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University, James H. Clark Center, MC5447, 318 Campus Drive, Stanford, CA 94305-5447, USA

Abstract

An evaluation system and a web infrastructure were developed for the second cryo-EM model 

challenge. The evaluation system includes tools to validate stereo-chemical plausibility of 

submitted models, check their fit to the corresponding density maps, estimate their overall and per-

residue accuracy, and assess their similarity to reference cryo-EM or X-ray structures as well as 

other models submitted in this challenge. The web infrastructure provides a convenient interface 

for analyzing models at different levels of detail. It includes interactively sortable tables of 

evaluation scores for different subsets of models and different sublevels of structure organization, 

and a suite of visualization tools facilitating model analysis. The results are publicly accessible at 

http://model-compare.emdatabank.org.
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Introduction

The second cryo-Electron Microscopy Model Challenge (EMMC) was organized to bring 

together the cryo-EM structure determination community, learn about available approaches 

for generating atomic coordinates from three-dimensional electron microscopy (3DEM) 

density maps reported to be at 3.0–4.5 Å resolution, reveal abilities of the current modeling 

methods, and establish working protocols for validating the accuracy of models.
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The challenge organizing committee selected eight modeling targets from the cryo-EM 

structures published in the period 2014–16 (http://challenges.emdatabank.org/?

q=model_challenge). Challengers were invited to submit 3D coordinates of models created 

to fit the provided density maps. Models could be generated either ab initio or by optimizing 

existing models. The submissions were collected, analyzed, preprocessed (if necessary), and 

evaluated with a suite of measures agreed upon by the challenge committee. The models and 

the results of the evaluations were anonymized and provided to volunteer assessors via the 

web interface. After the assessors prepared initial analyses of the modeling results, a face-to-

face meeting with the challenge committee was organized to discuss preliminary outcomes. 

The challenge culminated in a joint participants, assessors and organizers meeting in 

October 2017, where the results were reviewed and discussed, and plans for future 

challenges developed. The detailed timeline of the various events can be found in the 

accompanying paper of this journal issue (Lawson and Chiu, to be submitted, editorial this 

issue).

Since no dedicated data-handling infrastructure was available, it was necessary to develop a 

system for evaluation of submitted models and presentation of the evaluation results. CASP 

experiments have been assessing accuracy of in silico structure models for over two decades 

(Moult et al., 2018), and we used the CASP evaluation system (Kryshtafovych et al., 2016a) 

as a prototype for the cryo-EM model evaluation system. Here we describe components of 

this system, enumerate the measures used in the evaluation, give an overview of the web 

infrastructure designed to facilitate analysis of the submitted models, and provide a brief 

statistical overview of the scores obtained for the submitted models.

1. Evaluation system: architecture and components

1.1. Targets

Eight modeling targets were included in the EMMC experiment (see http://

challenges.emdatabank.org/?q=model-challenge-targets). The targets were numbered 

consecutively, from T0001 to T0008. For several targets (T0002, T0006, T0007 and T0008), 

two independently determined 3DEM maps were provided (designated as mapA and mapB). 

In these cases, models were evaluated only against the target/map combination specified by 

the challengers and appear only in results tables corresponding to the specified target/map 

combination. The list of twelve evaluated target/map pairs can be found at the main EMMC 

evaluation web page: http://model-compare.emdatabank.org.

1.2. Reference structures

For each target, the organizing committee picked one or more reference structure(s), against 

which the submitted models were evaluated. These reference structures were selected from 

experimental structures with the highest resolution. Experimental structures are defined here 

as protein structures determined with X-ray or cryo-EM techniques and publicly available 

from the Protein Data Bank (PDB) (Berman et al., 2000). For some targets, several reference 

structures were assigned. The selected reference structures for the EMMC targets are listed 

in the Model Challenge Targets table at http://challenges.emdatabank.org/?

q=model_challenge.
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It is important to keep in mind that the chosen reference structures are experimentally-

determined models themselves and may have small conformational differences from the 

optimal model owing to differences in sample preparation, quality of experimental data 

restraints, and/or specifics of the model building procedure. Thus, they are not necessarily of 

a better quality than the submitted models. However, since the selected reference structures 

were the best publicly available models for each target, we considered them as the most 

reliable points of reference at the time of evaluation.

1.3. Participants /groups

Participation in the experiment was open to everyone. Throughout the paper we use a term 

‘group’ to designate both individual researchers and multiple collaborating researchers 

participating in the challenge. Sixteen groups from six countries registered for the challenge 

and submitted 106 entries. Each group was assigned a unique three-digit identification 

number. The correspondence between the group IDs and group names (http://model-

compare.emdatabank.org/doc/em_participants_id.htm) was concealed until after the 

assessors reported on the evaluation results, to ensure the unbiased evaluation.

1.4. Submissions /models

106 submissions were deposited to the EMMC challenge through the pdb_extract system 

(Yang et al., 2004), and were further processed using Maxit (https://sw-tools.rcsb.org/) to 

produce both PDBx/mmCIF and PDB format files. Each submission was originally assigned 

an acceptance code (e.g., emcm102_GSec) encoding the submission’s number and target 

name (‘GSec’ for Gamma-Secretase). The acceptance tags were used internally and do not 

appear in the evaluation resource. Each submission was supplemented with basic 

information on the modeling technique that was collected using a Drupal webform and made 

available via a downloadable spreadsheet.

Usually, one submission contained one model (i.e., one set of coordinates unambiguously 

describing the location of each atom in the protein structure). However, some submissions 

contained more than one model, as judged by the presence of multiple MODEL records 

within the uploaded file (e.g., as typically used for structures determined by NMR). The 

multi-model entries presented evaluation problems for some software packages (see below) 

and were preprocessed. If a submission contained multiple MODEL blocks with structurally 

equivalent coordinates (identical conformations), only the first model was evaluated. If a 

submission contained multiple MODEL blocks with structurally distinct conformations, it 

was split into separate models, and each model was evaluated separately. All in all, 142 

models were evaluated.

For convenience of analysis, model identifiers (e.g., T0007EM164_2) carried encoded 

information about the participating group (‘164’ in the name above), the target on which the 

model was submitted (‘T0007’), and the consecutive number of the model submitted by this 

author on this target (‘2’). This naming scheme enables grouping by target (to compare 

models from different groups on the same target) or by participating group (to analyze 

models from the same group).
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The model challenge guide to submitters stated that uploaded models were required to be 

positioned within the target map, have the same symmetry as the map, and use a pre-defined 

sequence/residue numbering. Even so, some submitted models did not adhere to these 

requirements and/or had other issues that caused problems for selected evaluation packages. 

