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Abstract 

This paper describes a novel algorithm for automatic transistor sizing which 
is one technique for improving timing performance in CMOS circuits. The sizing 
algorithm is used to minimize area and power subject to timing constraints. We 
define the transistor sizing problem as a graph problem and use a non-linear 
optimization technique. The algorithm consists of three separate tasks: critical 
path analysis, transistor sizing and transistor desizing. The main contribution of 
the presented algorithm is that the delays of all paths in a given design can be 
tuned simultaneoU:sly to satisfy timing constrain ts. Furthermore, the minimal 
transistor area and minimal power dissipation under given timing constraints 
can be achieved. Experimental results show that this approach has greater 
control over area/time tradeoffs than traditional sizing algorithms. 
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1. Introduction 

The task of chip designers is to design a circuit that satisfies both functional 

requirements and performance constraints. Properly defining transistor size is 

one technique to improve timing performance. The relationship between 

transistor sizes and total circuit delay is non-linear. It has been shown by 

Fishburn and Dunlop [FiDu85) that the transistor sizing problem is convex 

under the simple lumped RC model. An example of the effect of transistor sizing 

on delay is shown in Figure 1. Since delay is proportional to gate resistance and 

load capacitance, increasing transistor size of gate B reduces the resistance and 

delay of gate B. However, increasing transistor size of gate B also increases the 

capacitive load( Cb) as well as the delay of gate A. This is a delay balance effect 

between gate A and gate B. By increasing the transistor size of gate B, the total 

path delay will decrease until reaching the nadir of the convex (balance point) 

which is the minimum delay point. The total path delay increases by increasing 

the transistor size of gate B beyond the balance point. Thus, the objective of the 

transistor sizing algorithm is to size transistors by finding the optimal point on 

the convex that satisfies the timing constraints with minimal transistor area. 

We formulate the transistor sizing problem into a graph problem using a 

non-linear optimization technique. This algorithm contains a critical path 
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Figure 1 The effect of transistor sizing on delay 

analyzer that derives a multistage graph from a design, and then locates the 

worst critical path using a dynamic programming method. Using a convex 

optimization technique, the algorithm sizes the PFET and NFET separately. 

The sizing algorithm tunes the transistors along the worst critical path to satisfy 

the timing constraint, then sizes the remaining transistors in the design to the 
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optimum values. The sizing algorithm initially tries to over-size the transistors in 

the design to ensure that all timing constraints are satisfied. Using this method, 

the sizing algorithm improves the delays of all paths at the same time, and hence 

does not need to check whether some new path becomes critical. A desizing 

algorithm then calculates the actual delay of each gate and the delay allowance 

based on the timing constraints, and then desizes the transistors to minimize the 

area. The objective of this sizing algorithm is to size transistors so that the 

minimal transistor area is ac.hieved for the specified timing contraints, and the 

delays of all paths in a design can be reduced to satisfy timing constraint 

simultaneously. 

The next section decribes some previous work. Section 3 presents the 

electrical models used to calculate the delay of a circuit and summarizes the 

optimization algorithms. The experimentla results and conclusions described are 

in Section 4 and 5. 

2.Previous Work 

Three approaches have been applied to solve the transistor s1zmg 

optimization problem. The first approach[FiDu85] [KaFa85] is a heuristic 

method in which the transistor size is incremented with a step size until all the 
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timing constraints are satisfied. Fishburn and Dunlop[FiDu85] have shown that 

the transistor sizing problem is convex by using a distributed RC delay model. 

TILOS is a heuristic transistor sizing program that iteratively increases the 

transistor size along the worst critical path. This heuristic selects a transistor 

that reduces the most delay with the minimal increase in area. The process 

continues until all the timing constraints are satisfied. ·Thus TILOS minimizes 

power and area subject to the timing constraints. 

XTRAS [KaFa85] used a simple heuristic method to minimize the delay of a 

circuit. A gate selection routine selects the gate that contributes the most to the 

delay. Then XTRAS increases the size of selected gate and recalculates the total 

path delay. This process terminates when the timing requirement is met. 

