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Abstract 
In current DVS approaches, voltage scaling decisions are made statically at compile 
time, and/ or dynamically at the OS level. While this has yielded excellent results for 
a wide range of applications, there is an even better solution for platform independent 
code (such as Java bytecode) that executes on virtual machines. Such virtual machines 
have fine-grained execution information about the actual workloads that run on them, 
as opposed to static compilers that at best have off-line profiling data from previous 
workloads. Based on their high-level model of the actual workload, virtual machines 
can make DVS decisions with high precision. 
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ABSTRACT 
In current DVS approaches, voltage scaling decisions are 
made statically at compile time, and/ or dynamically at the 
OS level. While this has yielded excellent results for a wide 
range of applications, there is an even better solution for 
platform independent code (such as Java bytecode) that ex-. 
ecutes on virtual machines. Such virtual machines have fine
grained execution information about the actual workloads 
that run on them, as opposed to static compilers that at best 
have off-line profiling data from previous workloads. Based 
on their high-level model of the actual workload, virtual 
machines can make DVS decisions with high precision. 

1. INTRODUCTION 
Rapidly increasing chip densities and processor speeds have 
made energy dissipation a leading concern in computer de
sign. The growing number of transistors in a chip causes 
significant heat increases that affect a chip's reliability and 
lifetime. Cooling mechanisms add to the packaging cost. 
Recent trends suggest that processor power consumption 
doubles every four years and cooling costs rise exponentially 
with heat increases [12]. At this alarming rate, a Pentium 
processor will have over a billion transistors and consume 
several hundred watts in the next decade. The future pro
cessors will be hotter than light bulbs and require energy 
management solutions more cost effective than the cooling 
fans processors use today. 

The power consumption of a circuit depends on four factors: 
capacitance, switching activity, clock frequency and supply 
voltage. Accordingly, one can reduce power by reducing 
one or more of these variables. Power is linear in capac
itance, activity and frequency, but quadratic in voltage. 
By reducing the supply voltage, one increases a circuit's 
delay linearly. Thus, supply voltage places an upper limit 
on clock frequency. Dynamic voltage scaling is based on 
this relationship between frequency and voltage. By reduc
ing both of these quantities in tandem, it achieves a cubic 

power reduction. The motivation behind dynamic voltage 
scaling is that running tasks slower finishes the same amount 
of work as running them faster, but dissipates less energy 
(c.f. Figure 1). DVS algorithms must account for the per
formance overhead of slowing down the processor, including 
the overhead of switching between frequencies and voltages. 
As Figure 2 shows, these overheads increase execution time. 

A number of processors support dynamic voltage scaling. 
Examples include Intel Speedstep [24], and Transmeta's Cru
soe [6, 7]. Speedstep switches between two clock frequen
cies and automatically sets the voltage for each frequency. 
It uses a high frequency when relying on AC power, and 
a low frequency when relying on batteries. In contrast, 
Transmeta's Crusoe modulates frequency and voltage during 
the execution of applications through a software controlled 
feedback loop. 

The rest of the paper is organized as follows: Section 2 
motivates our approach of virtual machine based dynamic 
voltage scaling. Section 3 describes our online algorithm 
for driving dynamic voltage scaling; Section 4 gives details 
of our implementation of this algorithm in a Java virtual 
machine. Section 5 discusses our benchmarking method
ology and presents our results. Section 6 surveys related 
work in the field and Section 7 discusses how our work 
differs from previous work. Finally, Section 8 summarizes 
our conclusions as well as plans for future work. 

2. RATIONALE 
Dynamic voltage scaling has recently attracted widespread 
attention in the lowpower community and can be done at 
a number of levels. These include the hardware level, op
erating system level, compiler level, virtual machine level, 
and application level. Nearly all DVS research has focused 
on the first three levels. Though the hardware level pro
vides mechanisms for reducing frequency and voltage, it also 
needs information about program behavior to decide when 
to apply these mechanisms. Techniques for deriving this in
formation are too expensive to implement in bare hardware. 
For these reasons, the hardware level lacks information on 
when to make DVS decisions. 

Operating systems have more information, namely, about 
what programs are running and what resources they use. 
Thus, they can make DVS decisions based on CPU usage 
patterns. However, operating systems lack forward looking 
information about program behavior and are hence limited 
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Figure 2: Time vs fraction of workload completed 
with and without DVS 

to extrapolating future behavior from past behavior. 

Compilers, however, receive an entire program as input. 
Thus, they can predict with greater accuracy the paths a 
program's execution will take. Compilers can make DVS 
decisions at a finer granularity than operating systems by 
inserting DVS instructions . into program regions such as 
basic blocks. Nevertheless, statically optimizing compil
ers lack runtime information and often resort to exhaustive 
simulation or previously collected offline profiles to decide 
what program regions should slow down and how much they 
should slow down. Once made, these decisions remain fixed 
for a program's execution. 

