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Do notifications affect households’ willingness to pay to avoid power 
outages? Evidence from an experimental stated-preference survey 
in California 

Will Gorman a,*, Duncan Callaway b 

a Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 90-4000, Berkeley, CA 94720, USA 
b Energy and Resources Group, University of California, Berkeley, 345 Giannini Hall, Berkeley, CA 94720, USA   

A R T I C L E  I N F O   

Original content: Do notifications affect 
consumers willingness to incur power outages? 
Evidence from Public Safety Power Shutoffs in 
California (Original data)  

Keywords: 
Value of lost load 
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Back-up power 
Public Safety Power Shutoffs 

A B S T R A C T   

How much should electric utilities pay to maintain a reliable electricity system? This paper describes an open- 
ended stated-preference experiment that generates estimates for how advanced notification impacts household 
willingness-to-pay (WTP) to avoid outages. We find positive and statistically significant WTP to avoid power 
outages of $10/kWh, consistent with the expectation that outages are costly to the residential sector. We find 
notification reduces the WTP, but the effects are not statistically significant. There is limited evidence that these 
results vary by income and wealth levels. Back-up power ownership is positively correlated with respondents’ 
WTP to avoid outages.   

1. Introduction and literature review 

Electric power outages are costly and negatively impact individuals, 
businesses, and governments. For individuals, outages result in the loss 
of food, access to leisure activities, and potentially vital health services 
such as breathing machines. For businesses, electricity is often critical to 
serving customers and earning revenues while governments rely on 
electricity to provide vital public services. Balancing the benefits of 
avoiding power outages with the cost of electric grid investments is a 
long-studied and fundamental trade-off in energy economics and elec-
tricity system design (Crew and Kleindorfer, 1978; Munasinghe and 
Gellerson, 1979; Telson, 1975). In the U.S., utility business practice and 
regulatory decisions have resulted in a low frequency of power outages, 
with less than 5 h of outage per customer in recent years (Arlet, 2017; 
EIA, 2020; Spees et al., 2013). 

Regulators and utilities often make use of a measure of the marginal 
damages from outages known as the Value of Lost load or “VoLL” 
(Fig. 1–1) to weigh the cost of increasing grid resilience against the 

reliability benefits those investments deliver (Gorman, 2022). For 
example, by comparing the VoLL to the cost of new generation, planners 
can identify a socially optimal planning reserve margin (Carvallo et al., 
2021; Frayer et al., 2013; London Economics, 2013; Pfeifenberger et al., 
2013). The VoLL can also be used to optimize investments in electricity 
networks (Moreno et al., 2020), especially distribution systems, where 
the majority of network-related power outages occur in the U.S. (Eto 
et al., 2019).1 The VoLL is also a key parameter in decisions to manage, 
upgrade, and/or shut-off electric transmission and distribution infra-
structure during extreme weather events (Fenrick and Getachew, 2012; 
Larsen, 2016), and it can clarify investment trade-offs in the face of 
climate change-induced challenges to grid infrastructure such as wild-
fire, hurricanes and winter storms (Abatzoglou et al., 2020; Chen et al., 
2017). In the past decade, natural disasters such as Hurricane Maria in 
Puerto Rico, electricity-induced wildfires in California, and Superstorm 
Sandy in the Northeast has led to increasing calls for grid hardening 
(Walton, 2017) 

Prior studies to estimate the VoLL have either taken a stated 

* Corresponding author. 
E-mail address: wgorman@lbl.gov (W. Gorman).   

1 Past research in the United States found that the distribution network incurs between 92% and 94% of allpower interruptions, a breakdown that has been 
consistent overtime. 

Contents lists available at ScienceDirect 

The Electricity Journal 

journal homepage: www.elsevier.com/locate/tej 

https://doi.org/10.1016/j.tej.2024.107385 
Received 27 October 2023; Received in revised form 3 February 2024; Accepted 25 February 2024   

https://osf.io/tcg8p/
https://osf.io/tcg8p/
https://osf.io/tcg8p/
https://osf.io/tcg8p/
https://osf.io/tcg8p/
mailto:wgorman@lbl.gov
www.sciencedirect.com/science/journal/10406190
https://www.elsevier.com/locate/tej
https://doi.org/10.1016/j.tej.2024.107385
https://doi.org/10.1016/j.tej.2024.107385
https://doi.org/10.1016/j.tej.2024.107385
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tej.2024.107385&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


The Electricity Journal 37 (2024) 107385

2

preference approach or use production function methods (Caves et al., 
1990). These approaches are especially common in high-income coun-
tries where experimental research designs with random assignment of 
reliability outcomes are infeasible due to equity and access concerns in a 
system which already maintains a high amount of reliability (Fowlie 
et al., 2018). 

