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S Y S T E M S  B I O L O G Y

DeepVelo: Single-cell transcriptomic deep velocity field 
learning with neural ordinary differential equations
Zhanlin Chen1, William C. King2, Aheyon Hwang3, Mark Gerstein1,4,5*, Jing Zhang6*

Recent advances in single-cell sequencing technologies have provided unprecedented opportunities to measure 
the gene expression profile and RNA velocity of individual cells. However, modeling transcriptional dynamics is 
computationally challenging because of the high-dimensional, sparse nature of the single-cell gene expression 
measurements and the nonlinear regulatory relationships. Here, we present DeepVelo, a neural network–based 
ordinary differential equation that can model complex transcriptome dynamics by describing continuous-time 
gene expression changes within individual cells. We apply DeepVelo to public datasets from different sequencing 
platforms to (i) formulate transcriptome dynamics on different time scales, (ii) measure the instability of cell states, 
and (iii) identify developmental driver genes via perturbation analysis. Benchmarking against the state-of-the-art 
methods shows that DeepVelo can learn a more accurate representation of the velocity field. Furthermore, our 
perturbation studies reveal that single-cell dynamical systems could exhibit chaotic properties. In summary, 
DeepVelo allows data-driven discoveries of differential equations that delineate single-cell transcriptome dynamics.

INTRODUCTION
Recent advances in single-cell RNA sequencing (scRNA-seq) allow 
us to simultaneously measure gene expression profiles of individual 
cells, opening new avenues for investigating cellular development at 
an unprecedented resolution (1–6). A major goal in scRNA-seq is to 
study cell development and differentiation (7, 8). In particular, dis-
secting the regulatory cascade underlying cell state transitions is cru-
cial for understanding key biological processes such as embryonic 
development, tissue regeneration, and oncogenesis (9–12). However, 
most scRNA-seq experiments only capture a gene expression snap-
shot, making it difficult to continuously track the transcriptomic pro-
file of the same cells over time.

Several methods, such as Monocle and Palantir, can uncover broad 
developmental trends by modeling discrete cell state transitions using 
pseudotime (13, 14). Despite their success, these methods were not 
designed to model continuous-time transcriptome dynamics within 
individual cells (15). More recently, RNA velocity was proposed to es-
timate instantaneous transcriptome changes via the ratio of spliced 
versus unspliced transcripts (16). While promising in various com-
plex tissues, RNA velocity can only predict future cell states on the 
time scale of hours (17–19). To mitigate the instantaneity, linear or-
dinary differential equations (ODEs) and sparse approximation–
based methods were developed to predict the continuous evolution 
of cell states over a longer period of time (20, 21). However, tran-
scriptional regulation is a precisely coordinated biological process 
that requires complex coordination of numerous regulators, e.g., 
nonlinear interactions among obligate heterodimer transcription 
factors (TFs) (22, 23). Therefore, these linear models may underes-
timate the regulatory complexity and fail to capture the nonlinearity 
of gene expression dynamics.

Inspired by recent developments in neural ODEs and data-driven 
dynamical systems (24, 25), we present DeepVelo, a neural network–
based framework to formulate the dynamics underlying scRNA-seq 
experiments and to overcome the aforementioned challenges. Specif-
ically, DeepVelo trains a variational autoencoder (VAE) to predict the 
rate of change in gene expression (e.g., RNA velocity) from a mea-
sured transcriptomic profile. Then, we embed the VAE into an ODE 
to model continuous changes in gene expression within an individual 
cell over time. As a result, our deep-learning architecture can model 
complex nonlinear gene interactions in a regulatory cascade, reduce 
the dimensionality of the gene expression dynamics, and learn to de-
noise velocity fields in scRNA-seq. Most importantly, by piecing to-
gether cells from different developmental stages, DeepVelo can make 
accurate cell state predictions farther into the future. Distinct from 
existing methods, DeepVelo learns neural differential equations to 
describe continuous-time single-cell gene expression dynamics.

To illustrate the robustness and general validity of our approach, 
we performed a proof-of-concept case study on mouse pancreatic 
endocrinogenesis (26). Then, we applied DeepVelo to decipher the 
gene expression dynamics behind the developing mouse brain, spe-
cifically in the dentate gyrus and neocortex (27, 28). These samples 
represent scRNA-seq experiments from different tissues, technical 
platforms, and developmental time scales. We further demonstrated 
the ability of DeepVelo to deconvolve gene coexpression networks 
on two additional data sources (mouse gastrulation, developing hu-
man forebrain) and benchmarked against linear and state-of-the-art 
vector-field learning approaches on out-of-sample velocity predic-
tion accuracy (16, 26, 29).

RESULTS
A general framework using neural ODEs to model single-cell 
transcriptome dynamics
Our DeepVelo framework contains two main steps: inferring gene in-
teraction and predicting continuous cell transitions. First, DeepVelo 
connects the gene expression profile of an individual cell (   → x   ) to the 
instantaneous expression change with respect to time (RNA ve-
locity   ∂  → x   _ ∂ t   ). Distinct from existing methods that assume linear gene 
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interactions (i.e.,   ∂  → x   _ ∂ t   = A  → x    with matrix A), we train a VAE fA to 
capture the nonlinear gene regulatory relationships (e.g., multiple 
TFs coactivating gene transcription) and map gene expression 
state to the RNA velocity, expressed by   ∂  → x   _ ∂ t   =  f  A  (  → x  )  (Fig. 1, A and E). 
Consequently, the trained VAE fA can directly estimate the instan-
taneous gene expression change of individual cells from any state 
(whether measured or not). Second, given some initial gene expres-
sion state close to the data, we can numerically compute the fu-
ture (or past) gene expression states by integrating with any 
black-box ODE solver. For example, given gene expression state    →  x  0     
at time t = 0, we can use Euler’s method,    ⟶  x  t+1    =   →  x  t    +  f  A  (  →  x  t   ) , to find 

the gene expression state at    →  x  1     and can iteratively perform this step 
for    →  x  2   , … ,   →  x  n    . As a result, DeepVelo can outline the developmental 
trajectory of single cells through time by sequentially computing 
the next gene expression state. Furthermore, with different initial 
conditions    →  x  0    , our framework can derive detailed insights into the 
future (or past) of different cell states.