These static approaches suffice for application specific em
bedded devices, since the specialized software for these de
vices is burnt into the chip and unlikely to change its ex
ecution behavior. However, a plethora of emerging Java 
enabled mobile devices have less tightly coupled hardware 
and software. These devices include high end servers, desk
top machines, laptops, set-top boxes, PDAs, pagers as well 
as cellphones. They present a new challenge not addressed 

by traditional static compilers. First, they require a level of 
indirection allowing software to be written once but run on 
any of them. Moreover, the applications running on these 
multipurpose devices vary continuously in execution behav
ior. Static analysis is less effective for managing the power 
consumption of these applications since it lacks runtime 
information and couples power management policies with 
specific program binaries. Whenever the program behavior 
changes, as it would, for example, when a program's inputs 
change at runtime, the analysis underlying these policies 
must be repeated. This is an infeasible task given the grow
ing numbers of diverse architectures and runtime configura
tions. 

Working at a higher abstraction level than compilers, virtual 
machines provide a layer of indirection between platform 
independent code and diverse architectures. Like compilers, 
virtual machines have a model of future program behavior 
and can thus make more accurate power management deci
sions than operating systems or bare hardware. However, 
unlike static compilers, virtual machines have an infrastruc
ture allowing them to profile and reoptimize programs in 
execution. This dynamic optimization infrastructure allows 
virtual machines to continuously adapt power management 
decisions to varying execution behavior. 

Finally, at the application level, programmers can make 
design decisions that reduce execution time and create op
portunities for slowing down the processor. However, doing 
all of the analysis for DVS at the application level may place 
too much of a burden on programmers. 

For these reasons, we propose a novel virtual machine based 
DVS algorithm that profiles a program online and adapts 
its decisions at runtime. To our knowledge, this is the first 
implementation of DVS in a virtual machine setting. 

3. RUNTIME-PROFILE BASED DYNAMIC 
VOLTAGE SCALING 

In this section we present our algorithm, both on an informal 
and a formal level. The approach will be clarified by an 
example. 

Our algorithm is based on runtime profiling of bytecodes 
executing in a virtual machine. The goal is to reduce energy 
consumption by means of scaling down frequency, while at 
the same time minimizing performance loss. 

3.1 An Example 
Figure 3 shows the code of our running example. It contains 
a main method, calling several methods, which in turn call 
again methods. 

In order to decide which methods should be executed at 
a lower frequency, the virtual machine constructs an invo
cation tree. An invocation tree is a method callgraph con
structed at runtime, as methods are called. Each node 
represents a method, and its children are the callees of that 
method. Thus, at any instant, the invocation tree contains 
at least one node for every method that has already been 
called during execution. Figure 4 shows the final tree for our 
example program. As can be seen, methods mB and me occur 



main() { mB() { 
mAO; me(); 
mBO; } 
mAO; 

} me() { 
} 

mAO { 
mBO; 

} 

Figure 3: The example program 
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Figure 4: Invocation tree for the example program 

twice, since they are called by two different methods, namely 
main and mA. By differentiating calls to a method in different 
contexts, our approach avoids mixing timing decisions that 
actually do not correlate. Each node n is associated with the 
cumulative time already spent in the method mn represented 
by ri and all methods transitively called by mn. Initially, 
these times are all set to 0. 

In order to measure the execution time of a method, the vir
tual machine wraps timing constructs around every method 
invocation. Thus, the VM records the cumulative time spent 
in the method and all methods called by it. Once a method 
has been called, its execution may be scaled down at the 
next invocation in the same context. Additionally, the first 
execution time of a method is cached for scaling decisions if 
the same method is called in a different context. 

We will now describe the execution of the program in Figure 
3 and show the decisions of our approach. Figure 5 shows 
the execution with hypothetical execution times. We assume 
the program to execute on a Pentium-M 1.3GHz processor. 
The supported frequencies are given in Table 7. 

The execution of the example program starts by calling 
methods main, mA, mB, and me. Since none of these methods 
has been called before, the frequency is left unchanged and 
the execution times are cached and stored in the invocation 
tree. After 58ms, method mB is invoked the second time. 
While the first invocation was in method main, the execution 
time of its previous invocation been cached and is used for 
prediction in the current context. After the execution of 
mB, the cached time is discarded. Let tm denote time spent 
in method m. How should the VM decide whether to scale 

time method comment invocation freq. 
[ms] tree [MHz] 
0.00 main invoke 1300 

15.00 mA invoke 1300 
20.00 mB invoke 1300 
22.00 me invoke 1300 
32.00 me return tmc1 = 10 1300 
36.00 mB return tmB1 = 16 1300 
57.00 mA return tmA = 42 1300 
58.00 mB invoke 