In the stated preference approach, households and/or firms are 
typically asked either how much they would be willing to pay (WTP) to 
avoid a hypothetical power outage or how much they would have to be 
paid to accept (WTA) a hypothetical outage. Many of these studies exist 
for populations in the United States (Baik et al., 2020; Chowdhury et al., 
2004; Sullivan et al., 2009), Europe (Abrate et al., 2016; Broberg et al., 
2021; Praktiknjo, 2014), and numerous other regions (Alberini et al., 
2022) and have estimated a wide VoLL range between $1–25/kWh for 
private end users of electricity (Schröder and Kuckshinrichs, 2015). This 
large range is due to a variety of factors including the context (i.e. 
various countries, different customer types, and differing outage dura-
tions) and the study design (Hartman et al., 1991; Hausman, 2012). In 
contrast, production function methods involve estimating (or, more 
commonly, calibrating) a representative electricity-using firm’s or 
economy’s production function using data on outputs, electricity, and 
other inputs (Castro et al., 2016; Shipley et al., 1972). One then calcu-
lates the implied effect of a power outage by constructing an estimate of 
output in the absence of power (Munasinghe and Gellerson, 1979; Wolf 
and Wenzel, 2016). A similar method is used for households, where 
researchers estimate either a household income production function or a 
leisure production function (Becker, 1965). Similar to stated preference 
methods, production function methods have estimated a wide VoLL 
range between $6–45/kWh for private end users of electricity (Schröder 
and Kuckshinrichs, 2015). 

Outages that affect customers are typically unplanned. However, 
since 2019, millions of customers in California have been impacted by 
“Public Safety Power Shutoffs” (PSPSs). These outages occur during 
extreme fire risk conditions to prevent electricity infrastructure from 
causing ignitions that lead to destructive wildfires (Wong-Parodi, 2020). 
For instance, the 2018 Camp fire destroyed the town of Paradise, burned 
over 18,000 structures, and resulted in 85 deaths (CalFire, 2021), 
making it the United States’ deadliest fire in a century. Because extreme 
fire risk conditions are forecastable, it is possible to notify customers in 
advance of a PSPS event. More recently, in 2021, PG&E began imple-
menting an “enhanced power safety shutoff” (EPSS) program that in-
creases the sensitivity of distribution system circuit breakers to 
ignition-causing incidents such as vegetation contact (PG&E, 2023). 
Because EPSS events come without advance warning, this program 
reduced PG&E’s ability to notify its customers before wildfire 
mitigation-related outages occur. However, it is difficult to evaluate the 

costs and benefits of these programs relative to each other, because little 
is understood about the value of advance notice and its timing (Caves 
et al., 1990; Schröder and Kuckshinrichs, 2015; Sullivan et al., 2009). 
This paper aims to fill this gap. 

More broadly, understanding the benefits of advance notice can help 
decision makers evaluate investments in communications infrastructure 
and procedures that enable longer lead time decisions. The answer to 
this question also has important implications beyond direct costs on 
customers. For example, lack of advance notice may increase a cus-
tomer’s propensity to purchase backup power. This result could un-
dermine environmental policy if outages are sufficiently costly and 
frequent, leading customers to invest in fossil fueled back-up generators 
and increasing emissions, noise, and risks of hazards associated with fuel 
storage (Farquharson et al., 2018; Hwang et al., 2023; King, 2021; Moss 
and Bilich, 2021). 

In this paper we develop an experimental survey to understand how 
advanced notification of future power outages impacts a customer’s 
VoLL. The experimental open-ended stated-preference survey focuses on 
consumer behavior and expectation surrounding recent PSPS events in 
California. We test a hypothesis that customer notifications could reduce 
the social cost of planned outages in the new context of wildfire risk. 
Furthermore, we compare survey results for customers with and without 
backup power. Though such information is commonly studied in low- 
income contexts (Abdisa, 2018; Jha et al., 2021), it is rare in the liter-
ature studying high-income countries. There are several other power 
outage experiences that could influence respondent WTP that were not 
explored in our survey. While our study focused on backup ownership 
and outage notification, other outage contexts like outside weather 
conditions (i.e. extreme hot or cold during outage) or geographic 
exposure (i.e. widespread or contained outage) could influence WTP 
estimation (Gorman, 2022). 

While our research focuses on electricity systems, it also relates to 
the broader literature on the detrimental impact of uncertainty on 
economic outcomes (Baker et al., 2016; Ben-David et al., 2018; Jackson 
et al. n.d; Kliesen et al., 2018). Though advance warning technology for 
natural disasters such as earthquakes, wildfires, and hurricanes is 
increasingly available (Andrews et al. n.d; DeVries et al., 2018; NAS, 
1991; Serna, 2020), we have limited empirical evidence on the benefits 
of these technologies (Escaleras and Register, 2008; Kellenberg and 
Mobarak, 2011). Such evidence is critical for determining the optimal 
level of investment in them, and this paper contributes important 
knowledge about public investment in early-warning systems. The 
experiment focuses on wildfires and their interaction with electricity 
consumption, allowing us to estimate the value of resolving uncertainty 
in the specific context of household electricity decision making. 