For cases where the model was positioned outside of the target map, submitters complied 

with our requests to supply revised coordinates. Other issues encountered included incorrect 

polypeptide sequence and/or residue numbering, Cα-only or polyalanine-only ab initio 
models, 2-symbol chain IDs, multi-model submissions, duplicated atoms, HETATM records 

in place of ATOM records in the PDB format, incorrect symmetry parameters or incorrect 

element symbols. When a model had one or more of these issues, we still attempted 

evaluation with all available software packages and reported the results for the tools that 

were able to deal with the specific formatting issues. To ensure a more rigorous evaluation of 

models in future challenge rounds, we recommend implementation of an acceptance system 

to verify model format upon submission and report errors to the authors at the submission 

stage.

1.5. Schematics of the EMMC evaluation

Different levels of model structure organization (multimers, monomers, domains) require 

different evaluation approaches. For example, in the evaluation of model subunits 

(monomers or evolutionary domains), establishing the similarity of their structures to those 

of reference structures is of paramount interest, while in the evaluation of the whole 

multimeric assembly, similarity of the subunits is just one piece of the entire picture, and the 

principal evaluation interest may be in assessing the relative orientation of the subunits and 

similarity of their interfaces. Combining evaluation results at different levels of model 

structural granularity can help provide a well-rounded picture of model accuracy. For each 

level of the model structure organization, we split the analysis into parallel evaluation tracks 

to estimate the accuracy of models based solely on the structure of the model, or with 

respect to density maps, reference structures, or other submitted models (see Figure 1). 

Different evaluation measures are applied in different evaluation tracks, and these are 

discussed below.

2. Evaluation measures

2.1. General overview

Building a computational model of a protein involves assumptions, approximations, and 

simplifications. Thus, every model is inherently imperfect. Reliable estimation of both 

overall and local accuracy is critical for determining the usefulness of a model to address 

specific structural biology problems. How can the accuracy of a model be estimated?

2.1.1. Exclusively from coordinates—In any situation, accuracy can be estimated 

directly from the coordinates of the model. This approach is the only choice if no 

experimental structural data for the modeling target is available. Several conceptually 

different software tools can handle this task. One group of approaches (Chen et al., 2010; 

Hooft et al., 1996; Laskowski et al., 1996) focuses on validating basic stereo-chemical 

features of models by comparing them to geometric parameters observed in high-resolution 
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experimental structures. We picked the most recent and comprehensive MolProbity package 

(Chen et al., 2010), version 4.4, to represent this group of methods in our analysis (see 

section 2.2 below for specifics). Methods from this group are very useful for identifying 

models with atypical geometric features, however they cannot distinguish models that are 

similar to the native structure from those that are not (in other words, ideal geometry and an 

almost perfect MolProbity score do not guarantee that a model corresponds to the native 

state).

The native (folded) state of a protein is characterized by the global minimum of free energy, 

and therefore close-to-native structures potentially can be differentiated from decoys by 

using energy terms. Since it is currently unfeasible to build a perfect energy function for 

complex systems such as a protein, the task of distinguishing good models (close-to-native 

structures) from poor models (incorrectly folded structures) has been approached by 

approximating the energy function with empirical molecular mechanics force fields (Lu et 

al., 2008; Wiederstein and Sippl, 2007; Zhou and Zhou, 2002; Zhou and Skolnick, 2011). 

This group of methods is represented in our evaluation by the DFIRE energy function (Zhou 

and Zhou, 2002). Even though multiple energy functions are practically useful in different 

contexts, they did not show any advantage over other scoring approaches in CASP 

experiments (Kryshtafovych et al., 2018b).

At the same time, machine-learning approaches combining various structural features of the 

models and/or energy potentials demonstrated promising results (Elofsson et al., 2018; 

Kryshtafovych et al., 2011; Kryshtafovych et al., 2018b). These include the recently 

developed ProQ series of methods (Ray et al., 2012; Uziela et al., 2016), SVMQA 

(Manavalan and Lee, 2017), QMEAN (Benkert et al., 2009) and ModFOLD (McGuffin et 

al., 2013). All of these methods are capable of generating accuracy estimates based solely on 

the model and that is why they are called “single-model” methods. For our evaluation, we 

picked two such methods: the QMEAN and ProQ3, the latest version of the original ProQ 

method.

2.1.2. Comparing to reference structures—If there exists a “gold standard” 

structure, a model can be compared to this structure and their structural agreement can be 

evaluated. Tools to quantify such an agreement have evolved over the years, being 

stimulated in particular by developments in CASP experiments (Moult et al., 2018). For the 

EMMC evaluation, we picked several conceptually different measures from the CASP tool 

chest (Kryshtafovych et al., 2016a) in order to provide different perspectives on the model 

accuracy (see section 2.3 below).

2.1.3. Checking model-to-map fit—A number of measures for validating fitness of 

EM models with respect to experimental 3DEM density maps have been developed (section 

2.4 below). Newly developed measures are included along with the real space cross-

correlation function (CCF) and/or the Fourier Shell Correlation (FSC) function, which are 

routinely used to estimate resolution of EM models (Henderson et al., 2012).

2.1.4. Agreement between models—Finally, the accuracy of a model can be 

estimated by comparing it to other models submitted on the target (section 2.5 below). The 
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methods of this class are called clustering (or consensus-based) methods. According to 

CASP tests, Pcons (Larsson et al., 2009), ModFOLD (McGuffin et al., 2013) and Multicom 

(Cheng et al., 2009) methods are among the most reliable clustering methods 

(Kryshtafovych et al., 2018b). In our evaluation system we use a locally implemented Davis-

QAconsensus method (Kryshtafovych et al., 2014), which was shown to perform on par with 

the best performing clustering methods. Clustering methods require model sets with many 

(preferably diverse) models and assume that agreement of models (or regions of models) 

may be an indication of correctness. In general, methods of this class perform well and are 

more accurate than single-model methods (Kryshtafovych et al., 2016b). However, if models 

are too diverse (i.e., clusters of similar models are too loose) or only a very few models are 

correct (i.e., the most popular clusters are dominated by poor models), these methods may 

generate wrong results, and the single-model methods may be a better choice. Since 

submitted models (except perhaps ab initio ones) are expected to be close to their reference 

structures, the clustering methods are expected to provide reliable results in the EMMC 

evaluation.