sw1tchmg to 800MHz 
58.00 mB invoke 800 
61.25 me invoke 800 
66.12 me return tmc2 = 3 800 
67.75 mB return tmB2 = 6 800 

sw1tchmg to 1300MHz 
70. 75 mA I invoke I 

switching to lOOOMHz 
70.75 mA invoke 1000 
74.65 mA return tmA = 22.5 1000 

switching to 1300MHz 

I 75.00 II main I return I 1300 

Figure 5: Execution of the example program 

down the frequency for the next invocation of this method? 
When scaling frequency, we need to take into account that 
the system will require some time Tswitch. to stabilize after 
switching the frequency. Additionally, the system must be 
prevented from switching too often, since this stabilizing 
penalty is going to sum up. Thus, one requirement is that 
the expected execution time of the method. must be higher 
than Tswitch. x a, where a is a parameter in our framework. 
For the Pentium-M, the actual value is Tswitch. ~ lOµs. For 
the example we assume a = 5 and Tswitch. = lms. Since 
tmB = 16ms > 5 x lms, the method mB qualifies for scaling. 

Next, we need to calculate the frequency that the method 
shall be executed at. To do so, we must first predict the 
expected runtime of the application without scaling. We 
adopt the. heuristic used for optimizations in the Jalapeno 
VM [5]: our algorithm assumes the projected time (Tproj)to 
be twice the runtime of the application up to the invocation 
plus the expected execution time of the method. 

For method mB, Tproj = 2 x 58ms + 16ms = 132ms. The 
decision whether or not to scale down frequency is made 
by looping over the possible frequencies supported by the 
underlying architecture from slow to fast. For each fre
quency f we compute the expected execution time TjPP of 
the program assuming the method is executed at f. 

For example, r;gg predicts the expected execution time of 
mB if run at 600MHz. It is computed as r;gg = 2 x 58ms + 2 x 
Tswitc1i.+T6og = 152.67ms, where T 60g = tmBX1300MHz/600MHz = 
34.67ms. Since we want to minimize the actual performance 
impact of frequency scaling, the VM demands that the pre
dicted execution time of the application be at most Tproj x 
(1 + E/100), where E is the tolerable performance loss in 
percent. For the example we assume E = 10, thus the 
maximal acceptable time is 145.2ms. 



Similarly, the execution times for higher frequencies are com
puted to be T;gg = 144ms and T;CCo = 138.Sms. Thus, the 
VM will scale down the frequency to SOOMHz, resulting in 
the expected execution time of mB to be T8o~ = 26ms. 

After mB returns, the frequency is reset to 1300MHz and 
execution of main is continued. After 70. 75ms, mA is called 
for the second time. Based on Tproj = 2 X 70. 75ms + 42ms, 
the VM scales the execution down to lOOOMHz, resulting in 
an expected execution time T106b = 54.6ms. Since this call 
to mA already terminates after 3.9ms, the time tmA in the 
invocation tree is updated to (3.9ms * lOOOMHz/1300MHz + 
42ms) /2. Thus, the times in the invocation tree resemble 
the actual execution time of the method if the processor 
had run at the highest possible frequency. 

3.2 Algorithm 
Based on past runtime for each method information, the 
VM decides whether to slow down the processor in future 
invocations of each method. The decision process for each 
method splits total runtime into runtime for the method 
and runtime for the rest of the application. When a method 
is slowed down, the total execution time increases due to 
two factors. The method's slowed down runtime replaces its 
original runtime. An additional overhead arises from chang
ing processor speed before and after the method execution. 
Two constraints must be met for the slowdown to count as 
advantageous. First, the program's new runtime must be 
within a threshold of the original runtime. Moreover, the 
method's execution time must be significantly larger than 
the switching overhead. If these two conditions are met, the 
VM slows down the method on its next invocation. 

Figure 6 gives a pseudo code description of our algorithm, 
describing how the information in the invocation tree is used. 
Before every method invocation, procedure decide_switch is 
called. There are two cases in which the processor frequency 
will definitely not be scaled down: 

• the frequency has already been scaled down, or 

• the penalty imposed by switching the frequency is of 
the same order as the expected runtime of the method. 

The purpose of the first constraint is to avoid switching 
frequencies too often, while that of the second is to prevent 
the VM from slowing down methods with very short ex
pected execution times. These restrictions also address the 
case when a method is initially executed, and its previous 
execution time is unknown. 

