
UC Irvine
ICS Technical Reports

Title
Virtual-machine driven dynamic voltage scaling

Permalink
https://escholarship.org/uc/item/2x93j5f1

Authors
Haldar, Vivek
Probst, Christian W.
Venkatachalam, Vasanth
et al.

Publication Date
2003-10-10

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2x93j5f1
https://escholarship.org/uc/item/2x93j5f1#author
https://escholarship.org
http://www.cdlib.org/

Virtual-Machine Driven Dynamic Voltage Scaling

Vivek Haldar Christian W. Probst
Vasanth Venkatachalam Michael Franz

Technical Report 03-21
School of Information and Computer Science

University of California, Irvine, CA 92697-3425

October 10, 2003

Notice: This Material
rnay be protected
by Copyright Law
(Title 17 U.S.CR)

Abstract
In current DVS approaches, voltage scaling decisions are made statically at compile
time, and/ or dynamically at the OS level. While this has yielded excellent results for
a wide range of applications, there is an even better solution for platform independent
code (such as Java bytecode) that executes on virtual machines. Such virtual machines
have fine-grained execution information about the actual workloads that run on them,
as opposed to static compilers that at best have off-line profiling data from previous
workloads. Based on their high-level model of the actual workload, virtual machines
can make DVS decisions with high precision.

Virtual-Machine Driven Dynamic Voltage Scaling

Vivek Haldar, Christian W. Probst, Vasanth Venkatachalam and Michael Franz
{vhaldar,cprobst,vvenkata,franz}©uci.edu

Department of Computer Science
University of California
Irvine, CA 92697-3425

ABSTRACT
In current DVS approaches, voltage scaling decisions are
made statically at compile time, and/ or dynamically at the
OS level. While this has yielded excellent results for a wide
range of applications, there is an even better solution for
platform independent code (such as Java bytecode) that ex-.
ecutes on virtual machines. Such virtual machines have fine
grained execution information about the actual workloads
that run on them, as opposed to static compilers that at best
have off-line profiling data from previous workloads. Based
on their high-level model of the actual workload, virtual
machines can make DVS decisions with high precision.

1. INTRODUCTION
Rapidly increasing chip densities and processor speeds have
made energy dissipation a leading concern in computer de
sign. The growing number of transistors in a chip causes
significant heat increases that affect a chip's reliability and
lifetime. Cooling mechanisms add to the packaging cost.
Recent trends suggest that processor power consumption
doubles every four years and cooling costs rise exponentially
with heat increases [12]. At this alarming rate, a Pentium
processor will have over a billion transistors and consume
several hundred watts in the next decade. The future pro
cessors will be hotter than light bulbs and require energy
management solutions more cost effective than the cooling
fans processors use today.

The power consumption of a circuit depends on four factors:
capacitance, switching activity, clock frequency and supply
voltage. Accordingly, one can reduce power by reducing
one or more of these variables. Power is linear in capac
itance, activity and frequency, but quadratic in voltage.
By reducing the supply voltage, one increases a circuit's
delay linearly. Thus, supply voltage places an upper limit
on clock frequency. Dynamic voltage scaling is based on
this relationship between frequency and voltage. By reduc
ing both of these quantities in tandem, it achieves a cubic

power reduction. The motivation behind dynamic voltage
scaling is that running tasks slower finishes the same amount
of work as running them faster, but dissipates less energy
(c.f. Figure 1). DVS algorithms must account for the per
formance overhead of slowing down the processor, including
the overhead of switching between frequencies and voltages.
As Figure 2 shows, these overheads increase execution time.

A number of processors support dynamic voltage scaling.
Examples include Intel Speedstep [24], and Transmeta's Cru
soe [6, 7]. Speedstep switches between two clock frequen
cies and automatically sets the voltage for each frequency.
It uses a high frequency when relying on AC power, and
a low frequency when relying on batteries. In contrast,
Transmeta's Crusoe modulates frequency and voltage during
the execution of applications through a software controlled
feedback loop.

The rest of the paper is organized as follows: Section 2
motivates our approach of virtual machine based dynamic
voltage scaling. Section 3 describes our online algorithm
for driving dynamic voltage scaling; Section 4 gives details
of our implementation of this algorithm in a Java virtual
machine. Section 5 discusses our benchmarking method
ology and presents our results. Section 6 surveys related
work in the field and Section 7 discusses how our work
differs from previous work. Finally, Section 8 summarizes
our conclusions as well as plans for future work.

2. RATIONALE
Dynamic voltage scaling has recently attracted widespread
attention in the lowpower community and can be done at
a number of levels. These include the hardware level, op
erating system level, compiler level, virtual machine level,
and application level. Nearly all DVS research has focused
on the first three levels. Though the hardware level pro
vides mechanisms for reducing frequency and voltage, it also
needs information about program behavior to decide when
to apply these mechanisms. Techniques for deriving this in
formation are too expensive to implement in bare hardware.
For these reasons, the hardware level lacks information on
when to make DVS decisions.

Operating systems have more information, namely, about
what programs are running and what resources they use.
Thus, they can make DVS decisions based on CPU usage
patterns. However, operating systems lack forward looking
information about program behavior and are hence limited

Work Completed

-----------1

El.ccutionTirne

~Diuipatcd

[}3]Hi1hfTcqueocyA11dVohap:

11111111.owfn,qu<ucyA><IVo ... <

Figure 1: Completion of work vs execution time and
dissipated energy

100%

I

1
/Without DVS

I

Time

Figure 2: Time vs fraction of workload completed
with and without DVS

to extrapolating future behavior from past behavior.

