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Quantum non-demolition measurements of single donor spins in semiconductors

Mohan Sarovar1, Kevin C. Young1,2, Thomas Schenkel3, and K. Birgitta Whaley1

Berkeley Center for Quantum Information and Computation,

Departments of Chemistry1 and Physics2, University of California, Berkeley, California 94720
3Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

We propose a technique for measuring the state of a single donor electron spin using a field-
effect transistor induced two-dimensional electron gas and electrically detected magnetic resonance
techniques. The scheme is facilitated by hyperfine coupling to the donor nucleus. We analyze the
potential sensitivity and outline experimental requirements. Our measurement provides a single-
shot, projective, and quantum non-demolition measurement of an electron-encoded qubit state.

PACS numbers: 73.23.-b, 03.67.Lx, 76.30.-v, 84.37.+q

Semiconductor implementations of quantum computa-
tion have become a vibrant subject of study in the past
decade because of the promise quantum computers (QCs)
hold for radically altering our understanding of efficient
computation, and the appeal of bootstrapping the wealth
of engineering experience that the semiconductor indus-
try has accumulated. A promising avenue for implement-
ing quantum computing in silicon was proposed by Kane
[1], suggesting the use of phosphorous nuclei to encode
quantum information. However, while the long coher-
ence times of the nuclei are advantageous for information
storage tasks, their weak magnetic moment also results in
long gate operation times. In contrast, donor electrons in
Si couple strongly to microwave radiation and permit the
fast execution of gates; and while electron spin decoher-
ence times are shorter than their nuclear counterparts,
the tradeoff of faster operation times for decreased ro-
bustness to noise could be appropriate to implementing
a fault-tolerant QC. This has led several authors to sug-
gest the use of electron spin qubits as a variant on the
original Kane proposal (e.g. [2, 3]), and we focus on such
a modified Kane architecture here.

An integral part of any quantum computation architec-
ture is the capacity for high-fidelity qubit readout. While
small ensembles of donor spins have been detected [4]
and single spin measurements have been demonstrated
(e.g. [5]), detection of spin states of single donor elec-
trons and nuclei in silicon has remained elusive. In this
paper we analyze spin dependent scattering between con-
duction electrons and neutral donors [6, 7] as a spin-
to-charge-transport conversion technique, and show that
quantum non-demolition (QND) measurements of sin-
gle electron spin-encoded qubit states are realistically
achievable when mediated via nuclear spin states. Such a
measurement will also be of value to the developing field
of spintronics [8]. Our readout takes advantage of two
features: i) the ability to perform electron spin resonance
spectroscopy using a high-mobility two-dimensional elec-
tron gas (2DEG), and ii) the hyperfine shift induced on
dopant electron Zeeman energies by the dopant nuclear
spin state. We examine these two aspects separately in
the following and then outline our proposed protocol for

FIG. 1: Four-level system of electron-nuclear spin degrees of
freedom. The energy eigenstates in the secular approximation
are the eigenstates of σe

z and σn
z . The transitions indicated

by arrows are required for the state transfer described in the
text.

qubit readout.
The low-energy, low-temperature Hamiltonian describ-

ing the electron and nuclear spins of a phosphorous
dopant in a static magnetic field, B = Bẑ is

H =
1

2
[geµBBσ

e
z − gnµnBσ

n
z ] +Aσ

e · σn (1)

where µB and µn are the Bohr and nuclear magnetons, ge

(gn) is the electron (nuclear) g-factor, and A character-
izes the strength of the hyperfine interaction between the
two spins [1] (we set ~ = 1 throughout the paper). For
moderate and large values of B, the σz terms dominate
and we can make the secular approximation, to arrive at:
H ≈ 1/2 [geµBBσ

e
z − gnµnBσ

n
z ] + Aσe

zσ
n
z . The energy

levels and eigenstates of this Hamiltonian are shown in
Fig. 1. Note that we have ignored the coupling of both
spins to uncontrolled degrees of freedom such as para-
magnetic defects and phonons (coupling to lattice spins
can be mitigated by the use of a 28Si substrate). These
environmental couplings will contribute to decoherence
of the nuclear and electron spin states (e.g. [9]), and we
will simply assume that this results in some effective re-
laxation and dephasing of the electron and nuclear spins.