Overall, we find positive and statistically significant WTP to avoid 
power outages. While we show that advanced notice of a power outage 
reduces the WTP to avoid those power outages, these effects were not 
statistically significant. The insignificance shows that there was no 
measurable effect of notification on a consumer’s power outage cost 
within our sample, suggesting that notification may not have a central 
impact on WTP when compared to other factors. Still, notification did 
serve to reduce WTP amounts between 10% and 20%. We calculated an 
average VoLL of $10–14/kWh, within the range of estimates in prior 
work (Schröder and Kuckshinrichs, 2015). Other key results relate to 
heterogeneity across household wealth, which was negatively correlated 
with WTP, a counter intuitive result if one expects that ability to pay to 
be positively correlated with WTP outcomes. Lastly, we find that 
back-up power adoption ownership within the sample showed positive 
correlation with respondents’ WTP to avoid outages. 

Fig. 1–1. Illustration of Tradeoff between grid investments (red line) and value 
of lost load (blue line). 
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2. Methods 

The experimental approach measures the stated VoLL among a ran-
domized sample of California residents age 18+ as selected from the 
National Opinion Research Center’s (NORC’s) AmeriSpeak Panel.2 

AmeriSpeak is designed to be representative of the United States house-
hold population. U.S. households are randomly selected with a known, 
non-zero probability from the NORC National Frame as well as address- 
based sample (ABS) frames, and then recruited by mail, telephone, and 
by field interviewers face to face. The panel uses sampling strata based on 
age, race/ethnicity, education, and gender (48 strata in total). The size of 
the selected sample per sampling stratum is determined by the population 
distribution for each stratum. In addition, sample selection considers 
expected differential survey completion rates by demographic groups so 
that the set of panel members with a completed interview for a study is a 
representative sample of the target population. If panel household has 
more than one active adult panel member, only one adult in the house-
hold is eligible for selection (random within-household sampling). 

The survey was offered in English and Spanish and was administered 
on the web. Limiting the sample to California should reduce hypothet-
ical bias common to contingent valuation due to the state’s recent 
wildfires and PSPS programs as residents of the state should have more 
familiarity with the risks of power outages. Importantly, we apply panel 
base sampling weights provided by NORC that account for non- 
response. The cumulative response rate accounting for sample recruit-
ment (17%), household retention (75%), and survey completion (21%) 
was 2.75%. In addition, due to the focus on a California subsample of 
NORC’s AmeriSpeak Panel, we supplemented the sample with re-
spondents from the Lucid’s nonprobability online opt-in panel. NORC 
used their TrueNorth3 calibration services to explicitly account for po-
tential bias of combining probability and nonprobability-based samples 
(Cornesse et al., 2020; Ganesh et al., 2017; Yang et al., 2018). TrueNorth 
is the NORC calibration solution for combining probability and 
non-probability samples for estimation through small area modeling 
that leverages data from AmeriSpeak, the American Community Survey, 
Current Population Survey, and other data sources for improved statis-
tical efficiency. Please see more detail about sampling weights and the 
TrueNorth in the supplemental information section. 

The online interviews were open from Monday, December 20th, 
2021 through Monday, January 3rd, 2022. NORC took the following 
steps to notify and gain the cooperation of invited Panelists for this 
survey: (1) invitation emails on Monday, December 20th and Tuesday, 
December 21st, 2021; (2) reminder emails on Thursday, December 23rd, 
Tuesday, December 28th, 2021, and Sunday, January 2nd, 2022. Pan-
elists were offered the cash equivalent of $2 for completing the survey. 
Interviewed respondents took 5 min (median) to complete the survey. 

The experimental question asks for a respondent’s WTP to avoid 
power outages (VoLL) under different notification scenarios. Specif-
ically, we state that a monthly fee will be added to the respondent’s 
electricity bill every month for the upcoming year (2022). Furthermore, 
to align with the California PSPS context, we describe that this fee would 
allow the respondent to avoid two separate, 40-h power outages that 
would occur randomly during fire season (September through 
November).4 Depending on which treatment group the respondent is 
randomized into, they were told that prior to each outage they would 

receive either 1) no, 2) 1-day, or 3) 7-day notice. Given a notification 
window, they then select the monthly fee they would be willing to pay 
over the entire year to avoid these outages. 

Though stated preference methods have a number of limitations (e.g. 
scope/embedding effects, hypothetical bias, the endowment effect), 
they also are the only setting with enough flexibility to evaluate iden-
tical scenarios that differ only in the advanced notice built into an 
experimental treatment (Fischhoff, 2005, 1991; Hausman, 2012). 
Johnson et al. provide useful guidance for stated preference studies that 
help overcome these challenges (Johnston et al., 2017). In addition to 
the experimental questions, all respondents answered a set of questions 
about their prior exposure to and awareness of wildfire-related outages, 
expectations for future outages, and understanding of power outage 
defensive investments. These non-experimental questions provide op-
portunity to explore more detailed heterogeneity among customers. 

We assess how the results vary by respondent education, race, home 
type, home value, household income, and age to understand what equity 
concerns may exist in policy discussions if only applying an average 
WTP metric which might vary significantly depending on the population 
being studied. We conclude the experiment asking respondents how 
much they pay monthly for electricity. Fig. 2–1 provides a flow diagram 
illustrating the order of the questions and structure of the experiment. 
The exact survey instrument deployed can be found in the Supplemental 
Information. 

