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ORIGINAL ARTICLE
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Abstract

Rationale: Obstructive sleep apnea (OSA)–induced endothelial
cell (EC) dysfunction contributes to OSA-related cardiovascular
sequelae. The mechanistic basis of endothelial impairment by
OSA is unclear.

Objectives: The goals of this study were to identify the
mechanism of OSA-induced EC dysfunction and explore the
potential therapies for OSA-accelerated cardiovascular disease.

Methods: The experimental methods include data mining,
bioinformatics, EC functional analyses, OSA mouse models, and
assessment of OSA human subjects.

Measurements and Main Results: Using mined microRNA
sequencing data, we found that microRNA 210 (miR-210)
conferred the greatest induction by intermittent hypoxia in ECs.
Consistently, the serum concentration of miR-210 was higher in
individuals with OSA from two independent cohorts.
Importantly, miR-210 concentration was positively correlated
with the apnea–hypopnea index. RNA sequencing data collected

from ECs transfected with miR-210 or treated with OSA serum
showed a set of genes commonly altered by miR-210 and OSA
serum, which are largely involved in mitochondrion-related
pathways. ECs transfected with miR-210 or treated with OSA
serum showed reduced _VO2 rate, mitochondrial membrane
potential, and DNA abundance. Mechanistically, intermittent
hypoxia-induced SREBP2 (sterol regulatory element–binding
protein 2) bound to the promoter region of miR-210, which in
turn inhibited the iron–sulfur cluster assembly enzyme and led to
mitochondrial dysfunction. Moreover, the SREBP2 inhibitor
betulin alleviated intermittent hypoxia–increased systolic blood
pressure in the OSA mouse model.

Conclusions: These results identify an axis involving SREBP2,
miR-210, and mitochondrial dysfunction, representing a new
mechanistic link between OSA and EC dysfunction that may have
important implications for treating and preventing OSA-related
cardiovascular sequelae.

Keywords: obstructive sleep apnea; endothelium; miR-210;
mitochondrial dysfunction

(Received in original form February 23, 2022; accepted in final form October 3, 2022)

*These authors contributed equally to this work.

Supported by NIH grants R01HL148436, HL154926 (A.M.), R01HL106579 (J.Y.-J.S.), F32GM137580 (C.R.S.), and R21DC018237 (U.M.);
National Natural Science Foundation of China grant 81800397 (F.S.); and Taipei Veterans General Hospital grant V106C-045 (P.-H.H.). The Waitt
Advanced Biophotonics Center was funded by the Waitt Foundation and Core Grant application National Cancer Institute Cancer Center
Support Grant CA014195.

Author Contributions: F.S., S.-C.W., B.G., T.M., J.Y.-J.S., and A.M. conceived the original idea and designed the overall experimental plan.
F.S., S.-C.W., B.G., S.Y.H., Y.C., C.R.S., L.C., Y.Z., M.N., X.G., F.H., K.-T.C., and Y.L. performed experiments. F.S., S.-C.W., B.G., Y.X., T.M., and
M.H. interpreted the data and performed statistical analysis. L.W., U.M., P.-H.H., J.Y.-J.S., and A.M. provided essential input to the overall
research plan. F.S., S.-C.W., B.G., M.H., J.Y.-J.S., and A.M. wrote the manuscript. All authors gave final approval of the version to be submitted.

Am J Respir Crit Care Med Vol 207, Iss 3, pp 323–335, Feb 1, 2023

Copyright © 2023 by the American Thoracic Society

Originally Published in Press as DOI: 10.1164/rccm.202202-0394OC on October 3, 2022

Internet address: www:atsjournals:org

Shang, Wang, Gongol, et al.: OSA Induces EC Dysfunction via miR-210 323

http://orcid.org/0000-0002-4822-5474
http://orcid.org/0000-0002-5625-753X
http://crossmark.crossref.org/dialog/?doi=10.1164/rccm.202202-0394OC&domain=pdf&date_stamp=2023-01-13
https://doi.org/10.1164/rccm.202202-0394OC
http://www.atsjournals.org


Obstructive sleep apnea (OSA) is
characterized by repeated pharyngeal
collapse during sleep, which leads to
hypoxemia, hypercapnia, and catecholamine
surges (1–4). Clinically, the severity of OSA
is often defined by the apnea–hypopnea
index (AHI) (5). The development of
cardiovascular diseases including systemic
hypertension, metabolic syndrome, and
atherosclerosis is often accelerated by OSA
(6–8). Vascular endothelial cells (ECs) lining
the luminal surface of the vasculature are in
direct contact with the circulating paracrine,
autocrine, and hormonal mediators. During
OSA onset, ECs are exposed to multiple
factors that are enhanced in the circulation,
including periods of cycling hypoxia,
dysregulated metabolic factors, and
inflammation (9–12). Collectively, these
detrimental factors aggravate EC dysfunction
by impairing mitochondrial function,
increasing reactive oxygen species
production, and reducing nitric oxide (NO)
bioavailability (13).

