
UC Irvine
ICS Technical Reports

Title
An algorithm for transistor sizing in CMOS circuits

Permalink
https://escholarship.org/uc/item/2x97r743

Authors
Wu, Allen C.H.
Zanden, Nels Vander
Gajski, Daniel

Publication Date
1989-02-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2x97r743
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.) ,

An Algorithm for Transistor Sizing in CMOS Circuits

by

Allen C. H. Wu
Nels Vander Zand~n

Daniel Gajski

Technical Report 89-04

Information and Computer Science Department
University of California, Irvine

Irvine, CA. 92717

Abstract

This paper describes a novel algorithm for automatic transistor sizing which
is one technique for improving timing performance in CMOS circuits. The sizing
algorithm is used to minimize area and power subject to timing constraints. We
define the transistor sizing problem as a graph problem and use a non-linear
optimization technique. The algorithm consists of three separate tasks: critical
path analysis, transistor sizing and transistor desizing. The main contribution of
the presented algorithm is that the delays of all paths in a given design can be
tuned simultaneoU:sly to satisfy timing constrain ts. Furthermore, the minimal
transistor area and minimal power dissipation under given timing constraints
can be achieved. Experimental results show that this approach has greater
control over area/time tradeoffs than traditional sizing algorithms.

z
c; f 9
C3
)1 o. Ji~~f

TABLE OF CONTENTS

1. Introduction .. 1

2. Previous Work".......................... 3

3. Models and Algorithms 6

3.1 Overview ... 6

3.2 Electrical Models 7

3.2.1 RC Delay Model .. 7

3.2.2 Delay Model for Complex Gate .. ;........ 11

3.3 Critical Path Analysis 12

3.4 Transistor Sizing Algorithm 18

3.5 Transistor Desizing Algorithm ... ;................... 20

4. Results ;... 26

5. Conclusions ... 27

6. Acknowledgements 30

7. References 30

February 14, 1989 Page i

LIST OF FIGURES

Figure 1. The effect of transistor sizing on delay 2

Figure 2. Delay through pull and pulldown network with RC model 8

Figure 3. Electrical Model 10

Figure 4. Delay model for complex model 12

Figure 5. Multistage graph representation 14

Figure 6. Four graph forms for delay estimation 21

Figure 7. The composite graph of tradeoffs between area and delay 29

February 14, 1989 Page ii

1. Introduction

The task of chip designers is to design a circuit that satisfies both functional

requirements and performance constraints. Properly defining transistor size is

one technique to improve timing performance. The relationship between

transistor sizes and total circuit delay is non-linear. It has been shown by

Fishburn and Dunlop [FiDu85) that the transistor sizing problem is convex

under the simple lumped RC model. An example of the effect of transistor sizing

on delay is shown in Figure 1. Since delay is proportional to gate resistance and

load capacitance, increasing transistor size of gate B reduces the resistance and

delay of gate B. However, increasing transistor size of gate B also increases the

capacitive load(Cb) as well as the delay of gate A. This is a delay balance effect

between gate A and gate B. By increasing the transistor size of gate B, the total

path delay will decrease until reaching the nadir of the convex (balance point)

which is the minimum delay point. The total path delay increases by increasing

the transistor size of gate B beyond the balance point. Thus, the objective of the

transistor sizing algorithm is to size transistors by finding the optimal point on

the convex that satisfies the timing constraints with minimal transistor area.

We formulate the transistor sizing problem into a graph problem using a

non-linear optimization technique. This algorithm contains a critical path

February 14, 1989 Page 1

Total
Path

Delay

.I. cl.cad
- - -- - -

Transistor Size of Gate B

Figure 1 The effect of transistor sizing on delay

analyzer that derives a multistage graph from a design, and then locates the

worst critical path using a dynamic programming method. Using a convex

optimization technique, the algorithm sizes the PFET and NFET separately.

The sizing algorithm tunes the transistors along the worst critical path to satisfy

the timing constraint, then sizes the remaining transistors in the design to the

February 10, 1989 Page 2

optimum values. The sizing algorithm initially tries to over-size the transistors in

the design to ensure that all timing constraints are satisfied. Using this method,

the sizing algorithm improves the delays of all paths at the same time, and hence

does not need to check whether some new path becomes critical. A desizing

algorithm then calculates the actual delay of each gate and the delay allowance

based on the timing constraints, and then desizes the transistors to minimize the

area. The objective of this sizing algorithm is to size transistors so that the

minimal transistor area is ac.hieved for the specified timing contraints, and the

delays of all paths in a design can be reduced to satisfy timing constraint

simultaneously.

