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ABSTRACT
Climate change is intensifying the effects 
of multiple interacting stressors on aquatic 
ecosystems worldwide. In the San Francisco 
Estuary, signals of climate change are apparent 
in the long-term monitoring record. Here we 
synthesize current and potential future climate 
change effects on three main ecosystems 
(floodplain, tidal marsh, and open water) in the 

upper estuary and two representative native 
fishes that commonly occur in these ecosystems 
(anadromous Chinook Salmon, Oncorhynchus 
tshawytscha and estuarine resident Sacramento 
Splittail, Pogonichthys macrolepidotus). Based 
on our review, we found that the estuary is 
experiencing shifting baseline environmental 
conditions, amplification of extremes, and 
restructuring of physical habitats and biological 
communities. We present priority topics for 
research and monitoring, and a conceptual 
model of how the estuary currently functions 
in relation to climate variables. In addition, we 
discuss four tools for management of climate 
change effects: regulatory, water infrastructure, 
habitat development, and biological measures. We 
conclude that adapting to climate change requires 
fundamental changes in management. 

KEY WORDS
Chinook Salmon, Sacramento Splittail, tidal 
marsh, floodplain, open water, drought, flood

INTRODUCTION
Climate change is reshaping biological 
communities worldwide and estuaries are no 
exception (Cloern et al. 2016; Lauchlan and 
Nagelkerken 2020). The San Francisco Estuary 
(estuary) is subjected to extreme seasonal and 
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annual variation from regional and global 
atmospheric and oceanic forcing (Cloern and 
Jassby 2012) that contribute to difficult problems 
for management (Luoma et al. 2015). Increasing 
trends in climate-related variables (e.g., water 
temperature, sea level, drought duration) and 
climatic extremes (e.g., strong atmospheric 
rivers, record heat waves), are creating estuarine 
conditions outside the historic range of conditions 
(Cloern et al. 2011). As a result, understanding the 
ecology of the estuary is now inextricably linked 
to understanding the cumulative effect of multiple 
interacting stressors (Orr et al. 2020)—resulting 
from both climate change and management—on 
environmental and biological processes. 

Environmental conditions have been monitored 
in the estuary since the early 20th century, and 
consistent monitoring of fishes goes back to the 
1950s. These data show that since the 1980s:

1.	 Peak flows and floodplain inundations occur 
earlier in the year, are shorter in duration, 
and are more intense than historically (Cloern 
et al. 2011; Wang et al. 2018; He et al. 2019).

2.	 An uptrend in salinity intrusion is greater in 
the Spring than in the Summer–Fall (July–
October vs. February–June; Hutton et al. 2021).

3.	 Water temperature is rising, primarily 
during the late Fall to Winter and mid-Spring 
(Bashevkin et al. 2022).

4.	 Changes in environmental conditions are 
concordant with a decline in many native 
species and an increase in many alien species 
(Cloern 2007; Winder and Jassby 2011).

To identify the effects of these changes on 
ecosystems and species in the estuary, we 
reviewed the literature and the environmental 
data for climate and climate-related effects. 
We focused the review on two representative 
fish species—the anadromous Chinook 
Salmon (Oncorhynchus tshawytscha) and the 
resident Sacramento Splittail (Pogonichthys 
macrolepidotus)—and on three aquatic ecosystems 
in the upper estuary that are used by those 

species: floodplain, tidal marsh, and open water. 
This work builds on an extensive literature 
review of climate effects on the estuary by the 
Interagency Ecological Program (IEP) Climate 
Change Team (CC MAST 2022). We also build on 
recent climate-related discussions about effects 
and adaptation (Ghalambor et al. 2021; Norgaard 
et al. 2021). Our goal is to identify priority topics 
for research and monitoring that can facilitate 
sound management of the estuary under climate 
change.

FINDINGS
Effects of Climate Change
Global warming significantly increased air 
temperature in California during the 20th century 
(Figure 1A and 1B), a trend expected to increase 
by an additional 1.5 °C to 4.5 °C by 2100 (Cayan 
et al. 2008; Knowles et al. 2018; Pierce et al. 2018; 
IPCC 2021). In the estuary, air temperature is 
a key driver of water temperature, which has 
increased by approximately 0.85 °C in the past 50 
years (Bashevkin et al. 2022). However, the rate 
of temperature change exhibits considerable 
seasonal and regional variability, with the 
highest rates detected during winter and spring 
and in the northern Sacramento–San Joaquin 
Delta (Delta) (Bashevkin et al. 2022). Warmer 
temperature not only directly affects organisms 
by altering physiological processes but can 
interact with other environmental factors, such 
as contaminants, to increase effects on aquatic 
organisms (Brooks et al. 2012; DeCourten et al. 
2017, 2019; Kolomijeca 2020).

The Mediterranean climate of California consists 
of an extremely variable wet season from 
October through March, and a dry season the 
rest of the year (Knowles et al. 2018). Warming 
air temperature in the winter increases the 
amount of precipitation arriving as rain rather 
than snow (Stewart et al. 2005; Reich et al. 2018; 
Knowles et al. 2018) and leads to a decrease in the 
snowpack (Knowles et al. 2006; Mote et al. 2018). 
Warmer air temperatures reduce the moisture 
content of the snowpack (Cayan et al. 2008), shift 
the timing of snowmelt to earlier in the year, 
and decrease its duration (Huang et al. 2020). 
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Winter precipitation as rain, reduced retention of 
precipitation as snow, and low moisture content 
of the snowpack (Dettinger et al. 2016; Luković  
et al. 2021)—in combination with an increase 
in the frequency and intensity of severe storms 
(Das et al. 2013; Knowles et al. 2018; Swain et al. 
2018)—creates a new hydrologic regime. Daily 
rainfall totals are projected to increase by 5% to 
20% (Pierce et al. 2018). This increase in storm 
frequency and intensity leads to record floods 
in California, where storms are already more 
variable and extreme than in the rest of the 
United States (Ralph and Dettinger 2012). Patterns 

of freshwater flow from 1906 to 2020, the longest 
record available in the estuary, show strong 
seasonal and annual variation driven by winter 
and spring precipitation and wet and dry regimes 
(Figure 2A and 2B). Consecutive wet years have 
not occurred in the estuary since 1996-1999, while 
consecutive dry and critical years have occurred 
three times. Overall, rising regional temperatures 
are expected to further intensify changes in the 
timing and magnitude of freshwater flow into the 
estuary, including “weather whiplash” scenarios 
characterized by rapid transitions between 