Compilers, however, receive an entire program as input.
Thus, they can predict with greater accuracy the paths a
program's execution will take. Compilers can make DVS
decisions at a finer granularity than operating systems by
inserting DVS instructions . into program regions such as
basic blocks. Nevertheless, statically optimizing compil
ers lack runtime information and often resort to exhaustive
simulation or previously collected offline profiles to decide
what program regions should slow down and how much they
should slow down. Once made, these decisions remain fixed
for a program's execution.

These static approaches suffice for application specific em
bedded devices, since the specialized software for these de
vices is burnt into the chip and unlikely to change its ex
ecution behavior. However, a plethora of emerging Java
enabled mobile devices have less tightly coupled hardware
and software. These devices include high end servers, desk
top machines, laptops, set-top boxes, PDAs, pagers as well
as cellphones. They present a new challenge not addressed

by traditional static compilers. First, they require a level of
indirection allowing software to be written once but run on
any of them. Moreover, the applications running on these
multipurpose devices vary continuously in execution behav
ior. Static analysis is less effective for managing the power
consumption of these applications since it lacks runtime
information and couples power management policies with
specific program binaries. Whenever the program behavior
changes, as it would, for example, when a program's inputs
change at runtime, the analysis underlying these policies
must be repeated. This is an infeasible task given the grow
ing numbers of diverse architectures and runtime configura
tions.

Working at a higher abstraction level than compilers, virtual
machines provide a layer of indirection between platform
independent code and diverse architectures. Like compilers,
virtual machines have a model of future program behavior
and can thus make more accurate power management deci
sions than operating systems or bare hardware. However,
unlike static compilers, virtual machines have an infrastruc
ture allowing them to profile and reoptimize programs in
execution. This dynamic optimization infrastructure allows
virtual machines to continuously adapt power management
decisions to varying execution behavior.

Finally, at the application level, programmers can make
design decisions that reduce execution time and create op
portunities for slowing down the processor. However, doing
all of the analysis for DVS at the application level may place
too much of a burden on programmers.

For these reasons, we propose a novel virtual machine based
DVS algorithm that profiles a program online and adapts
its decisions at runtime. To our knowledge, this is the first
implementation of DVS in a virtual machine setting.

3. RUNTIME-PROFILE BASED DYNAMIC
VOLTAGE SCALING

In this section we present our algorithm, both on an informal
and a formal level. The approach will be clarified by an
example.

Our algorithm is based on runtime profiling of bytecodes
executing in a virtual machine. The goal is to reduce energy
consumption by means of scaling down frequency, while at
the same time minimizing performance loss.

3.1 An Example
Figure 3 shows the code of our running example. It contains
a main method, calling several methods, which in turn call
again methods.

In order to decide which methods should be executed at
a lower frequency, the virtual machine constructs an invo
cation tree. An invocation tree is a method callgraph con
structed at runtime, as methods are called. Each node
represents a method, and its children are the callees of that
method. Thus, at any instant, the invocation tree contains
at least one node for every method that has already been
called during execution. Figure 4 shows the final tree for our
example program. As can be seen, methods mB and me occur

main() { mB() {
mAO; me();
mBO; }
mAO;

} me() {
}

mAO {
mBO;

}

Figure 3: The example program

main

/~
mA mB

i i
mB mC

i
rnC

Figure 4: Invocation tree for the example program

twice, since they are called by two different methods, namely
main and mA. By differentiating calls to a method in different
contexts, our approach avoids mixing timing decisions that
actually do not correlate. Each node n is associated with the
cumulative time already spent in the method mn represented
by ri and all methods transitively called by mn. Initially,
these times are all set to 0.

In order to measure the execution time of a method, the vir
tual machine wraps timing constructs around every method
invocation. Thus, the VM records the cumulative time spent
in the method and all methods called by it. Once a method
has been called, its execution may be scaled down at the
next invocation in the same context. Additionally, the first
execution time of a method is cached for scaling decisions if
the same method is called in a different context.

We will now describe the execution of the program in Figure
3 and show the decisions of our approach. Figure 5 shows
the execution with hypothetical execution times. We assume
the program to execute on a Pentium-M 1.3GHz processor.
The supported frequencies are given in Table 7.

The execution of the example program starts by calling
methods main, mA, mB, and me. Since none of these methods
has been called before, the frequency is left unchanged and
the execution times are cached and stored in the invocation
tree. After 58ms, method mB is invoked the second time.
While the first invocation was in method main, the execution
time of its previous invocation been cached and is used for
prediction in the current context. After the execution of
mB, the cached time is discarded. Let tm denote time spent
in method m. How should the VM decide whether to scale

time method comment invocation freq.
[ms] tree [MHz]
0.00 main invoke 1300

15.00 mA invoke 1300
20.00 mB invoke 1300
22.00 me invoke 1300
32.00 me return tmc1 = 10 1300
36.00 mB return tmB1 = 16 1300
57.00 mA return tmA = 42 1300
58.00 mB invoke

sw1tchmg to 800MHz
58.00 mB invoke 800
61.25 me invoke 800
66.12 me return tmc2 = 3 800
67.75 mB return tmB2 = 6 800

sw1tchmg to 1300MHz
70. 75 mA I invoke I

switching to lOOOMHz
70.75 mA invoke 1000
74.65 mA return tmA = 22.5 1000

switching to 1300MHz

I 75.00 II main I return I 1300

Figure 5: Execution of the example program

down the frequency for the next invocation of this method?
When scaling frequency, we need to take into account that
the system will require some time Tswitch. to stabilize after
switching the frequency. Additionally, the system must be
prevented from switching too often, since this stabilizing
penalty is going to sum up. Thus, one requirement is that
the expected execution time of the method. must be higher
than Tswitch. x a, where a is a parameter in our framework.
For the Pentium-M, the actual value is Tswitch. ~ lOµs. For
the example we assume a = 5 and Tswitch. = lms. Since
tmB = 16ms > 5 x lms, the method mB qualifies for scaling.