The next section decribes some previous work. Section 3 presents the

electrical models used to calculate the delay of a circuit and summarizes the

optimization algorithms. The experimentla results and conclusions described are

in Section 4 and 5.

2.Previous Work

Three approaches have been applied to solve the transistor s1zmg

optimization problem. The first approach[FiDu85] [KaFa85] is a heuristic

method in which the transistor size is incremented with a step size until all the

February 14, 1989 Page3

timing constraints are satisfied. Fishburn and Dunlop[FiDu85] have shown that

the transistor sizing problem is convex by using a distributed RC delay model.

TILOS is a heuristic transistor sizing program that iteratively increases the

transistor size along the worst critical path. This heuristic selects a transistor

that reduces the most delay with the minimal increase in area. The process

continues until all the timing constraints are satisfied. ·Thus TILOS minimizes

power and area subject to the timing constraints.

XTRAS [KaFa85] used a simple heuristic method to minimize the delay of a

circuit. A gate selection routine selects the gate that contributes the most to the

delay. Then XTRAS increases the size of selected gate and recalculates the total

path delay. This process terminates when the timing requirement is met.

The second approach[Hedl87][ShFi87] is based on the conventional

augmented Lagrangian method[Gill81] which requires gradients to be computed

for each variable and requires the cost function to be differentiable. The cost

function is formulated as a polynomial by modeling the delay as a lumped RC

time constant. AESOP[Hedl87] is an interactive transistor sizing tool. It

formulates the delay minimization problem into a nonlinear optimization

problem with constraints. The nonlinear optimization problem is solved by a

quasi-Newton method, and several paths can be solved simultaneously. Using

February 14, 1989 Page 4

ASEOP, the user can select sets of paths to be optimized, specify constraints,

and interactively evaluate different design and sizing options.

The third approach[PiDe86] uses a simulated annealing method for reducing

the delay on many paths simultaneously. MOST is a Prolog program that uses a

simulated annealing algorithm to reduce the delay on many paths

simultaneously. The implementation makes great use of the delayed binding and

backtracking techniques in Prolog. This allows binding the parameters of many

paths at same time, thus the delays of many paths can be reduced

simultaneously. But the lack of tail-recursion optimization in Prolog limit the

maximum circuit size to approximately 100 transistors.

The mam problem of the first approach is that only one path(the worst

critical path) is optimized at a time. This approach lacks a global view of the

whole circuit. Some new paths may become critical after changing the transistor

sizes along the worst critical path. Therefore, the algorithm may fail to size the

circuit correctly. Using the simulated annealing method, the delays of all paths

can be reduced simultaneously. However, it suffers from long execution time and

is therefore restricted to small circuits only.

The drawbacks of the second approach are: (1) It solves the problem in an

unnecessarily large space by using all the transistors as design variables, and (2)

February 14, 1989 Page 5

It lacks an efficient way to get a good initial guess of transistor sizes.

All the three approaches size the logic gates instead of individual

transistors; this may produce the problem of non-symmetrical rise time and fall

time delays.

3. Models and Algorithms

3.1 Overview

This section describes the models used to estimate the gate delay, and the

transistor sizing algorithms for timing optimization in MOS circuits.

The algorithm for transistor sizing consists of three main sections : Critical

path analysis, Transistor s1zmg, and Transistor desizing. The critical path

analyzer converts the given design to a multistage graph, and then determines

the worst critical path using a dynamic programming method. The tran~istor

sizer optimizes the transistor sizes along the worst critical path to meet timing

constraints, and then modifies the rest of the transistors to optimum sizes using

convex optimization method.

The transistor desizer then reduces transistor sizes of all paths to minimize the

transistor area subject to timing constraints. The transistor desizing alogorithm

February 14, 1989 Page6

consists of two phases: delay estimation and transistor desizing. The desizing

algorithm estimates the delay allowance of each gate subject to timing

constraints, and then desizes the transistors of all gates to the minimal size that

satisfies the timing constraints.