Here, we explored three major applications of DeepVelo in scRNA- 
seq data analysis. First, we simulated and denoised developmental 
trajectories by extrapolating the dynamics to out-of-sample cells 
(Fig. 1B). Second, we evaluated the instability of cell states by track-
ing gene expression changes along simulated trajectories (Fig. 1C). 
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Fig. 1. Schematic for DeepVelo. (A) Gene expression profiles and corresponding transcriptional velocities can be derived from scRNA-seq. After learning the mapping 
between gene expression and RNA velocity, the VAE represents a neural differential equation that encapsulates transcriptome dynamics. (B) Given an initial condition 
and time, our framework solves for the future gene expression state by integrating the VAE with a black-box ODE solver. (C) Our approach can simulate trajectories to 
evaluate the instability of cell states in a dynamical system. (D) DeepVelo can perform in silico perturbation studies to identify the developmental driver genes that deter-
mine the fate of cell bifurcations. (E) Comparison between DeepVelo and existing single-cell methods.
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Third, we performed in silico studies to investigate how perturbations 
in initial gene expression conditions affect the fate of cell bifurcations 
(Fig. 1D).

Predicting future cell states with learned neural ODEs
To evaluate whether DeepVelo can uncover dynamics from sparse 
and noisy scRNA-seq experiments, we considered a mouse pancre-
atic endocrinogenesis dataset with transcriptomes profiled at em-
bryonic day E15.5 from 10x Genomics (Fig. 2A) (26). Here, we show 

that summarizing the dynamics as neural ODEs can derive new in-
sights about the data and further our understanding of pancreatic 
endocrinogenesis.

First, we examined a hypothetical trajectory simulated from 
DeepVelo after training the VAE on pancreatic endocrinogenesis cell 
states and velocities (Fig. 2B and fig. S1). When simulating hypothet-
ical trajectories, future state predictions rely on out-of-sample cell 
states predicted from the previous time point. Hence, we evaluated the 
ability of DeepVelo to predict future cell states for an out-of-sample 

Pancreatic
endocrinogenesis

Velocity-based latent time Cell criticality index

Ductal
cells

Endocrine
progenitors

Alpha
cells

Beta
cells

Pre-endocrine
cells

S
m
ar
ca
1

C
d4
7

A
rx

G
ria
2

G
k

U
sp
18

C
pe

A
lc
am

Z
db
f2

P
am

D
oc
k1
1

A
1c
f

G
m
43
19
4

M
ct
p2

N
ap
1l
5

C
d2
00

R
nf
13
0

A
sb
4

B
dn
f

Ir
x2

Velocity-based
latent time

G
en

es

Ductal
cells

Endocrine 
progenitors

Neurog3
(endocrine development regulator)

ATP1b1
(maintaining homeostasis)

zx dx/dt

Ductal
cells

Alpha
cells

Beta
cells

Pre-endocrine
cells

( p g )( g )

Input Latent layer

Alpha cell–related Upstream DE genes

Cd47+77

Smarca1+ Arx+

Gria2+

Simulate
gene

activation

Driver gene

Nondriver gene

Pam+

Gk+kk

Change in

velocity field flow

No change

Neurog3
ATP1b1

Simulated
trajectory
consistent

with
velocity

fieldSi
m

ul
at

io
n

A
na

ly
zi

ng
 th

e 
C

C
I

Pe
rt

ur
ba

tio
ns

D
evelopm

ental tim
e

Initial
condition

dx/dt

Beta

Alpha

Pre-endocrine

Beta

Alpha

Pre-endocrine

Gene expression correlation with CCI

A B

C D E

F G H

I J K

DE
genes

Baseline

Perturbed

53%

47%

39%

61%

Endocrine
progenitors

UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2
UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

Correlation
UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

Fig. 2. Pancreatic endocrinogenesis as a dynamical system. (A) Pancreatic endocrinogenesis phase portraits projected in a low-dimensional embedding. Here, each 
cell is represented by a gene expression state and an RNA velocity vector. (B) Simulating the developmental trajectory (in viridis) of an out-of-sample cell (in red) forward 
in time, visualized in a uniform manifold approximation and projection (UMAP) embedding of the gene expression state (x), autoencoder latent layer (z). (C) Velocity- 
based latent time derived from the RNA velocity for each cell. (D) The CCI derived from DeepVelo for each cell. (E) Gene expression of cells ordered by the velocity-derived 
latent time. Here, the CCI reveals unstable cell states indicative of fate commitment with a broad shift in gene expression patterns in latent time. (F) Genes that highly 
correlate with the CCI reveal driving forces behind endocrine progenitor dynamics. (G) In particular, ATP1b1, which negatively correlates with the CCI, has an important 
function in maintaining homeostasis in stable and stationary cell types. (H) Neurog3, which positively correlates with the CCI, is a known pre-endocrine master regulator. 
These genes support the CCI as a metric for the stability of single-cell states. (I) Differential gene expression analysis of pre-endocrine cells reveals key putative genes that 
correlate with the fate of transforming into an alpha versus a beta cell. (J) Visualizing the velocity field of perturbed cell states with activation in alpha cell–related driver 
genes versus nondriver genes. The red circles highlight differences in the velocity field. (K) Early perturbation of driver genes, which are a subset of DE genes, associated 
with an alpha cell fate resulted in a higher proportion of alpha cells from the pre-endocrine cells, suggesting a causal relationship through in silico studies.
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initial condition. We simulated an out-of-sample cell by adding 
noise to the gene expression state of an existing cell, thereby repre-
senting a cell state that did not previously exist in the data. With the 
out-of-sample cell as the initial condition (represented by the red 
star in Fig. 2B), DeepVelo can compute a series of future cell states 
along the developmental trajectory (represented by the stars transi-
tioning from purple to yellow proportional to time in Fig. 2B). In 
pancreatic endocrinogenesis, the out-of-sample cell started as an 
endocrine progenitor, developed into a pre-endocrine cell, and ulti-
mately became a beta cell. When we integrated the VAE with even-
ly distributed time increments, the distances between intermediate 
states reflect the magnitude of the RNA velocity vectors. Higher rates 
of change in gene expression generated more separated intermediate 
states. Conversely, lower rates of change produced a denser collec-
tion of intermediate points along the manifold.