The second approach[Hedl87][ShFi87] is based on the conventional 

augmented Lagrangian method[Gill81] which requires gradients to be computed 

for each variable and requires the cost function to be differentiable. The cost 

function is formulated as a polynomial by modeling the delay as a lumped RC 

time constant. AESOP[Hedl87] is an interactive transistor sizing tool. It 

formulates the delay minimization problem into a nonlinear optimization 

problem with constraints. The nonlinear optimization problem is solved by a 

quasi-Newton method, and several paths can be solved simultaneously. Using 

February 14, 1989 Page 4 



ASEOP, the user can select sets of paths to be optimized, specify constraints, 

and interactively evaluate different design and sizing options. 

The third approach[PiDe86] uses a simulated annealing method for reducing 

the delay on many paths simultaneously. MOST is a Prolog program that uses a 

simulated annealing algorithm to reduce the delay on many paths 

simultaneously. The implementation makes great use of the delayed binding and 

backtracking techniques in Prolog. This allows binding the parameters of many 

paths at same time, thus the delays of many paths can be reduced 

simultaneously. But the lack of tail-recursion optimization in Prolog limit the 

maximum circuit size to approximately 100 transistors. 

The mam problem of the first approach is that only one path( the worst 

critical path) is optimized at a time. This approach lacks a global view of the 

whole circuit. Some new paths may become critical after changing the transistor 

sizes along the worst critical path. Therefore, the algorithm may fail to size the 

circuit correctly. Using the simulated annealing method, the delays of all paths 

can be reduced simultaneously. However, it suffers from long execution time and 

is therefore restricted to small circuits only. 

The drawbacks of the second approach are: (1) It solves the problem in an 

unnecessarily large space by using all the transistors as design variables, and (2) 
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It lacks an efficient way to get a good initial guess of transistor sizes. 

All the three approaches size the logic gates instead of individual 

transistors; this may produce the problem of non-symmetrical rise time and fall 

time delays. 

3. Models and Algorithms 

3.1 Overview 

This section describes the models used to estimate the gate delay, and the 

transistor sizing algorithms for timing optimization in MOS circuits. 

The algorithm for transistor sizing consists of three main sections : Critical 

path analysis, Transistor s1zmg, and Transistor desizing. The critical path 

analyzer converts the given design to a multistage graph, and then determines 

the worst critical path using a dynamic programming method. The tran~istor 

sizer optimizes the transistor sizes along the worst critical path to meet timing 

constraints, and then modifies the rest of the transistors to optimum sizes using 

convex optimization method. 

The transistor desizer then reduces transistor sizes of all paths to minimize the 

transistor area subject to timing constraints. The transistor desizing alogorithm 
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consists of two phases: delay estimation and transistor desizing. The desizing 

algorithm estimates the delay allowance of each gate subject to timing 

constraints, and then desizes the transistors of all gates to the minimal size that 

satisfies the timing constraints. 

3.2 Electrical Models 

3.2.1 RC Delay Model 

To estimate gate delay, a simple RC delay model[Hedl84] is used to compute 

the resistance and capacitance of each gate in a path. When critical path 

analyzer traces a signal path, each transistor in the path is modeled as a fixed 

resistor driving some output capacitance(Figure 2). There are two transition 

states in each gate; when the output changes from "1" to "O"(Figure 2( a)) and 

when the output changes from "O" to "1 "(Figure 2(b) ). The change in the 

output is assumed to be triggered by a single input, and all transistors in series 

with the trigger transistor must be turned on. 

February 14, 1989 Page 7 



-l Rl 

-l R2 

(a) 

-l Rl 

-l R2 

I 
(b) 

Figure 2 Delay through pullup and pulldown network with RC model 

The delay of a gate i is simply the average of the rise and fall time delays : 

The rise time and fall time delays[Hedl84] are computed as follows(Figure 3): 
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where 

Rpup(i) is the sum of the pullup transistor resistances of gate i in series 

ifthe output is "1". 