Next, we need to calculate the frequency that the method
shall be executed at. To do so, we must first predict the
expected runtime of the application without scaling. We
adopt the. heuristic used for optimizations in the Jalapeno
VM [5]: our algorithm assumes the projected time (Tproj)to
be twice the runtime of the application up to the invocation
plus the expected execution time of the method.

For method mB, Tproj = 2 x 58ms + 16ms = 132ms. The
decision whether or not to scale down frequency is made
by looping over the possible frequencies supported by the
underlying architecture from slow to fast. For each fre
quency f we compute the expected execution time TjPP of
the program assuming the method is executed at f.

For example, r;gg predicts the expected execution time of
mB if run at 600MHz. It is computed as r;gg = 2 x 58ms + 2 x
Tswitc1i.+T6og = 152.67ms, where T 60g = tmBX1300MHz/600MHz =
34.67ms. Since we want to minimize the actual performance
impact of frequency scaling, the VM demands that the pre
dicted execution time of the application be at most Tproj x
(1 + E/100), where E is the tolerable performance loss in
percent. For the example we assume E = 10, thus the
maximal acceptable time is 145.2ms.

Similarly, the execution times for higher frequencies are com
puted to be T;gg = 144ms and T;CCo = 138.Sms. Thus, the
VM will scale down the frequency to SOOMHz, resulting in
the expected execution time of mB to be T8o~ = 26ms.

After mB returns, the frequency is reset to 1300MHz and
execution of main is continued. After 70. 75ms, mA is called
for the second time. Based on Tproj = 2 X 70. 75ms + 42ms,
the VM scales the execution down to lOOOMHz, resulting in
an expected execution time T106b = 54.6ms. Since this call
to mA already terminates after 3.9ms, the time tmA in the
invocation tree is updated to (3.9ms * lOOOMHz/1300MHz +
42ms) /2. Thus, the times in the invocation tree resemble
the actual execution time of the method if the processor
had run at the highest possible frequency.

3.2 Algorithm
Based on past runtime for each method information, the
VM decides whether to slow down the processor in future
invocations of each method. The decision process for each
method splits total runtime into runtime for the method
and runtime for the rest of the application. When a method
is slowed down, the total execution time increases due to
two factors. The method's slowed down runtime replaces its
original runtime. An additional overhead arises from chang
ing processor speed before and after the method execution.
Two constraints must be met for the slowdown to count as
advantageous. First, the program's new runtime must be
within a threshold of the original runtime. Moreover, the
method's execution time must be significantly larger than
the switching overhead. If these two conditions are met, the
VM slows down the method on its next invocation.

Figure 6 gives a pseudo code description of our algorithm,
describing how the information in the invocation tree is used.
Before every method invocation, procedure decide_switch is
called. There are two cases in which the processor frequency
will definitely not be scaled down:

• the frequency has already been scaled down, or

• the penalty imposed by switching the frequency is of
the same order as the expected runtime of the method.

The purpose of the first constraint is to avoid switching
frequencies too often, while that of the second is to prevent
the VM from slowing down methods with very short ex
pected execution times. These restrictions also address the
case when a method is initially executed, and its previous
execution time is unknown.

Below is a formal explanation of the above algorithm. We
use the following notation: for a method in, let

• T:;:.ig be its original average execution time,

• Tj be its projected execution time if run at frequency
f,

• Tswitch be the time it takes to switch the frequency of
the CPU and stabilize the system,

method currenLmethod;
powerstate current_state;

procedure powertree_call (method callee)
ts= timestamp();
current_method--+ called = callee;
current_method = callee;
decide_switch(callee);

end

procedure decide_switch(method callee)
if (already in power-saving state)

return;

end

if (time spent in current method < Tswitch X a)
return;

T~;f ~ee = callee --+ num_ticks;
Tapp = runtime of the application;
Tproj = 2 X Tapp+ Ti;f~ee;
for (i = O;i < (number of power-states);i++)

Tpowersave = TJ~~~:e + 2 X Tapp+ 2 X Tswitch

if (Tpawersave < Tproj * (1 + c/100))
switch to(i);

Figure 6: Performing Dynamic Voltage Scaling

• Tapp be the total time spent executing the application
so far, and

• £ be the slowdown we are willing to accept.

In order to estimate the overall application performance loss
of scaling down a method, we need to predict how much
of the application's future execution time will be taken up
by a method, and for how long the application will run.
We use a very simple heuristic for these predictions - we
assume that the application's future execution time will be
the same as the time it spent executing so far, and similarly,
that the future execution time of a method will be the same
as it's average execution time so far. Dynamic optimization
systems such as Jalapeno[S] use similar prediction heuristics.

Then, the total projected application run time, Tproj, as
suming no voltage and frequency scaling will be

Tproj = 2 X Tapp + T:;:.ig

We make the simplifying assumption that execution time
scales linearly with frequency.· So, for example, if we halve
the frequency f, then Tj will be twice of T:;:.ig. This assump
tion is not very accurate, since, e.g. for memory bounded
computations, the frequency could be reduced without ob
serving linear slowdowns. However, it is conservative, and
thus will not affect our performance measure adversely.