MicroRNAs (miRNAs) are important
regulators of cellular functions by targeting
mRNAs complementary to their seed
sequence, which results in reduced gene

expression (14). Several miRNAs (miRNAs)
have been implicated in OSA
pathophysiology, including miR-664a-3p,
miR-92a, andmiR-1254 (15–17). Despite the
propensity of vascular dysfunction in
individuals with OSA, a comprehensive
understanding of the miRNAs involved in
EC biology in response to OSA is lacking.

As a hypoxia-induced miRNA (18, 19),
miR-210 is an important regulator of cell
function via its downregulation of
mitochondrial biogenesis, which attenuates
oxidative phosphorylation demand (20–22).
Because ECs have little capacity for energy
storage, endothelium relies on mitochondrial
biochemical changes to maintain energy
demand and homeostasis. As such, in
homeostatic ECs, functional mitochondria
facilitate ATP production and enhance NO
bioavailability (23). The dynamic changes in
mitochondrial biogenesis, including the
mitochondrial iron–sulfur cluster (ISC),
determine EC homeostasis or dysfunction
(24, 25). The ISC assembly enzyme (ISCU)
regulates the assembly of the ISC in
mitochondria and thus is pivotal for the
electron transporter chain in complexes I, II,
and III activity and fatty acid oxidation
(26, 27). A dysregulated ISCU renders
mitochondrial dysfunction by impairing
oxidative phosphorylation (28). Of note,
ISCU is a bona fide target of miR-210 by
targeting the ISCUmRNA 39 untranslated
region (24, 27). The hypoxia-induced miR-
210–ISCU axis leading to dysfunctional ECs
is manifested in patients with pulmonary
hypertension and in rodent pulmonary
hypertensionmodels (29). In the lung
endothelium of such mouse models, miR-
210 induced by HIF1a (hypoxia-inducible
factor 1-a) decreased ISCU, ISC biogenesis,
and consequent mitochondrial respiration.

SREBP1 (sterol regulatory
element–binding protein 1) and SREBP2 are
key transcription factors regulating genes
involved in triglyceride and cholesterol
biosynthesis (30). Besides their canonical
role in lipid metabolism, SREBP1 and
SREBP2 are involved in innate immune
responses in several cell types, including
monocytes, macrophages and ECs (31–33).
Activation of SREBPR2 in ECs activates

NLRP3 (NOD-like receptor family pyrin
domain–containing protein 3), with
consequent induction of NLRP3
inflammasome and IL-1b–family proteins
(31). In addition, SREBP2 activates miR-92a,
which targets Kruppel-like factors 2 and 4,
two master transcription factors in ECs (32).
In essence, SREBP2 activation promotes the
innate immune response and EC
dysfunction.

In this study, in vitro and in vivoOSA
models were used to show that EC
dysfunction was associated with the
occurrence of OSA. The underlying
mechanism involved SREBP2 induction of
miR-210 in ECs, leading to ISCU
downregulation, mitochondrial impairment,
andmetabolic shunt (i.e., increased
glycolysis). Clinical data from two groups of
subjects with OSA indicated that serum
concentration of miR-210 was positively
associated with the AHI. These new
mechanistic insights provide a novel
therapeutic target to mitigate OSA-induced
vascular risk.

Methods

Additional detail on the methods for making
these measurements is provided in the online
supplement.

Patients
We conducted our studies in compliance
with recognized international standards,
including the principles of the Declaration
of Helsinki. The study was approved by
respective local institutional review boards,
and all participants provided informed
consent. Patients with different severity of
OSA syndrome and age- and sex-matched
OSA-free individuals were recruited from
Xi’an No. 1 Hospital in Xi’an, China (cohort
1), and Taipei Veterans General Hospital in
Taipei, Taiwan (cohort 2), from 2017 to
2019. The blood samples were obtained in
unheparinized Vacutainers (Becton
Dickinson), and clots were removed by
centrifuging at 3,000 rpm for 15 minutes.
Supernatants were collected for analyses
of serum creatinine and miR-210
concentrations. The demographic and
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clinical characteristics of study participants
are provided in Tables 1 and 2.