During VAE training, regularized loss in the latent layer pro-
motes a continuous, compact representation of locally similar cell 
states and velocities in the embedding (Fig. 2B). After training, the 
VAE latent embedding can be interpreted as a data manifold that 
combines information from gene expression states and velocities. 
Compared to gene expression embeddings, the latent embeddings 
can better disentangle distinct developmental trajectories because 
of the incorporation of velocity information. In pancreatic endo-
crinogenesis, the chronological and hierarchical orders of develop-
mental trajectories are properly encoded in the latent layer (fig. S2). 
For example, ductal cells represent a major starting state, whereas 
alpha and beta cells represent major terminal states. These could be 
used to qualitatively assess the out-of-sample predictions made by 
DeepVelo. Because the output velocity is recursively added into the 
input cell states, it is also possible to see how future cell states emerge 
from previous predictions. For example, the simulated cell migrates 
along a trajectory spanned by the gene expression, latent, and veloc-
ity manifolds.

Characterizing instability in DeepVelo-predicted trajectories 
with the cell criticality index
Next, we aimed to characterize the stable and unstable fixed points 
of this single-cell dynamical system. With only instantaneous veloc-
ity, scVelo could not track the gene expression changes of a single cell 
over a long period of time. In contrast, DeepVelo can simulate a con-
tinuously evolving hypothetical trajectory across time for each cell. 
By looking forward in time, we can numerically approximate the cell 
criticality index (CCI), which describes the future instability of single- 
cell states. For a cell, we define the CCI as the cumulative information 
change, or the cumulative Kullback-Leibler (KL) divergence, between 
gene expression distributions at each time step in the developmen-
tal trajectory. In other words, cell states that undergo large changes 
across time will have a high CCI, whereas cell states that go through 
only small changes will have a low CCI.

For each cell, we used DeepVelo to compute a developmental path 
such that the cell arrived at a steady terminal state. Then, we calcu-
lated the CCI along each path (Fig. 2D). The resulting developmen-
tal topology is similar to the classical Waddington landscape (30). 
In particular, the CCI can reveal unique topological information in 
the developmental landscape not directly observed in the velocity- 
based latent time estimated by scVelo (Fig. 2, C and E) (31). For ex-
ample, the endocrine progenitor states exhibit a higher criticality, 
whereas the ductal cell and differentiated endocrine cell states expe-
rience a lower criticality. When ductal cells undergo transformation 

into islet cell types, the heightened criticality in endocrine progen-
itors represents fate commitment or a point of no return during 
development. In dynamical systems, this behavior suggests that cell 
states with low criticality are located at a stable fixed point, with the 
cell identity remaining stable against small gene expression pertur-
bations. More interestingly, the endocrine progenitors are located at 
an unstable fixed point with properties similar to those of a chaotic 
system in which a small perturbation may result in large downstream 
changes. We can substantiate the instability of cell states by examin-
ing the genes that best correlate with the CCI (Fig. 2F). For example, 
previous experiments have shown that Neurog3, which positively cor-
relates with the CCI, is a known driver for endocrine commitment 
(Fig. 2H), and ATP1b1, which negatively correlates with the CCI, is 
important for maintaining homeostasis in stable and stationary cell 
types (Fig. 2G) (32, 33). The expression of these genes supports the 
CCI as a metric for evaluating the instability of single-cell states. 
Furthermore, when viewed in conjunction with velocity-based latent 
time, the CCI can provide new insights into the relative timing of 
critical cell states in a developmental process.

Conducting in silico perturbation studies with DeepVelo
Last, we investigated the behavior of this dynamical system with per-
turbation studies (34). The goal of in silico perturbation studies is to 
computationally identify which initial gene expression conditions 
affect the fate of cell bifurcations. In short, we used pre-endocrine 
cells (n = 592) as the initial conditions and trained a K-nearest neigh-
bors (KNN) classifier (K = 30) to identify the postbifurcation cell type. 
By allowing these pre-endocrine cells to naturally evolve according to 
the dynamics learned by DeepVelo, we observed a baseline 1:1.57 ratio 
of terminal alpha versus beta cell states, similar to the proportion 
of alpha and beta cells in the mouse pancreas (35). The ratio of ter-
minal cell states indicates that the beta cell state is a stronger attrac-
tive terminal state than the alpha cell state, which corroborates with 
previous conclusions (31). Then, we examined upstream differential 
expression (DE) between initial pre-endocrine cells of different fates 
(Fig. 2I). The results suggest that early expression perturbations in key 
upstream genes correlate with the fate of developmental bifurcations.

Further, we formulated a way to perform hypothesis testing and 
to infer causal relationships at developmental branching points (36). 
We hypothesize that fate-determining driver genes are a subset of 
upstream DE genes (Fig. 2J). To investigate which developmental 
driver genes can independently cause progenitor cells to prefer one 
trajectory over another, we strategically activated the expression of 
one alpha cell–related DE gene at a time in pre-endocrine cells, sim-
ilar to the perturbation experiments in dynamo (21). Specifically, we 
postulate that perturbations in driver genes could lead to a larger 
proportion of alpha cells as terminal cell states. We observed that 5 
of the top 20 DE genes resulted in a statistically significant increase 
(binomial test P < 0.05) in the proportion of alpha cells compared 
with the baseline with the dynamics learned by DeepVelo (Fig. 2K and 
table S1). Overall, the average ratio of alpha versus beta cells increased 
to 1.69:1. Thus, in silico perturbation studies can be used to efficiently 
and comprehensively identify developmental driver genes upstream 
of the signaling cascade. More interestingly, simulation results sug-
gest that pancreatic endocrinogenesis development exhibits prop-
erties similar to chaotic systems, where small perturbations in key 
driver genes determine the fate of cell bifurcations. In other words, 
small variations in the initial conditions of a cell may result in large 
downstream changes.
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Exploring the neural ODEs governing the developing mouse 
dentate gyrus
Here, we further evaluated whether DeepVelo can uncover the dy-
namics of a scRNA-seq dataset from a different tissue, developmen-
tal time scale, and technical platform. Specifically, we considered an 
scRNA-seq dataset of the developing mouse dentate gyrus with tran-
scriptomes profiled using droplet-based scRNA-seq (Fig. 3A) (27). 
After obtaining a neural network representation of the dentate gyrus 
dynamics, we simulated an out-of-sample cell by perturbing the gene 
expression state of an Nbl2 cell. With the out-of-sample cell as the 
initial condition, we used DeepVelo to simulate a trajectory into the 