In the next sections we discuss collections of model accuracy measures and list software 

packages used in each of the four evaluation tracks mentioned above. All software packages 

were installed as stand-alone applications at the dedicated evaluation server, and were run 

locally. For convenience of referencing, software packages are highlighted in the text in 

bold, and evaluation measures - in bold and italic.

2.2. Evaluation based exclusively on model coordinates

Single-model accuracy evaluation n tools are software packages capable of estimating model 

accuracy using no other input than the model file itself. In the EMMC, we used five 

conceptually different packages - MolProbity, PHENIX, DFIRE, ProQ3 and QMEAN for 

this task.

MolProbity (Chen et al., 2010) is an all-atom structure validation package measuring 

agreement of a model with geometric parameters derived from high-resolution experimental 

structures (2 Å or better). In the EMMC evaluation, we ran MolProbity separately on the 

model of the entire complex and of its representative subunits. The results are reported 

correspondingly under the Multimers and Monomers tabs of the model comparison website, 

see sections 3.4 and 3.5 below. If a submitted model did not contain hydrogen atoms, a 

dedicated module within the software package added them automatically. Molprobity’s 

clash score reports the number of serious steric clashes per 1000 atoms. A clash is 

considered “serious” if steric overlap between any two atoms is larger than 0.4 Å. A good 

quality structure usually has a clash-score below 20. Rot-out reports the percentage of 

sidechain conformations classified as poor rotamers, from those sidechains that can be 

evaluated. A sidechain conformation is considered to be poor if its set of torsion angles falls 

outside the bounds of the rotamer definition. Ram-out quantifies the percentage of backbone 

conformations classified as outliers (i.e., those for which the combination of φ and ψ torsion 

angles is unusual), while Ram-fav quantifies percentage of the conformations in favored 

Ramachandran plot regions, from those residues that can be evaluated. We also reported the 

cumulative MolProbity score (MPscore), which combines three of the four above-mentioned 

Kryshtafovych et al. Page 6

J Struct Biol. Author manuscript; available in PMC 2018 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



statistics giving one number that approximates the crystallographic resolution at which those 

values would be expected (Keedy et al., 2009):

MPscore = 0.426 * ln 1 + clash_score + 0.33 * ln 1 + max 0, rot_out − 1 +
0.25 * ln 1 + max 0, 100 − Ram_ f av − 2 + 0.5

The coefficients were derived from a log-linear fit to crystallographic resolution on a filtered 

set of PDB structures. Lower MPscores correspond to better structures, with scores below 3 

usually indicating models of acceptable polypeptide geometry.

The PHENIX (Python-based Hierarchical ENvironment for Integrated Xtallography) 

package (Adams et al., 2010) is built around the computational crystallography toolbox 

library (Adams et al., 2002), enabling its extensibility. Cryo-EM specific tools have recently 

been added, ranging from map analysis and improvement (phenix.mtriage (Afonine et al., 

2018b); phenix.auto_sharpen (Terwilliger et al., 2018)) to model validation and real-space 

model optimization (phenix.real_space_refine (Afonine et al., 2013; Afonine et al., 2018a)). 

For single-model analysis, we used the PHENIX model validation tools to quantify 

deviations of five geometric parameters - bond distances, angles, chirality, planarity and 

dihedral angles - from ideal values (Vagin et al., 2004). For each parameter, three values are 

provided: the RMSD, the maximum deviation (in Ångstroms for distances or degrees for 

angles), and the number of bonds, angles, etc. measured.

DFIRE (Distance-scale Finite Ideal-gas Reference state) (Zhou and Zhou, 2002) is a 

potential of mean force that can be used for structure selection and stability prediction. The 

all-atom residue-averaged distance-dependent potential is derived from more than one 

thousand non-homologous protein structures with resolution better than 2 Å. The DFIRE-

based evaluation was applied here to monomeric subunits of the submitted models. Since the 

native (folded) state of the protein corresponds to the lowest value of the free energy, lower 

potential values indicate better quality structures.

ProQ3 (Protein Quality) (Uziela et al., 2016) and QMEAN (Qualitative Model Energy 

ANalysis) (Benkert et al., 2009) are two of the most reliable single-model accuracy 

assessment methods according to the CASP large-scale evaluation of model quality 

estimators (Kryshtafovych et al., 2011; Kryshtafovych et al., 2018b). These methods differ 

from others reported earlier in this section in their usage of agreement terms between 

observed and predicted structural features, such as e.g. secondary structure elements. These 

methods were developed to estimate accuracy of monomeric models, and in our evaluation 

system we apply them correspondingly. Both methods return global (one per model) and 

local (one per residue) reliability scores scaled to [0–1] range (the higher the better). ProQ3 
is based on a machine learning algorithm that combines knowledge-based Rosetta energy 

terms (Alford et al., 2017) with comparison of predicted and observed structural features, 

including contacts between different atom types, secondary structure and surface 

accessibility, and features predicted from sequence profiles. Local, per-residue accuracy is 

described in terms of S-score (Gerstein and Levitt, 1998), and global accuracy is a 

normalized sum of the local values. QMEAN is a linear combination of four statistical 

potential terms and two agreement terms that evaluate the consistency of structural features 
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with sequence-based predictions. The resulting global and local scores estimate the “degree 

of nativeness” of structural features observed in a model, reporting the likelihood that the 

model (or the residue environment) is of quality comparable to a reference structure.

2.3. Fit to density maps

The quality-of-fit of model atomic coordinates to the 3DEM density maps was evaluated 

using three packages recently developed (or extended) for cryo-EM: TEMPy, EMRinger 
and PHENIX.

TEMPy (Template and Electron Microscopy comparison using Python) (Farabella et al., 

2015; Vasishtan and Topf, 2011) incorporates several scoring functions for assessing model-

to-density fit. For the EMMC assessment we chose four global scores - cross-correlation 

coefficient (CCC); Laplacian-filtered cross-correlation (LAP), mutual information (MI), and 

envelope (ENV); and one local score - the segment-based Manders’ overlap coefficient 

(SMOC). Depending on the map type, resolution, and the extent of overlap between 

volumes, one scoring function may be more useful than others. To calculate the CCC, LAP, 
MI and SMOC scores, the model’s atomic structure is first blurred to the map resolution, see 

(Vasishtan and Topf, 2011) for details. CCC is calculated by the array multiplication of 

density values at the same points in the model and target maps. LAP is computed similarly, 

using density maps pre-processed with a Laplacian filter. MI is a statistical measure that 

quantifies the extent of register between two binned densities relative to their background 

distributions. The MI score can theoretically take any positive value, with larger values 

corresponding to better fits. A recent study (Joseph et al., 2017) showed that the MI score 

has better discriminatory power than the cross correlation coefficients especially at 

intermediate-low resolutions (>6 Å) when the maps overlap partially or have significant 

compositional differences. ENV estimates how much of the density map is filled with atoms, 

and penalizes protrusions from the map envelope. Larger ENV values denote better fits. 