The null hypothesis is that the level of advanced notification does not 
affect the WTP to avoid power outages. We used power calculations to 
find that detecting a 15–20% difference in the VoLL would require a 
sample size of 1500–2500 observations. In total, we collect responses 
from 2120 households. Details of these power calculations are provided 
in the Supplemental Information section. 

Eq. 1 estimates the effect of notification on the sample’s WTP to 
avoid power outages. We control for back-up power ownership (i.e. 
either fossil-fuel generator and/or solar/storage system), which aligns 
with the stratification strategy. Furthermore, we control for a number of 
demographic characteristics, including education, race, home type, 
home value, household income, and respondent age. 

WTPi = α+ β1T + β2Xi +φb + εi (1)  

Where, 
WTP = WTP for customer i to avoid power outages5 

T = indication of 0-, 1- or 7-day notice 
β1 = change in WTP for treatment groups 
Xi = set of demographic controls 
φb = fixed effect on stratification by back-up power ownership 
ϵi = error term 
In addition to showing the raw WTP outcome from the survey ($ per 

month paid 12 times over the year), we also calculate WTP as a % of 
their reported monthly bill and in $/kWh, based on an estimate of 
monthly energy consumption. To convert the $/month WTP to $/kWh, 
we divide the implied annual willingness to pay by an estimate of the 
energy unserved from 80 h of outage (as specified in the experimental 
question). To compute the unserved energy from 80 h of outage, we 
convert each respondent’s reported monthly bill into monthly con-
sumption using the Energy Information Agency’s 20.45 cents/kWh es-
timate of the average residential retail price for electricity in California 
(EIA, 2021),6 and multiply this amount by 0.11 (80 h as a fraction of an 
average 730 h month. 

2 Find more information on AmeriSpeak online here: https://www.ameris 
peak.org/  

3 Find more information on TrueNorth online here: https://amerispeak.norc. 
org/us/en/amerispeak/our-capabilities/truenorth.html  

4 The specification of duration in these interruptions was based on analysis of 
the large 2019 PSPS events that occurred in Pacific Gas & Electric’s territory, 
summarized in the following state utility commission dataset: https://www.cp 
uc.ca.gov/consumer-support/psps/utility-company-psps-reports-post-event- 
and-post-season 

5 Calculated as either $/month (to get total WTP, multiply by 12 payments 
given survey question that suggested monthly payments over the entire year), 
% of monthly bill, or $/kWh  

6 In California, electricity customers do not have one fixed $/kWh electricity 
price, rather they are on a mix of time-of-use and increasing block pricing rates. 
We do not know the rate design of the particular respondents, however, and 
therefore have to calculate a rough estimate of monthly consumption. 
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3. Results 

3.1. Responses to non-experimental survey questions 

The first questions of the survey focused on respondent experiences 
and future expectations for sustained power outage events. We draw 
three key conclusions from the responses to these questions. First, we 
find that almost the entirety of the sample is aware of wildfire-related 
power outages, and 25% experienced one directly. Second, we find 
that the annual mean expectations for future power outages are rela-
tively low at 12 h per year per respondent, with that number roughly 
doubling if respondents experienced a sustained power outage over the 
last three years (i.e. 2018–2021). Finally, we find that while backup 
power purchases have increased in recent years, low cost mitigation 
options like using flashlights and candles remain more popular. 

Fig. 3–1 summarizes the responses to questions about exposure to 
historical power outage and expectation for future outages. Almost all of 
the respondents were aware of the wildfire-related power outage pro-
gram in California. Of the 2120 total respondents, only 72 indicated that 
they were unsure about the presence of these shutoffs. At the same time, 
the majority of respondents did not directly experience a sustained 
power outage themselves (n = 1368 out of 2120). However, roughly half 
suggested that someone in their social network (e.g. friends, neighbors, 
family, coworkers) did experience a sustained power outage. 

Roughly 35% of respondents who owned backup power indicated 
they experienced a sustained power outage over the last 3 years, 
compared to only 20% of non-backup power owning respondents. 

While many of the respondents indicated they experienced a sus-
tained power outage event, they indicated small expected hours of 
outage in 2022 (bottom left of Fig. 3–1). A majority of respondents ex-
pected 0 h of outage hours in 2022. On average, though, respondents 
expect 12 h of outage with a median response of 3 h. These numbers 
increase after conditioning on backup power ownership and exposure to 
outages: backup power owners (35% of the sample) expect 16.5 h 
(median = 4), and those exposed to prior outages expect an average of 
20 h of outages (median = 10). Those who own back-up and experi-
enced prior outages expect an average of 22 h of outages (median = 10). 
Forty-four percent of respondents expect that these hours will increase 
in the next five years while 38% expect the outage hours to stay rela-
tively constant. The remaining 18% of respondents expect a decrease in 
future outage hours. 

The next set of non-experimental questions focused on mitigation 
strategies respondents would take in the case of a power outage event. 
The left graph in Fig. 3–2 shows that the most common mitigation 
strategy was the simplest – use of a flashlight and candles – with over 
75% of respondents choosing that mitigation strategy. All of the other 
strategies were chosen by no more than 20% of respondents. The right 
graphic shows that the majority of respondents did not indicate plans to 

Fig. 2–1. Flow Diagram illustrating experimental design.  
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purchase backup power in the next 6 months. Such results suggest re-
spondents believe it relatively easy to adapt to the type of outages 
explored in this study, which did not explicitly focus on extreme weather 
conditions that might increase the difficulty to adapt to an outage. More 
physically difficult conditions might influence respondent’s response to 
mitigation strategies and augment the WTP results presented in the next 
section. 