future, which moved along the existing granule cell trajectory in the 
data (Fig. 3B). Furthermore, the VAE embeddings properly encoded 
the developmental hierarchy of cell types in the low-dimensional dy-
namic manifold.

When examining critical cell states in the dentate gyrus, we ob-
served an abrupt gene expression shift in the developmental mani-
fold, which can be visualized by ordering cells in latent time derived 
from scVelo (Fig. 3C). Specifically, the change in gene expression 
marks the transition from Nbl1 to Nbl2 cells and suggests fate com-
mitment during the transition (Fig. 3D). After calculating the CCI, 
we found that cells experiencing this abrupt change also have a high 
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Fig. 3. Developing mouse dentate gyrus as a dynamical system. (A) Dentate gyrus phase portraits projected in a low-dimensional embedding. Each cell is represented 
by a gene expression state vector and an RNA velocity vector. (B) Simulating the developmental trajectory (in viridis) of an out-of-sample cell (in red) forward in develop-
mental time, visualized in UMAP embeddings. (C) Velocity-based latent time derived from scVelo for each cell. (D) CCI derived from DeepVelo for each cell. (E) The CCI re-
veals instability during the transition from Nbl1 to Nbl2 cells, indicative of cell fate commitment. (F) Genes that highly correlate with the CCI reveal driving forces behind 
the dentate gyrus dynamics. (G) In particular, GRM5, which shows the strongest negative correlation with the CCI, encodes glutamate receptors in stable and stationary 
neurons. (H) IGFBPL-1, which shows the strongest positive correlation with the CCI, regulates neurodevelopment. (I) Baseline proportion of terminal cell types that result 
from Nbl2 cells. (J) Differential gene expression analysis of Nbl2 cells reveals key putative genes that correlate with the fate of transforming into a pyramidal versus granule 
cell. Early perturbation of each top DE genes associated with a pyramidal cell fate can result in a statistically significant (highlighted in red) higher proportion of pyramidal 
cells, suggesting a causal relationship through in silico studies. (K) Average terminal cell ratios after in silico perturbations.
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criticality, which substantiates the CCI as a metric for quantifying the 
instability of cell states (Fig. 3E). In addition, the most strongly cor-
related genes in the dentate gyrus highlight the robustness of the CCI 
as an instability measure (Fig. 3F). For example, IGFBPL-1 shows the 
strongest positive correlation with the CCI, and it has been reported 
to regulate neuron differentiation in progenitor cells (Fig. 3H). GRM5 
is the most negatively correlated gene with CCI. Consequently, GRM5 
also encodes glutamate receptors in stable and differentiated neurons 
(Fig. 3G) (37, 38).

Last, we conducted in silico perturbation studies to determine the 
genetic drivers governing dentate gyrus cell fate decisions. We allowed 
the upstream Nbl2 cell states (n = 1003) to naturally evolve accord-
ing to the dynamics captured by DeepVelo, which resulted in either 
terminal granule or pyramidal cell states categorized by a KNN clas-
sifier (Fig. 3I). The ratio of simulated granule versus pyramidal ter-
minal cell states was 1.2:1, similar to the ratio of cell states measured 
in the assay. Then, we performed DE analysis on the initial conditions 
(i.e., the Nbl2 cell states) of different fates (Fig. 3J). DeepVelo identi-
fied the pyramidal neuron developmental driver gene Runx1t1, which 
was recently shown to induce pyramidal neuron formation, with its 
deletion resulting in reduced neuron differentiation in vitro (39). In 
addition, Prox1 is a DE gene associated with a granule cell fate. This 

gene was previously identified by velocyto and experimentally vali-
dated as being necessary for granule cell formation; moreover, the 
deletion of Prox1 leads to adoption of the pyramidal neuron fate (37). 
As further validation and to identify developmental driver genes, we 
increased the expression of each pyramidal neuron–related upstream 
DE gene in Nbl2 cells and observed an elevated proportion of py-
ramidal neurons as terminal cells under the dynamics captured by 
DeepVelo. Overall, 5 of the top 20 genes resulted in a statistically sig-
nificant increase (binomial test P < 0.05) in the proportion of pyra-
midal cells (Fig. 3K and table S2). In summary, in silico perturbation 
studies can provide a low-cost alternative for identifying develop-
mental driver genes using datasets from different tissues, develop-
mental time scales, and technical platforms.