Clinical Data Analytics
Analysis of clinical data involved using R
(https://www.r-project.org/) supported by
data.table (https://github.com/Rdatatable/
data.table) packages. miR fold changes were
computed using the2DDct method (34),
and between-site variability was normalized
to the average of the control group for each
site. Resulting fold changes were then log2
normalized, and tests of normality involved
using a Shapiro-Wilk test. We used
multivariable logistic regression analysis and
correlation analysis with nonparametric
Spearman correlations.

Intermittent Hypoxia Mouse Model
Institutional Animal Care and Use
Committee approval was obtained from
Taipei Veterans General Hospital
(2019-097), and experiments were performed
onmale, age-matched C57BL/6J mice

(8–12 weeks old) provided by the National
Laboratory Animal Center of Taiwan.
Severe OSA (AHI=40) was simulated by
exposing mice to intermittent hypoxia (IH)
consisting of 60 seconds of 21% O2 followed
by 30 seconds of 10% O2 cycles for 8 h/d
with the OxyCycler A84 (BioSpherix). After
2-week exposure, mice were killed, and
blood, lung, and aortic tissue samples were
collected. In total, 40 mice were randomly
assigned to control and IH groups. Betulinic
acid (B8936; Sigma-Aldrich) was
administered by daily oral gastric feeding
starting 1 week before IH exposure with
200 μl of 20 mg/kg betulinic acid solution
dissolved in 3% DMSO. The creation of the
EC-SREBP2(N)-Tg mouse model was
described previously (31).

Statistical Analysis
All results are presented as mean6 SEM.
Initially, data were tested for normality
and equal variance to confirm the
appropriateness of parametric tests.

Experiments with two groups were
compared using a two-tailed Student’s t test
for parametric data or theMann-Whitney
U test for nonparametric data or data with
sample size< 6. Experiments with more
than two groups were compared using one-
way ANOVAwith a Bonferroni post hoc test
for parametric data or the Kruskal-Wallis
test with Dunn’s multiple comparisons for
nonparametric data or data with sample
size< 6. All statistical analyses involved
using GraphPad Prism 5.01. A two-tailed
P value,0.05 was considered to indicate
statistical significance.

Results

Hypoxia Induces miR-210 in ECs
To comprehend the involvement of miRNA
in OSA-associated EC dysfunction, we first
mined miRNA sequencing data (Gene
Expression Omnibus: GSE116909) (35)
generated from human umbilical vein ECs
(HUVECs) exposed to sustained hypoxia for
3.2, 8, or 14.2 hours or IH (two, five, or nine
cycles of 1 h hypoxia [0.9% O2] followed by
36 min normoxia [21% O2]) or cultured
under normoxia as a control (Figure 1A).
Among hypoxia-induced miRNAs with fold
change. 1 with P, 0.05, miR-210 exhibited
the greatest cycle- and time-dependent
response compared with the normoxic
control (Figure 1B; see Table E1 in the online
supplement). Using cultured HUVECs
under sustained hypoxia (e.g., 1% O2) for
various durations (Figure 1C) or IH for up
to nine cycles (Figure 1D), we validated the
hypoxia induction of miR-210. As
anticipated, hypoxia induced miR-210 in
ECs in a time- and cycle-dependent manner
(Figures 1C and 1D).

Elevated Concentration of miR-210 in
the OSA Serum
Given that hypoxia increases the circulatory
concentration of miR-210 in mice (36), we
then asked whether miR-210 concentration
is elevated in the circulation of patients with
OSA. Data collected from two independent
cohorts (demographic and clinical
characteristics of study participants are
provided in Tables 1 and 2) showed that
serum concentrations of miR-210 were
higher in individuals with OSA than in
healthy control subjects (Figure 1E).
Significantly, miR-210 concentration was
positively correlated with AHI in all
participants (Figure 1F), which indicates

Table 1. Characteristics of Control Subjects and Participants with Obstructive Sleep
Apnea in Cohort 1