3.2 Electrical Models

3.2.1 RC Delay Model

To estimate gate delay, a simple RC delay model[Hedl84] is used to compute

the resistance and capacitance of each gate in a path. When critical path

analyzer traces a signal path, each transistor in the path is modeled as a fixed

resistor driving some output capacitance(Figure 2). There are two transition

states in each gate; when the output changes from "1" to "O"(Figure 2(a)) and

when the output changes from "O" to "1 "(Figure 2(b)). The change in the

output is assumed to be triggered by a single input, and all transistors in series

with the trigger transistor must be turned on.

February 14, 1989 Page 7

-l Rl

-l R2

(a)

-l Rl

-l R2

I
(b)

Figure 2 Delay through pullup and pulldown network with RC model

The delay of a gate i is simply the average of the rise and fall time delays :

The rise time and fall time delays[Hedl84] are computed as follows(Figure 3):

February 10, 1989 Page 8

where

Rpup(i) is the sum of the pullup transistor resistances of gate i in series

ifthe output is "1".

Rpdn(i) is the sum of the pulldown transistor resistances of gate m

series if the output is "O".

Rw(i) is the parasitic wire resistance of gate i.

C(i) is the total capacitive load of gate i.

Cpup(i+l) is the PFET gate capacitance of gate i+l.

Cpdn(i+l) is the NFET gate capacitance of gate i+l.

cw(i) is the parasitic wire capacitance of gate i.

S (') is the PFET size of gate i. pup I

span(i) is the NFET size of gate i.

The resistance · and capacitance of a single pullup and pulldown transistor

depend only on the type and width of the transistor. The resistances Rpup(i) and

Rpdn(i) are inversely proportional to the sizes of pullup and pulldown transistors of

February 14, 1989 Page 9

Rp11p{i)/Spup(i)

Rw{i)

Rpdn(i)/Spdn(i)

Cpup(i+1rspup(i+l)+Cpdn(i+ q-Spdn(i+ 1)

Figure 3 Electrical Model

gate i. The capacitance Cpup(i) and Cpdn(i) are directly proportional to the sizes of

pullup and pulldown transistors of gate i . . Therefore, increasing spup(i) and spdn(i)

decreases the output delay of gate i but increases the capacitive load on gate i-1.

The total delay T through a path is computed by summmg up the

individual gate delsys in the path. Hence

February 10, 1989 Page 10

where the delay ti is the individual gate delay in the path.

Our transistor sizing algorithm is implemented before layout takes place. This

means that the exact wire lengths for routing are unknown, and some estimates

of wires resistances and capacitances must be used. ~o maintain technology

independence, and to reduce the execution time, we used a table driven

approach [Hedl87] in which the values of resistance and capacitance are supplied

by the user in a table based on different technologies.

3.2.2 Delay Model for Complex Gate

The Rpup and Rpdn of a complex gate are computed based on the longest

resistance path along the trigger transistor. For a three input OAI (Figure 4(a)),

the effective resistance Rpup is Ra +I\ if the trigger transistor is A or B; but the

effective resistance Rpup is only Rc if the trigger transistor is C. For a three input

AOI (Figure 4(b)), the effective resistance Rpdn is Ra +I\ if the trigger transistor is

A or B, and the the effective resistance Rpdn is Rc if the trigger transistor is C.

Thus the delay calculation of a complex gate depends on the input trigger

transistor.

February 14, 1989 Page 11

(a) (b)

Figure 4 Delay model for complex gate

3.3 Critical Path Analysis

Critical path analysis(KiC166] was the first approach proposed for timing

analysis. Several authors ((Oust85), (Hitc82],(Joup83),(YeGh88]) have reported

many different approachs for performing timing analysis. In this section, we

decribe an algorithm using a dynamic programming method(HorSa78) to

February 10, 1989 Page 12

determine the worst critical path.

A multistage directed graph G = (V, E) is derived from the given design.

Each vertex V represents a gate in the design. An edge E represents the path

between two gates. The vertices are partitioned into k~2 disjoint stages Vi,

l:Si:Sk (Figure 5). Let s and t be two vertices in V 1 and yk respectively. Dummy

source (s) and sink (t) vertices are added for simplicity. Let delay(i ,j) be the

delay of path< i,j >. Let DELA Ytota1(s, t) be the sum of the delays from s to t. The

task of critical path analyser is to find the path with the maximum delay from s

tot.

