), Bcl-2/Ala(94–97), Bcl-2/Ala(95–98),
Bcl-2/Ala(106–110), and Bcl-2/Ala(110–114) (Fig. 3B). To deter-
mine whether any of these Bcl-2 alanine mutants were able to
abrogate Nur77 binding, FLAG-IPs were performed as described
before. Surprisingly, each mutant again interacted with Nur77,
although at slightly different efficiency as WT Bcl-2 (Fig. 3, C and
E). Among these mutants, only Bcl-2/Ala(93–96) was able to con-
sistently reduce, but not fully abolish, Nur77 or Nor-1 interaction
(Fig. 3E, lanes 4 and 12).

Finally, we investigated potential Bcl-2 residues found to
align with Bcl-b in the intervening sequence between the BH1
and BH2 domains. We generated the Bcl-2 alanine scan
mutants Bcl-2/Ala(157–160), Bcl-2/Ala(158 –161), and Bcl-2/
Ala(159 –163) (Fig. 3B). Using FLAG-IP as an assay, we found
that Bcl-2/Ala(158 –161) and Bcl-2/Ala(159 –163), and occa-
sionally Bcl-2/Ala(157–160), could no longer co-immunopre-
cipitate Nur77 (Fig. 3E). Similar results were also observed with
Nor-1 (Fig. 3E, lanes 14 and 15). Hence, amino acids 158 –163
of Bcl-2 within the intervening sequences between its BH1 and
BH2 domains contain essential residues important for interac-
tion with Nur77 and Nor-1.

The BH1–BH2–intervening Bcl-2 mutants that no longer
interact with Nur77 or Nor-1 still exhibit normal anti-apoptotic
function

The Bcl-2 region between BH1 and BH2 is not known to be
important for the Bcl-2 anti-apoptotic function (28). To assess
whether this is true, HeLa cells were transiently transfected to
express either the control eGFP-C1 vector or a vector encoding
WT Bcl-2, Bcl-2/Ala(158 –161), or Bcl-2/Ala(159 –163). For
comparison, we also transfected Bcl-2/Ala(93–96) or Bcl-2/
Ala(94 –97) with alanine mutations affecting the Bcl-2 BH3
domain. Bcl-2/Ala(93–96), but not Bcl-2/Ala(94 –97), exhib-
ited reduced interaction with Nur77. Cell viability was evalu-
ated after apoptosis was initiated with either staurosporine
(STS) or cisplatin (CIS). The cell viability of cells transfected
with wildtype Bcl-2 was set at 100%. Immunoblots with the GFP
tag confirmed that each Bcl-2 mutant was expressed at similar
levels as WT Bcl-2 (Fig. 4A). As expected, HeLa cells express-
ing the control vector resulted in increased cell death with
0.5 �M or 1 �M concentrations of STS (Fig. 4B, top panel).
Interestingly, HeLa cells expressing Bcl-2/Ala(93–96) or
Bcl-2/Ala(94 –97) proteins resulted in cell death indistin-
guishable from the empty vector control when challenged

with 0.25 �M, 0.5 �M, or 1 �M STS. In contrast, Bcl-2/
Ala(158 –161) and Bcl-2/Ala(159 –163) proteins exhibited
protective activity to staurosporine-induced death at a sim-
ilar or better level than WT Bcl-2 (Fig. 4B, top panel). A
similar result was obtained when cells were subjected to 30
�M CIS treatment (Fig. 4B, bottom panel).