Figure 1  California statewide 
air temperature time series from 
US Climate Divisional Database 
(https://www.ncdc.noaa.gov/cag/
statewide/time-series) for January 
(i.e., the coldest month of the year) 
and July (i.e., the warmest month of 
the year). Points represent average 
temperature for the month and year, 
black dashed line represents the 
average temperature for the month 
between 1901 and 2000, and outer grey 
shading represents the maximum and 
minimum temperatures. The red line 
and darker grey shading represent 
the LOESS smooth line for average 
temperature points and the 95% 
confidence intervals, respectively 
(fraction of points used to fit local 
regression = 0.25).

https://www.ncdc.noaa.gov/cag/statewide/time-series
https://doi.org/10.15447/sfews.2022v20iss2art1


SAN FRANCISCO ESTUARY & WATERSHED SCIENCE

4

VOLUME 20, ISSUE 2, ARTICLE 1

extreme wet and dry conditions (Swain et al. 
2018).

The high decadal-scale variability that has 
characterized climate in the eastern Pacific 
over the past 4 centuries (Biondi et al. 2001) also 
includes drought. Drought is not new to California 
(Stahle et al. 2011), but increasing temperatures 
increase the likelihood of precipitation deficits 
co-occurring with warm conditions (Diffenbaugh 
et al. 2015). Drought is three to four times more 
likely today than in pre-industrial times in 
California (Swain et al. 2018), and anthropogenic 
warming intensifies recent droughts (Williams et 
al. 2020). Future droughts are likely to be longer, 
warmer, and drier than the recent extreme 
drought of 2012-2016 (Meko et al. 2014; Dettinger et 
al. 2016). Extreme drought will further influence 
ecosystems in the estuary through the effect 
of salinity intrusion (Ghalambor et al. 2021). 
Sea level rose 20 cm over the 20th century, and 

conservative estimates indicate it will rise by 
another 20 to 170 cm by 2100 (Flick et al. 2003; 
NRC 2012). Paleoclimatic data, when combined 
with climate change projections, suggest a sea 
level rise of several meters over 50 to 150 years 
is possible (Hansen et al. 2016). Modeling studies 
suggest a sea level rise of 140 cm could shift 
the estuary’s salinity field landward by 7 km 
(MacWilliams and Gross 2010).

Human activities have transformed the estuary 
landscape over the last 150 years, eliminating 
most of the natural habitats and drastically 
altering the hydrodynamics (Whipple et al. 2012). 
Upstream dams, infrastructure, water diversion, 
and land use substantially alter the hydrograph, 
water quality, and the distribution and abundance 
of native species (Brown et al. 2010; Moyle et al. 
2010). For example, in low-precipitation years, 
upstream and Delta diversions take a large 
proportion of available water, which increases 

Figure 2  (A) Daily net Delta outflow (m3s–1) estimated for Chipps Island from 1929 to 2020. (B) A wavelet plot for estuary outflow (Roesch and 
Schmidbauer 2018). Wavelet power levels (color scale) represent the strength (amplitude) of periodicity in outflow across the different scales (y-axis, in 
days) and over the years (x-axis). For example, the annual scale (period = ~ 365 days) shows variation in wavelet power that was often strong (color = red; 
line = black), reflecting annual fluctuations in flow that are characteristic of California’s Mediterranean climate. Transitions from red to non-red areas 
represent hydrologic regime shifts (e.g., a shift to extreme drought in the late 1980s and early 1990s). Data source: CDWR 2021.
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salinity intrusion (Moyle et al. 2010; Castillo et al. 
2018). In high-precipitation years after droughts, 
replenishing water in depleted reservoirs becomes 
a priority, which can reduce the amount of water 
released downstream from dams (Reis et al. 2019). 
The increased frequency of drought under climate 
change is likely to enhance other stressors with 
a variety of synergistic interactions (Bennett 
and Moyle 1996; Brook et al. 2008; Castillo 2019). 
As climate change progresses, untangling and 
anticipating these multiple interacting stressors 
will be essential to management (Orr et al. 2020; 
Carrier-Belleau et al. 2021).

In addition to the direct effect of environmental 
stressors on species, climate change also affects 
species interactions and foodweb structure. The 
estuary has been invaded by hundreds of non-
native species at every trophic level (Cohen and 
Carlton 1998), resulting in an unprecedented 
combination of species and fundamentally 
altered food-web dynamics (Winder and Jassby 
2011; Moyle 2014). Many of these non-native 
species have had unpredictable, usually harmful, 
consequences to Delta fish communities and 
ecosystems described as the “Frankenstein effect” 
(Moyle 1999). Climate change may continue 
to favor invaders that are highly tolerant of 
warm temperatures (Moyle et al. 2013), such as 
Largemouth Bass (Micropterus salmoides), Inland 
Silverside (Menidia beryllina), and Brazilian 
waterweed (Egeria densa) (Brown and Michniuk 
2007; Conrad et al. 2016; Mahardja et al. 2016, 
2017). In addition, more non-native species are 
expected to invade the estuary, with uncertain 
consequences to ecosystem function and native 
species persistence (Moyle et al. 2013). 

The effects of climate change on the estuary 
thus occur within an array of interacting 
anthropogenic and natural factors. We do not 
address the likely, but indeterminate, effects 
of climate change on levee stability and water 
project operations. The linkages in the estuary 
between global climate change and regional 
physical effects and local ecosystem processes are 
illustrated in Figure 3. 

Biota of Interest 
We focus on two management-relevant and 
ecologically distinct native fish species that can 
be found in all three ecosystems: the anadromous 
Chinook Salmon and the estuarine resident 
Sacramento Splittail. Anadromous species 
migrate from rivers to the ocean and back and are 
thus only exposed to estuarine conditions for part 
of the year. Variation in their overall abundance 
may be partially determined by conditions 
elsewhere. Resident species are exposed to 
environmental conditions in the estuary year-
round so fluctuations in their abundance reflect 
conditions in the estuary. 

Chinook Salmon
The Central Valley contains the southernmost 
populations of Chinook Salmon, which were 
exceptionally abundant before the mid-20th 
Century. Fish would mature in the ocean for 
up to 5 years before migrating into rivers of the 
Central Valley to spawn and die in the cold water 
their eggs require. Young grow in their natal 
streams for weeks, or as much as a year before 
migrating through the Delta to the ocean. Dams 
blocked access to most traditional spawning 
grounds, and agriculture and urban development 
eliminated much of the habitat used by growing 
and migrating young fish (Moyle 2002). All runs 
are now seriously depleted.