Control Group OSA Group P Value

Number 16 46 —
Sex (male/female), n 10/7 41/6 0.0775
Age, yr 45.5614.1 47.22612.6 0.4939
Height, cm 167.6967.22 169.9868.06 0.1514
Weight, kg 75.75611.41 85.12612.35 0.0315
BMI, kg/m2 26.763.57 29.364.69 0.0881
Hypertension, n 4 24 0.1119
Coronary heart disease, n 0 1 1.0000
SBP, mm Hg 137.25622.03 145.75622.94 0.1185
DBP, mm Hg 84.75612.7 88.36619.18 0.4688
hs-CRP, mg/L 0.7160.24 2.4261.56 0.0001
TC, mmol/L 4.0361.16 4.4361.15 0.0996
TG, mmol/L 1.5561.07 2.3161.44 0.0291
HDL-C, mmol/L 1.1760.43 1.0860.21 0.6820
LDL-C, mmol/L 2.2660.93 2.7760.86 0.0882
Glucose, mmol/L 5.0761.15 5.060.82 0.8218
ALT, U/L 21.2768.53 23.0267.83 0.7807
AST, U/L 22.88610.65 28.75618.83 0.9647
BUN, mmol/L 5.0561.93 5.2561.25 0.8281
Creatinine, μmol/L 73.21624.09 80.94615.02 0.2307
AHI 2.2460.95 31.23622.52 0.0000
ODI 4.2463.85 28.22622.02 0.0000
SaO2

nadir (sleep), % 86.2563.98 74.39611.75 0.0000
Insulin, μIU/ml 8.7666.20 17.30617.34 0.0148

Definition of abbreviations: AHI=apnea–hypopnea index; ALT=alanine aminotransferase;
AST=alanine aminotransferase; BMI=body mass index; BUN=blood urea nitrogen;
DBP=diastolic blood pressure; HDL-C=high-density lipoprotein cholesterol; hs-CRP=high
sensitivity C-reactive protein; LDL-C= low-density lipoprotein cholesterol; ODI =oxygen
desaturation index; OSA=obstructive sleep apnea; SBP=systolic blood pressure; TC= total
cholesterol; TG= triglycerides.
Data are expressed as mean6SD unless otherwise indicated. P values in boldface type
denote statistical significance.
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that serum concentration of miR-210
depended on the severity of sleep apnea.
In addition to miR-210, our univariable
analyses indicated that body mass index
(BMI), AHI, oxygen desaturation index, tst88
(total sleep time with O2 saturation, 88%),
and SaO2

nadir score could also predict
OSA pathophysiology (see Table E2).
However, the ability of miR-210 to predict
OSA pathophysiology was not affected by
these attributes in multivariable models
(see Table E3). Of note, the stratification
analysis results indicated that miR-210 is still
a significant predictor of OSA in both
normal-weight (BMI, 25 kg/m2) and
overweight (BMI> 25 kg/m2) individuals.
Although miR-210 predicted OSA in
individuals not taking any medications, the
effect of drugs on miR-210 expression could
not be controlled for individuals taking
medications, because of a limited sample size
among these taking medications who did not
have OSA. To decipher whether the elevated

miR-210 concentrations in patients with
OSA originated, at least in part, from
vascular endothelium, we analyzed miR-210
concentrations in EC-derived microparticles
immunoprecipitated from serum by
anti–CD31 (cluster of differentiation 31)
antibody. Concentrations of miR-210 were
higher in CD31-enriched microparticles
fromOSA than healthy control serum
(Figure 1G). Thus, OSA severity was
correlated with the circulatory concentration
of miR-210, and vascular endothelium likely
contributed to the increased miR-210
concentration. Considering the significant
differences in BMI between the control and
OSA groups in cohort 2 (25.26 3.5 vs.
29.06 5.4 kg/m2, respectively; P=0.0205),
we then performedmultivariable analyses
with BMI andmiR-210 to test whether BMI
can affect the ability of miR-210 to predict
OSA. Our analysis indicated that BMI is a
copredictor of OSA together with miR-210.
Of note, the stratification analysis results

indicated that miR-210 is still a significant
predictor of OSA in both normal-weight
(BMI, 25 kg/m2) and overweight
(BMI> 25 kg/m2) individuals.

OSA Impairs Mitochondrial Function
via miR-210
To infer how OSA affects EC function via
miR-210 elevation, we analyzed RNA
sequencing data collected from ECs
transfected with miR-210 versus a scramble
control as well as ECs treated with OSA
versus control serum. ECs overexpressing
miR-210 and those treated with OSA serum
exhibited 336 and 3,654 differentially
expressed genes (DEGs), respectively,
compared with respective controls. Among
these two sets of DEGs, 101 genes were
commonly induced by miR-210 and OSA
serum, which accounted for�30% of the
miR-210–induced genes (Figure 2A).
Metascape Gene Ontology enrichment
analysis indicated that these genes are largely
involved in the inflammatory response,
mitochondrial respirasome, mitochondrial
transcription, IL-17 signaling, TNF (tumor
necrosis factor) signaling, response to
chemokine, TGF-b (transforming growth
factor-b) signaling, regulation of autophagy,
and response to hypoxia (Figure 2A). The
heatmap in Figure 2B shows that the genes
belonging to the three mitochondrion-
related pathways (i.e., mitochondrial
respirasome, mitochondrial transcription,
andmitochondrial membrane organization)
were commonly downregulated by miR-210
and OSA serum.