Below is a formal explanation of the above algorithm. We 
use the following notation: for a method in, let 

• T:;:.ig be its original average execution time, 

• Tj be its projected execution time if run at frequency 
f, 

• Tswitch be the time it takes to switch the frequency of 
the CPU and stabilize the system, 

method currenLmethod; 
powerstate current_state; 

procedure powertree_call (method callee) 
ts= timestamp(); 
current_method--+ called = callee; 
current_method = callee; 
decide_switch( callee); 

end 

procedure decide_switch( method callee) 
if (already in power-saving state) 

return; 

end 

if (time spent in current method < Tswitch X a) 
return; 

T~;f ~ee = callee --+ num_ticks; 
Tapp = runtime of the application; 
Tproj = 2 X Tapp+ Ti;f~ee; 
for (i = O;i < (number of power-states);i++) 

Tpowersave = TJ~~~:e + 2 X Tapp+ 2 X Tswitch 

if (Tpawersave < Tproj * (1 + c/100)) 
switch to( i); 

Figure 6: Performing Dynamic Voltage Scaling 

• Tapp be the total time spent executing the application 
so far, and 

• £ be the slowdown we are willing to accept. 

In order to estimate the overall application performance loss 
of scaling down a method, we need to predict how much 
of the application's future execution time will be taken up 
by a method, and for how long the application will run. 
We use a very simple heuristic for these predictions - we 
assume that the application's future execution time will be 
the same as the time it spent executing so far, and similarly, 
that the future execution time of a method will be the same 
as it's average execution time so far. Dynamic optimization 
systems such as Jalapeno[S] use similar prediction heuristics. 

Then, the total projected application run time, Tproj, as
suming no voltage and frequency scaling will be 

Tproj = 2 X Tapp + T:;:.ig 

We make the simplifying assumption that execution time 
scales linearly with frequency.· So, for example, if we halve 
the frequency f, then Tj will be twice of T:;:.ig. This assump
tion is not very accurate, since, e.g. for memory bounded 
computations, the frequency could be reduced without ob
serving linear slowdowns. However, it is conservative, and 
thus will not affect our performance measure adversely. 

Thus, if the voltage and frequency were scaled down for this 
method, the expected total runtime of the application would 
be 

Tpowersave = Tj + 2 X Tapp + 2 X Tswitch 

The term 2 x Tswitch accounts for the over head of two voltage 



scalings - scaling down at method invocation, and scaling 
back up when the method returns. 

Then, we can switch the frequency down if the projected ex
ecution time of the whole application at the slower frequency 
is within the acceptable limit. That is, if 

Tpowersave < (1 + e)Tproi 

Also, we require 

rm 
__ !_>a 
Tswitch 

This means that the execution time of a method must be 
relatively large compared to the switching overhead. 

4. IMPLEMENTATION 
We have modified version 1.1 of the KVM [18], a Java virtual 
machine targeted for resource-constrained devices, to use 
our online voltage scaling algorithm. The KVM is the refer
ence implementation of the Java Connected Limited Device 
Configuration (CLDC). It is a pure interpreter. 

As explained in the previous section, runtime profiles of 
methods are maintafoed in a invocation tree structure, where 
each node represents a method, and the node's children rep
resent its callees. The node maintains the cumulative time 
spent in that method, including its callees. This invocation 
tree is constructed at runtime. There is always a direct 
pointer to the node representing the currently executing 
method. 

The modifications to the KVM are minor. At every method 
invocation and return, we needed to insert calls to appro
priately manage the invocation tree and update its pro
files - precisely one call for each invocation and return site. 
In the case of the Java bytecode instruction set, the rele
vant call instructions are invokevirtual, invokespecial, 
invokestatic and invokeinterface. The relevant return 
instructions are the variants of the return bytecode - ire turn, 
lreturn, freturn, dreturn, areturn and return. The 
code for profile management and voltage-scaling decisions 
was 446 lines of code (including comments), with 187 semi
colons. 

The implementation is neatly modular. Future work on 
the heuristic, the online algorithm, or profiling techniques 
will only involve changes to the invocation-tree and profile
management code, and not the KVM. 1 Since the modifica
tions to the VM are minor, we expect to be able to port our 
online algorithm to other virtual machines easily. 

For controlling voltage scaling, we use the cpufreq module 
of the Linux kernel version 2.6.0-test2. As is, it uses a 
file system interface for setting the frequency states of the 
processor. The procedure for changing the frequency is to 
open a special file and write a value (reflecting the new 
desired frequency) into it. This is inefficient for a large 
number of frequency switches. Therefore, we extended the 
module by a simple system call that switches the frequency. 

1Unless we profile at a granularity smaller than methods. 