Rpdn(i) is the sum of the pulldown transistor resistances of gate m 

series if the output is "O". 

Rw(i) is the parasitic wire resistance of gate i. 

C(i) is the total capacitive load of gate i. 

Cpup(i+l) is the PFET gate capacitance of gate i+l. 

Cpdn(i+l) is the NFET gate capacitance of gate i+l. 

cw(i) is the parasitic wire capacitance of gate i. 

S ( ') is the PFET size of gate i. pup I 

span(i) is the NFET size of gate i. 

The resistance · and capacitance of a single pullup and pulldown transistor 

depend only on the type and width of the transistor. The resistances Rpup(i) and 

Rpdn(i) are inversely proportional to the sizes of pullup and pulldown transistors of 
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Rp11p{i)/Spup(i) 

Rw{i) 

Rpdn(i)/Spdn(i) 

Cpup(i+1rspup(i+l)+Cpdn(i+ q-Spdn(i+ 1) 

Figure 3 Electrical Model 

gate i. The capacitance Cpup(i) and Cpdn(i) are directly proportional to the sizes of 

pullup and pulldown transistors of gate i . . Therefore, increasing spup(i) and spdn(i) 

decreases the output delay of gate i but increases the capacitive load on gate i-1. 

The total delay T through a path is computed by summmg up the 

individual gate delsys in the path. Hence 
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where the delay ti is the individual gate delay in the path. 

Our transistor sizing algorithm is implemented before layout takes place. This 

means that the exact wire lengths for routing are unknown, and some estimates 

of wires resistances and capacitances must be used. ~o maintain technology 

independence, and to reduce the execution time, we used a table driven 

approach [Hedl87] in which the values of resistance and capacitance are supplied 

by the user in a table based on different technologies. 

3.2.2 Delay Model for Complex Gate 

The Rpup and Rpdn of a complex gate are computed based on the longest 

resistance path along the trigger transistor. For a three input OAI (Figure 4(a)), 

the effective resistance Rpup is Ra +I\ if the trigger transistor is A or B; but the 

effective resistance Rpup is only Rc if the trigger transistor is C. For a three input 

AOI (Figure 4(b) ), the effective resistance Rpdn is Ra +I\ if the trigger transistor is 

A or B, and the the effective resistance Rpdn is Rc if the trigger transistor is C. 

Thus the delay calculation of a complex gate depends on the input trigger 

transistor. 
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(a) (b) 

Figure 4 Delay model for complex gate 

3.3 Critical Path Analysis 

Critical path analysis(KiC166] was the first approach proposed for timing 

analysis. Several authors ((Oust85), (Hitc82],(Joup83),(YeGh88]) have reported 

many different approachs for performing timing analysis. In this section, we 

decribe an algorithm using a dynamic programming method(HorSa78) to 
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determine the worst critical path. 

A multistage directed graph G = (V, E) is derived from the given design. 

Each vertex V represents a gate in the design. An edge E represents the path 

between two gates. The vertices are partitioned into k~2 disjoint stages Vi, 

l:Si:Sk (Figure 5). Let s and t be two vertices in V 1 and yk respectively. Dummy 

source (s) and sink (t) vertices are added for simplicity. Let delay(i ,j) be the 

delay of path< i,j >. Let DELA Ytota1( s, t) be the sum of the delays from s to t. The 

task of critical path analyser is to find the path with the maximum delay from s 

tot. 