This maximum delay for a k-stage graph problem 1s computed (using

dynamic programming) by starting at the sink node and moving towards the

source node one stage at a time. The delay computation depends on two

adjacent sets of vertices. To find a maximum delay path from t to s, k - 2

decision sequences may be generated. However, those sequences containing

suboptimal distances will not be generated. For example, if the delay of the

sequence (G 1 -> G3) is larger than the delay of the sequence (G 1 -> G 2) then

the sequence (G 1 -> G2) contains a suboptimal distance, and therefore will not

be stored for further analysis (Figure 5). Let DELAYtotal(i,j) be the maximum

delay path from_ vertex j in Vi to sink node t. By working backward, we obtain:

February 14, 1989 Page 13

...

u

G2

t

Stage 5 4 3 2 1

Figure 5 Multistage graph representation

DELAY,<Xa1(i,j) = MAX{delay(j,m) + DELAY,ota1(i-l,m)}

where

m E Vi- 1 and (j ,m) E E

The critical path analysis alogrithm consists of the following four phases:

February 10, 1989 Page 14

1. Calculate the delay for each vertex initially using unit size.

2. Partition vertices into disjoint sets.

3. Insert the source node, sink node and dummy edges.

4. Determine the worst critical path.

ALGORITHM 1 : Critical path analysis

{calculate the delay for each vertex}

Let

#v be the number of vertices in V;

tdelay[i] be the delay time at vertex i;

C1oad[i] be the output capacitance of vertex i associated with all the fan out pins;

Rpe!J[i] be the sum of the pullup transistor resistance in series at vertex i plus wire

resistance;

Rneff[i] be the sum of the pulldown transistor resistance in series at vertex i plus wire

resistance;

Spfet[i] be the PFET size of vertex i;

Snfet[i] be the NFET size of vertex i.

procedure gate_delay _calculation(V)

begin

for (i=l to #v)

tdelay[i] = (Rpeff[i] * Croad[i])/Spfet[i] + (Rnef![i] * Cload[i])/Snfet[i];
end;

February 10, 1989 Page 15

{Assign vertex stage and determine the longest distance from output to input using

breadth first search}

procedure graph....stage(Dmax=l,E,V)

Let
Q be a set of vertices,

d[i] be the stage level of vertex i.

begin
Q < = v where vis output vertex;

visited[v] = true;

d[v] = Dmax;
while (not EMPTY(Q))

begin

v = FRONT(Q);

DEQUEUE(Q);

for (each vertex i in V connected to v)

begin
if (there are no vertices connected to v)

ieaf(v] = tme;
if (visited [i] = false) then

begin

visited[i] = true;

d[i] = d[v] + 1;

if (d[i] > D max)

Dmax = d[i];
ENQUEUE(i,Q);

end;

end;

end;

end;

{Insert source node, sink node and dummy edges}

Let #v be the number of vertices in V.

procedure source_and....sink(V,E)

begin
V < = V + s + t; {where s : source node and t : sink node}

tdelay[s] = O;
d[s] = Dmax + 1;

tdelay[t] = O;
d[t] = O;
for (i = 1 to #v)

February 10, 1989 Page 16

begin

if (d(i] = 1)

E <= E + <i,t>;

else if (leaf(i] = true)

E <= E + <s,i>;

end;

end;

{Find the worst critical path using dynamic programming method}

Let

i be the vertex stage number which 2 S i S D max;

D(ij] be a maximum delay path from vertex j in vi to sink vertex t and DELA Y(ij] be

the delay time of the path;

du ,m] be the delay from vertex j to vertex m;

procedure critica~ath(V, V::ntical)
begin

vcritical s t where t is the sink vertex;

DELAY(ij] = max(dLl,m] + DELA Y(i-1,m]);

for (all the < s,x> in E)

begin

stage = d(x] - 1;

DELAY(d(s],s] = max(d(s,m] + DELA Y(stage,m]);

end;

for (i = 2 to Dmax)
D(ij] = max(dLl,m] + DELAY(i-1,m]);

for (all the < s,x> in E)

begin

stage = d(x] - 1;

D[s;x] = max(d(s,m] + DELAY(stage,m]);

end;

{Let ci:'~tical path be s,VDmax,VDmax- F .. ,V1 ,t}

Dx <= s;

for (i = Dmax+l to 1)

begin

Vcritical <= Vcrwca1 + D(i,DaJ;
critical(D (i,D x]] = true;

Dx = D[Dmax'Dx];
end;

end;

February 10, 1989 Page 17

3 .4 Transistor Sizing Algorithm

As mentioned previously, the relationship between transistor sizes and delay is

convex. The transistor sizing computation is based on two adjacent vertices.