To correlate results from these in silico
analyses with OSA serum, EC dysfunction,
and elevated miR-210 concentration, we
observed mitochondrial changes in miR-
210–transfected or OSA serum–incubated
ECs. Confocal microscopy shown in
Figure 3A revealed apparent mitochondrial
fragmentation, which indicates altered
mitochondrial dynamics by miR-210 and
OSA serum. Consistently, ECs treated with
OSA serum showed reduced mitochondrial
abundance andmembrane potential, as
revealed byMitoTracker and JC-1 staining
(Figures 3B and 3C; see Figure E1). This
detrimental effect of OSA serumwasmitigated
in ECs transfected with anti–miR-210.
Hypoxia induction of miR-210 has been
suggested to alter cellular metabolism by
downregulating themitochondrial electron
transport chain, namely, complexes I and III
(24).We used _VO2 rate analysis to test
whether OSA serum, likemiR-210, induced a

Table 2. Characteristics of Control Subjects and Participants with Obstructive Sleep
Apnea in Cohort 2

Control Group OSA Group P Value

Number 22 19 —
Sex (male/female), n 16/6 16/3 0.0995
Age, yr 65.168.9 60.0611.4 0.1360
Height, cm 166.368.1 166.569.5 1.0000
Weight, kg 67.8611.4 81.0619.5 0.1617
BMI, kg/m2 25.263.5 29.065.4 0.0205
Smoking, n 7 10 0.6112
Hypertension, n 8 16 0.0287
Diabetes mellitus, n 5 9 0.3740
Oral hypoglycemic agent, n 5 7 0.8124
Stroke, n 1 0 0.9781
Chronic kidney disease, n 2 1 0.9610
SBP, mm Hg 118.8612.2 124.1613.6 0.2856
DBP, mm Hg 71.169.9 70.769.3 0.9711
TC, mmol/L 4.2061.14 4.2560.63 0.8001
TG, mmol/L 1.1760.35 1.5460.60 0.0321
HDL-C, mmol/L 1.1760.30 1.0860.27 0.2289
LDL-C, mmol/L 2.6561.07 2.4260.60 0.8079
Glucose, mmol/L 5.5961.23 6.8162.28 0.0444
ALT, U/L 19.7563.20 27.89620.17 0.9674
AST, U/L 20.3362.52 24.53615.27 0.8732
eGFR, ml/min/1.73 m2 67.23617.22 82.23626.30 0.0616
AHI 2.8361.90 28.69625.97 0.0002
ODI 2.8061.94 24.68621.69 0.0023
SaO2

nadir (sleep), % 89.7562.50 78.3269.77 0.0022

Definition of abbreviations: AHI=apnea–hypopnea index; ALT=alanine aminotransferase;
AST=alanine aminotransferase; BMI=body mass index; BUN=blood urea nitrogen;
DBP=diastolic blood pressure; eGFR=estimated glomerular filtration rate; HDL-C=high-
density lipoprotein cholesterol; hs-CRP=high sensitivity C-reactive protein; LDL-C= low-density
lipoprotein cholesterol; ODI=oxygen desaturation index; OSA=obstructive sleep apnea;
SBP=systolic blood pressure; TC= total cholesterol; TG= triglycerides.
Data are expressed as mean6SD unless otherwise indicated. P values in boldface type
denote statistical significance.
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detrimental respiratory chain in ECs. ECs
treated with OSA serum showed reduced
basal mitochondrial respiration, ATP
production, maximal respiration, and spare
capacity compared with ECs treated with
control serum (Figure 3D). Importantly, ECs
withmiR-210 overexpression showed similar
impairment of mitochondrial respiration.
Pretreatment of anti–miR-210 in ECs partially
restored OSA serum reduced _VO2 rate
(Figure 3D).