Formulating neural ODEs underlying the mouse neocortex 
across multiple embryonic days
We evaluated whether DeepVelo can learn the dynamics underlying a 
more complex developmental process. We examined an scRNA-seq 
experiment of the developing mouse neocortex with transcriptomes 
profiled at embryonic days E14, E15, E16, and E17 (Fig. 4A) (28). 
After batch correction and velocity-field learning (fig. S3), we gen-
erated an out-of-sample intermediate progenitor (IP) as the initial 
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Fig. 4. Developing mouse neocortex over multiple embryonic days. (A) Mouse neocortex phase portraits projected in a low-dimensional embedding. (B) Simulating 
the trajectory (in viridis) of an out-of-sample cell (in red) forward in developmental time, visualized in gene expression embeddings and VAE latent layer embeddings. 
(C) Velocity-based latent time derived from scVelo. (D) The CCI reveals two unstable fixed points indicative of a biphasic fate-commitment dynamic. (E) One latent time point 
highlights the transition from APs to IPs, and the other highlights the transition from MNs to CFNs. (F) Baseline proportion of terminal cell types from MNs. (G) Differential 
gene expression analysis of the simulated MNs reveals key putative genes that correlate with the fate of transforming into an ITN versus CFN. (H) Early perturbation of the 
top DE genes associated with a pyramidal cell fate resulted in an average 10% higher proportion of ITNs from the perturbed MNs.
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condition (Fig. 4B). The simulated developmental trajectory suggests 
that the hypothetical IP transitioned into a migrating neuron (MN) 
and then subsequently became a CorticoFugal neuron (CFN). The 
distance between each time step was larger when the simulated cell 
was an IP compared with an MN, indicating that the IPs transition 
at a faster rate than the MNs. The latent layer embeddings also prop-
erly encoded the progression from neural progenitors to differenti-
ated neurons (Fig. 4B).

When analyzed in conjunction with velocity-based latent time, 
we observed a biphasic fate-commitment dynamic with high criti-
cality among IPs and MNs but low criticality in apical progenitors 
(APs) through the CCI (Fig. 4, C to E). This finding suggests that 
APs play a more important role in self-renewal, whereas the IPs 
are preprogrammed for neuronal differentiation through a broader 
shift in gene expression patterns. In addition, as MNs branch into 
IntraTelencephalic Neurons (ITNs) and CFNs, DeepVelo can effec-
tively disentangle the underlying bifurcation dynamics. When we 
allowed a set of MNs (n = 1000) to evolve according to the dynamics 
learned by DeepVelo, we observed a baseline 3:7 ratio of ITNs versus 
CFNs (Fig. 4F). After perturbing the initial DE genes associated with 
an ITN fate on the same set of MNs (Fig. 4G), we observed an aver-
age 10% increase in ITN proportion compared with the baseline 
(Fig. 4H). These observations indicate that DeepVelo can accurately 
learn an overarching neural ODE of mouse neocortex gene expres-
sion dynamics spanning several embryonic days. Furthermore, these 
results suggest that our framework can identify driver genes that play 
crucial roles in developmental dynamics with a continuous repre-
sentation of velocity fields.

Reconstructing gene coexpression networks with  
retrograde trajectories
Gene coexpression networks have been widely used to connect genes 
of unknown function to biological processes, discern transcriptional 
regulatory relationships, and prioritize candidate genes for genetic 
disorders. scRNA-seq experiments are particularly useful in dis-
secting these networks because of the single-cell resolution and cell 
type specificity. However, it is computationally challenging to de-
tect strong correlations between genes using scRNA-seq data due to 
the noisy and sparse transcript measurements in single-cell experi-
ments (40–42).

Therefore, we propose to use DeepVelo’s denoising VAE to re-
duce the variability along a developmental trajectory caused by the 
sparsity and noise in scRNA-seq data (Fig. 5A and fig. S4). To ac-
count for the tissue specificity, we used differentiated (or terminal) 
beta cells as the initial conditions and reversed the developmental 
time using DeepVelo. As a result, the retrograde developmental tra-
jectory represents the gene dynamics that would have resulted in 
the terminal cell types. To compare the robustness of gene coexpres-
sion networks from DeepVelo versus scRNA-seq, we performed gene 
ontology (GO) analysis after biclustering the coexpression matrices 
with the same genes. We found that the gene coexpression modules 
from retrograde trajectories have more significant correlations com-
pared to the gene modules from static cells. Furthermore, we postu-
late that more coherence within gene modules would form clusters 
with higher enrichment on cell type–specific GO terms (Fig. 5B). 
Benchmarking on four datasets shows that functional gene modules 
found from denoised and dynamic cells in retrograde trajectories 
have at least two orders of magnitude higher enrichment for cell 
type–specific GO terms than static cell clusters (Fig. 5C). Therefore, 

the retrograde trajectories computed by DeepVelo effectively disen-
tangle trajectory-specific gene regulatory networks and can provide a 
computational solution for boosting signal-to-noise ratios in single- 
cell gene coexpression networks.

Comparing DeepVelo with existing methods
DeepVelo qualitatively differs from existing ODE-based regulatory 
networks (43). First, explicitly deriving differential equations for bio-
logical processes is only feasible when examining small-scale sys-
tems (44–47). In contrast, DeepVelo can capture high-dimensional 
interactions and can scale to a large number of variables. Second, 
DeepVelo uses a neural network to learn potentially nonlinear gene 
interactions, which is more suitable for modeling complex biologi-
cal processes compared with linear ODEs and other kernel-based 
sparse approximation methods (48, 49). In particular, we compared 
DeepVelo with the linear method and the state-of-the-art vector- 
field learning approach SparseVFC (21). Given the same training data 
with gene expression state as input and RNA velocity as the ground 
truth output, we evaluated the accuracy of the RNA velocity predic-
tions using mean square errors. Benchmarking results on six data-
sets show that our method can reduce the RNA velocity prediction 
error by at least 50%, indicating that DeepVelo can provide a more 
accurate representation of velocity vector fields and compute future 
cell states with better numerical precision (Fig. 5D and fig. S5). In 
terms of runtime and peak memory usage, DeepVelo can also be effi-
ciently accelerated with graphic-processing units (fig. S6). Last, many 
previous ODE-based methods use pseudotime as a substitute for 
time. In comparison, DeepVelo uses RNA velocity, which reflects unit 
time on the scale of hours (20).

DISCUSSION
Recent advances in single-cell sequencing technologies have opened 
new avenues for investigating a fundamental question in biology: 
How do individual cells undergo precise and highly coordinated reg-
ulation to become complex tissues? Previously, computationally mod-
eling these continuous biological processes was challenging because 
of the sparse, noisy RNA measurements, complex gene regulatory 
relationships, and destructive nature of many sequencing experiments 
(e.g., can only capture a snapshot of the developmental trajectory). 
Here, we propose DeepVelo, a computational framework that can 
learn to model the underlying nonlinear, continuous-time gene ex-
pression dynamics of transitioning single cells.