The use of electrical conductivity properties of semi-
conductors to investigate spin properties of (bulk-doped)
impurities has a long history [10], including studies of
donor polarization using a 2DEG probe [6]. The ba-
sic principle exploited in these studies is the role of the

http://arXiv.org/abs/0711.2343v2


2

exchange interaction in electron-electron scattering. At
a scattering event between a conduction electron and a
loosely bound donor impurity electron, the Pauli princi-
ple demands that the combined wave function of the two
electrons be antisymmetric with respect to coordinate ex-
change. This constraint, together with the fact that the
combined spin state can be symmetric (triplet) or anti-
symmetric (singlet), imposes a correlation between the
spatial and spin parts of the wave function and results
in an effective spin dependence of the scattering matrix,
leading to a spin dependent conductance. Application
of a static magnetic field will partially polarize conduc-
tion and impurity electrons leading to excess triplet scat-
tering. A microwave drive will alter these equilibrium
polarizations when on resonance with impurity (or con-
duction) electron Zeeman energies and hence alter the
ratio of singlet versus triplet scattering events, register-
ing as a change in the 2DEG current. Thus, the spin
dependent 2DEG current can be used as a detector of
spin resonance and accordingly this technique is com-
monly known as electrically detected magnetic resonance

(EDMR). Ghosh and Silsbee employed EDMR in bulk
doped natural silicon to resolve resonance peaks corre-
sponding to donor electron spins that are hyperfine split
by donor P nuclei [6]. Recently, this technique has also
been employed to investigate spin dependent transport
with micron-scale transistors constructed in isotopically
enriched 28Si and implanted with 121Sb donors [7] .

A crucial question in the context of quantum comput-
ing is whether the spin-dependent 2DEG current can be
used to measure the state of an electron-spin qubit, as
spin-dependent tunneling processes have been employed
[5]. The fundamental concern here is whether the spin
exchange scattering interaction at the core of the spin-
dependent 2DEG current allows for a quantum state
measurement of a single donor impurity electron spin.
A spin (1/2) state measurement couples the microscopic
state of the spin, given in general by a (normalized) den-

sity matrix, ρi =

(

a c
c∗ b

)

(in the measurement basis,

with a + b = 1), to a macroscopic meter variable I, the
2DEG current in our case. The meter variable can take
one of two values, and at the conclusion of the measure-
ment, a faithful measuring device would register each me-
ter variable with the correct statistics, i.e., I↑ with prob-
ability a and I↓ with probability b. A QND measurement
device will have the additional property that once a meter
variable has been registered, the measured spin remains
in the state corresponding to the value registered so that
a second measurement gives the same result.

To investigate the ability of the spin-dependent 2DEG
current to measure the electronic spin state, we shall
use a minimal model of the scattering process. Since
we are primarily concerned with the spin state of the
particles involved in the scattering, we examine the
transformation that a single scattering event induces on

the spinor components of the conduction and impurity
electrons. We write this transformation as ρout(Ω) =
T ρinT †/tr (T ρinT †), where ρin/out are the density op-
erators for the spin state of the combined two-electron
system, and: T = Fd + Fxσc · σi [11]. Here Fd (Fx) is
the amplitude for un-exchanged (exchanged) conduction
and impurity electron scattering. Note that the spatial
aspects of the problem only enter into the amplitudes:
Fd/x ≡ Fd/x(Ω). We are not aware of any calculations
of these in the quasi two-dimensional situation relevant
here and will therefore leave them as free parameters.
The differential cross section for scattering into all final
spin states, dΣ(Ω)/dΩ is the trace of T ρinT †.

Now, assume an initial state ρin = (p |↑〉c 〈↑| + (1 −
p) |↓〉c 〈↓|)⊗ρi, where the first term in the tensor product
is the state of the conduction electron (the conduction
band is assumed to be polarized to the degree P 0

c = 2p−
1, 0 ≤ p ≤ 1), and the second term is the general state
of the donor electron given above. After applying the
scattering transformation and tracing out the conduction
electron (because we have no access to its spin after the
scattering event in this experimental scheme) we get a
map that represents the transformation of the impurity
electron state due to one scattering event:

ρi → ρ′i

=
(1 − p)

N
[

(Fd + Fxσz)ρi(F
∗
d + F ∗

x σz) + |Fx|2σ−ρiσ+

]

+
p

N
[

(Fd − Fxσz)ρi(F
∗
d − F ∗

x σz) + |Fx|2σ+ρiσ−
]