Thus, if the voltage and frequency were scaled down for this
method, the expected total runtime of the application would
be

Tpowersave = Tj + 2 X Tapp + 2 X Tswitch

The term 2 x Tswitch accounts for the over head of two voltage

scalings - scaling down at method invocation, and scaling
back up when the method returns.

Then, we can switch the frequency down if the projected ex
ecution time of the whole application at the slower frequency
is within the acceptable limit. That is, if

Tpowersave < (1 + e)Tproi

Also, we require

rm
__ !_>a
Tswitch

This means that the execution time of a method must be
relatively large compared to the switching overhead.

4. IMPLEMENTATION
We have modified version 1.1 of the KVM [18], a Java virtual
machine targeted for resource-constrained devices, to use
our online voltage scaling algorithm. The KVM is the refer
ence implementation of the Java Connected Limited Device
Configuration (CLDC). It is a pure interpreter.

As explained in the previous section, runtime profiles of
methods are maintafoed in a invocation tree structure, where
each node represents a method, and the node's children rep
resent its callees. The node maintains the cumulative time
spent in that method, including its callees. This invocation
tree is constructed at runtime. There is always a direct
pointer to the node representing the currently executing
method.

The modifications to the KVM are minor. At every method
invocation and return, we needed to insert calls to appro
priately manage the invocation tree and update its pro
files - precisely one call for each invocation and return site.
In the case of the Java bytecode instruction set, the rele
vant call instructions are invokevirtual, invokespecial,
invokestatic and invokeinterface. The relevant return
instructions are the variants of the return bytecode - ire turn,
lreturn, freturn, dreturn, areturn and return. The
code for profile management and voltage-scaling decisions
was 446 lines of code (including comments), with 187 semi
colons.

The implementation is neatly modular. Future work on
the heuristic, the online algorithm, or profiling techniques
will only involve changes to the invocation-tree and profile
management code, and not the KVM. 1 Since the modifica
tions to the VM are minor, we expect to be able to port our
online algorithm to other virtual machines easily.

For controlling voltage scaling, we use the cpufreq module
of the Linux kernel version 2.6.0-test2. As is, it uses a
file system interface for setting the frequency states of the
processor. The procedure for changing the frequency is to
open a special file and write a value (reflecting the new
desired frequency) into it. This is inefficient for a large
number of frequency switches. Therefore, we extended the
module by a simple system call that switches the frequency.

1Unless we profile at a granularity smaller than methods.

Freq. Voltage
(MHz) (V)

600 0.956
800 1.260

1000 1.292
1200 1.356
1300 1.388

Figure 7: Voltage and frequency levels for the
Pentium-M 1.3GHzprocessor

27.S

25

~ 22.5
I.fl

20 "' .E.
Ill 17.S
u
i= lS ttJ
E 12.5
~
fl) 10

0..
7.5

5

Power saved vs Performance loss

8 10 11 12 l3 14

Power saved (%)

Figure 8: Plot of power saved vs. performance loss
for benchmarks

5. RESULTS
We have evaluated our online voltage-scaling algorithm us
ing a software-simulation methodology. All our benchmarks
were run on a Dell Inspiron 600m laptop, with a Pentium
M l.3GHz processor and 384MB of memory. The machine
was running the Linux kernel version 2.6.0-test2. Using
the hardware time-stamp counter on Intel x86, we keep
track of the number of cycles (including the overhead for
voltage switching) spent in each voltage and frequency level.
From this, we derive the expected relative power dissipation
(which is proportional to f x v 2 , for frequency f and voltage
v), and the total execution time. The voltage and frequency
levels of the Intel Pentium-M l.3GHz processor are shown in
figure 7. Thus, our performance numbers are real measure
ments, but power numbers are simulated.

We have used the Java Grande benchmark set. Table 9
contains our detailed results. Due to the limited class library
of the KVM, we were unable to run all the benchmarks.

Currently, the tolerable slowdown (£) and ratio of method
runtime to switching overhead (a) are specified for each run,
and remain fixed. Ideally, these would also be adjusted
dynamically. Also, sometimes energy spent during longer
execution times overcomes the gains of scaling down the
voltage and frequency. We need a bailout strategy to dy
namically detect when this is happening.

DVS reduces both frequency and voltage for the CPU, and
thus provides a cubic energy reduction. Even though a pro
gram may run longer and hence consume more energy, the

Name Power Performance Time (sec) Switches E: a
saved (3) peak scaled loss full speed scaled

Crypt 0.000072 131194.976801 131194.881793 0.000223 52.383549 52.383666 15 2 10
Crypt 2.054173 130780.209734 128093. 758309 3.755870 52.217940 54.179178 17 5 10
Crypt 6.020241 130799.333938 122924.898643 13.524157 52.225576 59.288645 17 10 10
Crypt 6.020113 130800.685499 122926.336957 13.523869 52.226116 59.289107 17 15 10
Crypt -0.000020 130771.124998 130771.150712 0.000020 52.214313 52.214323 1 2 50
Crypt 2.054167 130773.436400 128087.131957 3.755821 52.215236 54.176347 3 5 50
Crypt 6.020222 130802.199502 122927.616600 13.524117 52.226720 59.289923 3 15 50
Crypt -0.000020 130771.594811 130771. 620991 0.000020 52.214501 52.214511 1 2 100
Crypt 2.054101 130775.260000 128089.003911 3.755701 52.215964 54.177039 3 5 100
Crypt 6.020257 130803.299521 122928.604743 13.524195 52.227160 59.290463 3 15 100