Four different runs of Chinook Salmon are found 
in the Central Valley, named for the season when 
the adults migrate from the ocean though the 
Delta on their way to riverine spawning grounds 
(Moyle 2002; Yoshiyama et al. 2011). Fall-run 
and late-fall-run fish spawn shortly after their 
upstream migration, and the young move out 
during the subsequent spring. Spring-run and 
winter-run adults hold for various lengths of 
time after migrating to their spawning grounds, 
and their young hold for various lengths of time 
before outmigrating (Moyle 2002). Spring run 
and winter run are currently listed as threatened 
and endangered (81 FR 33468 and 70 FR 37160), 
respectively, under the federal Endangered 
Species Act (USFWS 2003). As climate change 
continues, the decline of Chinook Salmon 
abundance is accelerating (Munsch et al. 2019; 

https://doi.org/10.15447/sfews.2022v20iss2art1
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Cordoleani et al. 2021), as predicted in climate 
change vulnerability assessments nearly a decade 
ago (Katz et al. 2013; Moyle et al. 2013; Quiñones 
and Moyle 2014).

Sacramento Splittail
Sacramento Splittail is a large, long-lived, 
cyprinid fish that is endemic to the estuary 
although some movement upstream is common; 
years in which the bypasses flood are associated 
with large production of young (Moyle et al. 
2004). Splittail consist of two genetically distinct 
populations: one that spawns in the Central Valley 
and another that spawns in the Petaluma and 
Napa rivers around San Pablo Bay (Baerwald et al. 
2007). Although the two populations are largely 
reproductively isolated from one another, spatial 
overlap occurs during wetter years when salinity 
is low throughout the upper estuary (Feyrer 
et al. 2015; Mahardja et al. 2015). Sacramento 
Splittail is a California Species of Special Concern 
(Moyle et al. 2015) and was listed as a threatened 

species by the U.S. Fish and Wildlife Service from 
1995 to 2003 (USFWS 2003; Sommer et al. 2007). 
More recently, climate change vulnerability 
assessments determined that Splittail populations 
are vulnerable to extinction from climate change 
effects on the estuary (Moyle et al. 2013).

Aquatic Ecosystems of Interest
We examine three contrasting ecosystems—
floodplains, tidal marshes, and open water—to 
provide insights into effects of climate change. 
Historically, the upper estuary was an expansive 
habitat mosaic featuring rivers, floodplains, tidal 
sloughs, tidal marshes, and deep and shallow bays 
(Whipple et al. 2012). Starting with the California 
Gold Rush and the annexation of California by 
the United States in 1850, rapid development via 
urbanization, agriculture, commerce, and water 
conveyance transformed the estuary into an open-
water-dominated system (Nichols et al. 1986). 
Currently, there is a large emphasis on improving 
the ecological conditions of the upper estuary 

Figure 3  Schematic of the key climate 
change impacts on Delta ecosystems. Spatial 
down-scaling is represented with arrows 
from global, regional, and local scales (grey 
arrows and panels) to open water, tidal marsh, 
and floodplain ecosystems (green arrow and 
panel).
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by restoring habitat complexity and variability 
(Moyle et al. 2010; EcoRestore 2021; Sherman et 
al. 2017; Young et al. 2018; Cloern et al. 2021). 
However, the extent to which climate change 
affects floodplains, tidal marshes, and open-
water ecosystems and their current distribution 
(Figure 4) warrants further investigation because 
each is the target of major management actions. 

Floodplain
Levees and water management block inundation 
of much of the historic floodplain habitat in the 
upper estuary and Central Valley (Opperman et 
al. 2017). However, remnant floodplains such as 
the Yolo Bypass and Cosumnes River floodplains 
provide benefits to a variety of native aquatic 
species (Sommer, Harrell, and Nobriga et al. 2001; 

Sommer, Nobriga, Harrell et al. 2001; Crain et 
al. 2004). The magnitude, frequency, duration, 
and seasonal timing of floodplain inundation is 
changing with climate. Floods are more likely to 
occur in the winter months (December through 
February) than in the spring (March through 
April), as precipitation from local rainfall—rather 
than snowmelt from the mountains—becomes the 
source of water (Dettinger et al. 2016). Although 
the magnitude and frequency of floods will 
increase, the duration of floods will decrease 
(DSC 2021). A decrease in the duration of floods 
can lead to an increase in flood intensity, making 
extreme flood events like the “Great Flood of 
1862” more common (Swain et al. 2018). Extreme 
flood events larger than those in recent history 
are possible based on tree-ring chronologies 

Figure 4  Map of three aquatic ecosystem types in the 
upper San Francisco Estuary: floodplain (yellow), tidal marsh 
(green), and open water (blue). Data sources: SFEI 2017, 2020; 
Fregoso et al. 2017.

https://doi.org/10.15447/sfews.2022v20iss2art1
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that date back 2,000 years (Meko et al. 2014) in 
the western region, and 1,000 years in the San 
Francisco Estuary (Hutton et al. 2021). 

Floodplains and the species dependent on them 
are sensitive to the frequency, timing, duration, 
and intensity of floods (e.g., Takata et al. 2017; 
Zischg and Bermúdez 2020). Climate change 
alters the timing and duration of inundation. 
Inundation in the late winter and early spring 
enhances production at the base of the food web 
by stimulating the growth of phytoplankton, 
particularly diatoms (Lehman et al. 2008). 
Diatoms grow within a few days in the low light 
and cooler conditions of late winter and thrive 
in the high-flow conditions that promote vertical 
mixing in the floodplain (Lehman et al. 2008; 
Glibert et al. 2014). In contrast, insect larvae such 
as chironomids, an important macroinvertebrate 
food for juvenile fish, require 2 weeks or more 
of inundation to achieve maximum abundance 
(Benigno and Sommer 2008). Co-occurrence of the 
lower food-web production with fish abundance 
is essential to fish production in the floodplain 
(Grosholz and Gallo 2006; Moyle et al. 2007). As a 
result, shifts in the timing of seasonal flooding 
may pose a problem for energy transfer through 
the food web (Jardine et al. 2012). 