Freq. Voltage 
(MHz) (V) 

600 0.956 
800 1.260 

1000 1.292 
1200 1.356 
1300 1.388 

Figure 7: Voltage and frequency levels for the 
Pentium-M 1.3GHzprocessor 
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Figure 8: Plot of power saved vs. performance loss 
for benchmarks 

5. RESULTS 
We have evaluated our online voltage-scaling algorithm us
ing a software-simulation methodology. All our benchmarks 
were run on a Dell Inspiron 600m laptop, with a Pentium
M l.3GHz processor and 384MB of memory. The machine 
was running the Linux kernel version 2.6.0-test2. Using 
the hardware time-stamp counter on Intel x86, we keep 
track of the number of cycles (including the overhead for 
voltage switching) spent in each voltage and frequency level. 
From this, we derive the expected relative power dissipation 
(which is proportional to f x v 2 , for frequency f and voltage 
v), and the total execution time. The voltage and frequency 
levels of the Intel Pentium-M l.3GHz processor are shown in 
figure 7. Thus, our performance numbers are real measure
ments, but power numbers are simulated. 

We have used the Java Grande benchmark set. Table 9 
contains our detailed results. Due to the limited class library 
of the KVM, we were unable to run all the benchmarks. 

Currently, the tolerable slowdown ( £) and ratio of method 
runtime to switching overhead (a) are specified for each run, 
and remain fixed. Ideally, these would also be adjusted 
dynamically. Also, sometimes energy spent during longer 
execution times overcomes the gains of scaling down the 
voltage and frequency. We need a bailout strategy to dy
namically detect when this is happening. 

DVS reduces both frequency and voltage for the CPU, and 
thus provides a cubic energy reduction. Even though a pro
gram may run longer and hence consume more energy, the 



Name Power Performance Time (sec) Switches E: a 
saved (3) peak scaled loss full speed scaled 

Crypt 0.000072 131194.976801 131194.881793 0.000223 52.383549 52.383666 15 2 10 
Crypt 2.054173 130780.209734 128093. 758309 3.755870 52.217940 54.179178 17 5 10 
Crypt 6.020241 130799.333938 122924.898643 13.524157 52.225576 59.288645 17 10 10 
Crypt 6.020113 130800.685499 122926.336957 13.523869 52.226116 59.289107 17 15 10 
Crypt -0.000020 130771.124998 130771.150712 0.000020 52.214313 52.214323 1 2 50 
Crypt 2.054167 130773.436400 128087.131957 3.755821 52.215236 54.176347 3 5 50 
Crypt 6.020222 130802.199502 122927.616600 13.524117 52.226720 59.289923 3 15 50 
Crypt -0.000020 130771.594811 130771. 620991 0.000020 52.214501 52.214511 1 2 100 
Crypt 2.054101 130775.260000 128089.003911 3.755701 52.215964 54.177039 3 5 100 
Crypt 6.020257 130803.299521 122928.604743 13.524195 52.227160 59.290463 3 15 100 

LUFact 0.767535 142269.791409 141177.820356 1.676721 56.805502 57.757972 259229 2 10 
LUFact 5.034122 143277. 712293 136064. 936750 9.552970 57.207945 62.673003 504479 5 10 
LUFact 13.308955 143227.552746 124165.462235 29.998583 57.187917 74.343482 504479 10 10 
LUFact 13.464788 143251.932831 123963.363760 30.640640 57.197652 74.723378 504481 15 10 
LUFact 0.833207 143239.310957 142045.830872 1.808891 57.192612 58.227164 257169 2 100 
LUFact 5.029016 143254. 680388 136050.379929 9.541529 57.198749 62.656384 500259 5 100 
LUFact 13.304407 143238.333392 124181.322666 29.987809 57.192222 74.342916 500265 10 100 
LUFact 13.459671 143229.306315 123951.113603 30.627224 57.188617 74.703903 500287 15 100 
HeapSort 1.196691 187556.183383 185311. 715143 2.384677 74.887459 76.673283 3283727 2 100 
HeapSort 4.828266 191235.208838 182001.864063 9.453061 76.356421 83.574440 4998369 5 100 
HeapSort 12.675495 189048.205135 165085 .409631 29.196093 75.483194 97.521337 4998369 10 100 
HeapSort 13.663165 188915.633150 163103. 778703 33.328114 75.430260 100.569743 4998365 15 100 
HeapSort 1.226347 188076.072604 185769.607415 2.447878 75.095040 76.933275 3279601 2 1000 
HeapSort 4.820182 191170.433856 181955.670841 9.433954 76.330557 83.531547 4983133 5 1000 
HeapSort 12.668818 188979. 720044 165038.223953 29.179061 75.455849 97.473157 4983385 10 1000 
HeapSort 13.652001 188867.935241 163083.682191 33.296476 75.411215 100.520493 4983179 15 1000 