LUFact 0.767535 142269.791409 141177.820356 1.676721 56.805502 57.757972 259229 2 10
LUFact 5.034122 143277. 712293 136064. 936750 9.552970 57.207945 62.673003 504479 5 10
LUFact 13.308955 143227.552746 124165.462235 29.998583 57.187917 74.343482 504479 10 10
LUFact 13.464788 143251.932831 123963.363760 30.640640 57.197652 74.723378 504481 15 10
LUFact 0.833207 143239.310957 142045.830872 1.808891 57.192612 58.227164 257169 2 100
LUFact 5.029016 143254. 680388 136050.379929 9.541529 57.198749 62.656384 500259 5 100
LUFact 13.304407 143238.333392 124181.322666 29.987809 57.192222 74.342916 500265 10 100
LUFact 13.459671 143229.306315 123951.113603 30.627224 57.188617 74.703903 500287 15 100
HeapSort 1.196691 187556.183383 185311. 715143 2.384677 74.887459 76.673283 3283727 2 100
HeapSort 4.828266 191235.208838 182001.864063 9.453061 76.356421 83.574440 4998369 5 100
HeapSort 12.675495 189048.205135 165085 .409631 29.196093 75.483194 97.521337 4998369 10 100
HeapSort 13.663165 188915.633150 163103. 778703 33.328114 75.430260 100.569743 4998365 15 100
HeapSort 1.226347 188076.072604 185769.607415 2.447878 75.095040 76.933275 3279601 2 1000
HeapSort 4.820182 191170.433856 181955.670841 9.433954 76.330557 83.531547 4983133 5 1000
HeapSort 12.668818 188979. 720044 165038.223953 29.179061 75.455849 97.473157 4983385 10 1000
HeapSort 13.652001 188867.935241 163083.682191 33.296476 75.411215 100.520493 4983179 15 1000

FFT 0.264985 888018.539381 885665.424576 0.487534 354.568166 356.296805 16775979 2 100
FFT 0.530186 877730.433587 873076. 830438 1.127928 350.460330 354.413271 16775979 5 100
FFT 0.951397 873662.176483 865350.178160 2.788181 348.835955 358.562132 16775981 10 100
FFT 0.955557 873758.172966 865408.918005 2.795901 348.874285 358.628465 16775987 15 100
FFT 0.260865 887040.427232 884 726.446460 0.477003 354.177625 355.867063 16764633 2 1000
FFT 0.529118 877628.295721 872984.604172 1.125388 350.419548 354.363127 16764593 5 1000
FFT 0.950054 873550.765769 865251.559823 2.785106 348.791471 358.505683 16764599 10 1000
FFT 0.954384 873644.029434 865306.109102 2.793647 348.828710 358.573754 16764651 15 1000

Figure 9: Benchmark results

cubic saving due to DVS usually overcomes this, resulting
in a net energy saving.

As expected, the results show that power saved is propor
tional to the performance loss (c.f. Figure 8). They also
indicate up to a 133 saving in simulated processor power
consumption with a performance loss of up to 333.

Varying the ratio a of method runtime to switching overhead
has little effect on the results. However, this ratio must be
large enough to prevent the frequency from switching too
often. During our benchmark runs we faced CPU crashes
when this ratio was too low. This suggests a hardware limit
on how often the frequency can be switched. To our know
ledge, Intel has not documented this limit for the Pentium-M
processor.

6. RELATED WORK
Dynamic voltage scaling has been explored at different gran
ularity levels. These include the interval level, intertask level
and intratask level.

6.1 Interval Level
At the largest granularity are interval-based policies that
regularly adjust processor speed based on prior workloads.
The simplest algorithm of this kind is PAST [26]. PAST
adjusts CPU speed at fixed length intervals based on the idle
and active cycles of the previous interval. If the idle cycles
exceed a threshold, it slows down the processor. Else if the
active cycles are higher, it speeds it up. As Govi et al. [10]
point out, PAST uses a narrow window of past information
to predict future workloads and changes the clock speed
at every interval, increasing energy dissipation and cycles.
Variations of PAST [10] address these shortcomings. Exam
ples include Aged Averages which estimates future processor
usage as a weighted average of usage in prior intervals and
Pattern, which predicts future CPU usage to follow a past
usage pattern.

The main similarity between interval based approaches and
our approach is the use of online information to make pre
dictions about future behavior. However, these predictions
occur at a coarser granularity in interval based approaches.
They are based on CPU usage alone and assume similar

Figure 10: Granularities of Scheduling

workloads in every interval. Though our approach uses past
information, it gathers this information at the method level.
Thus, our approach can adapt its decisions to the varying ex
ecution profiles of individual methods, allowing substantially
greater scheduling accuracy than interval based approaches.

6.2 Intertask Level
At a higher granularity are intertask policies that determine
execution rates of individual tasks. The simplest example of
an intertask policy is Energy-priority scheduling [21]. This
policy maintains an even workload distribution as new tasks
enter a system, to minimize battery drain rate. In every
iteration, EPS schedules the task with furthest deadline
and fewest overlapping tasks. It computes the minimum
workload increase due to the new task and speeds up already
scheduled tasks to make room and fill up slack. The real
time OS literature abounds with more intertask policies,
many of which combine frequency scaling with traditional
policies such as Earliest Deadline First (EDF) and. Rate
Monotonic (RM). Pillay and Shin [20] compare five such
policies. The first two are static versions of EDF and RM.
These policies run all tasks chosen by an EDF or RM sched
uler at the single lowest frequency meeting all deadlines.
In contrast, dynamic versions of these policies vary clock
frequency for individual tasks and fall into two categories,
cycle conserving and lookahead. Cycle conserving policies
minimize total cycles by shifting most of a task's workload
earlier in the schedule.