This maximum delay for a k-stage graph problem 1s computed (using 

dynamic programming) by starting at the sink node and moving towards the 

source node one stage at a time. The delay computation depends on two 

adjacent sets of vertices. To find a maximum delay path from t to s, k - 2 

decision sequences may be generated. However, those sequences containing 

suboptimal distances will not be generated. For example, if the delay of the 

sequence ( G 1 -> G3) is larger than the delay of the sequence ( G 1 -> G 2) then 

the sequence ( G 1 -> G2) contains a suboptimal distance, and therefore will not 

be stored for further analysis (Figure 5). Let DELAYtotal(i,j) be the maximum 

delay path from_ vertex j in Vi to sink node t. By working backward, we obtain: 
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Figure 5 Multistage graph representation 

DELAY,<Xa1(i,j) = MAX{delay(j,m) + DELAY,ota1(i-l,m)} 

where 

m E Vi- 1 and (j ,m) E E 

The critical path analysis alogrithm consists of the following four phases: 

February 10, 1989 Page 14 



1. Calculate the delay for each vertex initially using unit size. 

2. Partition vertices into disjoint sets. 

3. Insert the source node, sink node and dummy edges. 

4. Determine the worst critical path. 

ALGORITHM 1 : Critical path analysis 

{calculate the delay for each vertex} 

Let 

#v be the number of vertices in V; 

tdelay[i] be the delay time at vertex i; 

C1oad[i] be the output capacitance of vertex i associated with all the fan out pins; 

Rpe!J[i] be the sum of the pullup transistor resistance in series at vertex i plus wire 

resistance; 

Rneff[i] be the sum of the pulldown transistor resistance in series at vertex i plus wire 

resistance; 

Spfet[i] be the PFET size of vertex i; 

Snfet[i] be the NFET size of vertex i. 

procedure gate_delay _calculation(V) 

begin 

for (i=l to #v) 

tdelay[i] = (Rpeff[i] * Croad[i])/Spfet[i] + (Rnef![i] * Cload[i])/Snfet[i]; 
end; 
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{Assign vertex stage and determine the longest distance from output to input using 

breadth first search} 

procedure graph....stage(Dmax=l,E,V) 

Let 
Q be a set of vertices, 

d[i] be the stage level of vertex i. 

begin 
Q < = v where vis output vertex; 

visited[v] = true; 

d[v] = Dmax; 
while (not EMPTY(Q)) 

begin 

v = FRONT(Q); 

DEQUEUE(Q); 

for (each vertex i in V connected to v) 

begin 
if (there are no vertices connected to v) 

ieaf(v] = tme; 
if (visited [i] = false) then 

begin 

visited[i] = true; 

d[i] = d[v] + 1; 

if ( d[i] > D max) 

Dmax = d[i]; 
ENQUEUE(i,Q); 

end; 

end; 

end; 

end; 

{Insert source node, sink node and dummy edges} 

Let #v be the number of vertices in V. 

procedure source_and....sink(V,E) 

begin 
V < = V + s + t; {where s : source node and t : sink node} 

tdelay[s] = O; 
d[s] = Dmax + 1; 

tdelay[t] = O; 
d[t] = O; 
for (i = 1 to #v) 
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begin 

if (d(i] = 1) 

E <= E + <i,t>; 

else if (leaf(i] = true) 

E <= E + <s,i>; 

end; 

end; 

{Find the worst critical path using dynamic programming method} 

Let 

i be the vertex stage number which 2 S i S D max; 

D(ij] be a maximum delay path from vertex j in vi to sink vertex t and DELA Y(ij] be 

the delay time of the path; 

du ,m] be the delay from vertex j to vertex m; 

procedure critica~ath(V, V::ntical) 
begin 

vcritical s t where t is the sink vertex; 

DELAY(ij] = max( dLl,m] + DELA Y(i-1,m]); 

for (all the < s,x> in E) 

begin 

stage = d(x] - 1; 

DELAY(d(s],s] = max( d(s,m] + DELA Y(stage,m]); 

end; 

for (i = 2 to Dmax) 
D(ij] = max(dLl,m] + DELAY(i-1,m]); 

for (all the < s,x> in E) 

begin 

stage = d(x] - 1; 

D[s;x] = max(d(s,m] + DELAY(stage,m]); 

end; 

{Let ci:'~tical path be s,VDmax,VDmax- F .. ,V1 ,t} 

Dx <= s; 

for (i = Dmax+l to 1) 

begin 

Vcritical <= Vcrwca1 + D(i,DaJ; 
critical(D (i,D x]] = true; 

Dx = D[Dmax'Dx]; 
end; 

end; 
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3 .4 Transistor Sizing Algorithm 

As mentioned previously, the relationship between transistor sizes and delay is 

convex. The transistor sizing computation is based on two adjacent vertices. 