FFT 0.264985 888018.539381 885665.424576 0.487534 354.568166 356.296805 16775979 2 100 
FFT 0.530186 877730.433587 873076. 830438 1.127928 350.460330 354.413271 16775979 5 100 
FFT 0.951397 873662.176483 865350.178160 2.788181 348.835955 358.562132 16775981 10 100 
FFT 0.955557 873758.172966 865408.918005 2.795901 348.874285 358.628465 16775987 15 100 
FFT 0.260865 887040.427232 884 726.446460 0.477003 354.177625 355.867063 16764633 2 1000 
FFT 0.529118 877628.295721 872984.604172 1.125388 350.419548 354.363127 16764593 5 1000 
FFT 0.950054 873550.765769 865251.559823 2.785106 348.791471 358.505683 16764599 10 1000 
FFT 0.954384 873644.029434 865306.109102 2.793647 348.828710 358.573754 16764651 15 1000 

Figure 9: Benchmark results 

cubic saving due to DVS usually overcomes this, resulting 
in a net energy saving. 

As expected, the results show that power saved is propor
tional to the performance loss (c.f. Figure 8). They also 
indicate up to a 133 saving in simulated processor power 
consumption with a performance loss of up to 333. 

Varying the ratio a of method runtime to switching overhead 
has little effect on the results. However, this ratio must be 
large enough to prevent the frequency from switching too 
often. During our benchmark runs we faced CPU crashes 
when this ratio was too low. This suggests a hardware limit 
on how often the frequency can be switched. To our know
ledge, Intel has not documented this limit for the Pentium-M 
processor. 

6. RELATED WORK 
Dynamic voltage scaling has been explored at different gran
ularity levels. These include the interval level, intertask level 
and intratask level. 

6.1 Interval Level 
At the largest granularity are interval-based policies that 
regularly adjust processor speed based on prior workloads. 
The simplest algorithm of this kind is PAST [26]. PAST 
adjusts CPU speed at fixed length intervals based on the idle 
and active cycles of the previous interval. If the idle cycles 
exceed a threshold, it slows down the processor. Else if the 
active cycles are higher, it speeds it up. As Govi et al. [10] 
point out, PAST uses a narrow window of past information 
to predict future workloads and changes the clock speed 
at every interval, increasing energy dissipation and cycles. 
Variations of PAST [10] address these shortcomings. Exam
ples include Aged Averages which estimates future processor 
usage as a weighted average of usage in prior intervals and 
Pattern, which predicts future CPU usage to follow a past 
usage pattern. 

The main similarity between interval based approaches and 
our approach is the use of online information to make pre
dictions about future behavior. However, these predictions 
occur at a coarser granularity in interval based approaches. 
They are based on CPU usage alone and assume similar 
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workloads in every interval. Though our approach uses past 
information, it gathers this information at the method level. 
Thus, our approach can adapt its decisions to the varying ex
ecution profiles of individual methods, allowing substantially 
greater scheduling accuracy than interval based approaches. 

6.2 Intertask Level 
At a higher granularity are intertask policies that determine 
execution rates of individual tasks. The simplest example of 
an intertask policy is Energy-priority scheduling [21]. This 
policy maintains an even workload distribution as new tasks 
enter a system, to minimize battery drain rate. In every 
iteration, EPS schedules the task with furthest deadline 
and fewest overlapping tasks. It computes the minimum 
workload increase due to the new task and speeds up already 
scheduled tasks to make room and fill up slack. The real
time OS literature abounds with more intertask policies, 
many of which combine frequency scaling with traditional 
policies such as Earliest Deadline First (EDF) and. Rate 
Monotonic (RM). Pillay and Shin [20] compare five such 
policies. The first two are static versions of EDF and RM. 
These policies run all tasks chosen by an EDF or RM sched
uler at the single lowest frequency meeting all deadlines. 
In contrast, dynamic versions of these policies vary clock 
frequency for individual tasks and fall into two categories, 
cycle conserving and lookahead. Cycle conserving policies 
minimize total cycles by shifting most of a task's workload 
earlier in the schedule. 

Intertask approaches achieve greater scheduling accuracy 
than interval based approaches by exploiting task level infor
mation. However, they fix the execution rates of individual 
tasks. Thus, even these approaches fail to achieve the gran
ularity of our approach. 

6.3 Intratask Level 
Intratask approaches vary clock frequency and voltage within 
individual tasks and are most closely related to our ap
proach. These approaches have been implemented in oper
ating systems and compilers. OS-assisted intratask policies 
are in Dudani et al. [8], Zhu and Mueller [28] and Gruian 
[11]. To combine EDF scheduling with frequency scaling, 
Dudani et al. split each task the scheduler chooses into two 
subtasks, later running at full speed and the earlier running 
slower. They choose the earlier subtask's speed to keep the 
combined execution time of both subtasks below the average 
execution time for the whole task. Zhu and Mueller (28] 
examine preemption handling in the context of this scheme. 
Gruian proposes a more granular intratask policy that es-

timates an optimal clock speed for every cycle of a task's 
execution. His approach records the probability distribution 
of cycle times for a task. Given this distribution, measured 
over successive task invocations, it expresses the expected 
energy dissipation for a task in terms of the speed chosen 
for each execution cycle. It then derives the optimal speeds 
for each cycle analytically, allowing runtime modulation of 
task speed. 