We also assessed whether the 158 –161 and 159 –163 Bcl-2
mutants would affect anti-apoptotic function in a more physi-
ologically relevant setting by testing the Bcl-2 mutants in a clas-
sical cytokine deprivation assay. The LyD9 murine hematopoi-
etic progenitor cell line was utilized for this purpose because
LyD9 cells undergo apoptosis in the absence of interleukin-3
(IL-3) (54, 55). Overexpression of Bcl-2 could protect cells from
death by cytokine withdrawal (56). To test whether Bcl-2
alanine mutants were able to offer similar protection, LyD9
cells were stably transfected with the MSCV-PIG retroviral
vector, MSCV-PIG encoding an HA-tagged WT Bcl-2, Bcl-
2/Ala(158 –161), or Bcl-2/Ala(159 –163) by viral transduc-
tion. Successful stable expression of WT Bcl-2 or each Bcl-2
mutant was confirmed by Western blot analysis (Fig. 4C). To
assess the anti-apoptotic activities of the Bcl-2 mutants, IL-3
was withdrawn from the culture medium, and cell viability
was monitored over time. As expected, WT Bcl-2 offered
protection when cells were deprived of IL-3 compared with
the control vector (Fig. 4D). A similar protection was also
observed for Bcl-2/Ala(158 –161) and Bcl-2/Ala(159 –163),
although the latter exhibited a slightly less protective effect
(Fig. 4D). Together, these results provide evidence that the
Bcl-2/Ala(158–161) and Bcl-2/Ala(159–163) mutants impair the
interaction with Nur77 and Nor-1 but have a minor to no effect on
its anti-apoptotic function.

Bcl-2 mutants that do not interact with Nur77 or Nor1 have
reduced pro-apoptotic activity

The conversion of Bcl-2 from an anti- to pro-apoptotic mol-
ecule is thought to be mediated by direct Nur77 or Nor-1 inter-
action, which exposes its BH3 epitope (38, 39, 44). We reasoned
that the identified Bcl-2 mutants unable to interact with the
Nur77 family should exhibit reduced death mediated by Bcl-2
conversion. To test this hypothesis, HeLa cells were transiently
transfected with WT Bcl-2 or Bcl-2 mutants with or without
Nur77 or Nor-1. Cell death was then measured by flow cyto-
metric analysis of cells using Annexin V. The results showed
minimal death (�5%) in all single transfectants (Fig. 5, top
panel). To ensure equivalent loading and expression, an immu-
noblot was used to detect the corresponding FLAG or GFP tag
(Fig. 5, bottom panel). As reported previously by others (44),
co-expression of Nur77�DBD or Nor-1�DBD with WT Bcl-2
in HeLa cells significantly increased cell death. In line with
our reasoning, reduced cell death was observed when Bcl-2/

Figure 3. Identification of Bcl-2 mutants that abrogate the ability to interact with Nur77 and its family member Nor-1. A, sequence and structural
alignment between Bcl-2 (UniProt P10415) and Bcl-b (UniProt Q9HD36) proteins. Sequences were first aligned using Clustal Omega, followed by manual
adjustment of the sequence after similar structural positions were identified by Phyre2. Coils above sequences indicate helices and labeled �1-�7. The BH
domains are shown below the corresponding sequences. Highlighted amino acids are Bcl-B residues involved in Nur77 family interaction, as reported in Godoi
et al. (52). B, schematic of the Bcl-2 mutants used for co-immunoprecipitation assays in C–E. C–E, FLAG-immunoprecipitation was performed as described
previously in Fig. 1B to identify the potential Nur77 family–interacting regions using the indicated alanine mutants (e.g. Bcl-2/Y21A,D102A,D103A) or alanine
scanning mutants (e.g. Bcl-2/Ala(95–98)). Quantification of co-immunoprecipitated GFP bands was performed using Image Studio Lite (LI-COR) as described
under “Experimental procedures.” The normalized GFP signal (NGS) is shown relative to the GFP signal in the WT Bcl-2:Nur77 sample. All experiments were
repeated at least twice or more where indicated with similar results.
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Ala(158–161) and Bcl-2/Ala(159–163) to some extent when they
were co-expressed with Nur77. Similar data were also observed
when these mutants were co-expressed with Nor-1. We conclude
that these Bcl-2 mutants, which are unable to interact with Nur77,
also fail to mediate Nur77-induced cell death.