OSA-induced miR-210 Targets ISCU
Given that several mitochondrial
pathways were commonly affected by
OSA and miR-210 (Figure 2), we then
examined the expression of genes involved
in mitochondrial function, including the
miR-210–targeted ISCU. OSA serum
greatly inhibited concentrations of ISCU
compared with other mitochondrial
marker genes (Figures 4A and 4B). As a
control, miR-210 overexpression in ECs
decreased ISCU expression dose-
dependently (Figure 4C), consistent with

previous findings from Chan and
colleagues (24). Importantly, OSA serum
inhibition of ISCU mRNA was rescued in
ECs cotreated with the miR-210 inhibitor
anti-210 (Figure 4D). Next, we measured
mRNA concentrations of miR-210 and
ISCU in miRNA-induced silencing
complex in the context of OSA reduction
of ISCU expression. Indeed, we found
enhanced binding of miR-210 and ICSU
mRNA to AGO2 immunoprecipitated
from ECs treated with OSA serum
(Figure 4E). To assess direct ISCU mRNA
targeting by miR-210, we constructed the
wild-type ISCU luciferase reporter
construct or a mutant with the miR-210
binding site had been mutated. OSA
serum significantly reduced luciferase
activity in ECs transfected with the wild-
type ISCU reporter versus the mutant
ISCU reporter (Figure 4F). Together,
Figures 2, 3, and 4 suggest that OSA-
reduced mitochondrial activity in
endothelium was due in part to miR-210
targeting ISCU expression.

SREBP2 Regulates the
miR-210–ISCU Axis
With the defined miR-210–ISCU targeting
involved in OSA-impaired endothelium, we
next explored the upstream mechanism by
which OSA induces miR-210. To infer
transcription factors that are involved in the
transactivation of themiR-210 gene, we first
analyzed transcription factor binding
sequences located at the promoter regions of
the 336 DEGs induced by OSA. SREBP2
binding motif was one of the top-ranked cis
elements involved in OSA-regulated genes
(Figure 5A). In addition, low-density
lipoprotein, a well-known activator of
TNF-a stimulating SREBP2 (37, 38), may
be a clinical marker that correlates with
(see Table E4) and predicts (see Table E5)
serum miR-210 concentration. Furthermore,
SREBP2 is activated in ECs by inflammatory
stimuli (31). Using Encyclopedia of DNA
Elements data displaying the assay for
transposase-accessible chromatin and
H3K27ac (acetylated lysine 27 of
histone H3) landscapes in ECs, we first
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defined the miR-210 promoter region by
referencing the assay for transposase-
accessible chromatin and H3K27ac peak
enrichments (chr11:568626–569682;
Figure 5B, highlighted region). Sequence
analysis revealed six putative SREBP2 binding
motifs in the miR-210 promoter (Figure 5B).
Chromatin immunoprecipitation analysis of
ECs overexpressing SREBP2 verified the
binding of SREBP2 to sites 1 and 3 but not
sites 2, 4, 5, and 6 (Figure 5B). Cultured ECs
treated with OSA serum showed increased
expression of SREBP2 (Figure 5C). In vivo,
miR-210 concentration was elevated in lung
tissue and serum isolated from EC-specific
SREBP2-overexpression transgenic mice (EC-
SREBP2-Tg; Figure 5D). In vitro, OSA
serum–induced miR-210 concentration in

ECs was attenuated by SREBP2 knockdown
or botulin treatment, an SREBP2-inhibitory
triterpene (Figures 5E and 5F). Collectively,
these data suggest that SREBP2 is a key
transcription factor governing miR-210
expression in ECs by OSA.

With SREBP2 transactivating miR-210
in ECs, we then explored the role of SREBP2
in OSA serum–decreased ISCU. As
anticipated, OSA serum inhibition of ISCU
in cultured ECs was attenuated by SREBP2
siRNA (Figure 6A) or betulin (Figure 6B).
In vivo, mouse ISCUmRNA concentration
was attenuated in aortas of EC-SREBP2-Tg
mice compared with wild-type littermates
(Figure 6C). ISCU plays an essential role in
regulating cellular iron homeostasis and
electron transport in the mitochondrial

respiratory chain (26). In line with this
notion, OSA serum attenuation of
mitochondrial respiratory complex I activity
in ECs was partially rescued by SREBP2
siRNA or betulin treatment (Figure 6D).
Furthermore, mitochondrial DNA content
and complex I activity were reduced in aortas
of EC-SREBP2-Tg mice compared with wild-
type littermates (Figure 6E; see Figure E2).