The above intratask policies are typical of OS assisted poli
cies in using coarse-grain information to predict future exe
cution patterns. Compilers have a model of future program 
behavior allowing more accurate scheduling decisions in crit
ical program regions such as basic blocks. However, prior 
work in compiler assisted DVS, in contrast to our work, 
ignores runtime information that would yield even better 
decisions. 

One of the earliest compiler-assisted DVS approaches is by 
Lee and Sakurai [17]. It chooses a target execution time 
for each of a task's (statically determined) timeslots that 
allows the task to finish within its worst case runtime. It 
then assigns the timeslot a clock frequency whose maximum 
runtime is within the target. While it does frequency and 
voltage scaling at runtime, it does all previous steps at 
compile time. Thus, the DVS decisions, once made, remain 
fixed, in sharp contrast to the dynamically varying decisions 
of our approach. 

Related work by Hsu and Kremer [13] discusses how to select 
regions where DVS decisions should be made. The idea is to 
instrument a program with profiling code and execute the 
program to build a table of execution frequencies and aver
age cycles for each region under all possible clock frequen
cies. Using this exhaustive approach, Hsu and Kremer select 
the region whose slowdown minimizes energy dissipation and 
incurs the smallest increase in runtime. In a separate work, 
Hsu et al. (14] use a similar exhaustive heuristic to determine 
how slow to run each selected region. Like Lee and Sakurai's 
work, this work also fixes DVS decisions. Moreover, it is 
highly input and architecture specific, as well as being too 
time consuming to implement in nontrivial programs. 

In contrast, Shin et al. [23] propose an elegant approach 
exploiting a program's varying slack at runtime. They stat
ically determine the worst case remaining execution cycles 
at each basic block and initially run the program fast enough 
to complete total worst case cycles within a deadline. When 
the program diverges to basic blocks whose remaining worst 
case cycles are significantly fewer than those on the worst 
case path, the clock frequency can be reduced. Shin et 
al. statically instrument these blocks with frequency reduc
tion code. Though their algorithm allows frequency changes 
at runtime according to control flow, its analysis for these 
changes still happens at compile time. Moreover, it bases 
its decisions only on worst case execution cycles. Runtime 
information would allow more aggressive scaling of frequency 
and voltage based on live execution behavior as well as 
resource levels. 

Most intratask approaches are implemented exclusively in a 
compiler or an operating system. A few researchers [19, 3, 2, 
1 J. have attempted to combine OS and compiler interaction. 



Their approach statically splits a program into fixed length 
intervals, each beginning with a power management point. 
Prior to each point, the compiler inserts an instruction that 
saves the worst case remaining cycles into a register. At 
runtime, the power management points invoke an interrupt 
service routine that reads this register and adjusts proces
sor speed accordingly. Like the previous approaches, this 
approach is dynamic only in the sense of allowing frequency 
and voltage to vary throughout a program's execution. It 
is static in performing the analysis for inserting power man
agement points at compile time. 

As well as combining operating systems and compilers in 
voltage scaling decisions, researchers are exploring how to 
combine scaling with traditional performance oriented com
piler optimizations. Saputra et al.[22] discuss these issues. 
They first propose a static scheme that initially applies per
formance optimizations to reduce CPU and memory cycles 
and then scales the CPU voltage to lengthen execution time 
back to the original while reducing energy quadratically. 
Saputra et al. then generalize this scheme to an ILP formu
lation that allows runtime voltage modulation in different 
program regions. Their approach depends on energy cost 
tables constructed at compile time and is thus static, like 
all the others discussed above. 

7. DISCUSSION 
Prior techniques for compiler assisted voltage scaling are 
static since their analysis of when and how much to slow 
down the CPU occurs offiine and remains fixed for a pro
gram's duration, even if it allows modulation of voltage 
and frequency at runtime. Power management techniques 
based on static analysis are suitable for application specific 
embedded systems (e.g., toaster oven). 

However, mobile code is rapidly becoming ubiquitous in 
consumer electronics, already appearing in a proliferation 
of mobile devices including cellphones, set-top boxes and 
PDAs. These mobile code enabled devices pose a new chal
lenge of developing power management policies that adapt 
to the continuously varying execution patterns of programs. 