For respondents who owned backup power, Fig. 3–3 shows both 
when that purchase was made as well as a histogram of the total amount 
spent on the purchase. There has been a notable increase in backup- 
power purchases after 2015, predating the experience of PSPS events 
in California. Most respondents stated that they spent $1000 or less on 
their system, which is a lower estimate than expected for those that 
indicate they purchased a solar and/or storage system. Prior work has 
shown average costs of $4000/kW for solar and $1000/kWh for batte-
ries with typical system sizes of 6 kW and 13 kWh, implying an overall 
installation cost of $37,000 (Barbose et al., 2021).7 We also ask in-
dividuals who did not own backup power why they made this decision.  
Fig. 3–4 shares their top 3 reasons: (1) too expensive, (2) they find other 
mitigation options, and (3) they do not experience significant outages. 

3.2. WTP to avoid outages 

Overall, we find that respondents had positive and statistically sig-
nificant WTP to avoid power outages. The WTP did not depend signifi-
cantly on the advanced notification of the power outage. Respondents 
who indicated ownership of back-up power had a higher WTP to avoid 
power outages than non-back-up power owners. Table 3–1 presents 
summary statistics on the WTP responses. On an annual basis, the full 
sample has a mean WTP of $941, compared to $597 for households that 
do not own backup power. These data, however, are quite skewed. 

Median values for both samples are only $120 per year, suggesting that a 
small number of our sample has significantly higher WTP (see 95th 
percentile results in Table 3–1). 

Table 3–2 presents the results of the regression on the population. 
The preferred specification in the regression applies the demographic 
and backup power controls, statistical weights from NORC,8 and robust 
standard errors. These results are shown in column 4 while columns 1–3 
show the addition of various components of the preferred specification. 
We drop 55 of the 2120 respondents who skipped the experimental 
question. We find that a 1-day or 7-day notification results in a lower 
WTP by 10–20% but the coefficient is not statistically significant across 
any of the specifications. Prior research has suggested that notification 
would allow for preparation and substitution away from electricity 
during the outage, aligning with the direction the findings. However, the 
insignificance of the effect suggests that other factors we study (e.g. 
backup ownership) or factors that other researchers study (e.g. resi-
dential vs. industrial and outage duration) may have a more important 
impact on WTP compared to outage notification. Controlling for prior 
experience with a wildfire related outage did not impact these results, 
though the 25% of respondents that experienced an outage prior to the 
survey did report higher WTP. 

The average WTP to avoid power outages was positive and signifi-
cant, as suggested by the intercept coefficient. Without applying any 
controls, this coefficient equals $86/month, representing the average 
WTP for the respondents that received no notice of the power outage 
event. The heterogeneity across these demographic categories is dis-
cussed in the next section. 

The backup power ownership row shows the coefficient associated 
with the fixed effect on backup power ownership. We find that re-
spondents who indicate that they owned backup power reported a sta-
tistically significant higher WTP to avoid outages. Respondents who 
owned generators had a higher WTP than respondents who just owned 

Fig. 3–1. Respondent experiences with sustained power outage events.  

7 One explanation for this low amount could be that subsidies have been 
offered in California for certain individuals. Alternatively, it could be that re-
spondents were referencing car battery purchases or other cheaper forms of 
solar/battery solutions rather than rooftop solar and Lithium-ion batteries. 

8 Details about the statistical weights are shared in the second section of the 
supplemental information. These weights were provided for each survey 
respondent. 
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solar/storage systems, and respondents who indicated ownership of 
both generators and solar/storage had the highest WTP (see Fig. 3–5). 
While ownership of backup power mitigates grid outages – which could 
elicit a lower WTP for grid outages (LaCommare et al., 2018) – we 
propose three interpretations to explain why backup owners nonetheless 
reported a higher WTP. 

First, generator-owning respondents may have been reporting their 
WTP to avoid outages assuming both the grid and their backup supply 
failed (scenario (a) in Fig. 3–6). Their higher WTP, therefore, would 
align with their decision to purchase backup power. Alternatively these 
respondents may have purchased backup power technologies that 
cannot fulfill their entire electricity demand during outage events, and 
they reported WTP for their residual lost load (scenario (b) in Fig. 3–6). 
Finally, because respondents with backup power were asked how much 
they paid on backup power before the experimental question, anchoring 
may have led to the backup owners’ higher WTP. This final explanation 
would not explain the difference found between respondents who only 
owned solar/storage versus those who owned generators, as both these 
groups were exposed to the purchase price question. 