,(2)

where N is a normalization constant to ensure tr (ρ′i) = 1.
In order for the measurement to be faithful, the diago-
nal elements of the impurity spin state (the population
probabilities) must be preserved under the interaction
– that is, the measurement interaction can induce de-
phasing (in the measurement basis), but no other deco-
herence. However, the terms proportional to |Fx|2 in
Eq. (2) suggest that there will be population mixing.
This can be quantified by iterating the recursion to sim-
ulate the effects of the repeated scattering events that
contribute to the current. An appropriate quantification
of measurement quality is the measurement fidelity [12]:

Fn = 2|(
√
a(n)

√
a(0) +

√
b(n)

√
b(0))2 − 0.5|, where a(n)

and b(n) are the diagonal elements of ρi after n scatter-
ing events. An ideal measurement has Fn = 1, while
Fn = 0 indicates a measurement that yields no infor-
mation – i.e. no correlation between the original qubit
state and the meter variables. Since the measurement
should work for all initial states, we consider the worst-
case measurement fidelity: Fw

n = mina(0),b(0) Fn. By
extrapolating from present experiments [7], factoring in
improved 2DEG mobility [13] and increased conduction
electron polarization, we show below that an optimistic
estimate for the shot-noise-limited measurement time is
τm ∼ 10−3 s, within which there will be ∼ 108 scattering
events [14]. Although we do not have explicit knowledge
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of the scattering amplitudes, we find from iterating the
above recursion for a broad range of values Fx/Fd that
Fw

n after ∼ 108 scattering events is ≪ 1 for any non-
zero exchange amplitude |Fx| and any polarization, P 0

c .
In fact, Fw

n typically drops to near zero already after
∼ 10− 100 scattering events. Thus the measurement in-
duced population mixing time is Tmix ∼ 1 − 10ps, which
is drastically smaller than τm [21]. This makes it im-
possible to faithfully map the electron spin state onto
the meter variables, and hence impossible to perform a
single electron spin state measurement using the 2DEG
current directly. However, as we will now show, it is pos-
sible to make use of the nuclear spin degree of freedom
in order to utilize EDMR for projective and QND mea-
surement of single spin states. Note that the state of the
nuclear spin affects the Zeeman splitting of the electron
spin (and thus its resonant frequency) via the mutual
hyperfine coupling (Eq. (1) and Fig. 1). Therefore our
strategy is to transfer the qubit state from the electron
to the nucleus and then to perform an EDMR readout.

To perform the state transfer, we appeal to the qubit
SWAP gate: SWAP[ρe⊗τn]SWAP† = τe⊗ρn. SWAP can
be decomposed into the sequence of three controlled-not
(CNOT) gates [15] SWAP = CNOTnCNOTeCNOTn,
where the subscript indicates which of the two qubits
is acting as the control. However, the complete ex-
change of qubit states is unnecessary, since the spin
state of the impurity electron is lost to the environ-
ment by the application of resonant pulses and elas-
tic scattering with conduction electrons in the 2DEG.
Therefore, the final operator in the sequence can be
neglected since it only alters the state of the electron.
This leads to the definition of the electron-to-nucleus
transfer gate, TRANSe = CNOTeCNOTn. Suppose the
electron is in an initial (pure) state, |ψ〉e = α |↑〉e +
β |↓〉e, while the nucleus is in a general mixed state,

τn =

(

u w
w∗ v

)

. After performing the state transfer

on the combined state and tracing over the electron de-
grees of freedom (because it is lost to the environment),
we are left with the reduced density matrix describ-

ing the nucleus, tr e

(

TRANSe [ρe ⊗ τn] TRANS†
e

)

=
(

|α|2 αβ∗(w + w∗)
α∗β(w + w∗) |β|2

)

. Because of the hyper-

fine coupling (Fig. 1), resonance will occur at the lower

frequency with probability |α|2 and at the higher fre-

quency with probability |β|2. The electrical detection of
this shift from the free electron resonance frequency by
EDMR constitutes a single-shot, projective measurement
in the σz basis of the original electron state (and there-
fore, qubit state) with the correct statistics.