Discussion

The ability of Nur77/Nor-1 to associate and convert Bcl-2
from a normally anti-apoptotic to a killer molecule is an attrac-

tive mechanism to harness and exploit for anti-tumor chemo-
therapies, but the molecular details of this interaction are not
completely clear. We therefore initiated this study to determine
the precise Bcl-2–interacting residues essential for Nur77/
Nor-1 interaction through extensive Bcl-2 mutagenesis. An
unstructured Bcl-2 loop region (amino acids 31 to 92) between
its BH4 and BH3 domains has been reported to be the site of
Bcl-2/Nur77 interaction (44, 47). However, we found that this
Bcl-2 unstructured loop domain is not the primary site for

Figure 4. Bcl-2 mutants that do not interact with Nur77/Nor1 do not affect its anti-apoptotic function. A, immunoblot analysis of transiently transfected
HeLa cells with a control vector (pEGFP-C1) or constructs containing GFP-fused WT Bcl-2, Bcl-2/Ala(93–96), Bcl-2/Ala(94 –97), Bcl-2/Ala(158 –161), or Bcl-2/
Ala(159 –163). Antibodies specific against GFP and GAPDH were used to assess transfection efficiency and equal loading. B, HeLa cells from Fig. 3A with the
indicated constructs were treated with 0.25 �M, 0.50 �M, or 1 �M STS for 24 h (top panel) or 30 �M CIS for 48 h (bottom panel). Cell viability was measured by
CellTiter-Glo. Results shown are referenced mean � S.D. values to WT Bcl-2 and are representative of three independent experiments performed in triplicate
with similar results. Statistics were calculated by two-way analysis of variance with Bonferroni’s test compared with control (n.s., not significant; **, p � 0.01; ***,
p � 0.001). C, Western blot analysis of LyD9 cells transduced with MSCV-PIG control vector or MSCV-PIG vector encoding HA-tagged WT Bcl-2, Bcl-2/Ala(158 –
161), or Bcl-2/Ala(159 –163). D, an IL-3– dependent multipotent stem cell clone, LyD9, transduced with MSCV-PIG vectors encoding WT Bcl-2 or Bcl-2 alanine
mutants. Stably transduced cells were selected for resistance against puromycin. The abilities of WT Bcl-2 or Bcl-2 mutants to protect cells from apoptosis were
tested by depriving cells of IL-3 for the indicated days (D0, D1, D2, and D3). Cell viability was monitored by CellTiter-Glo and normalized to the initial number.
All experiments were repeated at least three times with similar results. Statistical significance was calculated by Student’s t test: n.s., not significant; *, p � 0.05.
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Nur77/Nor-1 interaction. Two observations are consistent
with this notion. First, Bcl-2 mutants containing large deletions
across the loop region were still able to interact with Nur77.
Second, by mutagenizing a truncated Bcl-2 protein containing
only the BH4 loop domains, we observed that Nur77 or Nor-1
was able to immunoprecipitate a truncated Bcl-2 protein lack-
ing much of its loop domain. Consistent with our data, later
papers reported that a Bcl-2/Bcl-x(L) chimera without the Bcl-2
loop region was still able to bind to Nur77 (52, 57). Although the
chimera contains a Bcl-x loop, it is known that Bcl-x(L) does not
bind to Nur77 (48, 52, 57).

In the context of a truncated Bcl-2 protein, we identified two
important Nur77/Nor-1–interacting residues (Tyr-18 and Tyr-
21) within the BH4 domain. Neither of these BH4 residues have
been reported to be essential for the Bcl-2 anti-apoptotic activ-
ity (58, 59). Surprisingly, when these residues were replaced in
the context of a full-length Bcl-2 protein (Bcl-2/Y18A,Y21A),
we observed that the mutant protein still interacted with
Nur77/Nor-1. This might indicate the presence of additional

Nur77/Nor-1 interaction sites that can compensate for the loss
of Tyr-18 and Tyr-21. In line with this notion, a recent study
performed on Bcl-b for its site of interaction with Nur77 has
shown that its BH4 domain is one of the Nur77-binding sites.
However, a single Bcl-b residue modification in its BH4 domain
was also insufficient to affect Nur77 interaction (52).