The frequency and severity of droughts may also 
affect the resilience of the floodplain ecosystem. 
Severe or prolonged drought as we have seen in 
the last 20 years can damage the invertebrate egg 
bank on the floodplain, so that when inundation 
occurs, invertebrate populations are low (Bond 
et al. 2008). Few periods of inundation may limit 
the export of nutrients and phytoplankton that 
is needed to stimulate downstream food webs 
(Frantzich et al. 2018). In addition, fluctuation 
from drought to flood may affect the persistence 
of floodplain vegetation (Greet et al. 2011). 

All four runs of outmigrating Chinook Salmon 
use floodplains in the estuary. In years when 
floodplains are inundated, juvenile salmon enter 
floodplains to feed on zooplankton and insect 
larvae, which are larger and more abundant than 
those in adjacent river channels (Jeffres et al. 
2008; Limm and Marchetti 2009; Bellmore et al. 

2013). As a result, juvenile Chinook Salmon that 
feed in floodplains during high-flow years have a 
high growth rate and enter the ocean at a larger 
size than those which only feed in river channels 
during low-flow years (Sommer, Nobriga, Harrell 
et al. 2001; Takata et al. 2017). Large fish tend 
to have high survival rates in the ocean, which 
can result in larger returns of spawning adults 
to rivers in subsequent years (Woodson et al. 
2013; Willmes et al. 2018). Shorter durations of 
floodplain inundation from climate change may 
limit foraging opportunities for outmigrating 
juveniles or result in a temporal mismatch 
whereby flooding occurs too early for them to 
access floodplain resources (Jardine et al. 2012). 
Elevated air temperature can make the water 
in floodplains too warm for salmon; however, 
cooling of water with tide and evaporative cooling 
may contribute to the development of more 
favorable water temperature in the floodplain 
than in nearby sloughs (Enright et al. 2013; Aha et 
al. 2021).

Similar to Chinook Salmon, Splittail abundance 
is linked to floodplain inundation (Sommer et 
al. 1997), but climate-related effects on seasonal 
flooding can have a greater effect on Splittail 
populations. Adult Splittail migrate upstream into 
the floodplain during high-flow events in January 
and February (Sommer et al. 2014) and lay their 
eggs on flooded vegetation in March and April 
(Caywood 1974; Moyle et al. 2004). Early and/or 
short floodplain inundation periods adversely 
affect spawning success (Sommer et al. 1997; 
Sommer, Nobriga, Harrell et al. 2001]). Inundated 
floodplains also provide safe migration corridors 
between spawning and rearing habitats, as well 
as brackish-shallow-water rearing habitat (Moyle 
et al. 2004). 

Tidal Marsh
Tidal marsh was a dominant landscape feature 
in the historic estuary; however, extensive 
diking, draining, and conversion to agriculture 
(e.g., farmland, pasture) in the 19th and 20th 
centuries eliminated up to 98% of tidal marsh 
area and nearly all associated aquatic primary 
production (Cloern et al. 2021). The remaining 
tidal marshes are sparsely distributed throughout 
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the upper estuary and have received less attention 
from long-term aquatic monitoring programs 
(Brown 2003). Nevertheless, there is a growing 
recognition of the role that tidal marsh plays 
in the estuary food web and as key habitat for 
species of concern (Davis et al. 2019; Hammock 
et al. 2019; Colombano, Handley, O’Rear et al. 
2021). Because of the various ecosystem services 
that tidal marsh can provide, extensive marsh 
restoration planning and implementation 
throughout the estuary is now underway (Herbold 
et al. 2014; Sherman et al. 2017).

Tidal marsh ecosystems face multiple interacting 
stressors from climate change (Colombano, 
Litvin, Ziegler et al. 2021), including rising sea 
level (Stralberg et al. 2011; Schile et al. 2014), 
shifting sediment dynamics (Barnard et al. 
2013), and elevated temperature and salinity 
(Ghalambor et al. 2021; Bashevkin et al. 2022). 
While shading and evapotranspiration, nighttime 
flooding of the marsh plain, and Delta breezes 
may help maintain cool water temperatures in 
tidal marshes (Enright et al. 2013), the extent to 
which marshes can provide adequate thermal 
refugia and thus ameliorate the effects of 
warming on thermally sensitive fish species 
remains unclear.

Rising sea level increases the duration of tidal 
inundation of the marsh plain and, thus, the rates 
of sediment and organic matter accumulation. 
The capacity for marshes to resist and recover 
from disturbance (e.g., storm surges, drought) 
and to maintain elevation (i.e., relative position 
of the marsh surface with respect to tidal heights) 
depends on whether the annual rate of sediment 
and organic matter accumulation keeps pace 
with sea level rise (Cahoon and Gunterspergen 
2010). How much sediment is delivered to marshes 
under different climate change scenarios remains 
uncertain. High flows as a result of strong 
atmospheric rivers in winter and spring may 
mobilize large amounts of sediment in pulses, 
which could increase the annual sediment supply 
to the estuary (Schoellhamer et al. 2018; Stern 
et al. 2020). Alternatively, sediment capture 
and flow regulation by dams, dredging, and 
other human effects influences will continue 

to deprive the estuary of some of its upstream 
sediment supply (Wright and Schoellhamer 2004; 
Schoellhamer et al. 2013). Salinity intrusion and 
increased hydroperiod could further exacerbate 
physiological stress to freshwater and brackish 
vegetation (Ghalambor et al. 2021) and, with 
reduced sediment delivery, could ultimately 
result in marsh edge erosion, channel expansion, 
ponding, and drowning (e.g., sudden peat 
collapse and conversion to open water) (Cahoon 
et al. 2021). Under the latter scenario, marsh 
islands surrounded by water in the low-salinity 
zone (e.g., Sherman Island, Browns Island, Ryer 
Island) may be most vulnerable to sea level 
rise and drought. In contrast, interior marshes 
adjacent to upland transition zones (e.g., Rush 
Ranch in Suisun Marsh) may be able to migrate 
if there is sufficient upland connectivity and 
accommodation space (Kirwan et al. 2010; 
Knowles 2010; Buffington et al. 2021).