SMOC is a per-residue model-to-map fit measure, which calculates the Mander’s overlap 

coefficient (Joseph et al., 2017) for overlapping residue fragments and assigns the score to 

the central residue in the fragment. The score is in [0–1] range1 with higher values 

indicating a better fit. The SMOC score can be generalized for the whole structure (by 

averaging the per-residue scores), and we report this averaged score in our evaluation 

system. A more recent version of TEMPy (Joseph et al., 2017) includes new measures (e.g., 

a combined local mutual information and overlap score) that were shown to perform 

consistently across different map categories, resolutions or the extents of overlap; we plan to 

use these in future EMMC experiments.

EMRinger (Barad et al., 2015) estimates global and local model-map fit based on the 

analysis of model side-chain placement within map density. Considering all potential 

positions of the side-chain Cγ atom around the χ1 dihedral angle, the most preferred 

position is determined based on the associated cryo-EM map density. If the most preferred 

position appears at a non-rotameric angle, it may indicate errors in the model backbone. The 

1The score can also take negative values when the density values in one of the maps are negative. It is usually better to shift the 
densities to a positive scale before calculation.
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EMRinger score is calculated by assessing the statistical enrichment of peaks in rotameric 

positions at the map density threshold with most significant enrichment. Map resolution and 

the global EMRinger score are strongly correlated. This is to be expected, given that 

EMRinger score reports on side chain density, which is only resolvable at about 4.5 Å or 

better. In general, for maps at around 3.5 Å resolution or better, the minimum expected score 

is around 1, and a very good score around 2. Most properly optimized models score above 

1.5, with some scoring above 3. The local EMRinger score is in [0–1] range and reports the 

fraction of residues passing the rotameric threshold in the 21-residue sliding window around 

the central residue.

PHENIX tools have been described in section 2.2 with regards to the individual model 

analysis. Here we used them to evaluate the model-to-map fit by calculating the overall 
Fourier Shell Correlation (overall FSC) in reciprocal Fourier space and per-chain box 
cross-correlation (box_CC) in real space. The real-space cross-correlation coefficients 

produced by TEMPY and PHENIX are highly correlated, but not identical, owing to slightly 

different approaches in computing the scores. Both approaches use the entire map for the 

calculation, but TEMPY directly calculates the product of densities in the maps (see the 

description above), while PHENIX first offsets density values so that the mean of the density 

distribution is zero, and only then takes the product of the corresponding resulting values. 

Higher box_CC values usually signify a better fit to map. Low values do not necessarily 

mean that the model does not fit the map well, but may instead indicate that there are 

uninterpreted map regions or poorly connecting densities (Afonine et al., 2018b). Overall 
FSC is calculated between the complex-valued Fourier map and model coefficients binned 

in resolution shells. Model coefficients are obtained by sampling on the same grid as the 

experimental map, applying electron form-factors and atom model parameters including 

coordinates, occupancies, atomic displacement parameters, chemical atom types. The 

resulting curve is presented as a function of spatial frequency, and is used to define the FSC-

based resolution of the model at 0.5 cutoff (Rosenthal and Henderson, 2003; van Heel and 

Schatz, 2005).

2.4. Similarity to reference structures

For each target, reference structures were selected by the challenge committee. Different 

measures were used for model evaluation at different levels of model structural organization. 

Monomeric subunits and constitutive structural domains were evaluated using four software 

packages that were extensively tested in CASP – LGA (Local-Global Alignment), TM 
(Template Modeling), LDDT (Local Distance Difference Test) and CAD (Contact Area 

Difference). Each reports on local and per-residue model accuracy from different 

perspectives: accuracy of the backbone - GDT_TS (Global Distance Test – Total Score), 
GDT_HA (Global Distance Test – High Accuracy), RMSD (Root Mean Square Deviation) 
and TM scores; quality of model-to-target alignment - LGA_S and TM-align; similarity of 

inter-residue distance matrices (LDDT), or difference in inter-residue contact areas (CAD). 

For multimeric models, we analyzed similarity of model and target interfaces with the QS-
score (Quaternary Structure score) and IFaceCheck programs; additionally, completeness of 

models and structural proximity of corresponding residues in models and reference 

structures was verified with the phenix.chain_comparison program.
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The LGA package (Zemla, 2003) is a superposition-based rigid-body structure comparison 

tool, used here to evaluate accuracy of protein backbone modeling. We ran the program in 

sequence-dependent and sequence-independent modes. In the sequence-dependent mode, it 

superimposes a model onto the target using one-to-one correspondence between residues in 

the compared structures (i.e., residue 1 in the model corresponds to residue 1 in the target, 

and so on); while in the sequence-independent mode, the algorithm first finds an optimal 

alignment between two compared structures. GDT_TS is the LGA’s sequence-dependent 

score reporting the average percentage of model Cα atoms that can be superimposed with 

the target structure under 1, 2, 4, and 8 Å distance cutoffs. Thus, only well-modeled regions 

contribute to the GDT_TS score, in contrast to RMSD, where all residues contribute, 

including superposition outliers. The GDT_TS score is in the range [0–100] with higher 

scores corresponding to better fit. GDT_TS scores over 50 indicate structures with 

significant similarity, while scores below 25 indicate unrelated structures (poor models). 

Extended GDT results can be plotted as a curve showing the percentage of fit residues for 

distance cutoffs in the range from 0 to 10 Å, with a larger area under the curve indicating a 

more accurate model2. GDT_HA is a modification of the GDT_TS score that uses tighter 

distance cut-offs (0.5, 1, 2 and 4Å) and thus is better suited for the evaluation of high 

accuracy models, as is the case with the majority of the EMMC models built using 

optimization procedures. GDT_HA scores are highly correlated with the GDT_TS scores 

and usually 10–20 points lower for the same models. In the sequence-dependent mode, LGA 

also outputs RMSD between the corresponding Cα residues in the model and the target. In 

the sequence-independent mode, the LGA algorithm finds an optimal alignment between a 

model and the target by combination of the GDT-based scores (see above) with scores 

promoting fewer gaps in constructed alignments – see (Zemla, 2003) for details. The 

reported LGA_S score reflects the percentage of residues that can be superimposed under 5 

Å distance cutoff. The LGA_S score is in the range [0–100], with higher scores 

corresponding to structural matches with a higher percentage of fit residues and longer 

aligned fragments. LGA_S scores are similar to the GDT_TS scores for targets where 

alignment errors are insignificant. In the EMMC evaluation, LGA_S is particularly useful in 

cases where models are out of sequence register and therefore cannot be evaluated with 

sequence-dependent measures.