The reported Bcl-b mutations that abolished Nur77 interac-
tion were aimed at affecting the Nur77-binding pocket, either
by hindering access by increasing Bcl-2 hydrophobicity (Bcl-b/
Y19F,A44L) or by eliminating a charge residue (Bcl-b/
R47A,E99A)(52). Our mutagenesis of Bcl-2 itself, either by pro-
gressive alanine scans or by mimicking these Bcl-b mutants,
suggests that the putative Nur77-binding pocket for Bcl-2 is not
entirely similar to that of Bcl-b. This is not too surprising
because there is an apparent structural difference between
Bcl-b and Bcl-2, with the latter possessing an unstructured
“linker” region between the BH4 and BH3 domains that could
shift the location of this Nur77-binding site. The protein align-
ment between Bcl-b and Bcl-2 revealed one Bcl-b residue
involved in Nur77 binding that matched to a critical residue
within the Bcl-2 BH3 domain for pro-apoptotic function (Bcl-
b/A44 to Bcl-2/D102). It would be unlikely for Nur77/Nor-1 to
bind Bcl-2 at this residue because an interaction at this site
would block the potential pro-apoptotic BH3 domain function.
Consistent with this, we observed that the Bcl-2 mutant (Bcl-2/
Y21F,D102A,D103A) corresponding to a Bcl-b mutant (Bcl-b/
Y19A,A44L) was still able to interact with Nur77. Thus, Asp-
102 from Bcl-2, which corresponds to the Bcl-b BH3 site, is not
a critical interacting residue with Nur77. Furthermore, normal
Nur77 binding can still be seen for another Bcl-2 mutant that is
analogous to a Bcl-b mutant that cannot interact with Nur77.
Moreover, we were unable to identify a location within the
Bcl-2 BH3 domain after performing a thorough alanine scan
that could lead to a consistent and/or complete loss of Nur77
binding. All of these data combined highlight differences
between Bcl-2 and Bcl-b in their binding sites for Nur77.

In contrast to Bcl-b, where the essential sites of interaction
with Nur77 occur over multiple domains (i.e. BH4, BH3, and
BH1), we identified essential interacting residues within Bcl-2
located in an intervening sequence between the BH1 and BH2
domains (52). The mutants Bcl-2/Ala(158 –161) and, to a lesser
extent, Bcl-2/Ala(159 –163), which correspond to residues
CVES or VESVN, respectively, failed to interact with Nur77 and
Nor-1. Unlike the Bcl-b mutants, where it was necessary to
mutate discrete residues along the putative Nur77-binding
pocket, the Bcl-2 mutants identified here are located within a
single region. Why these mutations in Bcl-2 were sufficient to
abolish Nur77 interaction instead of the mutating multiple sites
similar to Bcl-b is not completely clear but might be due to the
differences in the Nur77 interaction pocket between Bcl-2 and
Bcl-b. One conceivable difference might be that the Nur77
interaction surface area in Bcl-b is larger than Bcl-2. In fact, it
has been reported that Nur77 binds the tightest with Bcl-b
compared with Bcl-2a1 and Bcl-2 in vitro and by fluorescence
polarization assays (48, 52). Hence, mutations in Bcl-2 that
affect the Nur77 binding pocket have a greater effect on Nur77
association. Alternatively, the residues are located within the
central core helix (�5), a region that may play a role in structural