Marsh restoration and managed retreat are 
considered the primary mechanisms for marsh 
persistence in the estuary under climate change 
(Goals Project 2015). However, uncertainties 
surround tidal amplification vs. attenuation, and 
different areas will likely respond differently. 
Where shorelines remain armored with levees 
for flood control, sea level rise may increase 
tidal amplitude; however, if widespread marsh 
restoration occurs and/or low-lying areas flood 
with tidal waters, then tidal amplitude may 
decrease (Holleman and Stacey 2014). Because 
tidal forcing is critical to site-level marsh 
geomorphology, habitat availability, and food 
production and transport, changes in tidal 
amplitude have profound ecological implications 
(Ganju et al. 2013; Lehman et al. 2015), 
particularly whether freshwater tidal marshes 
in the interior Delta are at risk of drowning 
(Swanson et al. 2015). 

Despite their limited areal extent, tidal marshes 
provide critical refuge, foraging, and rearing 
habitat for resident and transient fishes (Brown 
2003; Colombano et al. 2020). Juvenile Splittail rely 
on tidal marshes upon arrival to the low-salinity 
zone in late spring and early summer (Moyle et al. 
2004). Shallow, dendritic tidal channels lined with 

https://doi.org/10.15447/sfews.2022v20iss2art1
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emergent vegetation support seasonally diverse 
food webs (e.g., detrital and algal pathways; 
Feyrer et al. 2003; Schroeter et al. 2015; Young 
et al. 2021) and provide ample cover for young 
fish seeking refuge from predators (Colombano, 
Handley, O’Rear et al. 2021). Widespread loss of 
tidal marsh via drowning would likely create 
a bottleneck for Splittail recruitment to adult 
populations by reducing optimal nursery habitat.

In contrast, the degree to which juvenile Chinook 
Salmon use tidal marshes in this estuary is poorly 
understood. Outmigrating Chinook Salmon are 
commonly found in near-shore areas adjacent to 
emergent marsh, including tidal slough complexes 
in the North Delta (McLain and Castillo 2009; 
Takata et al. 2017). Similarly, they are regularly 
captured in springtime beach seine samples in 
Montezuma Slough, a migratory corridor that 
connects the Sacramento River to Suisun Marsh 
(O’Rear et al. 2020). However, the frequency 
and extent to which outmigrants rear in tidal 
marshes (as is commonly observed in the Pacific 
Northwest; e.g. Roegner et al. 2010; Davis et al. 
2016), remains unknown (Aha et al. 2021), in part 
from the challenge of capturing them in existing 
sampling programs (Perry et al. 2016). At the very 
least, tidal marsh may enhance juvenile salmon 
survival by providing vegetated cover, velocity 
refuge, and foraging habitat along migration 
corridors from the Delta to the ocean. Overall, 
as climate change progresses, the capacity for 
remnant and restored tidal marshes to provide 
refuge and rearing habitat depends on their 
capacity to either keep pace with sea level rise or 
to migrate into upland transition zones.

Open Water
Currently, the upper estuary is primarily a sub-
tidal, open-water ecosystem (Whipple et al. 2012). 
While much of the tidal marshes and floodplains 
in the estuary have been lost since the mid-19th 
century, the open-water area has more than 
doubled (Cloern et al. 2021). In the Delta, the 
open-water ecosystem now consists mostly of 
straightened, web-like channels with shallow-
water-edge habitat at levee margins. Large 
expanses of shallow-water habitat (i.e., tidal lakes) 
are also present because of unrepaired levee 

failures that flooded agricultural tracts. More 
westerly open waters (e.g., Suisun Bay, Suisun 
Marsh, and San Pablo Bay) typically have a mix of 
embayments and channels that experience a wide 
range of salinity (e.g., freshwater and brackish) as 
a result of increased ocean influence (Hutton et 
al. 2016).

The deep open-water areas of the estuary have 
received the most monitoring and research 
attention over the past 60 years (Stompe et al. 
2020). Here, freshwater flow interacts with 
tidal currents and wind, producing a dynamic 
environment that changes considerably across 
hours, days, seasons, years, and decades 
(Figure 4). Before the late 20th century, the 
estuary’s open waters were sparsely vegetated 
(e.g., with native Stuckenia spp.; Whipple et 
al. 2012) and therefore dependent on in situ 
production of photosynthetic microplankton 
to provide new organic matter to the food web. 
However, proliferation of the filter-feeding 
overbite clam (Potamocorbula amurensis), 
which was introduced in 1987, has reduced 
the abundance of many photosynthetic 
microplankton and zooplankton species 
(Kimmerer et al. 1994; Lehman 2004; Winder and 
Jassby 2011). Another large shift occurred in the 
early 2000s, when several native and introduced 
species of fish and invertebrates experienced 
sharp population declines (e.g., the endemic 
Delta Smelt, Hypomesus transpacificus; Sommer 
et al. 2007; Mac Nally et al. 2010; Thomson et al. 
2010). While pelagic productivity has declined in 
the estuary’s bays and channels over the years 
(Kimmerer et al. 1994; Mac Nally et al. 2010; 
Thomson et al. 2010), productivity in the shallow 
littoral areas (e.g., near-shore habitats such 
as levee margins) within the Delta appears to 
have increased. Submerged and floating aquatic 
vegetation have become more widely distributed 
over the past few decades, and the abundances of 
non-native fishes associated with this vegetations 
have also increased (Brown and Michniuk 2007; 
Conrad et al. 2016; Mahardja et al. 2017; Ta et al. 
2017).

Reduced outflow and warmer temperatures in 
late-spring and early summer months produce 
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favorable habitat for many invasive fish, 
invertebrates, and aquatic vegetation (Mac Nally 
et al. 2010; Kimmerer et al. 2019; Michel et al. 
2021). Harmful algal blooms also thrive under 
conditions of warm water and high residence 
times (Lehman, Kurobe, and Teh 2022). These 
same conditions are detrimental to most, though 
not all, native fishes (Brown et al. 2016; Young et 
al. 2018; Munsch et al. 2019). Intervening years 
of high outflow reset the salinity regime, but 
the increased frequency of drought conditions 
may not allow adequate time for native fish 
populations to recover (Mahardja et al. 2021). 

Salinity intrusion from sea level rise, in 
combination with reduction in snowpack, is 
expected to shift species’ phenology and increase 
the prevalence of salt-tolerant species in the upper 
estuary. More saline conditions may favor some 
native fishes and aquatic vegetation over their 
invasive counterparts, though it may come at the 
cost of freshwater-associated species (Moyle et al. 
2010; CC MAST 2022). These changes may incur 
management responses such as reconfigurations 
of the Delta, as seen in the emergency drought 
barriers of 2015 and 2021 (Kimmerer et al. 
2019), as well as the proposed Franks Tract 
redesign, which would reduce salinity intrusion 
permanently (CDFW 2020; see "Management 
Options").