Intertask approaches achieve greater scheduling accuracy
than interval based approaches by exploiting task level infor
mation. However, they fix the execution rates of individual
tasks. Thus, even these approaches fail to achieve the gran
ularity of our approach.

6.3 Intratask Level
Intratask approaches vary clock frequency and voltage within
individual tasks and are most closely related to our ap
proach. These approaches have been implemented in oper
ating systems and compilers. OS-assisted intratask policies
are in Dudani et al. [8], Zhu and Mueller [28] and Gruian
[11]. To combine EDF scheduling with frequency scaling,
Dudani et al. split each task the scheduler chooses into two
subtasks, later running at full speed and the earlier running
slower. They choose the earlier subtask's speed to keep the
combined execution time of both subtasks below the average
execution time for the whole task. Zhu and Mueller (28]
examine preemption handling in the context of this scheme.
Gruian proposes a more granular intratask policy that es-

timates an optimal clock speed for every cycle of a task's
execution. His approach records the probability distribution
of cycle times for a task. Given this distribution, measured
over successive task invocations, it expresses the expected
energy dissipation for a task in terms of the speed chosen
for each execution cycle. It then derives the optimal speeds
for each cycle analytically, allowing runtime modulation of
task speed.

The above intratask policies are typical of OS assisted poli
cies in using coarse-grain information to predict future exe
cution patterns. Compilers have a model of future program
behavior allowing more accurate scheduling decisions in crit
ical program regions such as basic blocks. However, prior
work in compiler assisted DVS, in contrast to our work,
ignores runtime information that would yield even better
decisions.

One of the earliest compiler-assisted DVS approaches is by
Lee and Sakurai [17]. It chooses a target execution time
for each of a task's (statically determined) timeslots that
allows the task to finish within its worst case runtime. It
then assigns the timeslot a clock frequency whose maximum
runtime is within the target. While it does frequency and
voltage scaling at runtime, it does all previous steps at
compile time. Thus, the DVS decisions, once made, remain
fixed, in sharp contrast to the dynamically varying decisions
of our approach.

Related work by Hsu and Kremer [13] discusses how to select
regions where DVS decisions should be made. The idea is to
instrument a program with profiling code and execute the
program to build a table of execution frequencies and aver
age cycles for each region under all possible clock frequen
cies. Using this exhaustive approach, Hsu and Kremer select
the region whose slowdown minimizes energy dissipation and
incurs the smallest increase in runtime. In a separate work,
Hsu et al. (14] use a similar exhaustive heuristic to determine
how slow to run each selected region. Like Lee and Sakurai's
work, this work also fixes DVS decisions. Moreover, it is
highly input and architecture specific, as well as being too
time consuming to implement in nontrivial programs.

In contrast, Shin et al. [23] propose an elegant approach
exploiting a program's varying slack at runtime. They stat
ically determine the worst case remaining execution cycles
at each basic block and initially run the program fast enough
to complete total worst case cycles within a deadline. When
the program diverges to basic blocks whose remaining worst
case cycles are significantly fewer than those on the worst
case path, the clock frequency can be reduced. Shin et
al. statically instrument these blocks with frequency reduc
tion code. Though their algorithm allows frequency changes
at runtime according to control flow, its analysis for these
changes still happens at compile time. Moreover, it bases
its decisions only on worst case execution cycles. Runtime
information would allow more aggressive scaling of frequency
and voltage based on live execution behavior as well as
resource levels.

Most intratask approaches are implemented exclusively in a
compiler or an operating system. A few researchers [19, 3, 2,
1 J. have attempted to combine OS and compiler interaction.

Their approach statically splits a program into fixed length
intervals, each beginning with a power management point.
Prior to each point, the compiler inserts an instruction that
saves the worst case remaining cycles into a register. At
runtime, the power management points invoke an interrupt
service routine that reads this register and adjusts proces
sor speed accordingly. Like the previous approaches, this
approach is dynamic only in the sense of allowing frequency
and voltage to vary throughout a program's execution. It
is static in performing the analysis for inserting power man
agement points at compile time.

As well as combining operating systems and compilers in
voltage scaling decisions, researchers are exploring how to
combine scaling with traditional performance oriented com
piler optimizations. Saputra et al.[22] discuss these issues.
They first propose a static scheme that initially applies per
formance optimizations to reduce CPU and memory cycles
and then scales the CPU voltage to lengthen execution time
back to the original while reducing energy quadratically.
Saputra et al. then generalize this scheme to an ILP formu
lation that allows runtime voltage modulation in different
program regions. Their approach depends on energy cost
tables constructed at compile time and is thus static, like
all the others discussed above.

7. DISCUSSION
Prior techniques for compiler assisted voltage scaling are
static since their analysis of when and how much to slow
down the CPU occurs offiine and remains fixed for a pro
gram's duration, even if it allows modulation of voltage
and frequency at runtime. Power management techniques
based on static analysis are suitable for application specific
embedded systems (e.g., toaster oven).

However, mobile code is rapidly becoming ubiquitous in
consumer electronics, already appearing in a proliferation
of mobile devices including cellphones, set-top boxes and
PDAs. These mobile code enabled devices pose a new chal
lenge of developing power management policies that adapt
to the continuously varying execution patterns of programs.

Our work addresses this challenge by performing dynamic
voltage scaling at runtime in a Java virtual machine. As
well as having a model of future program behavior, virtual
machines have an infrastructure allowing runtime program
profiling and reoptimization. This infrastructure allows vir
tual machines to make more fine-grained DVS decisions than
hardware, operating systems and compilers.