Figure 5. Bcl-2 mutants that cannot interact with Nur77 have reduced
Nur77-mediated apoptosis. Top panel, cell death was measured in HeLa
cells by Annexin V� flow cytometric analysis 24 to 36 h after transfection with
or without Nur77�DBD or Nor-1�DBD along with a control construct contain-
ing only eGFP or GFP-fused WT Bcl-2, Bcl-2/Ala(158 –160), or Bcl-2/Ala(159 –
161) as described in the text. Results are shown as mean percentage � S.D. of
Annexin V� from GFP� and mKate� HeLa cells. Background was subtracted.
Data are representative of two independent experiments performed in dupli-
cate with similar results. Statistical significance was calculated by Student’s t
test: n.s., not significant; **, p � 0.01; ***, p � 0.001. Bottom panel, immunoblot
analysis of HeLa cells transiently transfected with the indicated plasmids
shown in the top panel. Specific antibodies against FLAG, GFP, or GAPDH were
used to assess transfection efficiency and equal loading.
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and functional importance (60). Although we cannot com-
pletely rule out the possibility that mutating four or five resi-
dues at a time could affect Bcl-2 tertiary structure, we were still
able to observe detectable levels of these Bcl-2 mutants similar
to that of WT levels by probing for the GFP-fused tag by immu-
noblotting. In addition, these Bcl-2 alanine mutants exhibited
little to no effect on the anti-apoptotic activities compared with
WT Bcl-2. The latter datum also demonstrates that the tagged
Bcl-2 behaves normally like that of WT Bcl-2. Interestingly,
mutating Val-159 and Glu-160 to alanines together was insuf-
ficient to abrogate Nur77 binding, suggesting that this cluster of
residues may be working synergistically to interact with Nur77
and Nor-1. We also note that Bcl-x(L) also contains the residues
CVES between the BH1 and BH2 domains (57). However, Bcl-
x(L) does not interact with Nur77, suggesting that this sequence
alone would be insufficient to interact with Nur77/Nor-1.
These observations, taken together, suggest that CVES are the
required interaction residues in Bcl-2 for it to interact with
Nur77/Nor-1.

In summary, we extend our findings to show an important
Nur77-interacting residue cluster within Bcl-2 that is located in
an intervening sequence between BH1 and BH2. We have pro-
vided evidence that these Bcl-2 mutants do not affect the nor-
mal Bcl-2 anti-apoptotic function and that these Bcl-2 mutants
do not induce Nur77/Bcl-2 mediated death. These findings
provide additional insights into the molecular details of the
Nur77 conversion death pathway and provide means to
improve targeting Bcl-2 for anti-tumor therapy and to assess
the importance of Bcl-2/Nur77 interaction in T cell negative
selection.

Experimental procedures

Plasmid constructs

Murine N-terminal FLAG-tagged Nur77 and Nor-1 plas-
mids lacking a DNA binding domain (�DBD) (43, 44) were
generated by standard deletion mutagenesis by overlap
extension PCR protocol using Bio-Rad iProof high-fidelity
DNA polymerase in the pmKate2-N (Evrogen) or pCI (Pro-
mega) expression vector. The final PCR products were
cloned into pmKate2-N using HindIII and EcoRI restriction
sites. Nur77�DBD corresponds to the deletion of amino
acids 169 – 466. Nor-1�DBD corresponds to the deletion of
amino acids 190 – 460.

Human Bcl-2 mutants were generated in pEGFP-C1 (Clon-
tech) or MSCV-PIG in a similar fashion as described above or
by the Gibson cloning method (61). All mutations were verified by
DNA sequencing (University of California Berkeley Sequencing
Facility). Primers used to generate the Bcl-2 recombinant plasmids
are available upon request.

Cell culture and transfection

HeLa or the IL-3 producing X61-IL-3 cell line were cultured
and maintained at 37 °C in RPMI 1640 medium supplemented
with 10% fetal bovine serum, 2 mM L-glutamine, non-essential
amino acids, 5 � 10�5 M 2-mercaptoethanol, and 1 mM sodium
pyruvate (cRPMI). The mouse multipotent IL-3– dependent
LyD9 cells were cultured in cRPMI supplemented with IL-3–
enriched medium produced by X61-IL3 cells. Each cell line pe-

riodically tested negative for mycoplasma. Transfection was
performed using Lipofectamine 2000 (Invitrogen) according to
the manufacturer’s recommendations.

Co-immunoprecipitation and Western blot

HEK293T cells were transiently co-transfected with
Nur77�DBD and WT Bcl-2 or Bcl-2 mutants at a 1:1 ratio. To
study the interaction between Nur77 family members with
human Bcl-2, cells were pelleted after 24 h of transfection,
washed with PBS, and resuspended in lysis buffer (150 mM