Chinook Salmon are at the warmest end of their 
natural range in California. Rising temperatures 
will pose additional challenges to up-migrating 
adults and outmigrating juveniles in the estuary’s 
open water (Herbold et al. 2018). Higher water 
temperature increases the metabolic demand 
of salmon as they migrate and increases their 
susceptibility to diseases (Richter and Kolmes 
2005; Rhodes et al. 2011; Lehman et al. 2020). 
Juvenile mortality may increase with higher 
temperature and can be exacerbated by the likely 
further spread of invasive aquatic vegetation and 
the piscivorous predators associated with such 
habitat (Nobriga et al. 2021; Zeug et al. 2021).

The higher frequency of extreme floods and 
droughts affect Chinook Salmon in diverse 
ways. Chinook Salmon typically benefit from 

wetter years and suffer in drought years 
(Munsch et al. 2019, 2020). However, Chinook 
Salmon demonstrate high life-history diversity 
and phenotypic plasticity (e.g., Crozier et al. 2008; 
Goertler et al. 2018), which buffer the species 
from various detrimental conditions (Cordoleani 
et al. 2021). Nevertheless, human actions have 
weakened the overall complexity of Chinook 
Salmon populations in the Central Valley, though 
efforts are underway to mitigate such effects 
(Carlson and Satterthwaite 2011). 

Splittail adults are often found near the bottom 
where they predominantly feed (Caywood 
1974; Meng and Moyle 1995; Sommer et al. 
1997). Adult Splittail have broad thermal and 
salinity tolerances that may buffer them from 
the dominant effects of climate change in the 
open-water ecosystem (Moyle 2002). The largest 
direct climate change effect on Splittail in the 
open water may be on the connectivity between 
the species’ two distinct geographic populations 
(Baerwald et al. 2007). Because Splittail reside 
mostly in low- to moderate-salinity waters, 
salinity intrusion may compress their distribution 
and possibly lead to less frequent interactions 
between the two populations (Ghalambor et al. 
2021). Extreme flood years may lead to higher 
overlap between the two populations, while more 
numerous and intense drought years may more 
effectively isolate the populations (and likely also 
of individuals within each population, such as 
those in Petaluma and Napa rivers) (Feyrer et al. 
2015; Mahardja et al. 2015). Because of the lack of 
access to floodplain in dry years and the projected 
increase in the frequency of droughts, Splittail 
spawning at river margins may become more 
common. 

Summary 
The estuary is rapidly changing in response to 
changes in climate-related variables (Cloern et al. 
2011; Dettinger et al. 2016). Multiple interacting 
stressors are shifting baseline environmental 
conditions, amplifying extremes, restructuring 
physical habitats and biological communities, 
and, ultimately, causing scientists and managers 
to rethink conservation strategies. From the 
ocean, climate change will affect the estuary 
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complicating monitoring and management 
(Lauchlan and Nagelkerken 2020; Orr et al. 2020). 
We have described some of the major effects of 
climate change on key estuarine ecosystems and 
identified some of the needed management and 
science approaches. At the very least, we need 
to consider our science and management in the 
context of environmental extremes as the new 
normal. 

To help understand the breadth of change, we 
recap how climate change will affect three major 
ecosystems in the Delta: floodplain, tidal marsh, 
and open water. While each of the three has very 
different responses to climate change, these 
responses are likely to scale up to significant 
population-level effects on resident and migratory 
fishes that rely on the estuary. 

•	 Floodplain ecosystem dynamics vary with the 
frequency, timing, duration, and intensity 
of floods, which are all affected by climate 
change. Extended dry periods between 
inundation events are increasing, which in 
turn influences environmental conditions 
and food webs. Flood characteristics control 
floodplain access for Chinook Salmon rearing 
and for Splittail spawning and rearing. 

•	 Tidal marshes are threatened by rising sea level 
and altered upstream sediment inputs. Tidal 
marshes with insufficient elevation will not be 
able to keep pace with sea level rise and will 
ultimately drown and transition to open-water 
habitats. Sacramento Splittail (and possibly 
Chinook Salmon) will likely be severely 
affected by widespread loss of this productive 
nursery habitat.

•	 Open-water ecosystems are particularly 
vulnerable to the short-term effects of 
extreme warming and salinity intrusion. 
These changes, combined with uncertainty of 
whether the estuary will experience increased 
or decreased turbidity, are expected to greatly 
alter habitat suitability for Chinook Salmon 
and Sacramento Splittail during dispersal 
and migration, particularly for more sensitive 
juvenile life stages.

primarily through salinity intrusion and sea level 
rise, which will inundate low-elevation habitats, 
facilitating levee breaches, and changing salinity 
distributions. From the terrestrial side, increased 
temperatures and altered hydrologic conditions 
affect both the quantity and quality of aquatic 
habitat. The total amount of Delta inflow may 
not change radically on a decadal scale, but an 
increase in the frequency of extreme wet and dry 
years will amplify the already high hydrologic 
variability in the system (Dettinger et al. 2016). 
Rising salinities (Ghalambor et al. 2021), warmer 
temperatures (Bashevkin et al. 2022), and newly 
inundated areas will shift suitable habitat for 
some species (CC MAST 2022). 

Major environmental changes force species to 
“adapt, move, or die” (e.g., Habary et al. 2017; 
Johansen et al. 2017). Adaptation for species 
depends on the rate of environmental change 
and the ability of species to change in response. 
Moving may be an option for mobile species at 
the expense of range contractions both within 
the estuary or through regional range contraction 
(e.g., non-endemic anadromous or semi-
anadromous fish shifting to northern marine 
and estuarine habitats). Dying (extinction) is not 
a desirable outcome in most cases. Therefore, we 
expect that adaptation by humans and aquatic 
organisms will be necessary. 

Management options in the context of climate 
change can be viewed as “resist, adapt, or direct” 
(Thompson et al. 2021; Rahel 2022). We can 
resist change and attempt to keep our familiar 
and desirable ecosystems, we can adapt our 
management to accommodate climate change 
effects while maintaining desirable ecosystem 
services, or we can direct expected changes into 
more desirable configurations. Our management 
activities, our institutions, and our science 
enterprise face unprecedented challenges, 
making innovation vital to cope with these 
extreme changes.