Distinct from existing tools that view single-cell datasets as a static 
manifold (13, 14, 50), DeepVelo treat individual cells as a dynamic 
system continuously transitioning from one state to another. Hence, 
by deriving accurate differential equations that quantify the gene 
expression dynamics of single cells, DeepVelo can answer many ques-
tions about cell fates and the genetic drivers governing develop-
mental trajectories. In addition, numerous studies have reported that 
gene regulatory relationships are highly tissue-specific and nonlin-
ear. For instance, multiple TFs can both compete and collaborate to 
use several proximal and distal cis-regulatory elements to initialize 
gene transcription (51, 52). Existing methods often ignore these non-
linear relationships and thus may fail to accurately predict expres-
sion changes from existing RNA measurements. In contrast, DeepVelo 
leverages a deep neural network to capture complex gene interac-
tions in a data-driven manner, allowing more precise expression- to-
velocity connections. Currently, DeepVelo only models gene expression 
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dynamics within a single cell. A future direction could expand the 
state space of DeepVelo and incorporate gene interactions between 
spatially neighboring cells using spatial transcriptomics (53).

We demonstrated the benefit of our DeepVelo model via three 
applications. First, we showed DeepVelo’s ability to simulate accurate 
cell trajectories on out-of-sample cells. Furthermore, by reversing 
the developmental time of differentiated cells, retrograde trajectories 
can deconvolute trajectory-specific gene coexpression networks 
and discover more coherent cell type–specific gene modules. Second, 
we designed a generalizable metric called the CCI, analogous to the 
“kinetic energy” of a Waddington landscape, to accurately measure the 
magnitude of gene expression changes along developmental paths 
(30). In our analysis, we demonstrated that the CCI could highlight 
critical fixed points in single-cell dynamical systems. It is worth 
noting that instantaneous higher-order derivatives of velocity com-
puted from dynamo are different from the integral-based CCI that 
captures changes across long periods of time. Third, we performed 
in silico gene perturbation studies in the context of developmental 
dynamical systems, which is different from existing tools that predict 
experimental perturbations such as scGEN and MELD (54, 55).

In summary, we introduce the computational framework DeepVelo 
to model continuous-time transcriptional dynamics from scRNA-
seq data. DeepVelo has demonstrated potential for dissecting regu-
latory trajectories, highlighting critical cell states, and prioritizing 
developmental driver genes. Potential directions for future improve-
ment include incorporating other modalities for regulation rela-
tionship inference and formulating the model as neural stochastic 
differential equations. With the exponential growth of scRNA-seq 
data, DeepVelo can be a useful tool for the community to illuminate 
the rules governing cell state dynamics and cell fates.

MATERIALS AND METHODS
Data collection and preprocessing
scRNA-seq data (mouse pancreatic endocrinogenesis, dentate gyrus, 
gastrulation, neocortex, and human forebrain) were downloaded 
from the National Center for Biotechnology Information (NCBI) 
Gene Expression Omnibus repository and the Sequence Read Archive. 
The raw FASTQ files were preprocessed using Cellranger v6.0.1 with 
default parameters (56). As references, we used GRCh38 (2020-A) 
for human samples and mm10 (2020-A) for mouse samples. After 
preprocessing, we obtained an mRNA count matrix with rows as 
cells and columns as genes. Then, using the Cellranger intermediate 
outputs, we computed the amount of spliced and unspliced mRNA 
transcripts using the velocyto package with default parameters (16). 
The output was a loom file with spliced and unspliced mRNA counts 
for each cell and gene.

For preprocessing and computing RNA velocities, we followed 
the procedure recommended by scVelo (31). We selected the top 
3000 highly variable genes with at least 20 mRNA reads and normal-
ized the mRNA counts within each cell (using the scv. pp. filter_and_ 
normalize function in scVelo). The normalized mRNA count matrix 
became the gene expression state matrix. Then, we log-transformed 
the normalized spliced and unspliced counts for moment calcula-
tions. First- and second-order moments were computed using the 
top 30 principal components (PCs) and the top 30 nearest neighbors 
(using the scv. pp. moments function in scVelo). After recovering the 
dynamics using the moments, RNA velocity was computed with the 
generalized dynamical model from the raw normalized reads (using 

the scv. tl. velocity function and mode = ”dynamical” setting in scVelo). 
Only the velocity genes were used as features for the neural ODE. The 
numbers of cells and available velocity genes for each dataset are 
shown in Table 1.

VAE architecture
High-dimensional single-cell dynamical systems are difficult to model 
due to high degrees of freedom. For example, the number of fea-
tures can sometimes be larger than the number of data points. Con-
sequently, gene expression would only vary in a small portion of 
dimensions. Therefore, modeling the gene expression dynamics of 
a low-dimensional manifold embedded in high-dimensional data is 
a challenging task. Consequently, autoencoders can reduce the di-
mensionality of the data by introducing an information bottleneck. 
Accordingly, when used to represent dynamical systems, autoen-
coders can restrict cell transitions to only movements along the 
low-dimensional manifold.