The CNOT gates that compose the state transfer are
implemented in this system by the application of res-
onant pulses. CNOTe interchanges the states |↑〉e |⇑〉n
and |↑〉e |⇓〉n and so can be implemented by application

of a resonant π-pulse at frequency ωn (see Fig. 1), which
is an RF transition in this system. Similarly, CNOTn in-
terchanges |↑〉e |⇑〉n and |↓〉e |⇑〉n and is implemented by
a resonant π-pulse at ωe, a microwave transition. Each
of these transitions is dipole-allowed, ensuring that gate
times are sufficiently fast. The ability to apply pulses
faster than relevant decoherence times, a realistic ex-
perimental assumption for donors in Si [16], is required
for successful implementation of the state transfer. The
2DEG current is off during the state transfer. Once the
current is switched on, the dynamics of the donor electron
due to scattering and microwave driving will contribute
to the decoherence of the nuclear spin. Donor nuclear
spin relaxation is not well characterized under these con-
ditions but we expect that in large magnetic fields the
donor electron dynamics contributes primarily to dephas-
ing of the nuclear state. This can be made precise by
performing perturbation theory on Eq. (1) in the param-
eter A/∆, where ∆ ≡ ωe − ωn = B(geµB − gnµn). In
the detuned regime where A/∆ ≪ 1, the effective Hamil-
tonian describing the coupled systems is H ≈ Heff =
1
2ωeσ

e
z − 1

2ωnσ
n
z + Aσe

zσ
n
z + A2

∆ (σe
z − σn

z ) [17]. Therefore
we see that to first order in A/∆ the donor electron can
only dephase the nuclear spin, and direct contributions
to nuclear spin T1 through the hyperfine interaction are
small. Other mechanisms such as phonon-assisted nu-
clear spin relaxation can contribute to the nuclear T1, but
these will be small effects. Considering that the nuclear
spin T1 is on the order of hours in a static electron en-
vironment at low temperatures [16, 18], as long as these
effects do not reduce this T1 more than five orders of
magnitude, – an unlikely scenario – the nuclear T1 in the
presence of electron driving will be comfortably larger
than τm ∼ 10−3 s. This implies that once the measure-
ment collapses onto a nuclear basis state, the nuclear spin
state effectively remains there and therefore the EDMR
measurement satisfies the QND requirement on the qubit
state [21].

Now we address the issue of the sensitivity of the dif-
ferential EDMR current in the limit of single donor scat-
tering. As detailed above, the spin state of the donor
electron is continually changing due to the scattering in-
teraction, and hence is time-dependent. However, ignor-
ing the transient, we can approximate it with a time in-
dependent value given by the steady state solution of the
recursion relation, Eq. (2). This approximation can be
thought of as taking the equilibrium spin value, where
the “spin temperature” of the impurity has equilibrated
with that of conduction electrons via the scattering in-
teraction. Our analysis above indicates that this equi-
libration happens on a much faster time scale than the
observable time scales of the experiment. Solving for

the steady-state (ρ
(n)
i = ρ

(n−1)
i ≡ ρss

i ), gives us a time-
independent, non-resonant single donor “polarization”,
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〈σz〉ssi ≡ tr (σzρ
ss
i ) equal to

|Fx|2 − 2
√

4(P 0
c )2Re{FdF ∗

x}2 + 1
4 (1 − (P 0

c )2)|Fx|4

P 0
c (|Fx|2 − 4Re{FdF ∗

x})
.

This steady state “polarization” is zero only in the sin-
gular case when |Fx|2 = 4Re{FdF

∗
x } and P 0

c = 1/
√

2.
We will assume that this singular condition is not met
and take 〈σz〉ssi 6= 0. We can then follow the analysis of
Ref. [6], using donor “polarization” 〈σz〉ssi , to estimate
the on-resonant (I) and off-resonant (I0) current differ-
ential (normalized) as:

∆I

I0
≡ I − I0

I0
≈ −α′ s 〈σz〉ssi P 0

c

1/τn
1/τt

. (3)

Here α′ ≡ 〈Σs − Σt〉|z=zi
/〈Σs + 3Σt〉|z=zi

, Σs and Σt

are singlet and triplet scattering cross sections, respec-
tively, and 〈·〉|z=zi

denotes an average over the scatter-
ing region with the donor location in z [20] held fixed.
s = 1 − (1 − si)(1 − sc), and si and sc (both between 0
and 1) are saturation parameters which characterize how
much of the microwave power is absorbed by the impu-
rity and conduction electrons, respectively [6]. si is a
function of the broadening at the single donor electron
resonance frequency: if we work in a regime where this
broadening is minimal (as required to perform the quan-
tum state transfer described above), si ≈ 1 and thus
s ≈ 1. The final term in Eq. (3) represents the ratio
between impurity scattering (1/τn) and total scattering
(1/τt) rates. We assume 1/τt = 1/τ0 + 1/τn, where 1/τ0
is the scattering rate due to all other processes (such as
surface roughness scattering and Coulomb scattering by
charged defects).