Our work addresses this challenge by performing dynamic 
voltage scaling at runtime in a Java virtual machine. As 
well as having a model of future program behavior, virtual 
machines have an infrastructure allowing runtime program 
profiling and reoptimization. This infrastructure allows vir
tual machines to make more fine-grained DVS decisions than 
hardware, operating systems and compilers. 

We have already demonstrated that a dynamic optimiza
tion infrastructure can significantly improve cache perfor
mance [15]. We are now exploring the use of it for continuous 
power management. In doing so, we also aim to provide 
power management support for a wide variety of emerging 
mobile devices. Our policy complements previous policies 
that target hardware, compilers, and operating systems, to 
the exclusion of virtual machines. 

8. CONCLUSIONS AND FUTURE WORK 
We have presented a first step towards runtime dynamic 
voltage scaling in a Java virtual machine. 

• Our algorithm is based on lightweight profiles col
lected at runtime. It records the execution time 
for every method called and uses this information to 
estimate performance loss from scaling the method. It 
scales the method on future invocations as long as this 
loss, including switching overhead, remains acceptably 
small. 

• We have demonstrated the advantages of runtime DVS 
over traditional static policies. Our technique is ar
chitecture independent, avoids time consuming 
offiine simulation and adapts to varying execu
tion patterns. 

• It is easily implemented in existing virtual ma
chines 

• Results obtained through simulation suggest up to a 
133 power savings with no more than a 333 perfor
mance loss. 

Given our initial predictio~ heuristic's simplicity, these num
bers are promising. However, many avenues for further 
work remain. Our first agenda is to measure power on 
real systems. We also plan to explore more sophisticated 
statistical prediction models that use multiple records of 
past information. Although time is currently our only factor 
for voltage scaling decisions, other criteria can be used. Most 

. modern processors, including the Intel x86 series, offer a de
tailed array of performance measurement counters. By mea
suring cache and TLB misses through these counters, we can 
quantify a program region's memory boundedness and make 
better voltage scaling decisions. Ideally, hardware should di
rectly expose power consumption information to a compiler. 
As many have argued[27], this would allow feedback-directed 
online algorithms to drive power consumption with explicitly 
stated energy and performance requirements. Until current 
systems off er a direct way of measuring energy consump
tion, energy can only be measured in terms of the factors 
it depends on. Thus, low energy compilation techniques, 
including ours, integrate these factors rather than energy 
per se into their cost models. 

A third avenue is to explore how code annotations can en
able more accurate online predictions for dynamic voltage 
scaling. Traditional online algorithms suffer from a learning 
lag at the start of program execution, when insufficient in
formation exists for predictions. Annotations derived from 
offiine profiling or static analysis can act as hints to the 
prediction model and assuage performan~e loss in this initial 
learning period. Krintz [16] has shown such an approach 
to be profitable for dynamic optimization in virtual ma
chines. The problem of finding suitable annotations for 
dynamic voltage scaling remains unsolved. For portabil
ity, such annotations must be expressed in an architecture 
neutral language. Another requirement is that they can 
be verified prior to execution; Malicious annotations could 
mislead DVS algorithms to make erroneous decisions that 
increase power consumption. These malicious annotations 
could then be exploited in a denial of service attack. 

Our current implementation is built on a purely interpreted 
virtual machine. We expect the major issues to remain 
the same when implementing our online algorithm for a 



just-in-time dynamic compiler with multiple optimization 
levels. However, an interesting area of investigation is to 
explore the interaction between the dynamic optimizer and 
dynamic voltage scaling algorithm. Different optimizers and 
optimized versions of code will likely have different trade-offs 
when power is introduced as a constraint. 

Likewise, devices will introduce tradeoffs due to their dif
fering computational power and resource constraints. We 
are currently porting our algorithm to the Sharp Zaurus 
handheld, which has a StrongArm 1100 processor. The 
processor offers a wide range of frequency settings. This 
will enable us to evaluate our algorithm for smaller, more 
resource-constrained devices. For portability, we also plan 
to investigate DVS issues in more powerful machines such as 
high-end servers as well as nontraditional architectures such 
as FPGAs, datafiow machines, and reconfigurable memories 
[4). 

Finally, we plan to develop algorithms for offloading parts of 
the DVS decision process to a powerful server infrastructure 
[25, 9). Such an infrastructure would support DVS analyses 
that are more computationally intensive than those that a 
resource constrained mobile device can support. It would 
allow us to increase the accuracy of DVS decisions as well 
as the speed at which these decisions are made. Speeding up 
the decision process is essential, since analysis time adds to 
a program's runtime in a dynamic optimization framework. 

We now have a framework in place that allows us to exper
iment with a variety of runtime voltage scaling algorithms. 
Moreover, due to the portability of the virtual machine we 
are using, we can experiment across a wide variety of pro
cessor and hardware architectures. 
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