SREBP2–miR-210-ISCU Axis in Mouse
OSA Models
With translational implications in mind, we
validated the SREBP2–miR-210–ISCU axis
in an OSAmouse model. To that end,
C57Bl/6j mice were challenged with 2 weeks
of IH to mimic the pathophysiological
process of OSA. Compared with control
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animals, mice under IH showed significantly
decreased body weight (25.18 vs. 29.55 g)
and elevated blood pressure (117/68 vs.
99/59 mmHg) (Figure 7A). This phenotype
is consistent with a previous report of the
effects of IH onmouse vital signs (39). The
concentration of miR-210 was increased and
the concentration of CD311 microparticle-
associated miR-210 was elevated in serum
from IHmice (Figures 7B and 7C), which

suggests that elevated miR-210 concentration
is related to vascular endothelium. To
investigate ISCU1/2 concentration and
mitochondrial function impaired by the
SREBP2–miR-210 axis in ECs, we
investigated mRNA and protein
concentrations from the aortic intima of
these mice. Both mRNA and protein
concentrations of SREBP2 were increased
and ISCU1/2 concentrations were decreased

in the IHmouse aortic intima (Figures 7D
and 7E). As a functional readout, we
detected lower mitochondrial respiratory
complex I activity in lung ECs from IH
mice (Figure 7F). Furthermore, betulin
administration alleviated IH-increased
systolic blood pressure (Figure 7G),
decreased SREBP2 concentration,
and rescued ISCU1/2 concentration
(Figure 7H).
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Figure 3. Obstructive sleep apnea (OSA) serum–induced microRNA 210 (miR-210) impairs mitochondrial function in endothelial cells (ECs).
(A–D) Human umbilical vein ECs were transfected with pro–miR-210 or scramble Ctrl for 48 hours (A and D) or transfected with anti–miR-210 for
24 hours, followed by incubation of pooled OSA or healthy control (HC) serum for another 24 hours (A–D). In A, representative confocal images
of mitochondrial morphology are shown. Mitochondria were visualized by using TOM20 antibody (50 cells counted for each replicate). Scale
bar, 2.5 mm. Tubular: most mitochondria in ECs were .10 mm long; intermediate: mitochondria were ,�10 mm; fragment: most mitochondria
were spherical (no clear length or width). In B, mitochondrial abundance was assessed using MT. In C, mitochondrial membrane potential
was detected using JC-1 staining. In B and C, scale bar, 200 mm. In D, the OCR was detected using Seahorse (https://www.agilent.com/
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VYXPn6NArHA5PqxBPwaArPxEALw_wcB&gclsrc=aw.ds) assay. Data are shown as mean6SEM. Statistical significance was determined
using one-way ANOVA followed by Bonferroni post hoc test or two-tailed Student’s t test. *P,0.05 compared with Ctrl or HC or between
indicated two groups. AA/R=antimycin A and rotenone; Ctrl = control; FCCP=carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone;
FITC= fluorescein isothiocyanate; Max Resp=maximal respiration; MT=MitoTracker; OCR= _VO2 rate; Pro=production; Resp Cap=respiratory
capacity; TRITC=tetramethylrhodamine.
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Discussion

This study, encompassing clinical, in vitro,
and animal experiments, revealed the
molecular mechanisms by which OSA causes
EC dysfunction. The new findings are as
follows: 1) miR-210 concentration was
higher in patients with OSA than in matched
control subjects; 2) the AHI was positively
correlated with miR-210 concentration
among individuals with OSA, thus
suggesting a critical role of miR-210 in OSA
pathophysiology; 3) ECs treated with serum
fromOSA individuals or transfected with
miR-210 showed mitochondrial dysfunction;
4) OSA-induced SREBP2 transactivated
miR-210; and 5) the SREBP2–miR-
210–ISCU axis was induced in an OSA
mouse model. These results establish an
OSA-induced SREBP2–miR-210 axis in the
vascular endothelium that could be a culprit
underlying various cardiovascular sequelae.

Autonomic, oxidative stress,
inflammatory, and hemostatic abnormalities

may be associated with OSA pathogenesis
(40–42). However, less is known about the
molecular basis underlying OSA-provoked
vascular impairment. Our salient finding
herein is that OSA-induced miR-210 is
causative of ECmitochondrial dysfunction
by targeting genes involved in ISC
biogenesis. Because ISCU is essential for
cellular iron homeostasis, contributing to
electron transfer in complexes I, II, and III
and redox balance (26, 43), miR-210
targeting ISCU could play a major role in
impaired mitochondrial biogenesis and
function in vascular endothelium in the
context of OSA.