In addition to showing the raw respondent WTP, Table 3–2 also 
shows the results as a % monthly bill and a $/kWh metric. These results 
have a smaller sample size due to three additional filtering steps we 
performed on the sample. First, we must drop respondents who skipped 
the monthly billing question. Second, we drop respondents who report 
having solar installed. Given net energy metering subsidies provided in 

California, the presence of solar could undermine the meaning of the 
reported monthly billing data which is needed to convert the raw WTP 
figure. Third, we drop customers who report monthly bills less than $10, 
given the likelihood of erroneous data entry. 

Despite the sample change, the results remain qualitatively the same. 
We find reductions in WTP to avoid outages as a result of the treatment 
notification but these reductions are not statistically significant. We 

Fig. 3–2. Respondent preferences during backup power experience.  
Fig. 3–3. Breakdown of when respondents purchased backup power and how 
much it cost. Gaps in the left graphic indicate that no backup purchases were 
made in those quarters. 

Fig. 3–4. Indication for why some respondents did not own backup power.  
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similarly find increases in WTP for the sample who own back-up power 
generators, though with less significance than the baseline results, likely 
because we drop roughly half of the backup power ownership sample 
since they own solar generators. 

We calculate an average VoLL of $10–14/kWh, depending on 
whether respondents do not or do own backup power, respectively, 
which is within the range (i.e. $1/kWh - $25/kWh) of results found in 
prior stated preference literature reviews that measure WTP to avoid 
power outages (Schröder and Kuckshinrichs, 2015). 

3.3. Heterogeneity analysis 

Fig. 3–7 shows the distribution of responses to the experimental 
question, broken out by the randomized notification assignment. The 
significant overlap in the distributions of responses by notification in 
this figure corresponds to the regression analysis which found an sta-
tistically insignificant effect of notification on WTP. 

We performed a descriptive analysis across the key demographic 
controls by running linear regressions of the WTP responses with each 

demographic control of interest and then comparing how the means and 
variances of WTP metrics vary by the different categories of the specific 
control specification. In effect, the below results are sample means by 
demographic factor, without controlling for backup power ownership.9  

Fig. 3–8 presents information on how the key financial controls (i.e. 
home type, home value, household income, and ownership status) 
correlate with the WTP to avoid power outages. We find little trend 
between home type and WTP.10 We find that both home value and, to a 
lesser degree, income, are negatively correlated with respondents’ WTP 

Table 3–1 
Summary of WTP across key samples. Mean, Median, and various percentiles are presented to showcase the distribution of the results. Results are shared for the full 
sample as well as seven other subsamples (i.e. treatment assignment and backup ownership). The WTP survey question is found in the third section of the supplemental 
information.  

WTP ($/month) for… N Mean 25th perc. Median 75th perc. 95th perc. 

Full Sample  2065  78.44  0  10  50  300 
Households without notification  693  85.74  0  10  50  400 
Households with 1-day notification  681  69.91  0  10  40  250 
Households with 7-day notification  691  79.52  0  10  50  304.5 
Households without backup power  1397  49.79  0  10  34  200 
Households own generators  304  121.52  0  10  92.5  595.05 
Households own solar+storage  243  97.56  0.5  20  100  381.9 
Households own both gen. and sol+stor  121  262.60  0  20  100  1200  

Table 3–2 
Comparison of regression results across a variety of specifications.   

WTP WTP WTP WTP WTP VoLL 

($/month) ($/month) ($/month) ($/month) (% bill) ($/kWh) 

[1] [2] [3] [4] [5] [6] 

Intercept 85.7431*** 56.4235*** 49.2175*** NA 46.5351*** 10.2777***  
(11.086) (11.9559) (9.1346)  (6.6884) (1.4772) 

1-day notice –15.8327 –14.3929 –13.4846 –24.8469 –6.2582 –1.382  
(15.7469) (15.6068) (13.8648) (21.4403) (9.1073) (2.011) 

7-day notice –6.2222 –5.7045 –0.7902 –21.5694 –7.8372 –1.7309  
(15.6893) (15.5483) (14.7865) (22.4991) (8.5458) (1.8874) 

Back-up ownership NA 83.2726*** 74.7145*** 79.5726*** 17.6575* 3.900*  
NA (13.3961) (16.2609) (20.256) (10.5273) (2.325) 

Backup ownership control No Yes Yes Yes Yes Yes 
Weighted No No Yes Yes Yes Yes 
Robust s.e No No Yes Yes Yes Yes 
Demographic controls No No No Yes No No 
Subsample full full full full >$10, no solar >$10, no solar 
Total observations (n) 2065 2065 2065 2065 1629 1629 
Ownership (n) 711 711 711 711 331 331 

Note: *p<0.1; **p<0.05; ***p<0.01 

Fig. 3–5. Comparison of treatment effect with effect from backup ownership with 95% confidence intervals.  

9 However, including relative WTP metrics once controlling for backup power 
led to similar results directionally.  
10 Of particular note is that when we run the regression when controlling for 

all demographic controls at once, the last categories of home type (i.e. mobile 
homes and RV / van ownership) become statistically different and lower than 
all other home category types. This result aligns with the intuition that in-
dividuals with these home types are likely less reliant on electricity from the 
grid. 
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to avoid outages, but both these correlations were weak. Nevertheless, 
this result suggests that, although high-income households likely have 
more ability to pay (as a function of their higher incomes), these re-
spondents are less negatively impacted by outages than others. This may 
be due to these respondents having more substitution options available 
to mitigate the cost of a power outage. We do not find a correlation 
between income and backup power ownership in our sample, however. 
Prior work studying these trends, though limited, has found positive 
correlations between income and WTP to avoid power outages, but like 
our results, those trends were not strong (Baik et al., 2020). More results 
discussing other demographic controls are presented in the supple-
mental information. 