The capacitive load of the vertex to be sized is the sum of the total gate

capacitances that the vertex drives. Using the convex optimization technique,

the PFET and NFET sizes in a vertex are sized separately, depending on which

transistor (PFET or NFET) contributes the most delay reduction. For instance,

if the total delay reduction by increasing the PFET size of a vertex is larger than

the total delay reduction by increasing the NFET size of a vertex, the algorithm

increases the PFET size of this vertex. The transistor size computation

terminates when the minimum delay is obtained. The optimizer first sizes the

transistors in the worst critical path to satisfy the timing constraint based on

the output capacitive load. Then the optimizer sizes rest of the transistors in

the design from output to input to obtain the optimum values. The optimizer

tries to over-size the transistors in the design to ensure that the delays of all

paths satisfy the timing constraint.

ALGORITHM 2 : Transistor sizing

{transistor sizing algorithm}

Let

Q be a set of vertex;

C .t be the unit capacitance of PFET; pun•

February 10, 1989 Page 18

Cnunit be the unit capacitance of NFET;

t . [i] be the rise time delay of gate i; rue

t fall [i] be the fall time delay of gate i;

t +l be the delay time after increasing the S 1 t[i] by 1; p . . p e

tn+l be the delay time after increasing the snfet[i] by 1.

procedure transistor....sizing(Q,V)

begin

for (i = t to s in Q)
begin

if (alreadysized [i] = false)

begin

{initialization}

ttotal = tdelay[i] + tdelay[i-l];

tp+l = ttotal;

tn+l = ttotal;
while (ttotal is not minimum) {convex optimization}

begin

if (tn+l > tp+l)

spfet[i} = spfet[i] + 1;

if (tp+l > tn+l)

snfet[i] = snfet[i] + 1;

tp+l =(Rpef I [i-1]/ Spfet[i-l]+ Rnef 1 [i-1]/ Snfet[i-l])*(C1oad[i-l]+C punit)

. +(Rpef![i]/ (Spfet[i]+ 1)+ Rnef 1 [i]/ Sn/et [i])*C1oad[i];

tn +1=(Rpef1[i-l]/ Spfet[i-l]+ Rnef 1 [i-1]/ Sn/et [i-1])*(C1oad[i-l]+Cnunit)

+(Rpef![i]/ Sp/et [i]+ Rnef I [i]/ (Sn/et [i]+ 1))*Cload[i];

ttotal = min{tp+l,tn+l};
end;

{update delay time of vi and vi- 1}

triae[i]=(R;ef 1 [i]/ Spfet[i])*C1ood[i];

t fal1[i]=(Rnef![i]/ Snfet[i])*C1ood[i];

tdelay[i]=triae[i] + t fall[i];
triae[i-1]=(Rpef 1[i-l]/Sp/et [i-1])*C1ood[i-1];

t fall [i-1]=(Rnef! [i-1]/Sn/et [i-1])*C1ood[i-1];

tdelay[i-l]=triae[i-l] + t fall[i-l];;
end;

end;

end;

February 10, 1989 Page 19

3.5 Transistor Desizing Algorithm

In the initial transistor sizing stage, we try to over-size the transistors in the

design. The desizing algorithm is then applied to minimize the area and power

subject to timing constraints. The desizing algorithm consists two separate

phases: delay estimation and transistor desizing. This _desizing algorithm first

estimates the delay allowance of each gate based on timing constraints, and then

desizes the transistors of all gates to the minimal values that satisfies the timing

constrain ts.

We formulate the transistor desizing problem into a graph problem. A

multistage directed graph G = {V,E) is formed to find the worst critical path at

the critical path analysis stage. Each vertex represents a gate in the design, and

tdelay[i] is the delay of vertex[i]. Both tdelay[s] and tdelay[t] are zero. Let teatimate<i,j>,

be the delay of edge<i,j>. We first evaluate the delays at all paths. By applying

the timing constraint to the vertex t, teatimate <i,j> is computed from t to s using

breath first search. The t <i J.> computation consists of four basic eatimate '

forms(Figure 6).

(1) A vertex has only one input and one output arc: teatimate <i-1,i> is

teatimate<i,i+l> - tdelay[i] (Figure 6(a)).

February 14, 1989 Page 20

i+l

i-1
i-1 i-n

(a) (b) .

i+l i+n i+l i+n

i-1 i-1 i-n

(c) (d)

Figure 6 Four graph forms for delay estimation

(2) A vertex has only one input arc and more than one output arc: te,timate < i-

k,i>, lsksn, is te,timate<i,i+l> - tdelai,,[i] (Figure 6(b)).