NaCl, 50 mM Tris-HCl (pH 7.5), 20 mM EDTA, 1% Nonidet
P-40, protease inhibitor mixture (Sigma), and 1 mM DTT).
Lysates were clarified by high-speed centrifugation and pre-
cleared with protein G–agarose beads (Thermo Scientific)
prior to incubation with anti-FLAG or isotyping with protein
G–agarose overnight. Beads were washed with lysis buffer prior
to being boiled in SDS sample loading buffer, run on a 10%
SDS-PAGE gel, and transferred onto nitrocellulose mem-
branes. Membranes were blocked with 5% BSA in Tris-buffered
saline containing 0.1% Tween and probed using anti-HA (clone
HA.C5, Abcam), anti-MYC (clone E910, Clontech), anti-FLAG
(clone 5E10, Accurus), anti-GFP (clone FL, Santa Cruz Biotech-
nology), or anti-GAPDH (clone 14C10, Santa Cruz Biotechnol-
ogy) antibodies. Quantification of GFP levels was performed
using Image Studio Light (LI-COR) as described previously
(http://lukemiller.org/index.php/2013/02/analyzing-western-
blots-with-image-studio-lite/).3 Briefly, the rectangle tool was
used to outline each protein band, with each rectangle having
equal areas. Immunoprecipitated FLAG or co-immunoprecipi-
tated GFP band signal values were obtained. Co-immunopre-
cipitated GFP signals were normalized to immunoprecipitated
FLAG. The -fold difference of GFP was normalized relative to
the co-immunoprecipitated GFP signal in the WT Bcl-2:Nur77
sample.

LyD9 transduction of WT Bcl-2 or Bcl-2 alanine mutants

Stably expressing WT Bcl-2 or Bcl-2 alanine mutants in LyD9
cells were obtained by first transfecting Phoenix cells with 3 �g
of control MSCV-PIG or MSCV-PIG encoding HA-tagged WT
Bcl-2 or Bcl-2 alanine mutants along with 0.5 �g of VSV-G (G
glycoprotein of the vesicular stomatitis virus) and 1 �g of gag-
pol helper plasmid (Nolan laboratory) with Lipofectamine 2000
(Invitrogen) in 6-well plates. 24 h post-transfection, the viral
supernatant was passed through a 0.2-�m syringe filter, supple-
mented with 10 �g/ml Polybrene (Santa Cruz Biotechnology),
and added to �2– 4 � 106 LyD9 cells. The LyD9 cells were spun
at 2500 rpm for 1 h at room temperature and cultured at 37 °C
for 24 h to recover. Selection of successfully transduced cells
was obtained by supplementing the culture medium with 10
�g/ml puromycin. Stable transfection was confirmed by GFP
expression using flow cytometry and/or by detecting the pres-
ence of the C-terminal HA tag by Western blot analysis.

3 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party– hosted site.
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Cell death from chemical apoptotic inducers or IL-3 cytokine
deprivation

24 h post-transfection of WT Bcl-2 or Bcl-2 mutants (in
6-well plates), HeLa cells were transferred to 96-well plates and
allowed to settle for another 24 h. Cell viability was determined
by CellTiter-Glo (Promega) 24, 48, or 72 h after incubation with
cRPMI supplemented with the indicated concentrations of STS
(Sigma-Aldrich) or CIS (Sigma-Aldrich). Relative light units
were obtained by normalizing the values to the corresponding
WT Bcl-2–treated sample.

To measure cell viability after IL-3 deprivation, LyD9 cells were
washed three times with 1� PBS (GE HyClone) and seeded into
96-well plates at a density of 1�105 cells/well with cRPMI without
IL-3. Cell viability was then measured by CellTiter-Glo after the
indicated number of days following cytokine deprivation. CellTi-
ter-Glo assays were performed in triplicate in 96-well plates
according to the manufacturer’s recommendations.

Annexin V� staining by flow cytometry

HeLa cells were transfected with the indicated plasmids.
After 24 h, HeLa cells were washed with 1� PBS, resuspended
in Annexin V binding buffer (100 mM HEPES (pH 7.4), 140 mM

NaCl, and 2.5 mM CaCl2), and then incubated with Pacific Blue-
conjugated Annexin V antibody (BD Biosciences). Analysis of
Annexin V� was performed on GFP� and mKate� cells using
FlowJo 10 software (FlowJo).
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