To estimate the expected magnitude of this current
differential, we begin by considering present state of the
art 2DEG mediated EDMR experiments where this cur-
rent differential is ∼ 10−7 (with T ∼ 5K,B ∼ 0.3T , a
2DEG channel area of 160× 20µm2, and a donor density
of 2 × 1011donors/cm

2
) [7]. We assume that α′ will be

similar for the single donor device as in current experi-
ments. Then in scaling down to a single donor, the first

aspect to consider is the scattering rate ratio: ̺ ≡ 1/τn

1/τt

.

This ratio can be kept constant if we scale the 2DEG area
concomitantly with the donor number. From the channel
area and density of current experiments, we extrapolate
that a 2DEG area of ∼ 30 × 30nm2 – well within the
realm of current technology – would keep ̺ unchanged.
Furthermore, the mobility of the 2DEG channel can be
improved – e.g., by using hydrogen passivation to mit-
igate surface roughness at the oxide interface [13] – to
increase ̺. We conservatively estimate a factor of 10 in-
crease in ∆I/I0 from such improvements. The saturation
parameter s ∼ 1 for large enough microwave powers in
the recent measurements [7] and so does not present an
area for improvement. Finally, an avenue for significant

improvement in signal is to increase the conduction elec-
tron polarization, P 0

c , which is currently ∼ 0.1%. This
polarization is roughly proportional to the applied static
magnetic field, and therefore a factor of 10 improvement
is possible by operating at B = 3T . Additionally, spin in-
jection techniques can be employed to achieve P 0

c > 10%
(e.g. [19]), resulting in a 100-fold improvement in ∆I/I0.
Hence, by improvements in device scaling and channel
mobility, and by incorporating spin injection, we esti-
mate a realistic current differential of ∆I/I0 ∼ 10−4.
With shot-noise limited detection and I0 ∼ 1µA it will
require an integration time of τm ∼ 10−3 s to achieve an
SNR of 10. This is well within the expected nuclear T1

time in this environment.
In conclusion, by utilizing resonant pulse gates and

2DEG-mediated-EDMR readout, we have proposed a re-
alistic scheme for measuring the spin state of a single
donor electron in silicon. By making use of the hyperfine
coupled donor nuclear spin, the readout scheme provides
a single shot measurement that is both projective and
QND. The QND aspect also makes this technique an ef-
fective method for initializing the state of the nuclear
spin. The fact that the measurement is facilitated by the
nucleus of the donor atom intimates a hybrid donor qubit
where quantum operations are carried out on the electron
spin and the state is transfered to the nucleus for mea-
surement and storage (advantageous due to the longer
relaxation times). Finally, although the above analysis
was done with the example of a phosphorous donor, it
applies equally well to other donors, such as antimony
[3, 7], and some paramagnetic centers. One merely has
to isolate two (dipole-transition allowed) nuclear spin lev-
els to serve as qubit basis states and transfer the electron
state to these nuclear states with resonant pulses.

We thank NSA (Grant MOD713106A) for financial
support. MS and KBW were also supported by NSF
(Grant EIA-0205641) and TS by DOE (Contract DE-
AC02-05CH11231). We are grateful to S. Lyon, A. M.
Tyryshkin, C. C. Lo and J. Bokor for helpful discussions.

APPENDIX 1: TECHNICAL DETAILS OF THE

PROPOSED EXPERIMENT

Figure 2 shows a cross section of the EDMR based
single donor spin readout device (e.g. Ref. [7]).