The capacitive load of the vertex to be sized is the sum of the total gate 

capacitances that the vertex drives. Using the convex optimization technique, 

the PFET and NFET sizes in a vertex are sized separately, depending on which 

transistor (PFET or NFET) contributes the most delay reduction. For instance, 

if the total delay reduction by increasing the PFET size of a vertex is larger than 

the total delay reduction by increasing the NFET size of a vertex, the algorithm 

increases the PFET size of this vertex. The transistor size computation 

terminates when the minimum delay is obtained. The optimizer first sizes the 

transistors in the worst critical path to satisfy the timing constraint based on 

the output capacitive load. Then the optimizer sizes rest of the transistors in 

the design from output to input to obtain the optimum values. The optimizer 

tries to over-size the transistors in the design to ensure that the delays of all 

paths satisfy the timing constraint. 

ALGORITHM 2 : Transistor sizing 

{transistor sizing algorithm} 

Let 

Q be a set of vertex; 

C .t be the unit capacitance of PFET; pun• 
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Cnunit be the unit capacitance of NFET; 

t . [i] be the rise time delay of gate i; rue 

t fall [i] be the fall time delay of gate i; 

t +l be the delay time after increasing the S 1 t[i] by 1; p . . p e 

tn+l be the delay time after increasing the snfet[i] by 1. 

procedure transistor....sizing(Q,V) 

begin 

for ( i = t to s in Q) 
begin 

if (already ....sized [i] = false) 

begin 

{initialization} 

ttotal = tdelay[i] + tdelay[i-l]; 

tp+l = ttotal; 

tn+l = ttotal; 
while (ttotal is not minimum) {convex optimization} 

begin 

if (tn+l > tp+l) 

spfet[i} = spfet[i] + 1; 

if (tp+l > tn+l) 

snfet[i] = snfet[i] + 1; 

tp+l =( Rpef I [i-1 ]/ Spfet[i-l ]+ Rnef 1 [i-1 ]/ Snfet[i-l ])*( C1oad[i-l]+C punit) 

. +(Rpef![i]/ ( Spfet[i]+ 1 )+ Rnef 1 [i]/ Sn/et [i])*C1oad[i]; 

tn +1=(Rpef1[i-l]/ Spfet[i-l ]+ Rnef 1 [i-1]/ Sn/et [i-1 ])*( C1oad[i-l ]+Cnunit) 

+(Rpef![i]/ Sp/et [i]+ Rnef I [i]/ (Sn/et [i]+ 1) )*Cload[i]; 

ttotal = min{tp+l,tn+l}; 
end; 

{update delay time of vi and vi- 1} 

triae[i]=( R;ef 1 [i]/ Spfet[i])*C1ood[i]; 

t fal1[i]=( Rnef![i]/ Snfet[i])*C1ood[i]; 

tdelay[i]=triae[i] + t fall[i]; 
triae[i-1 ]=( Rpef 1[i-l ]/Sp/et [i-1 ])*C1ood[i-1]; 

t fall [i-1 ]=( Rnef! [i-1 ]/Sn/et [i-1 ])*C1ood[i-1]; 

tdelay[i-l]=triae[i-l] + t fall[i-l];; 
end; 

end; 

end; 
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3.5 Transistor Desizing Algorithm 

In the initial transistor sizing stage, we try to over-size the transistors in the 

design. The desizing algorithm is then applied to minimize the area and power 

subject to timing constraints. The desizing algorithm consists two separate 

phases: delay estimation and transistor desizing. This _desizing algorithm first 

estimates the delay allowance of each gate based on timing constraints, and then 

desizes the transistors of all gates to the minimal values that satisfies the timing 

constrain ts. 