We have already demonstrated that a dynamic optimiza
tion infrastructure can significantly improve cache perfor
mance [15]. We are now exploring the use of it for continuous
power management. In doing so, we also aim to provide
power management support for a wide variety of emerging
mobile devices. Our policy complements previous policies
that target hardware, compilers, and operating systems, to
the exclusion of virtual machines.

8. CONCLUSIONS AND FUTURE WORK
We have presented a first step towards runtime dynamic
voltage scaling in a Java virtual machine.

• Our algorithm is based on lightweight profiles col
lected at runtime. It records the execution time
for every method called and uses this information to
estimate performance loss from scaling the method. It
scales the method on future invocations as long as this
loss, including switching overhead, remains acceptably
small.

• We have demonstrated the advantages of runtime DVS
over traditional static policies. Our technique is ar
chitecture independent, avoids time consuming
offiine simulation and adapts to varying execu
tion patterns.

• It is easily implemented in existing virtual ma
chines

• Results obtained through simulation suggest up to a
133 power savings with no more than a 333 perfor
mance loss.

Given our initial predictio~ heuristic's simplicity, these num
bers are promising. However, many avenues for further
work remain. Our first agenda is to measure power on
real systems. We also plan to explore more sophisticated
statistical prediction models that use multiple records of
past information. Although time is currently our only factor
for voltage scaling decisions, other criteria can be used. Most

. modern processors, including the Intel x86 series, offer a de
tailed array of performance measurement counters. By mea
suring cache and TLB misses through these counters, we can
quantify a program region's memory boundedness and make
better voltage scaling decisions. Ideally, hardware should di
rectly expose power consumption information to a compiler.
As many have argued[27], this would allow feedback-directed
online algorithms to drive power consumption with explicitly
stated energy and performance requirements. Until current
systems off er a direct way of measuring energy consump
tion, energy can only be measured in terms of the factors
it depends on. Thus, low energy compilation techniques,
including ours, integrate these factors rather than energy
per se into their cost models.

A third avenue is to explore how code annotations can en
able more accurate online predictions for dynamic voltage
scaling. Traditional online algorithms suffer from a learning
lag at the start of program execution, when insufficient in
formation exists for predictions. Annotations derived from
offiine profiling or static analysis can act as hints to the
prediction model and assuage performan~e loss in this initial
learning period. Krintz [16] has shown such an approach
to be profitable for dynamic optimization in virtual ma
chines. The problem of finding suitable annotations for
dynamic voltage scaling remains unsolved. For portabil
ity, such annotations must be expressed in an architecture
neutral language. Another requirement is that they can
be verified prior to execution; Malicious annotations could
mislead DVS algorithms to make erroneous decisions that
increase power consumption. These malicious annotations
could then be exploited in a denial of service attack.

Our current implementation is built on a purely interpreted
virtual machine. We expect the major issues to remain
the same when implementing our online algorithm for a

just-in-time dynamic compiler with multiple optimization
levels. However, an interesting area of investigation is to
explore the interaction between the dynamic optimizer and
dynamic voltage scaling algorithm. Different optimizers and
optimized versions of code will likely have different trade-offs
when power is introduced as a constraint.

Likewise, devices will introduce tradeoffs due to their dif
fering computational power and resource constraints. We
are currently porting our algorithm to the Sharp Zaurus
handheld, which has a StrongArm 1100 processor. The
processor offers a wide range of frequency settings. This
will enable us to evaluate our algorithm for smaller, more
resource-constrained devices. For portability, we also plan
to investigate DVS issues in more powerful machines such as
high-end servers as well as nontraditional architectures such
as FPGAs, datafiow machines, and reconfigurable memories
[4).

Finally, we plan to develop algorithms for offloading parts of
the DVS decision process to a powerful server infrastructure
[25, 9). Such an infrastructure would support DVS analyses
that are more computationally intensive than those that a
resource constrained mobile device can support. It would
allow us to increase the accuracy of DVS decisions as well
as the speed at which these decisions are made. Speeding up
the decision process is essential, since analysis time adds to
a program's runtime in a dynamic optimization framework.

We now have a framework in place that allows us to exper
iment with a variety of runtime voltage scaling algorithms.
Moreover, due to the portability of the virtual machine we
are using, we can experiment across a wide variety of pro
cessor and hardware architectures.

Acknowledgements
Parts of this effort are sponsored by the National Science
Foundation under ITR grant CCR-0205712 and by the Of
fice of Naval Research under grant N00014-01-1-0854. Any
opinions, findings, and conclusions or recommendations ex
pressed in this material are those of the authors and should
not be interpreted as necessarily representing the official
views, policies or endorsements, either expressed or implied,
of the National Science foundation (NSF), the Office of Na val
Research (ONR), or any other agency of the U.S. Govern
ment.

9. REFERENCES
[1) N. AbouGhazaleh, B. Childers, D. Mosse, R. Melhem,

and M. Craven. Energy Management for Real-Time
Embedded Applications with Compiler Support. In
Proceedings of the 2003 ACM SIGPLAN Conference
on Languages, Compilers, and Tools for Embedded
Systems, pages 284-293. ACM Press, 2003.

[2) N. AbouGhazaleh, D. Mosse, B. Childers, and
R. Melhem. Toward the Placement of Power
Management Points in Real Time Applications. In
Workshop on Compilers and Operating Systems for
Low Power. ACM Press, 2001.