Management in the face of climate change 
requires a fundamental re-thinking of how 
we manage and study the estuary. Climate 
change interacts with other stressors, further 
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MANAGEMENT OPTIONS
Given the extreme conditions that can occur 
with climate change, there is an urgent need 
to consider what management options are 
available to reduce effects on the estuary. On 
the positive side, the estuary has an unusually 
broad suite of aquatic management tools that 
have been used both at the pilot scale and for 
routine management (Sommer 2020). However, 
application of these tools so far has not prevented 
sharp declines for many species (e.g., Quiñones 
and Moyle 2014; Hobbs et al. 2017). At least 
four general categories of tools can be used to 
address habitat management: regulatory; water 
infrastructure; habitat; and other biological 
measures. Below, we summarize some of the 
potential management tools that could be used 
to mitigate the effects of climate change. For 
each of these actions, we recommend strong 
science support to guide management, based on 
sound adaptive management and precautionary 
principles (e.g., Allen and Gunderson 2011; Dark 
and Burgin 2017).

This evolving environment is characterized by 
greater extremes than seen historically. As a 
result, management tools used in the past will 
likely have reduced efficacy in the future. We 
therefore agree with Norgaard et al. (2021) that 
policy and management likely need to move into 
a forward-looking mode of scenario planning and 
rely less on historical conditions to address the 
rapidly evolving issue of climate change. Below, 
we briefly describe some of the ways that these 
management tools might be implemented.

Regulatory
Since the 1990s, environmental regulations 
such as water rights decisions and endangered 
species laws have played an increasing role in the 
management of the estuary, although not as much 
as depicted in public forums (Reis et al. 2019). 
Hence, agencies such as the State Water Resources 
Control Board, California Department of Fish 
and Wildlife, National Marine Fisheries Service, 
US Fish and Wildlife Service, and Army Corps 
of Engineers have a major role in the regulatory 
response to climate change. However, many 
of these agencies rely on historical conditions 

to evaluate the need for remedial actions. The 
Clean Water Act (1973; §131.12) requires that all 
the beneficial uses of all bodies of water must be 
protected and not be degraded further than they 
were when the act was adopted in 1973. Listing of 
endangered species requires identification of the 
habitat critical to survival of every taxon, often 
defined by historical data (ESA 1973; §4). Climate 
change may require changes in the beneficial uses 
associated with water bodies and the nature and 
location of habitats that support listed species. 

Water Infrastructure
Water infrastructure—including dams, gates, 
barriers, and diversions—was designed around 
historical hydrology and landscapes. A primary 
use of dam releases has been to control salinity 
in the estuary; rising sea level will make this task 
more difficult. Historical dam operation strategies 
may not be sustainable as hydrology vacillates 
between extreme flood and drought. This, in 
turn, affects Delta inflow and corresponding 
salinity intrusion, influencing a broad suite of 
habitats. Improved weather forecasting combined 
with better hydrologic models may improve 
efficiency of operation. 

One of the highest-profile issues will be 
sustainable water diversion for urban and 
agricultural uses, which is vulnerable to salinity 
intrusion from levee collapse because of high tide 
and flood, earthquake, and/or sea level rise (Lund 
et al. 2010). Alteration in the timing and location 
of diversions will likely require adaptations to 
reduce fish entrainment and to offset reductions 
in habitat quality associated with water diversion 
(e.g., Grimaldo et al. 2009; Moyle et. al. 2010).

Infrastructure such as dams and weirs could be 
tools to respond to climate-induced changes. One 
recent example is the novel use of the Suisun 
Marsh Salinity Control Gates to limit salinity 
intrusion and improve habitat conditions for Delta 
Smelt and other species in Suisun Marsh (Sommer, 
Hartman, Koller 2020; Beakes et al. 2021). 
Infrastructure such as the proposed Fremont 
Weir Notch project (USBR and CDWR 2019; see 
"Habitat") can enable floodplain inundation at 
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lower river stages to support floodplain ecosystem 
processes. 

Habitat
Habitat restoration is perhaps the single most 
important management tool to mitigate some of 
the effects of climate change. Restoration can 
buffer climate effects by expanding the area 
of suitable habitat, supporting broader species 
distribution (e.g., “bet hedging”), and increasing 
food production. The three ecosystems support 
very different values for species and provide 
strikingly different management options. 

Floodplains are of great importance for 
Sacramento Splittail and Chinook Salmon, and 
they provide food-web subsidies for downstream 
regions (Sommer, Harrell, and Nobriga et al. 
2001; Feyrer et al. 2006a, 2006b; Jeffries et al. 
2007). The Yolo Bypass has been well-studied 
over the past 2 decades, resulting in a robust 
understanding of some of the necessary habitat 
improvements (USBR and CDWR 2019). The single 
most important modification is the construction 
of a notch in Fremont Weir at the north end of 
Yolo Bypass to improve connectivity with the 
Sacramento River. This notch has the potential 
to substantially buffer some of the expected 
changes in flood timing, frequency, and duration. 
Moreover, greater access to food-rich floodplain 
habitats can help species such as Chinook Salmon 
deal with the increased bioenergetic costs of 
warmer temperatures (unless temperatures 
exceed acute or lethal levels). A related 
management approach is to make better use 
of existing floodplain habitats (Katz et al. 2017; 
Sommer, Schreier, Conrad et al. 2020). As an 
example, agricultural areas could be modified in 
several ways to improve their value for juvenile 
salmon rearing (e.g., Herbold et al. 2018). 
Managed flooding has also been examined on a 
pilot scale for other species such as Sacramento 
Splittail (Sommer et al. 2002, 2008).

In addition to the targeted fish-management 
improvements above, major changes in the flood-
management system are likely (CDWR 2017). 
Specifically, to deal with increased frequency 
and intensity of extreme floods, there is a 

clear need to increase the area of floodplain. 
Enlarged floodplains provide a unique and major 
opportunity to increase ecological value, while 
simultaneously helping to mitigate the higher 
flood risk. As a recent example, the planned 
Lookout Slough project will substantially increase 
the size of Yolo Bypass, providing more floodplain 
habitat as well as expanded flood conveyance 
(CDWR 2020).