We formulate the transistor desizing problem into a graph problem. A 

multistage directed graph G = {V,E) is formed to find the worst critical path at 

the critical path analysis stage. Each vertex represents a gate in the design, and 

tdelay[i] is the delay of vertex[i]. Both tdelay[s] and tdelay[t] are zero. Let teatimate<i,j>, 

be the delay of edge<i,j>. We first evaluate the delays at all paths. By applying 

the timing constraint to the vertex t, teatimate <i,j> is computed from t to s using 

breath first search. The t <i J.> computation consists of four basic eatimate ' 

forms(Figure 6). 

(1) A vertex has only one input and one output arc: teatimate <i-1,i> is 

teatimate<i,i+l> - tdelay[i] (Figure 6(a)). 
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Figure 6 Four graph forms for delay estimation 

(2) A vertex has only one input arc and more than one output arc: te,timate < i-

k,i>, lsksn, is te,timate<i,i+l> - tdelai,,[i] (Figure 6(b)). 

(3) A vertex has more than one input arc and only one output arc: to consider 

the worst delay path, the te1timate < i-1,i> is min{te,timate < i,k> - tdelay[i]}, 

isksi+n (Figure 6( c) ). 
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( 4) A vertex has more than one input and output arc: te&timate <i-k,j>, lsksn, is 

min{te&timate < i,k> - tdelay[i]}, isksi+n (Figure 6( d) ). 

If te&timate < s,j> is larger than zero, the path from input vertex j to sink vetex 

t is oversized. If te&timate < s,j> is less than zero, the path from input vertex j to 

sink vertex t is undersized. Since the sizing algorithm tr_ies to oversize all of the 

paths, the chances of undersizing are very unlikely. 

In the transistor desizing stage, the desizer desizes the transistors at ·all 

paths from source vertex s to sink vertex t using the information we obtained 

from the delay evaluation stage. The desizing algorithm is a reverse process of 

the sizing algorithm. Transistor desizing depends on which transistor, PFET or 

NFET, contributes less delay reduction.Let tallowance(i) be the delay allowance of 

vertex i. 

The desizing computation consists of four basic forms as shown in figure 6. 

(1) . A vextex has only one input and one output arc: if te&timatJi,i+l]-te&timatJi-1,i] 

> t [i] the v. is oversized and tai1 [i] = t t' t [i,i+l]-t t' t [i-1,i] Figure delay • owance e& ima e e& ima e 

6( a)). 

(2) A vertex has only one input arc and more than one output arc: tallowance[i] 

te&timatJi,i+l]-max{te&timatJi-j,i]}, l:Sj:Sn (Figure 6(b)). 

February 14, 1989 Page 22 



(3) A vertex has more than one input arc and only one output arc: te,,timatJi] 

min{te.!timatJi,i+j]}-te.!timatJi-1,i], lsjsn (Figure 6( c)). 

( 4) A vertex has more than one input and output arc: min{te,,timate[i,i+j]}-

max{te,,timatJi-j,i]}, lsjsn (Figure 6(d)). 

If a vertex is already desized to . the unit size and there is some delay 

allowance left, this delay allowance will propagate to the vertices in the higher 

level. This process teminates when no more transistors can be desized and delays 

of all paths satisfy the timing constraint. 