[3) N. AbouGhazaleh, D. Masse, B. Childers, R. Melhem,
and M. Craven. Collaborative Operating System and

Compiler Power Management for Real-Time
Applications. In IEEE Real-Time Embedded
Technology and Applications Symposium (RTAS),
2003.

[4] D. H. Albonesi. Selective Cache Ways: On-Demand
Cache Resource Allocation. In Proceedings of the 32nd
annual ACM/IEEE International Symposium on
Microarchitecture, pages 248-259. IEEE Computer
Society, 1999.

(5] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F.
Sweeney. Adaptive Optimization in the Jalapeno
JVM: The Controller's Analytical Model. In The 3rd
ACM Workshop on Feedback-Directed and Dynamic
Optimization (FDD0-3), December 2000.

[6] Crusoe Processor Product Brief: Model tm5800,
transmeta corporation, 2003.

(7] LongRun Power Management: Dynamic Power
Management for Crusoe Processors, White Paper,
Transmeta Corporation, 2001.

(8] A. Dudani, F. Mueller, and Y. Zhu.
Energy-Conserving Feedback EDF Scheduling for
Embedded Systems with Real-Time Constraints. In
Proceedings of the joint Conference on Languages,
Compilers and Tools for Embedded Systems, pages
213-222. ACM Press, 2002.

[9] M. Franz. Compilers and Operating Systems for Low
Power, chapter A Fresh Look At Low-Power Mobile
Computing. Kluver Academic Publishers, 2001.

(10] K. Govil, E. Chan, and H. Wasserman. Comparing
Algorithm for Dynamic Speed-Setting of a Low-Power
CPU. In Mobile Computing .and Networking, pages
13-25, 1995.

(11] F. Gruian. Hard Real-Time Scheduling for
Low-Energy using Stochastic Data and DVS
Processors. In Proceedings of the 2001 International
Symposium on Low Power Electronics and Design,
pages 46-51. ACM Press, 2001.

(12) S. Gunther, F. Binns, D. Carmean, and J. Hall.
Managing the Impact of Increasing Power
Consumption. Intel Technology Journal, 1st quarter
2001.

(13] C.-H. Hsu and U. Kremer. The Design,
Implementation and Evaluation of a Compiler
Algorithm for CPU Energy Reduction. In Proceedings
of the ACM SIGPLAN Conference on Programming
Languages, Design, and Implementation, 2003.

(14] C.-H. Hsu, U. Kremer, and M. Hsiao.
Compiler-Directed Dynamic Frequency and Voltage
Scheduling. In Workshop on Power-Aware Computer
Systems (PACS'OO), 2000.

(15] T. Kistler and M. Franz. Continuous Program
Optimization: A Case Study. ACM Transactions on
Programming Languages and Systems {TOPLAS),
25(4) :500-548, 2003.

[16] C. Krintz. Coupling On-Line and Off-Line Profile
Information to Improve Program Performance. In
International Symposium on Code Generation and
Optimization, Mar. 2003.

[17] S. Lee and T. Sakurai. Run-Time Voltage Hopping for
Low-Power Real-Time Systems. In Proceedings of the
37th Conference on Design Automation, pages
806-809. ACM Press, 2000.

[18) S. Microsystems. KVM - Kilobyte Virtual Machine
White Paper.
http: II :Java. sun. com/productslkvmlwpl. Palo
Alto, CA, USA, 1999.

[19] D. Mosse, H. Aydin, B. Childers, and R. Melhem.
Compiler-Assisted Dynamic Power-Aware Scheduling
for Real-Time Applications. In Workshop on
Compilers and Operating Systems for Low Power.
ACM Press, 2000.

[20] P. Pillai and K. G. Shin. Real-Time Dynamic Voltage
Scaling for Low-Power Embedded Operating Systems.
In Proceedings of the 18th A CM Symposium on
Operating Systems Principles, pages 89-102. ACM
Press, 2001.

[21] J. Pouwelse, K. Langendoen, and H. Sips. Energy
priority scheduling for variable voltage processors. In
Proceedings of the International Symposium on Low
Power Electronics and Design ISLPED'Ol, Aug. 2001.

[22] H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J.
Irwin, J. S. Hu, C.-H. Hsu, and U. Kremer.
Energy-Conscious Compilation based on Voltage
Scaling. In Proceedings of the joint conference on
Languages, Compilers and Tools for Embedded
Systems, pages 2-11. ACM Press, 2002.

[23) D. Shin, J. Kim, and S. Lee. Low-Energy Intra-Task
Voltage Scheduling using Static Timing Analysis. In
Proceedings of the 38th Conference on Design
Automation, pages 438-443. ACM Press, 2001.

[24) Mobile Intel Pentium III Processors.
http:/ /www.intel.com/support/processors/mobile
/pentiumiii/ ss.htm.

[25] V. Venkatachalam, L. Wang, A. Gal, C. Probst, and
M. Franz. ProxyVM: A Network-based Compilation
Infrastructure for Resource-Constrained Devices.
Technical Report 03-13, University of California,
Irvine, March 2003.

[26) M. Weiser, B. Welch, A. J. Demers, and S. Shenker.
Scheduling for Reduced CPU Energy. In Operating
Systems Design and Implementation, pages 13-23,
1994.

[27] A. Weisse! and F. Bellosa. Process Cruise Control:
Event-driven Clock Scaling for Dynamic Power
Management. In Proceedings of the International
Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, pages 238-'-246. ACM Press,
2002.

[28] Y. Zhu and F. Mueller. Preemption Handling and
Scalability of Feedback DVS-EDF. In Proceedings of
the Workshop on Compilers and Operating Systems
for Low Power, 2002.