A VAE consists of an encoder, which parametrizes Gaussian dis-
tributions to be sampled from, and a decoder, which transforms the 
sampled values into the output. For the encoder and the decoder, 
four dense layers (size 64 as the intermediate layer and size 16 as 
the latent layer) with relu activation were constructed using the 
Tensorflow and Keras packages (57, 58). The VAE takes the gene ex-
pression state as input, and outputs the RNA velocity. In the VAE, 
the encoder layers with weights We and biases be produce the hidden 
layer h(x), which parametrizes the location and scale of i Gaussian 
distributions. Then, a sample from each reparametrized Gaussian 
distribution zi is used as input for the decoder layer with weights Wd 
and biases bd. The architecture can be expressed as

  EncoderLayer(x ) = h(x)  (1)

  = Relu( b  e   +  W  e   * x)  (2)

     i  (x ) = EncoderLayer(h(x ) )  (3)

       2   i  (x ) = EncoderLayer(h(x ) )  (4)

   ϵ  i   ~ N(0, I)  (5)

     z  i   ~    i   (     ∂ x ─ ∂ t   )   +  ϵ  i   *      2   i    (     ∂ x ─ ∂ t   )     (6)

  DecoderLayer( z  i   ) = Relu( b  d   +  W  d   *  z  i  )  (7)

where the Relu(z) activation function is

  Relu(z ) = max(0, z)  (8)

We used the mean squared error as the reconstruction loss and 
minimized the loss with the Adam optimizer. To prevent overfit-
ting and to encourage a sparse representation of latent embed-
dings, L1 regularization was added to the activation of all layers with 
 = 1 × 10−6. The evidence lower bound loss function with    (  z∣ ∂ x _ ∂ t   )   =  
N(   i   (    ∂ x _ ∂ t   )  , diag(     2   i   (    ∂ x _ ∂ t   )   ) )   p(z) = N(0, I), can be described as

   L (     ∂ x ─ ∂ t  ,  ̂    ∂ x ─ ∂ t    )   = KL Divergence + Reconstruction Loss   (9)
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   = KL(q (  z∣  ∂ x ─ ∂ t   )   ‖ p(z ) ) −  ∑ i=1  D      (     ∂ x ─ ∂ t   −  ̂    ∂ x ─ ∂ t    )     
2

    (10)

Because the input and output vectors are sparse, a small learning 
rate of 0.00001 was used with a batch size of 32. Early stopping was 
added once the validation loss did not improve for three consecu-
tive epochs (fig. S7).

Initial value problems and ODE solvers for integration
Our framework can be used to predict gene expression profiles across 
time. Given t0 and    → x  (0 ) =  x  0   , this is an initial value problem with the 
goal of solving    → x  (t ) =   →  x  t     for any t

    ∂  → x  (t) ─ ∂ t   = f(t,   → x  (t ) )  (11)

Here, f is only a function of the state    →  x  t     such that  f =  f  A  (  →  x  t   ) . Then, 
the equation becomes

    ∂  →  x  t    ─ ∂ t   =  f  A  (  →  x  t   )  (12)

The first-order Euler’s method for finding the state    ⟶  x  t+1     is

    ⟶  x  t+1    =   →  x  t    +   ∂  →  x  t    ─ ∂ t    (13)

  =   →  x  t    +  f  A  (  →  x  t   )  (14)

However, we can use higher-order ODE solvers from the SciPy pack-
age to find a more accurate solution (59). The explicit Runge- Kutta 
method of order 8 (DOP853) was used to obtain the most accurate 
solutions, but it has a slow runtime. The explicit Runge-Kutta meth-
od of order 3 (RK23) can be used to trade off accuracy for a faster 
runtime.

From the preprocessing steps, gene expression state x is the nor-
malized mRNA count, and RNA velocity   ∂ x _ ∂ t    is the rate of change of 
the normalized mRNA counts. The predicted RNA velocity should be 
linearly scaled before being used to approximate numerical deriva-
tives with respect to time for integration. We estimated that a velocity 
scaling factor of 0.65 ± 0.05 worked well in terms of our normaliza-
tion and integration procedures. Furthermore, to estimate the max-
imum number of steps to integrate to reach the terminal state of a 
cell, we computed the 2 SD range for the expression of each gene. 
Then, we divided the range of each gene by the mean velocity to find 
the step size of each gene. The maximum step size is defined as the 
95th to 99th percentile of the step sizes. More simply, the maximum 
step size would allow a 2 SD change in the expression of at least 95% 
of the genes.

Addressing drift effects
In control theory, using only the previous state and the velocity vec-
tors to predict the next state can result in a phenomenon called 
“dead reckoning,” where the errors accumulate after each step (60). 
Under our framework, RNA velocity prediction errors could come 
from many factors. For example, the VAE may not have enough in-
ternal (e.g., genes) or external (e.g., environmental) features to accu-
rately predict RNA velocities. The black-box integration procedures 
may also introduce numerical errors. To mitigate this effect, we used 
two strategies

1) Instead of a traditional VAE, we trained a denoising VAE to 
reduce the variance of the predicted RNA velocity. By adding a small 
exponentially distributed noise ϵ ( < 104) to the gene expression 
read count inputs during training, we could increase the generaliz-
ability of the input space and improve extrapolations to out-of-
sample cell states.

    ∂  → x   ─ ∂ t   =  f  A  (  → x   + ϵ)  (15)

2) As we integrated the VAE over some time, we found reference 
cells in the data manifold every few steps and continued integration 
from the reference cell, as a form of a high-gain Kalman filter. We des-
ignated the intermediate step size as a hyperparameter relative to the 
step size. For example, after integrating for five intermediate steps, 
we projected the predicted (or extrapolated) gene expression state 
to the original dataset using the top 30 PCs. Then, we identified the 
KNN (K = 5) within the principal components analysis (PCA) em-
beddings. The reference cell is defined as the mean expression profile 
among those KNN cells from the dataset, and ODE integration con-
tinued from this reference cell. This allowed our prediction to ad-
here closely to the data manifold and further reduced the degree of 
freedom. Consequently, finding reference cells in the data also con-
structed boundary conditions when integrating a dynamical system. 
For example, once the extrapolated state went beyond the cellular 
manifold, there were no cells in the data to serve as a reference, but 
the nearest neighboring cells from the dataset could still construct a 
reference cell from where integration could continue.

Classifying future cell states simulated by DeepVelo
Given an initial cell state, we can integrate the autoencoder to find 
future cell states. To identify the cell types of the cell states simulated 
by DeepVelo, we trained a nonparametric KNN classifier (K = 30) 
that takes the top 30 PCs of the gene expression states as input and 
outputs the cell type labels (61). For each new cell state, the gene ex-
pression vector is projected onto the same top 30 PCs, which is passed 
to the trained KNN classifier for cell type prediction. The output is 

Table 1. Summary of scRNA-seq datasets used in this study.  