The TM package (Zhang and Skolnick, 2004; Zhang and Skolnick, 2005) is another rigid-

body superposition-based tool complementing LGA. In its sequence-dependent mode, it 

reports the TM-score, which evaluates distances between aligned residues, with length-

dependent normalization to reduce dependence on protein size. TM-score is well correlated 

with the GDT_TS score, with better models exhibiting higher scores in [0–1] range. A TM-

score below 0.2 indicates that the compared structures are unrelated whereas a score higher 

than 0.5 indicates that they have the same fold (Xu and Zhang, 2010; Zhang and Skolnick, 

2005). In sequence-independent mode, the TM-align algorithm uses heuristics based on 

secondary structure assignments, TM-score guided threading, and dynamic programming to 

identify the best structural correspondence between the model and the target. The optimal 

2Note that the GDT plot axes in the EMMC resource are swapped compared to the traditional CASP plots so that the graphs resemble 
typical ROC-curve shape.
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alignment is then scored (we call the result ‘TM-align’ to differentiate it from the sequence-

dependent TM-score).

LDDT (Mariani et al., 2013) is a superposition-independent measure based on the 

comparison of all-atom distance maps between model and target structures. The algorithm 

determines the percentage of preserved distances between all pairs of atoms in the target 

structure that are closer in space than a predefined cutoff. The final score is the average of 

the percentages of the preserved distances under four distance tolerance cutoffs (0.5, 1, 2 and 

4Å). The LDDT score range is [0–1].

CAD-score (Olechnovic et al., 2013) is another superposition-free measure that estimates 

similarity of two structures based on the differences in their residue-residue contact areas. 

The inter-residue contact areas can be defined for any subset of residue atoms (e.g., 

backbone, side-chain only). In our system we report a variant of the CAD-score that is based 

on comparison of contact areas for all atoms in a residue. The contact areas are calculated 

using the Voronyi tessellation approach in the target and the model separately, and then their 

differences for the same pairs of residues are summed and normalized to the [0–1] interval. 

Based on CASP evaluation data, the CAD-score is bell-shape distributed with around 90% 

of scores falling in the range [0.3; 0.7]. It is worth noting that CAD score has a desired 

feature of favoring models with better stereo-chemical arrangements (Olechnovic et al., 

2018, submitted to Bioinformatics).

Both LDDT and CAD scores are superposition-free measures of local structure and 

therefore can be directly applied to assessing quality of submitted models on multi-domain 

targets. While rigid body superposition-based scores (e.g., GDT_TS or TM-score) are very 

sensitive to relative domain orientation (as superposition of two multi-domain structures is 

usually dominated by one of the domains) and require split of multi-domain targets into 

separate domains for a fair assessment, the local measures are practically insensitive to 

spatial inter-domain arrangements and therefore are well suited for evaluation of model 

quality in such cases. (Olechnovic et al., 2018, submitted to Bioinformatics).

QS-score (Bertoni et al., 2017) was applied for reference-based evaluation of multimeric 

structures. The score quantifies the similarity between quaternary structures in terms of 

shared interfacial contacts of their subunits. The package first finds the best mapping 

between the target and model chains using the structure symmetry, and then calculates four 

scores: QS_best - the fraction of interchain contacts that are shared between two structures 

for the best fitting interface; QS_global - the fraction of interchain contacts that are shared 

between two structures for all interfaces; RMSD calculated on the whole aligned structure 

(Cα’s of all common chains); and the LDDT score described above and adopted for 

multimeric structures in such a way that it does not penalize for over-prediction, e.g. a 

tetrameric model (containing a perfect dimeric model) vs the dimeric target is giving a 

perfect score. QS-scores are ranked in [0–1] interval. The scores above 0.7 indicate highly 

similar quaternary structures, while scores below 0.3 indicate structures of low assembly 

similarity.
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Similarly to QS-score, the IFaceCheck compendium of statistical measures evaluates 

accuracy of multimeric models based on the similarity of their interfaces (Lafita et al., 

2018). The tool first clusters inter-chain contacts in the target and a model based on the 

identity of the interface residues (in terms of the Jaccard distance), and then reports statistics 

on similarity of the interface clusters in different structures. For each model interface, we 

calculate its similarity to the corresponding target interface in terms of the precision (Prec) 
= TP/(TP+FP), recall = TP/(TP+FN), F1-score = 2*Prec*Recall/(Prec+Recall) and Jaccard 
distance (Jd) = (FP+FN)/(TP+FP+FN), where TP is the number of interface target contacts 

reproduced in the model, FP is the number of model contacts not present in the target and 

FN is the number of target contacts missing in the model. An interface contact is defined as 

the distance <5Å between any two non-hydrogen atoms from residues belonging to different 

chains. The scores are reported for the best scoring interface from each of the corresponding 

interface clusters and also as the average from all pairwise scores from all interfaces in the 

cluster. Also, the interface RMSD between the residues belonging to target interfaces and 

corresponding residues in the model (not necessarily belonging to an interface) is calculated 

together with the coverage of the target interface residues by the modeled residues (i.e., the 

percentage of target interface residues used in the interface RMSD calculation).

The phenix.chain_comparison program was suggested as an evaluation criterion by Tom 

Terwilliger in order to calculate the proximity of model and target structures, once 

coordinates of both are optimally fit to the density. This is important when analyzing ab 
initio models, which may be incomplete, have sequence errors, or have regions of 

unassigned sequence. Fit to maps was ensured using phenix.get_cc_mtz_pdb and 

phenix.superpose_pdbs modules. The method reports the number of Cα atoms in the model 

within 3Å of the target (Nclose); number of Cαs further than 3Å (Nfar); the number of Cαs 

within 3Å of the target divided by the rmsd (CA score); and the percentage of Cα atoms that 

have the correct residue name (Seq. match %).