(3) A vertex has more than one input arc and only one output arc: to consider

the worst delay path, the te1timate < i-1,i> is min{te,timate < i,k> - tdelay[i]},

isksi+n (Figure 6(c)).

February 10, 1989 Page 21

(4) A vertex has more than one input and output arc: te&timate <i-k,j>, lsksn, is

min{te&timate < i,k> - tdelay[i]}, isksi+n (Figure 6(d)).

If te&timate < s,j> is larger than zero, the path from input vertex j to sink vetex

t is oversized. If te&timate < s,j> is less than zero, the path from input vertex j to

sink vertex t is undersized. Since the sizing algorithm tr_ies to oversize all of the

paths, the chances of undersizing are very unlikely.

In the transistor desizing stage, the desizer desizes the transistors at ·all

paths from source vertex s to sink vertex t using the information we obtained

from the delay evaluation stage. The desizing algorithm is a reverse process of

the sizing algorithm. Transistor desizing depends on which transistor, PFET or

NFET, contributes less delay reduction.Let tallowance(i) be the delay allowance of

vertex i.

The desizing computation consists of four basic forms as shown in figure 6.

(1) . A vextex has only one input and one output arc: if te&timatJi,i+l]-te&timatJi-1,i]

> t [i] the v. is oversized and tai1 [i] = t t' t [i,i+l]-t t' t [i-1,i] Figure delay • owance e& ima e e& ima e

6(a)).

(2) A vertex has only one input arc and more than one output arc: tallowance[i]

te&timatJi,i+l]-max{te&timatJi-j,i]}, l:Sj:Sn (Figure 6(b)).

February 14, 1989 Page 22

(3) A vertex has more than one input arc and only one output arc: te,,timatJi]

min{te.!timatJi,i+j]}-te.!timatJi-1,i], lsjsn (Figure 6(c)).

(4) A vertex has more than one input and output arc: min{te,,timate[i,i+j]}-

max{te,,timatJi-j,i]}, lsjsn (Figure 6(d)).

If a vertex is already desized to . the unit size and there is some delay

allowance left, this delay allowance will propagate to the vertices in the higher

level. This process teminates when no more transistors can be desized and delays

of all paths satisfy the timing constraint.

ALGORITHM 3 : Transistor desizing

{delay evaluation of all paths using breath first search}

Let t t' t [ij] be the delay of edge< ij>.
e.! ima e

procedure delay _evaluation (t conatraint 'v 'vcritical)

begin

Q < = s wheres is source node;

teatimate[i,s] = tconatraint;

while (not EMPTY(Q))

begin

v = FRONT(Q);

DEQUEUE(Q);

for (each vertex i in V connected to v)

begin

if (i < > sink node t)

begin

if (i has only one input arc from vertex i+l)

February 14, 1989 Page 23

t . [i-1 l)=t . [i i+ l]-tdel [i]. eat1mate · ' eat1mate ' ay '
else {i has more than one input arcs (i+ l..i+n)}

t eatimate[i-1,i) = min(t eatimate [i,i+ 1 . .i+n]-t delay[i]) i
ENQUEUE(i,Q);

end;

end;

end;

end;

{Desizing Algorithm}

Let tall [i) be the delay allowance of vertex i. owance .

procedure desize(V)

begin

for (every vertex i in V ,do breath first search from sink node t to source node s)

begin

if (i-1 is source vertex s)

begin

if (i has more one input arc)

tallowancJi] = teatimate[i,i+l];
else

t allowance[i] = min(t eatimate[i,i+ l..i+n]) i
end;

else

begin

if (i has one input and one output arc)

t allowance[i] = t eatimate[i,i+ 1)-t eatimate[i-1,i];
if (i has more than one input arcs and only one output arc)

t allowance[i] = min(t eatimate [i,i+ 1. .i+n])-t eatimatJi-1,i];
if (i has only one input arc and more than one output arcs)

t allowance[i] = t eatimate[i,i+ 1)-max(t eatimate[i-1..i-n ,i]) i
if (i has more than one input and output arcs)

t allowance[i] = min(t eatimate[i,i+ l . .i+n])-max(t eatimate[i-1 . .i-n,i]);

end;