Tidal marsh restoration represents a similar and 
critical complement to floodplain management. 
The science behind this activity is expanding 
rapidly, with an increased understanding of the 
potential benefits of restoration to at-risk species 
(Sherman et al. 2017). As summarized in previous 
sections, this habitat type could provide resilience 
to climate change in several ways. A major focus 
of ecosystem management is to increase the 
amount of tidal marsh habitat, with much of the 
effort in the upper estuary concentrated in the 
North Delta and Suisun Marsh (USFWS 2019). A 
key challenge for these habitats is that sea level 
rise may inundate low-elevation projects; still, 
new marsh habitats, especially those with the 
potential for upland transgression, could provide 
an important buffer for planned retreat under sea 
level rise. 

The concept of habitat restoration is much more 
complicated for open-water regions, which are 
more expansive than under historical conditions 
(Whipple et al. 2012). Climate change will likely 
mediate the creation of large new areas of open-
water habitat that may have benefits for some 
species (Moyle et al. 2013; Young et al. 2018). 
Management of these areas must focus more on 
the quality—rather than quantity—of habitats. 
For example, aquatic weed management could 
help maintain suitable open-water areas for target 
species (Ta et al. 2018). Moreover, efforts such as 
the Franks Tract project could generate benefits 
for fish habitat, water quality, and recreation in 
this large, flooded island (CDFW 2020). Planning 
a response to flooded island based on aquatic 
community patterns (e.g., Young et al. 2018) and 
levee maintenance costs (Suddeth et al. 2010) 
could greatly ameliorate the environmental and 
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economic effects of levee breaches because of 
climate change.

Other Biological Measures
Example tools in this category include population 
supplementation and predator control (Sommer 
2020). Predation will increase under climate 
change as warmer temperatures increase 
the metabolic needs of some consumers, 
increasing mortality rates of prey. Unfortunately, 
predator removal remains largely conceptual; 
pilot evaluations have not shown sustained, 
measurable benefits (e.g., Cavallo et al. 2012; 
Michel et al. 2020). Numerous predator “hot spots” 
occur throughout the Delta (Lehman et al. 2020; 
Grossman 2016), so some targeted efforts may be 
useful. However, unintended consequences of 
predator control on predator-prey dynamics are 
not uncommon (Pine et al. 2009; Shephard et al. 
2019) and are more likely under climate change 
(e.g., Grossman 2016; Davis et al. 2019).

Supplementation of desirable species has 
historically been an important tool to sustain 
salmonid populations, particularly Chinook 
Salmon and Steelhead Trout (Oncorhynchus 
mykiss), whose populations are particularly 
sensitive to raised temperatures throughout 
their ranges and the loss of upstream habitats 
via dam construction. Hatchery populations 
will, therefore, continue to be a critical part of 
salmonid management in the Central Valley. 
Major changes may be necessary in response 
to climate extremes. For example, transporting 
juvenile Chinook Salmon for release past the 
Delta instead of in their natal stream has been 
used as tool during extreme low-flow conditions 
(e.g., Sturrock et al. 2019). Increasing the use 
of hatcheries to maintain refuge populations of 
salmonids as well as a variety of other species 
may also be needed. Supplementation of Splittail 
seems unlikely in the foreseeable future because 
better management of floodplain inundation, 
via the notch and reservoir reoperations, more 
directly addresses the needs of the species. 
However, a new fish refuge and research center 
has been proposed to help house other at-risk 
species such as Delta Smelt and Longfin Smelt 
(Spirinchus thaleichthys) (CDWR and USFWS 2017). 

To be useful, however, supplementation must 
be integrated with effective flow- and non-flow 
habitat-restoration actions (e.g., Moyle et al. 2010; 
Hobbs et al. 2017). 

In addition, these management actions should 
consider the amount of toxins present in the 
environment in which they are done. Global 
warming has increased the abundance of 
harmful blooms in the estuary, particularly 
cyanobacteria (Lehman et al. 2017, 2021). Through 
the production of hepatotoxins and neurotoxins, 
these blooms affect the survival of species from 
bacteria to fish (Ger et al. 2018; Acuña et al. 2020; 
Lehman et al. 2021). The blooms can also decrease 
the dissolved oxygen concentration in the water 
column (Sutula et al. 2017). Management actions 
are needed to control the major nutrients, water 
temperature, and residence time that enable large 
blooms to develop (Paerl and Otten 2013).

SCIENCE NEEDS
Beyond the suite of management approaches 
described above, science support is needed to 
monitor and diagnose climate effects. The central 
pillar of science support is maintaining core long-
term monitoring programs to evaluate changes in 
ecological processes (Stompe et al. 2020; Cloern et 
al. 2021). These long-term changes are different 
from the current priorities that focus more on 
daily operational issues such as fish entrainment 
into water export facilities (Grimaldo et al. 2009; 
USFWS 2019). Consequently, monitoring may need 
to change to address some aspects of climate 
change. Below, we note two urgent areas.

Marsh Habitat
Tidal marshes are historically under-sampled yet 
are some of the habitats most vulnerable to sea 
level rise and salinity intrusion. As more tidal 
marsh habitats are constructed and mature, their 
value to target species must be assessed to guide 
restoration designs. More robust and coordinated 
tidal marsh monitoring and research is a top 
priority for science support (Sherman et al. 2017; 
Hartman et al. 2019).

https://doi.org/10.15447/sfews.2022v20iss2art1


SAN FRANCISCO ESTUARY & WATERSHED SCIENCE

16

VOLUME 20, ISSUE 2, ARTICLE 1

Extreme Events
Major floods, sustained drought, record heat 
waves, major levee breaks, and harmful blooms 
are all examples of climate-related events that 
can have major effects on the estuary. Long-
term monitoring provides a good baseline of 
information but evaluating the effect of extreme 
events will require more focused sampling 
and habitat management. For example, levee 
breaks can create entirely new open-water 
habitats. Advanced planning for monitoring such 
extreme events can provide valuable and timely 
information.

CONCLUSIONS
Climate change is the gravest threat facing 
humans and ecosystems over the coming decades. 
We review relevant literature for the estuary to 
give insight into the current and potential effects 
of climate change on three estuarine ecosystems 
and processes affecting two native fish species 
with very different life-history strategies. 
Global warming is changing hydrodynamics in 
California by altering the timing and magnitude 
of streamflow, particularly during the late winter 
and spring. Altered streamflow will affect the 
migration and feeding success of the two very 
different fish species we considered. Through 
its effects on water temperature and the salinity 
field, climate change will also significantly affect 
most aquatic species of conservation concern. 
We identify some of the management and science 
approaches needed to adapt to these changes in 
the estuary and conclude that a fundamental 
rethinking of how we manage and study the 
estuary is needed. 
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