ALGORITHM 3 : Transistor desizing 

{delay evaluation of all paths using breath first search} 

Let t t' t [ij] be the delay of edge< ij>. 
e.! ima e 

procedure delay _evaluation ( t conatraint 'v 'vcritical) 

begin 

Q < = s wheres is source node; 

teatimate[i,s] = tconatraint; 

while (not EMPTY(Q)) 

begin 

v = FRONT(Q); 

DEQUEUE(Q); 

for (each vertex i in V connected to v) 

begin 

if (i < > sink node t) 

begin 

if (i has only one input arc from vertex i+l) 
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t . [i-1 l)=t . [i i+ l]-tdel [i]. eat1mate · ' eat1mate ' ay ' 
else {i has more than one input arcs (i+ l..i+n)} 

t eatimate[i-1,i) = min( t eatimate [i,i+ 1 . .i+n ]-t delay[i]) i 
ENQUEUE(i,Q); 

end; 

end; 

end; 

end; 

{Desizing Algorithm} 

Let tall [i) be the delay allowance of vertex i. owance . 

procedure desize(V) 

begin 

for (every vertex i in V ,do breath first search from sink node t to source node s) 

begin 

if (i-1 is source vertex s) 

begin 

if (i has more one input arc) 

tallowancJi] = teatimate[i,i+l]; 
else 

t allowance[i] = min( t eatimate[i,i+ l..i+n]) i 
end; 

else 

begin 

if (i has one input and one output arc) 

t allowance[i] = t eatimate[i,i+ 1 )-t eatimate[i-1,i]; 
if (i has more than one input arcs and only one output arc) 

t allowance[i] = min( t eatimate [i,i+ 1. .i+n])-t eatimatJi-1,i]; 
if (i has only one input arc and more than one output arcs) 

t allowance[i] = t eatimate[i,i+ 1 )-max( t eatimate[i-1..i-n ,i]) i 
if (i has more than one input and output arcs) 

t allowance[i] = min(t eatimate[i,i+ l . .i+n])-max(t eatimate[i-1 . .i-n,i]); 

end; 

if ( t allowance [i) > t delay[i]) 
begin 

tactual = t delay [i] ; 
while (tallowancJi] > tactual AND Spfet[i] and Snfet[i] are not unit size) 

begin 
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if (Spfet[i] < > 1 AND Snfet[i] < > 1) 
begin 

tp-1 = tfall[i]/Snfet[i] + triae[i]/(Spfet[i]-l); 
tn-1 = triae[i]/Spfet[i] + t fall[i]/(Snfet[i]-l); 
tactual = min(tp- l'tn- 1); 
if (t ['] t ) allowance 1 > actual 
begin 

if (tp- 1 > tn- 1) 
snfet[i] = snfet[i]- l; 

else 

spfet[i] = spfet[i] - 1; 
end; 

end; 

else 

begin 

if (Spfet[i] > 1) 
tactual= tfall[i]/Snfet[i] + triae[i]/(Spfet[i]-l); 

else 

tn-1 = triae[i]/Spfet[i] + t fall[i]/(Snfet[i]-l); 
if ( t allowance [i] > tactual) 
begin 

if(Spfet[i] > 1) 
spfet[i] = spfet[i] - 1; 

else 

snfet[i] = snfet[i] - 1; 
end; 

end; 

end; 

if ( t allowance [i] > tactual) 
begin 

if (i has more than one input arcs) 

for (j=i+l to i+n) 

teatimate[ij]=teatimate[ij] + (tallowance - tactual); 
else 

teatimatJi,i+l]=teatimate[i,i+l] + (tallowance - tactual); 
end; 

end; 

end; 

end; 
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4. Results 

The previously decribed algorithms are embedded in MILO[VaGa88] which 

currently runs on SUN 3 workstations under the UNIX operating system. 

Synthesized designs with sized transistors are passed to LES[LiGa87] for layout 

generation and then to the GDT [BuMa85] for simulati~n. The custom layout 

produced by LES uses 3 micron CMOS technology. We have run a number of 

examples with varied timing constraints. Table 1 shows the area and delay 

comparisons between non-optimized designs and optimized designs. The layout 

area in the table is the total layout area, not transistor area. The delays in the 

table are measured with Lsim mixed-mode timing simulator. The optimized 

results show that the delays are 33% to 58% faster and take 4% to 34% more 

area. Table 1 also shows the comparisons between the required delay reduction 

and the actual delay reduction. The errors ( +3% to -14%) are mainly caused by 

using the simple RC model and some estimates of wire resistances and 

capacitances. Futher improvement can be achieved by using the resistance and 

capacitance parameters extracted directly from the layout. 