2.5. Agreement among submitted models

Davis_QAconsensus method (Kryshtafovych et al., 2014) assigns accuracy score to a model 

based on the average pair-wise similarity of the model to all other models submitted on that 

target. The method superimposes all models submitted on the target by running LGA with 

default parameters in the sequence dependent mode. For each model, the quality score is 

calculated by averaging the GDT_TS scores from all pairwise comparisons. In the local 

mode, per-residue scores are obtained by averaging the S-function-transformed distances 
(Gerstein and Levitt, 1998) between the corresponding residues in pairwise LGA 

superpositions of the selected model with the other models submitted on the target.

3. Presentation of the evaluation results

We generated scores for each of the submitted models using measures described in section 2. 

Parameters for running software packages were either suggested by committee members, 

software developers, or as commonly used in CASP. With such a wide variety of parameters, 

it was important to organize the resulting data in a way that could be readily comprehended 

and evaluated. Though the assessors were free to develop their own metrics for evaluations, 
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EMMC-determined scores provided initial reference points for in-depth assessments of 

model accuracy.

3.1. Technical implementation of the web infrastructure

Evaluation results calculated with the above-mentioned measures were parsed, uploaded to 

the relational Postgresql database, and served to web users using Python and Perl/CGI 

scripts, Javascript, HTML, and CSS. The results are presented in form of plain text files, 

sortable tables, scatter plots, interactive graphs, histograms, and 3D renderings of model-

target superpositions. The graphs are plotted using the c3.js/d3.js libraries. Protein molecule 

visualization tools use the WebGL-technology implemented in the biopv.js library (http://

pv.readthedocs.io/en/v1.8.1/).

3.2. Main page

The EMMC results website (http://model-compare.emdatabank.org) provides an access to 

raw data and processed evaluation results for each target.

The data repositorium link (http://model-compare.emdatabank.org/data) takes a user to the 

directory containing submitted models, maps and reference structures used in the evaluation. 

The data in the directory are explained in the README file.

The model info link shows information on the details of all submitted models as provided by 

the authors.

The participants link shows the correspondence between modelers’ ids and names.

The score distributions link is a gateway to plots showing distribution of the evaluation 

scores separately for ab initio and optimization-built models.

Structure pictographs (with target and map IDs) are gateways for browsing evaluation results 

for each target.

3.3. Target-specific pages

Target-specific pages show evaluation results at three levels of target /model structural 

organization: quaternary structure (Multimers tab), tertiary structure (Monomers tab) and 

constituting domains (Cheng et al., 2014), if applicable (Domains tab). For each of the 

structural organization levels, a user can browse the results by checking tabs corresponding 

to different assessment tracks. To switch between targets, a user does not need to go back to 

the starting page, but instead can use the Target drop-down menu. A set of three Filter by 
method type checkboxes allows separate analyses of different subsets of models (ab initio, 

optimized cryo-EM models, and/or optimized other known models). User-provided 

information about all models submitted on the target is accessible by clicking on the ‘model 

info’ link in the upper right portion of the page (shows a sub-table of the general ‘model 

info’ table from the main page). Also, the model’s method type and the name of the group’s 

leading author are displayed when hovering the mouse over the model id in the results 

tables.
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The help link provides basic information on the organization of the web resource and the 

evaluation measures. In addition to this, a short description of each evaluation measure is 

provided as a tooltip with the mouse over the score column title in the results tables.

3.4. Multimers

At the multimeric level, models are evaluated in three tracks: using reference-free statistical 

potentials, versus experimental cryo-EM maps and versus reference structures. Results in 

each of the evaluation modes are presented under separate tabs.

3.4.1. Reference-free results—The results of stereo-chemical validation of multimeric 

models are presented under the Self (reference-free) tab in the form of tables and 

histograms.

The Scores tab reports PHENIX-generated deviations of model geometric parameters from 

the values observed in ideal models, and MolProbity-based scores for the whole multimeric 

model (see section 2.2 for details). Clicking on the title of a column (here and everywhere in 

the interactive tables) resorts the table according to the selected score. MolProbity scores for 

separate chains are provided under the Monomers tab.

The Histograms tab provides binned distributions of deviations from ideal bonds, deviations 

from ideal angles, deviation of non-bonded distances, and atom displacement parameters 

(ADPs). Values in the x-axis show numbers of examples in the bins specified in the y-axis.

3.4.2. Results of the model-to-map fit assessment—The vs EM maps tab shows 

results of the evaluation of global and local model-to-map fitness with the tools discussed in 

section 2.3.

The Global Accuracy tab presents evaluation Scores table, and Plots of the Fourier Shell 

Correlation (FSC) as a function of spatial frequency (see Figure 2 for an example). Dashes 

in the tables (here and elsewhere) indicate that particular models could not be evaluated with 

the corresponding software tool. The FSC curves are built from the PHENIX output data. 

The FSC plot page can also be reached by clicking on any FSC value directly in the table of 

results (under the Scores tab). Another type of plots, EMRinger scores for different Electron 

Potential Thresholds, can be brought up by clicking on the corresponding score in the results 

table.

The Local Accuracy tab contains a summary table and interactive line plots illustrating per-

residue model-to-map fit as evaluated with three software packages. The Summary table 

shows TEMPy’s cumulative SMOC score and PHENIX’s cumulative box_CC score for each 

chain in the model separately. Clicking on the values in the table brings up per-residue line 

plots, which can also be reached from the dedicated TEMPy and PHENIX tabs (as discussed 

below). The TEMPy, PHENIX and EMRinger tabs provide access to scatter plots based on 

the per-residue SMOC, box_CC and EMRinger calculations, correspondingly (see section 

2.3). The plots for all three measures are conceptually similar, and can be perused in a one-

model mode (see Figure 3 for an example) or a multiple-model mode (Figure 4). The one-

model mode allows user to check details of a specific model for every structural chain in this 
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model. The multiple-model mode allows comparison of models submitted on the same target 

by different authors. In the latter mode each model is represented by a single subunit to 

avoid overcrowding of graphs. In case of SMOC and box_CC scores the representative chain 

is the highest scoring chain, in case of EMRinger - the first chain alphabetically. Some of the 

actions that a user can perform on the graphs are described in the captions to Figures 3 and 

4.

3.4.3. Results of the evaluation versus reference structures—Results of the 

evaluation of multimers vs reference structures are presented under the vs Structure tab. 