4. Conclusion 

In the open-ended stated-preference experiment, we found positive 
and statistically significant WTP to avoid power outages, consistent with 
the expectation that outages are costly to the residential sector. 
Furthermore, we found that advanced notice of a power outage can 
reduce the WTP to avoid those power outages by 10–20%, consistent 
with the expectation that notice can allow customers to plan substitution 
strategies that help mitigate power outage costs. However, these noti-
fication effects are not statistically significant. The insignificance of the 
effect suggests that other factors we study (e.g. backup ownership) or 
that other researchers study (e.g. customer type and outage duration) 
may have a more important impact on WTP, and by extension, on the 
negative impacts of outages on households, compared to outage notifi-
cation. Without a statistically significant result on advance warning, our 
results provide no direct support for evaluating programs based on 
notification timing, such as a comparison between PSPS and EPSS pro-
grams. These results were robust over several regression specifications 
that controlled for demographic variables and applied the survey 
weights provided by NORC. While PSPS programs have the potential to 
provide advanced notice of a power outage, EPSS programs are not able 
to do so. In the two years since the data for this study were collected, 
there has been an increase in usage of EPSS programs in relation to PSPS 
programs (Hagler et al., 2023). 

Though the notification results are not statistically significant, our 
results do indicate that the value of advance notice increases with 
timing, and that the question of the value of advance notice should 
continue to be studied. This is particularly important in light of this 
study’s results with respect to heterogeneity in WTP and in light of the 
increased usage of EPSS. For example, we found that household wealth 
(proxied using estimated home value) is negatively correlated with 
WTP. We found limited variation in WTP by home type and home 
ownership status, but confirming statistical significance of these results 
would require larger sample sizes than we studied. Considering these 

Fig. 3–6. Hypotheses of demand variation with backup power and relation to overall WTP.  

Fig. 3–7. Histogram on WTP by randomized notification.  

Fig. 3–8. Variation on WTP by respondent characteristics (home type, home 
value, home income, rental status). 
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trends, our study’s weak result with respect to advanced notice suggests 
that further research on this topic is important. 

On average, respondents did not have high expectations for the 
number of future outage hours. This result was true even when seg-
menting out customers who experienced a sustained power outage be-
tween 2019 and 2021. Such a result implies that households in 
California might expect limited impact from future PSPS and EPSS 
events. Such expectations could be, in part, driven by the significant 
investments in enhanced resilience to wildfires California utilities have 
been and plan to make. As of 2023, the California’s two largest utilities 
were proposing expenditures greater than $23 billion in areas of system 
hardening and vegetation management (Balaraman, 2023). Future re-
searchers could study how electricity consumer expectations may or 
may not lead to defensive investments that might mitigate power outage 
costs as well as investigate appropriate levels of resiliency investment 
for electric utilities. 

Finally, as indicated in the introduction, while our study focused on 
backup ownership and outage notification, other outage contexts like 
outside weather conditions (i.e. extreme hot or cold during outage) or 
geographic exposure (i.e. widespread or contained outage) could influ-
ence WTP estimation. Future work could expand on our results to study 
how different power outage contexts might impact WTP and interact 
with our advanced outage notification. 
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Schröder, T., Kuckshinrichs, W., 2015. Value of Lost Load: An Efficient Economic 
Indicator for Power Supply Security? A Literature Review. Front. Energy Res. 3 
https://doi.org/10.3389/fenrg.2015.00055. 

Serna, J., 2020. Can technology predict wildfires? New systems attempt to better forecast 
their spread [WWW Document]. URL 〈https://www.latimes.com/california/story/2 
020-09-26/new-technology-tries-to-forecast-california-wildfires〉 (accessed 2.14.22). 

Shipley, R., Patton, A., Denison, J., 1972. Power Reliability Cost vs Worth. IEEE Trans. 
Power Appar. Syst. PAS-91 2204–2212. https://doi.org/10.1109/ 
TPAS.1972.293204. 

Spees, K., Newell, S.A., Pfeifenberger, J.P., 2013. Capacity Markets - Lessons Learned 
from the First Decade. Econ. Energy Environ. Policy 2. https://doi.org/10.5547/ 
2160-5890.2.2.1. 

Sullivan, M.J., Mercurio, M., Schellenberg, J., 2009. Estimated Value of Service 
Reliability for Electric Utility Customers in the United States (No. LBNL-2132E, 
963320). 〈https://doi.org/10.2172/963320〉. 

Telson, M.L., 1975. The Economics of Alternative Levels of Reliability for Electric Power 
Generation Systems. Bell J. Econ. 6, 679. https://doi.org/10.2307/3003250. 