In detail, the single qubit spin readout proceeds as fol-
lows. After completion of operations on a selected qubit
the electron is in a state |ψ〉e = α |↑〉e +β |↓〉e. Following
state transfer to the nuclear spin, one of the two hyper-
fine split electron spin resonance lines that corresponds
to a given nuclear spin projection is addressed by dial-
ing in the corresponding microwave frequency for reso-
nant excitation of electron spin transitions. At the same
time, the transistor is turned on and the channel cur-
rent is monitored. Now, assume that the magnetic fields
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FIG. 2: A cross section of the field-effect transistor (FET)
used to create the 2DEG. In order to reduce qubit decoher-
ence, it is beneficial to implant into isotopically purified sili-
con.

have been tuned to address the |↑〉n nuclear state projec-
tion. Then with probability |α|2 the transistor current
will differ from the off-resonant current value and with
probability |β|2 it will be just equal to the off-resonant
channel current. In either case, monitoring the current
at one hyperfine resonance for the τm measurement du-

ration constitutes a readout of the nuclear spin. And
due to the prior state transfer, it effectively measures
the spin state of the original donor electron spin. For
this to work, the measurement time τm has to be shorter
then the nuclear spin flip time T1. Typical channel cur-
rents in readout transistors are of order 1µA. For readout
devices with optimized conduction electron polarization
and channel mobilities, resonance current differences can
be ≥ 10−4, leading to signal-to-noise ratios greater than
10 : 1 for measurement times of ∼ 1 ms. Nuclear spin flip
times under these readout conditions are not known, but
nuclear spin relaxation times under static conditions are
several hours [16, 18], making it a realistic expectation
that the donor nuclear spin will be stable during readout
timescales. We note that a similar conclusion, that elec-
tron driving will not affect nuclear spin T1 dramatically,
was arrived at in the recent article by Jiang et. al. [22],
for a similar physical system.

FIG. 3: Illustration of single spin readout. In experiments with large ensembles of donor spin qubits, lines from all nuclear
spin projections are present in EDMR measurements (left). In measurements with single donors (right), only single lines are
present for measurement times shorter then the nuclear spin relaxation time. Monitoring the current at a given resonant field
measures the spin state of the donor nucleus with the correct statistics.

APPENDIX 2: SIMULATIONS OF DONOR

ELECTRON SPIN RELAXATION DUE TO 2DEG

INTERACTION

Here we show sample results from simulations of scat-
tering dynamics derived in the main text of the article.
The aim of these simulations is to show that the worst-
case measurement fidelity:

Fw
n = min

a(0),b(0)
2|(

√

a(n)
√

a(0) +
√

b(n)
√

b(0))2 − 0.5| (4)

(worst-case taken over all possible initial state popula-
tions, a0, b0) approaches zero rapidly as a function of the

number of scattering events, n, for almost all values of
the exchange and direct scattering amplitudes (Fd and
Fx respectively). In Eq. (4) a(n) and b(n) are the diag-
onal elements of the electron state density matrix after
n scattering events. A measurement fidelity of zero in-
dicates a measurement that yields no information – i.e.
there is no correlation between the original qubit state
and the final measurement meter variables.

Figure 4 shows worst-case fidelity decay as a function
of scattering amplitude parameters for various values of
2DEG polarization P 0

c . These simulations clearly show
that the relaxation of a general electron spin state is
rapid across virtually all reasonable parameter ranges.
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For P 0
c ≥ 0.1, we see that there are fairly large regions in

the Fx/Fd parameter space for which the worst-case mea-
surement fidelity is non-zero: however, (i) Fw

n peaks at
∼ 0.25, a value that is too small for a high-quality mea-
surement, and (ii) Fw

n is highly sensitive to the precise
value of Fx/Fd and P 0

c in these regions.

These simulations show conclusively that under realis-
tic experimental conditions, the electron spin relaxation
induced by the scattering interaction makes the 2DEG
current an ineffective measurement of the electron spin
state.

FIG. 4: Evolution of worst-case measurement fidelity, Fw
n , during 2DEG scattering dynamics as a function of the number of

scattering events n, for a range of values of the ratio of direct and exchange scattering amplitudes and of 2DEG equilibrium
polarization. The independent (base plane) axes on the plots parametrize the complex scattering amplitude ratio Fx/Fd ≡
|Fx/Fd|e

iχ: one axis is the magnitude, |Fx/Fd| (shown for 0 < |Fx/Fd| < 4), and the other is the phase, χ (shown for
0 < χ < 2π). The number of scattering events, n, varies across the columns, with values n = 10, 102 and 104 shown here. The
2DEG equilibrium polarization, P 0

c , varies across the rows, with values P 0

c = 0.01, 0.1 and 1 shown here.
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