Three separate sub-tabs provide sortable tables of results generated with QS score, 

IfaceCheck and phenix.chain_comparison packages (see section 2.4). While the tables are 

intuitive to analyze, we want to emphasize one feature that is easy to overlook in the 

IFaceCheck tab. As it was described in section 2.4, IFaceCheck first clusters the interfaces 

based on their similarity to each other and then operates on the representatives from each 

cluster. Thus, the web table shows the results for the best individual interface pair among the 

clusters of corresponding interfaces. The full list of interfaces included in the model and/or 

target clusters can be displayed below the table by clicking on the interface pair in the 

Corresponding Interfaces column.

3.5. Monomers

For monomeric evaluation, the submitted multimeric models are first split into separate 

chain-based models, which are then checked for similarity. All significantly different 

structures are evaluated separately. Models are evaluated in three tracks: using reference-free 

measures, versus reference structures and using all-model consensus. Since density maps are 

not directly involved in the evaluation of model subunits (and therefore the Monomer track 

does not require a separate map-related tab), it is possible to present results from all three 

tracks in the same table. Thus, for monomers we skip the level of track-related tabs and 

present all the results under two tabs corresponding to Global and Local Accuracy analyses 

of subunits.

3.5.1. Global accuracy—The table with the results of overall model accuracy 

evaluation contains three sections corresponding to three evaluation tracks in the monomeric 

assessment (Scores tab). The Single-model validation section includes two subsections with 

scores from two knowledge-based programs-MolProbity and DFIRE, and machine learning 

algorithms - ProQ and QMEAN (see chapter 2.2). The Comparison to the reference structure 
section also contains two sub-sections: one reporting results from superposition-free 

evaluation (LDDT and CAD) and the other reporting superposition-based scores. Note that 

the LGA_S and TM-align columns usually contain scores for more models than the other 

columns due to the sequence-independent nature of their underlying algorithms (i.e., they 

can evaluate models with wrong or unassigned sequence register – see 2.4). The Comparison 
to other submitted models section contains scores from the DAVIS_QAconsensus method 

(section 2.5), with higher scores indicating higher level of model similarity to other models.

The Plots tab show results of the extended GDT analysis (see 2.4). The GDT plots (Figure 5) 

show percentage of residues in the model that can be superimposed onto the target under the 
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specified residue-residue distance cutoff. The higher the area under the curve – the better the 

model. An ideal model would be represented by a curve going straight up and then staying 

horizontally across the whole range of distance cutoffs. Graphs are interactive so that the 

lines can be switched on and off, and the underlying scores can be displayed using the 

techniques described in section 3.4.2.

3.5.2. Local accuracy—There are five sub-tabs under the Local Accuracy tab, each 

corresponding to the selected evaluation package (LGA, LDDT, ProQ, QMEAN and 

DAVIS_QA). Clicking on each of the tabs shows color-coded bars illustrating per-residue 

accuracy of models according to the selected evaluation approach. For example, clicking on 

the LGA tab shows Cα-Cα distances between corresponding residues in models and the 

target after their optimal LGA superposition (Figure 6A), while clicking on the LDDT tab 

gives per-residue LDDT scores from the comparison of model and target distance patterns in 

the vicinity of the selected residue. Clicking on the color-coded bar shows structural LGA 

superposition of the model and the target colored the same way as the underlying bar (Figure 

6B). For convenience, we always show the reference structure superimposed with the model 

using LGA next to 3D renderings of models, even for the approaches not using model-target 

superposition. The DAVIS_QA tab shows bar plots illustrating similarity of each of the 

models to all other models submitted on the target (Figure 7).

3.6. Domains

If the monomeric unit consists of several structural domains, the models are additionally 

evaluated at the level of domains. Targets are split into domains by consulting the 

DomainParser (Guo et al., 2003), DDomain2 (Zhou et al., 2007) programs, and the ECOD 

(Cheng et al., 2014) database of structural domains. Organization of the web resource for the 

Domains evaluation is similar to that for the Monomers.

4. Brief analysis of the results

In this section we present statistical analyses of scores obtained from evaluation of the 

submitted models and calculate correlations between them. We do not attempt to rank 

models or methods, leaving this task to the challenge assessors.

Distributions of selected scores for different types of models (ab initio and optimized) are 

presented as box plots in Figure 8 (the plots for all measures used in the EMMC evaluation 

are provided in Figures 1–3 of Ref. (Kryshtafovych et al., 2018a) and also accessible from 

the main Results web page through the score distributions link http://model-

compare.emdatabank.org/em_score_boxplots.cgi ). The box plots clearly show that score 

distributions on models built starting from reference models versus ab initio are very 

different. In vast majority of cases, the inter-quartile ranges (containing middle 50% of the 

data) even do not overlap. This highlights some of the challenges assessing ab initio models, 

which are often incomplete in structure and/or sequence. Figures 4 and 5 in (Kryshtafovych 

et al., 2018a) show distribution of evaluation scores when all models are grouped together 

(i.e., without splitting them into ab initio and optimization categories). Outliers in the graphs 

for the complete set of models are almost all ab-initio models.
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To investigate the similarity of scores, we calculated the correlation between each pair of 

scores used in this evaluation. Since score distributions in general do not follow a Gaussian 

pattern, we used Spearman rank correlation analysis, which is suitable for comparing both 

normal and non-normal distributions (Altman and Krzywinski, 2015). Figures 9 and 10 

show Spearman correlation coefficients between scores used to evaluate the accuracy of 

models in multimeric and monomeric regimes, respectively. As can be seen from the figures, 

some scores are closer to each other than others. For example, reference-based scores in both 

figures are much more similar to each other than to the reference-free scores. Similar 

methods tend to have high correlation (e.g., within superposition-based scores, local 

structure-based scores or interface similarity scores). MolProbity scores have very weak 

correlation to other types of scores, confirming that better model stereochemistry in general 

does not guarantee better similarity of the model to reference structures or a better fit to the 

corresponding map. The correlations above were calculated on scores for all submitted 

models. When we compare these correlation coefficients with the coefficients calculated for 

optimized models only (Figures S1 and S2 in Supplementary material), we see that the 

correlation tables are quite similar.

Conclusions

The paper provides a description of the evaluation system and the web resource for 

assessment of models submitted to the second cryo-EM model challenge. The resource may 

be useful to authors, assessors and research scientists for analyzing model details, estimating 

goodness of model-to-map fit and comparing models with each other and to reference 

structures.

For evaluation of the EMMC models we selected state-of-the art methods for assessing 

accuracy of models at different levels of granularity - whole multimeric structure, 

constitutive monomeric units, sub-domains and interfaces. Scores from all evaluation 

methods are posted on the web and statistically analyzed in this paper. In particular, we 

studied distributions of the scores and their similarity in ranking models. These data may be 

useful for specialists developing and benchmarking methods for building models from cryo-

EM maps, and for developing new deposition guidelines for cryo-EM models and maps.