if (t allowance [i) > t delay[i])
begin

tactual = t delay [i] ;
while (tallowancJi] > tactual AND Spfet[i] and Snfet[i] are not unit size)

begin

February 14, 1989 Page 24

if (Spfet[i] < > 1 AND Snfet[i] < > 1)
begin

tp-1 = tfall[i]/Snfet[i] + triae[i]/(Spfet[i]-l);
tn-1 = triae[i]/Spfet[i] + t fall[i]/(Snfet[i]-l);
tactual = min(tp- l'tn- 1);
if (t ['] t) allowance 1 > actual
begin

if (tp- 1 > tn- 1)
snfet[i] = snfet[i]- l;

else

spfet[i] = spfet[i] - 1;
end;

end;

else

begin

if (Spfet[i] > 1)
tactual= tfall[i]/Snfet[i] + triae[i]/(Spfet[i]-l);

else

tn-1 = triae[i]/Spfet[i] + t fall[i]/(Snfet[i]-l);
if (t allowance [i] > tactual)
begin

if(Spfet[i] > 1)
spfet[i] = spfet[i] - 1;

else

snfet[i] = snfet[i] - 1;
end;

end;

end;

if (t allowance [i] > tactual)
begin

if (i has more than one input arcs)

for (j=i+l to i+n)

teatimate[ij]=teatimate[ij] + (tallowance - tactual);
else

teatimatJi,i+l]=teatimate[i,i+l] + (tallowance - tactual);
end;

end;

end;

end;

February 10, 1989 Page 25

4. Results

The previously decribed algorithms are embedded in MILO[VaGa88] which

currently runs on SUN 3 workstations under the UNIX operating system.

Synthesized designs with sized transistors are passed to LES[LiGa87] for layout

generation and then to the GDT [BuMa85] for simulati~n. The custom layout

produced by LES uses 3 micron CMOS technology. We have run a number of

examples with varied timing constraints. Table 1 shows the area and delay

comparisons between non-optimized designs and optimized designs. The layout

area in the table is the total layout area, not transistor area. The delays in the

table are measured with Lsim mixed-mode timing simulator. The optimized

results show that the delays are 33% to 58% faster and take 4% to 34% more

area. Table 1 also shows the comparisons between the required delay reduction

and the actual delay reduction. The errors (+3% to -14%) are mainly caused by

using the simple RC model and some estimates of wire resistances and

capacitances. Futher improvement can be achieved by using the resistance and

capacitance parameters extracted directly from the layout.

Table 2 shows the optimized design tradeoffs between area and delay. The

designs are optimized by applying varied timing constraints. Figure 7 displays a

composite graph showing the tradeoffs between area and delay. The results are

February 14, 1989 Page 26

normalized against the design usmg the unit transistor size whose reference

point is shown at delay = 100%, area = 100%.

5. Conclusions

We have presented a novel algorithm to formulate the transistor s1zmg

problem into a graph problem associated with a non-linear optimization

technique. This algorithm decomposes the transistor sizing process into three

interactive phases: critical path analysis, transistor sizing, and transistor

desizing. This is different from traditional sizing methods that optimize the given

design locally, using one or several paths at a time. Our algorithm optimizes the

given design globally, using all of the paths at same time; hence we do not need

to check whether some new paths become critical. Therefore, this approach can

reduce the delays of all paths to satisfy timing constraints simultaneously.

Furthermore, since the PFET and NFET are sized separately, this approach has

greater control over area/time tradeoffs than traditional sizing methods.

Using this algorithm, we expect to obtain the minimal transistor area of the

design subject to the timing constraints. Since the power dissipation of a design

depends on the total transistor area of a d_esign, this approach also produces a

design with minimal power subject to the timing constraints.

February 14, 1989 Page 27

area(sq. um) delay(ns)

Trs# non-opt opt % non-opt opt J~fli.~[~ defaey~% 'error·.(%

bed 42 29,750 39,450 +32.6 16.4 9.3 -40 -43.4 -3.4

addl 44 30,972 41,712 +34.7 19.9 ' 8.2 -50 -58.7 -8.7

n 60 41,090 51,000 +24.l 26.1 11.5 -55 -55.9 -0.9

random I 62 52,250 62,748 +20.l 24.7 11.4 -40 -53.0 -13.0

"andom2 72 58,742 62, 720 +6.8 25.5 ' 13.5 -50 -47.4 +2 .6

random3 76 64,200 68,807 +7.2 32.5 21.5 -30 -33.8 -3.8

f2 96 81,510 86,715 +6.4 26.6 12.6 -50 -52.0 -2.0

"andom4 100 91,200 94,860 +3 .9 30.0 19 -30 -36.7 -6.7

alu2 252 293,314 329 ,460 + 12.3 28 .6 12.6 -50 -56.0 -6.0

Table 1

February 10, 1989 Page 28

Trs#

bed 42

addl 44

random5 68

random6 72

area(sq. um/%)

delay(ns/%)

area(sq. um/%)

delay(ns/%)

area(sq. um/%)

delay(ns/%)

area(sq. um/%)

delay(ns/%)