Table 2 shows the optimized design tradeoffs between area and delay. The 

designs are optimized by applying varied timing constraints. Figure 7 displays a 

composite graph showing the tradeoffs between area and delay. The results are 
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normalized against the design usmg the unit transistor size whose reference 

point is shown at delay = 100%, area = 100%. 

5. Conclusions 

We have presented a novel algorithm to formulate the transistor s1zmg 

problem into a graph problem associated with a non-linear optimization 

technique. This algorithm decomposes the transistor sizing process into three 

interactive phases: critical path analysis, transistor sizing, and transistor 

desizing. This is different from traditional sizing methods that optimize the given 

design locally, using one or several paths at a time. Our algorithm optimizes the 

given design globally, using all of the paths at same time; hence we do not need 

to check whether some new paths become critical. Therefore, this approach can 

reduce the delays of all paths to satisfy timing constraints simultaneously. 

Furthermore, since the PFET and NFET are sized separately, this approach has 

greater control over area/time tradeoffs than traditional sizing methods. 

Using this algorithm, we expect to obtain the minimal transistor area of the 

design subject to the timing constraints. Since the power dissipation of a design 

depends on the total transistor area of a d_esign, this approach also produces a 

design with minimal power subject to the timing constraints. 
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area(sq. um) delay(ns) 

Trs# non-opt opt % non-opt opt J~fli.~[~ defaey~% 'error·.(% 

bed 42 29,750 39,450 +32.6 16.4 9.3 -40 -43.4 -3.4 

addl 44 30,972 41,712 +34.7 19.9 ' 8.2 -50 -58.7 -8.7 

n 60 41,090 51,000 +24.l 26.1 11.5 -55 -55.9 -0.9 

random I 62 52,250 62,748 +20.l 24.7 11.4 -40 -53.0 -13.0 

"andom2 72 58,742 62, 720 +6.8 25.5 ' 13.5 -50 -47.4 +2 .6 

random3 76 64,200 68,807 +7.2 32.5 21.5 -30 -33.8 -3.8 

f2 96 81,510 86,715 +6.4 26.6 12.6 -50 -52.0 -2.0 

"andom4 100 91,200 94,860 +3 .9 30.0 19 -30 -36.7 -6.7 

alu2 252 293,314 329 ,460 + 12.3 28 .6 12.6 -50 -56.0 -6.0 

Table 1 
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Trs# 

bed 42 

addl 44 

random5 68 

random6 72 

area(sq. um/%) 

delay(ns/%) 

area(sq. um/%) 

delay(ns/%) 

area(sq. um/%) 

delay(ns/%) 

area(sq. um/%) 

delay(ns/%) 

~Delay 
100 

90 

80 

70 

60 

50 

no~-
on opt ----------------------------> 

29,750 34,000 +14.4 39,450 +32.6 44,400 +49.2 50,632 +70.2 

16.4 10.2 -37.6 9.3 -43.4 8.6 -47.4 8.2 -50.0 

30,972 36,256 +17.0 41,712 +34.7 45,232 +46.0 48,752 +57.4 

19.9 12.2 -38.6 8.2 -58.7 6.9 -65.4 6.5 -67.3 

58,555 62,842 +7.3 64,680 +10.5 70,070 +19.7 72,765 +24.3 

21.2 20.4 -7.3 15.6 -26.3 10.7 -49.5 8.9 -58.0 

54,672 61,494 +12.5 64,541 +18-.l 71,466 +30.7 74,790 +36.8 

24.2 20 .3 -16.1 15 .1 -37.6 12 .2 -49.5 11.9 -50 .8 

Table 2 

100 110 120 130 140 150 

% Area 

Figure 7 The composite graph of tradeoffs between area and delay 
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