The web infrastructure of the second model challenge is publicly available at http://model-

compare.emdatabank.org.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
General schema of the cryo-EM model challenge evaluation system.
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Figure 2. 
FSC curves plotted for models of β-Galactosidase (T0006, map “B” emd_2984). Placing the 

cursor over the line shows y-axis values for each curve at the selected x-axis value (as shown 

in the example for x=0.344). Horizontal lines corresponding to FSC values of 0.5 and 0.143 

are drawn for reference. X-values for all curves at y=0.5 can also be found in the results 

table (Multimers -> vs EM maps -> Global accuracy -> Scores -> Phenix -> Resol.

(FSC=0.5)). Clicking on the model label (under graph) hides the corresponding curve and 

greys the group name (as shown here for model T0006EM192_2); clicking on the greyed 

model label makes the curve visible again. Placing the cursor over the model label (under 

graph) highlights the curve for the selected model and greys out other curves.
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Figure 3. 
A plot showing local per-residue model-to-map fit based on the TEMPy’s per-residue 

SMOC scores for a selected model (T0001EM133_1) submitted on the TMV target. 

Cumulative scores for all chains of the selected model are shown in the table to the right of 

the plot. By default, the plot is displayed for the chain with the best cumulative SMOC score 

(all other chains are greyed out). To see per-residue data for other chains of the same model, 

click on the chain IDs at the bottom of the graph (the provided screenshot shows the result 

of clicking on chain ‘U’). Moving the mouse over the name of one of the selected chains 

dims other lines in the graph. Mouse over the line shows data values for each curve (SMOC 

values for residue #91 in the example). The graph can be explored in more details by 

selecting a specific region on the lower line-only graph. Clicking on the starting residue of 

the region and drugging the mouse to the last residue highlights the desired region in the 

lower graph and rescales the upper plot accordingly (region 40–120 in the example).
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Figure 4. 
An example of the local model-to-map fit graph based on the EMRinger per-residue scores 

(fraction of residues passing the rotameric threshold) for all models submitted on the 

Tobacco Mosaic Virus target (T0001). To see the plot with all models at once, a user has to 

select the topmost option ‘_all_’ in the ‘Model’ dropdown menu. In order not to overcrowd 

the plot, only one chain from each model is shown (name of the selected chain is provided in 

parenthesis next to the model name below the graph). Mouse over the line shows data values 

for each curve at the selected x-value (as shown in Figures 2 and 3). Mouse over the model 

name (T0001EM123_2(A) in our example) highlights this model and dims all other lines in 

the graph. Clicking on the model name turns the line invisible and greys the model name; 

clicking on the greyed model name makes the line visible again. Specific region of the graph 

can be explored in more details using the procedure described in the Figure 3 caption (region 

40–120 is selected in the current example).
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Figure 5. 
Detailed GDT analysis plot of ab initio models submitted on the Tobacco Mosaic Virus 

target (T0001). Two top curves correspond to better models, for which 91% of Cα atoms are 

within 3 Å of the corresponding backbone atoms of the reference structure 1ei7; a model 

corresponding to the middle curve has 62% of Cα atoms within 3Å of the target.

Kryshtafovych et al. Page 25

J Struct Biol. Author manuscript; available in PMC 2018 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Local accuracy of the ab initio models featured in Figure 5 in terms of Cα-Cα distances 

between the corresponding residues in models and the target, after their optimal LGA 

superposition (the LGA tab). (A) Bar plots showing proximity of models to the target 1ei7. 

The best model according to the global GDT_TS score, T0001EM123_2_A, has a large 

stretch of residues being closer than 1 Å to the corresponding target residues (teal); the 

biggest deviation of the model from the target structure is in the region 93–100 (boxed in the 

plot), where the deviation reaches values in the 4–8 Å range (orange). Clicking on the 

model-specific colored bar brings up an LGA-based superposition of the selected model and 

the reference structure. Superposition in panel (B) clearly shows that the sub-par modeled 

region in panel A corresponds to the helix-loop-helix region in the target. The coloring keys 

in both panels are the same and shown above the graphs.
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Figure 7. 
Local and overall similarity of submitted models. Panel (A) shows per-residue scores 

(illustrated by different colors in bar plots) and overall consensus Davis_QA score (number 

next to the bar) for representative subunits of submitted models, reflecting their similarity. 

Panel (B) shows Pymol rendering of the superposition of seven out of eight models shown in 

panel (A) onto the eighth model (T0001EM119_1_A, blue) displaying the largest similarity 

to other models submitted on the target. Model EM181_2 is a polyalanine CA-only model 

and not displayed in the figure. The second least similar model EM181_1_A is shown in 

yellow (cartoon). All other models are displayed as backbone traces.
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Figure 8. 
Distribution of selected evaluation scores for different types of models. Score plots for 

conceptually similar measures are clustered together (e.g., upper left box encompasses 

measures used in evaluation of monomers based on coordinates only). For each measure 

(specified in the x-axis title), a blue boxplot shows the score distribution for models built 

starting from reference structure, while a red boxplot -for models built ab initio. Left set of 

boxplots shows scores from monomeric evaluations, right set – from multimeric ones. Box 

boundaries correspond to the Q1=25th (bottom) and Q3=75th (top) percentiles in the data; 

the vertical line inside the box corresponds to the median (Q2). The width of the box defines 

the interquartile range (IQR=Q3-Q1). The length of the whiskers shows the range of the 

values outside the interquartile range, but within 1.5 IQR. The dots correspond to outliers, 

i.e. values outside the 1.5 IQR range.

Kryshtafovych et al. Page 28

J Struct Biol. Author manuscript; available in PMC 2018 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Spearman correlation coefficients between the scores used to evaluate accuracy of models in 

the multimeric regime. The calculations were performed on models from all targets clustered 

together. Rows and columns in the table are clustered according to the similarity between the 

scores. Deeper blue /red color illustrates stronger correlation /anti-correlation between the 

measures, boxes designate clusters.
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Figure 10. 
Spearman correlation coefficients between the scores used to evaluate accuracy of models in 

the monomeric regime. The calculations were performed on models from all targets 

clustered together. Rows and columns in the table are clustered according to the similarity 

between the scores. Deeper blue /red color illustrates stronger correlation /anti-correlation 

between the measures, boxes designate clusters.
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