~Delay
100

90

80

70

60

50

no~-
on opt ---------------------------->

29,750 34,000 +14.4 39,450 +32.6 44,400 +49.2 50,632 +70.2

16.4 10.2 -37.6 9.3 -43.4 8.6 -47.4 8.2 -50.0

30,972 36,256 +17.0 41,712 +34.7 45,232 +46.0 48,752 +57.4

19.9 12.2 -38.6 8.2 -58.7 6.9 -65.4 6.5 -67.3

58,555 62,842 +7.3 64,680 +10.5 70,070 +19.7 72,765 +24.3

21.2 20.4 -7.3 15.6 -26.3 10.7 -49.5 8.9 -58.0

54,672 61,494 +12.5 64,541 +18-.l 71,466 +30.7 74,790 +36.8

24.2 20 .3 -16.1 15 .1 -37.6 12 .2 -49.5 11.9 -50 .8

Table 2

100 110 120 130 140 150

% Area

Figure 7 The composite graph of tradeoffs between area and delay

February 10, 1989 Page 29

6. Acknowledgements

This work has been supported by NSF (grant no. MIP-8711025), California

MICRO program (grant no. 87-134) and grants from Rockwell International and

Silicon Systems.

7. References

[BuMa85) M.R. Buric and T.G. Matheson, "Silicon Compilation Environments,"
Proc. CICC, 1985.

[FiDu85) J.P. Fishburn and A.E. Dunlop, "TILOS: a Posynomial Programming
Approach to Transistor Sizing," Proc. ICCAD, 1985.

[GiMu81) P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization,
Academic Press, 1981.

[Hedl84) K. Hedlund, "Models and Algorithms for Transistor Sizing m MOS
Circuits," Proc. ICCAD, 1984.

[Hedl87) K. Hedlund, "Aesop: A Tool for Automated Transistor Sizing," Proc.
24th DAC, 1987.

[Hitc82) R.B. Hitchcock, "Timing Verication and the Timing Analysis Program,"
Proc. 19th DAC, pp. 594-604, 1982.

[HoSa78] E. Horowitz and S. Sahni, "Fundamentals of Computer Algorithms,"
pp. 203-208, Computer Science Press, Inc., 1978.

[Joup83] N.P. Jouppi, "Timing Analysis for nMOS VLSI," in Proc. 20th DAC
pp.411-418 ' 1983.

[KaFa85] W.H. Kao, N. Fathi, and C.H. Lee, " Algorithms for Automatic
Transistor Sizing in CMOS Digital Circuits," Proc. 22nd DAC, 1985.

[KiC166) T .I. Kirkpatrick and N .R. Clark, "PERT as an aid to logic design," IBM

February 14, 1989 Page 30

J. Res. Develop., vol 10, no. 2,pp. 135-141, Mar, 1966.

[LiGa87] Y-L Lin and D. Gajski, "LES: A Layout Expert System," Proc. 24th
DAC, 1987.

[Oust84] J.K. Ousterhout, "Switch-level Delay Models for Digital MOS VLSI," in
Proc. 21st DAC pp. 542-548, 1984.

[PiDe86] D. Jonathan. Pincus and Alvin M. Despain, "Delay Reduction Using
Simulated Annealing," Proc. 23rd DAC, 1986.

[ShFi87] J. Shyu and J.P. Fishburn, "Optimization-Based Transistor Sizing,"
Proc. CICC, 1987.

[VaGa88] N. Vander Zanden and D. Gajski, "MILO: A Microarchitecture and
Logic Optimizer," Proc. 25th DAC, 1988.

[YeGh88] H.C Yen, S. Ghanta, and H.C. Du, "A Path Selection Algorithm for
Timing Analysis," Proc. 25th DAC, pp. 720-723, 1988.

February 14, 1989 Page 31