Organism Tissue Number of cells # of velocity genes

Mouse Pancreatic endocrinogenesis 3,696 1,027

Mouse Dentate gyrus 18,213 1,304

Mouse Gastrulation 89,267 592

Mouse Neocortex 32,061 2,444

Human Forebrain 1,720 826
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a zero to one probability of whether the cell belongs to each cell 
type. The new cell state is categorized under the cell type with the 
highest predicted probability.

Measuring instability with the CCI
By solving for the developmental path of a single cell, we can mea-
sure the amount of gene expression change along a trajectory, rather 
than comparing only the difference between the start and end states. 
Previously, StemID used the entropy of the gene expression distri-
bution to heuristically identify stem cells in single-cell transcriptome 
data, where pluripotent cells tend to have a more uniform gene ex-
pression distribution with a higher entropy and differentiated cells tend 
to have a lower entropy (62). If    

→
  x   g    denotes the expression state of the 

genes g, then the StemID of the gene expression state is defined as

  StemID(  → x   ) = −  ∑ i∈g      x   i  log( x   i )  (16)

We reasoned that a change in the gene expression distribution 
(e.g., from high to low entropy) can be captured using the relative 
entropy (or the KL divergence). On the basis of this idea, we devised 
a measure to quantify the capacity for any cell to undergo a gene 
expression change in the dynamical system. The CCI is calculated as 
the cumulative information change or the cumulative KL divergence 
between gene expression distributions at each step in the develop-
mental trajectory. Different from StemID, the CCI can quantify the 
gene expression change of a cell regardless of the pluripotency (fig. 
S8). As an analogy, StemID measures the “potential energy” of a cell’s 
ability to differentiate, whereas the CCI measures the kinetic energy 
of a cell’s ability to change. If    

→
  x t  

g    denotes the expression state of the 
genes g at time t, then the cumulative KL divergence for T = 35 steps 
can be defined as

  CCI(  → x   ) =  ∑ t=0  T   KL(  
⟶

  x t+1  g    ‖   
→

  x t  
g  )  (17)

   =  ∑ t=0  T     ∑ i∈g      x t+1  i   log (     
 x t+1  i  

 ─ 
 x t  

i  
   )     (18)

Sampling out-of-sample cells and simulating perturbations
To sample initial gene expression states, we computed the median 
expression profile of a certain cell type (e.g., pre-endocrine progen-
itors in pancreatic endocrinogenesis) and added exponentially dis-
tributed noise using the variance of each gene within that cell type 
to randomly increase or decrease gene expression. To simulate per-
turbation in one gene, the 99th percentile expression level of that 
gene was applied to the initial conditions and subsequently to all the 
intermediate states. Terminal cell identity was determined by pro-
jecting the data onto the top 30 PCs and classified by using a KNN 
classifier (with K = 30). With the scVelo package, the dynamical mode 
estimates a variance for each gene over all cells, whereas the stochas-
tic mode estimates a variance for each cell. Note that to model sto-
chasticity in the stochastic mode, our framework could be easily 
adapted to also learn the variance of the velocity vectors (as neural 
stochastic ODEs).

In silico perturbation studies
We divided the in silico perturbation study into three steps:

1) The upstream progenitor cell gene expression states were 
selected as initial conditions. First, we solved all of the initial gene 
expression states over time to establish a developmental baseline. 

Specifically, we aimed to observe the natural proportion of terminal 
cell types that could arise from the dynamical system without any 
intervention.

2) Then, we identified DE genes in the initial gene expression 
states that correlate with development into a particular terminal cell 
type later in time. Differential gene expression was performed using 
the scanpy package with the Wilcoxon test and Bonferroni correc-
tions (63).

3) Last, we perturbed one trajectory-specific DE gene at a time in 
the initial gene expression states. The subset of upstream DE genes 
that resulted in a statistically significant increase (via a binomial test) 
in the proportion of cells toward the terminal cell type are catego-
rized as developmental driver genes.

Retrograde trajectory simulation
Similar to the in silico perturbation studies, we computed the medi-
an expression profile of a terminal cell type (e.g., beta cells, granule 
cells, glutamatergic neurons, or erythroid cells) in each scRNA-seq 
experiment (mouse pancreatic endocrinogenesis, dentate gyrus, hu-
man forebrain, and mouse gastrulation) as the representative initial 
condition. A set of cells (n = 50) was sampled from each represent-
ative initial condition by adding exponentially distributed noise using 
the variance of gene expression of the terminal cell type. The retro-
grade trajectory for each cell was simulated by subtracting the predicted 
RNA velocities from the gene expression state during integration

    ⟶  x  t−1    =   →  x  t    −   ∂  →  x  t    ─ ∂ t    (19)

  =   →  x  t    −  f  A  (  →  x  t   )  (20)

After integrating for 15 discrete steps each with 5 intermediate 
steps, a gene correlation matrix of the cells in retrograde trajectories 
was calculated.

GO enrichment analysis
Hierarchical biclustering was performed on the coexpression matrices, 
and three gene clusters were identified from each coexpression matrix, 
representing three functional modules. We performed GO enrich-
ment analysis on each functional module using GOATOOLS (64). 
To construct the background, we used the NCBI protein-coding 
genes (www.ncbi.nlm.nih.gov/gene/) for human (Taxonomy ID 9606) 
or mouse (Taxonomy ID 10090). We intersected the NCBI protein- 
coding genes with genes expressed by at least 10 cells in each scRNA- 
seq dataset to create a tissue-specific background. In addition, we 
used the GOs from http://geneontology.org/ontology/go-basic.obo 
and gene associations (file named gene2go.gz) from https://ftp.ncbi.
nlm.nih.gov/gene/DATA/. After performing Fisher’s exact test, we 
calculated the Benjamini-Hochberg false discovery rates to correct 
for multiple testing. To compare between two coexpression matrices, 
we considered the most significant enrichment out of the three clus-
ters for each GO term. In Figs. 3A and 5A, the most significantly en-
riched GO terms associated with biological processes are listed next 
to each gene cluster.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
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