Walton, R., 2017. Mission impossible? How utilities are minimizing disruptions from 
inevitable storms. Util. Dive 13. 

Wolf, A., Wenzel, L., 2016. Regional diversity in the costs of electricity outages: results 
for German counties. Util. Policy 43, 195–205. https://doi.org/10.1016/j. 
jup.2014.08.004. 

Wong-Parodi, G., 2020. When climate change adaptation becomes a “looming threat” to 
society: exploring views and responses to California wildfires and public safety 
power shutoffs. Energy Res. Soc. Sci. 70, 101757 https://doi.org/10.1016/j. 
erss.2020.101757. 

Yang, Y., Ganesh, N., Mulrow, E., Pineau, V., 2018. Estimation methods for 
nonprobability samples with a companion probability sample. Proc. Jt. Stat. Meet. 

Will Gorman is a Research Scientist in the Energy Markets and Policy Department at 
Lawrence Berkeley National Laboratory. He received his PhD in Energy and Resources 
from the University of California, Berkeley and holds a BS in Chemical Engineering and a 
BA in Plan II Honors from the University of Texas at Austin. His research focuses on the 
economics of distributed energy resources, the integration of renewable generation into 
the electric power system, and issues of reliability within electricity networks. In his work, 
Will particularly seeks to inform public and private decision making within the U.S. 
electricity sector via economic analysis 

Duncan Callaway is an Associate Professor of Energy and Resources with an affiliate 
appointment in Electrical Engineering and Computer Science, and a Faculty Scientist at 
Lawrence Berkeley National Laboratory. He received his PhD from Cornell University and 
subsequently worked in the energy industry, first at Davis Energy Group and later at 
PowerLight Corporation. Dr. Callaway’s teaching covers on energy systems with a focus on 
the electrical grid and energy efficiency. His research group focuses on emerging energy 
technologies by quantifying their impacts on power system operations and developing 
control, optimization, and data analysis tools to facilitate their integration into power 
systems 

W. Gorman and D. Callaway                                                                                                                                                                                                                

https://doi.org/10.1016/S1574-0099(05)02018-8
https://doi.org/10.1016/S1574-0099(05)02018-8
https://doi.org/10.1037/0003-066X.46.8.835
https://doi.org/10.1093/qje/qjy005
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref27
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref27
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref27
https://doi.org/10.1016/j.tej.2022.107187
https://doi.org/10.1016/j.tej.2022.107187
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref29
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref29
https://doi.org/10.2307/2937910
https://doi.org/10.1257/jep.26.4.43
https://doi.org/10.1016/j.spc.2023.04.001
https://doi.org/10.20955/es.2019.6
https://doi.org/10.3386/w29610
https://doi.org/10.1086/691697
https://doi.org/10.1146/annurev-resource-073009-104211
https://doi.org/10.1146/annurev-resource-073009-104211
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref36
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref36
https://doi.org/10.20955/wp.2018.035
https://doi.org/10.1016/j.energy.2018.04.082
https://doi.org/10.1016/j.eneco.2016.09.011
https://doi.org/10.1016/j.eneco.2016.09.011
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref39
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref39
https://doi.org/10.1109/MPE.2020.2985439
https://doi.org/10.1109/MPE.2020.2985439
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref41
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref41
https://doi.org/10.2307/3003337
https://doi.org/10.17226/1840
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref44
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref44
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref44
https://www.pge.com/en_US/residential/outages/enhanced-powerline-safety-settings/enhanced-powerline-safety-settings.page
https://www.pge.com/en_US/residential/outages/enhanced-powerline-safety-settings/enhanced-powerline-safety-settings.page
https://www.pge.com/en_US/residential/outages/enhanced-powerline-safety-settings/enhanced-powerline-safety-settings.page
https://doi.org/10.1016/j.energy.2014.03.089
https://doi.org/10.1016/j.energy.2014.03.089
https://doi.org/10.3389/fenrg.2015.00055
https://www.latimes.com/california/story/2020-09-26/new-technology-tries-to-forecast-california-wildfires
https://www.latimes.com/california/story/2020-09-26/new-technology-tries-to-forecast-california-wildfires
https://doi.org/10.1109/TPAS.1972.293204
https://doi.org/10.1109/TPAS.1972.293204
https://doi.org/10.5547/2160-5890.2.2.1
https://doi.org/10.5547/2160-5890.2.2.1
https://doi.org/10.2172/963320
https://doi.org/10.2307/3003250
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref50
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref50
https://doi.org/10.1016/j.jup.2014.08.004
https://doi.org/10.1016/j.jup.2014.08.004
https://doi.org/10.1016/j.erss.2020.101757
https://doi.org/10.1016/j.erss.2020.101757
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref53
http://refhub.elsevier.com/S1040-6190(24)00020-4/sbref53

	Do notifications affect households’ willingness to pay to avoid power outages? Evidence from an experimental stated-prefere ...
	1 Introduction and literature review
	2 Methods
	3 Results
	3.1 Responses to non-experimental survey questions
	3.2 WTP to avoid outages
	3.3 Heterogeneity analysis

	4 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Acknowledgements
	Appendix A Supporting information
	References