Results in Figure 5D demonstrate that
miR-210 concentrations were increased in
lung tissues. Although evidence is lacking
on whether and howOSA induces miR-210
in pulmonary endothelium, it is conceivable
that the OSA-associated hypoxia might be
causative for miR-210 induction in the lung.
If so, this situation is reminiscent of
miR-210 significantly upregulated under

hypoxia in a wide range of cell types,
including ECs, fibroblasts, and various
cancer cells (24, 44, 45). As such, OSA
models using inspired hypoxic mixtures
likely contribute to hypoxia in the lung
tissue, whereas OSA in vivo likely contributes
to arterial hypoxemia without major lung
tissue hypoxia per se. However, IH could
contribute to altered lipid metabolism, which
may contribute to the SREBP2-mediated
induction of miR-210 in ECs.

AlthoughHIF1a has been reported
to transactivate miR-210 (24, 46), we
showed that SREBP2 acted as a principal
transcription factor inducingmiR-210 in
cultured ECs responding to hypoxia (0.9% O2)
and inmouse lung under IH. Canonically, the
hypoxia-inducedHIF1a activates vascular
endothelial growth factor, which also increases
SREBP in ECs (47). In EC culture, OSA
combined with PX-478, a HIF-a inhibitor,
drastically decreasedmiR-210 concentrations
in ECs (see Figure E3). Thus, HIF1a
inductionof miR-210 is mediated by direct
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transactivation and/or the HIF1a–vascular
endothelial growth factor–SREBP2 axis.

We speculate that the OSA
serum–inducedmiR-210 in ECs could be due
to either EC uptake of miR-210 fromOSA
serum or a direct OSA induction of SREBP2
in ECs. Regarding possible mechanisms by
which OSA serum upregulates EC SREBP2, it
is likely that the OSA-associated cyclic
hypoxia directly activates the SREBP2–miR-
210 axis in ECs, given that hypoxia can

activate SREBP2 via HIF1a (48). In addition,
SREBP2 in ECs can be activated by
inflammatory factors in the circulation.

Betulin has beneficial effects in tissue
types including the liver (49), pancreas (50)
and lung (51). Moreover, betulin may activate
Lipin1/2 (52) or AMP-activated protein
kinase (53) or decrease reactive oxygen
species signaling (54). Thus, although data in
Figures 4D, 4E, 5F, 6B, and 6D indicate its
beneficial effect on ECmitochondrial

function, betulin may have additional effects
in tissues other than vascular endothelium via
non–SREBP2-related events.

A previous study by Zhao and
colleagues (36) showed that systemic hypoxia
induced miR-210 in mouse bone marrow,
which affects pulmonary ECs via endocrine
delivery. Virga and colleagues showed that
miR-210 in monocyte/myeloid lineage cells
may be a source of generalized and local
vascular inflammation (55). These studies
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indicate that miR-210 induction in
monocytes and delivery to diverse cell types
may be implicated in OSA pathophysiology.
In our study, circulatory miR-210
concentration in mice under IH was
associated with CD31-enriched exosomes
(Figure 7), so these miRNAs originated from
vascular endothelium. Despite the discrepant
tissue sources where miR-210 is produced in
OSA, Zhao and colleagues and our group
both observed elevated miR-210
concentrations in circulation. Thus, it is
plausible that distinct vascular beds may
increase their uptake of exosomes enriched
in miR-210. Studies of OSA have shown
differential effects of the disease on various
vascular beds. We have reported local

differences in gene expression frommouse
aorta versus human dermal biopsies versus
human coronary artery ECs, which
emphasizes the complexity of the underlying
mechanisms (56). Conceptually, patients
with OSA are at increased risk of
cerebrovascular events andmyocardial
infarction, more so than pulmonary
hypertension. Indeed, pulmonary artery ECs
may be less susceptible to the effect of IH
than ECs in other organ systems. To date,
OSA lacks useful biomarkers that have
sensitivity and specificity for OSA disease,
prognostic value for important
complications, and responsiveness to
therapeutic interventions and that are
mechanistically involved in causal pathways.

AlthoughmiR-210 does not yet meet all
these characteristics, serum concentration of
miR-210 indeed was positively correlated
with AHI in all individuals with OSA
(Figure 1F). Whether miR-210 can serve as
an OSA biomarker deserves further study.
As well, miR-210 may be considered a
therapeutic target for mitigation of OSA-
induced endothelial dysfunction. Although
current therapies for OSA rely on the use of
continuous positive airway pressure, there
are nomedications addressing these
comorbidities caused by OSA-induced
endothelial dysfunction. Data illustrated in
this study indicate that the SREBP2–miR-210
axis is involved in OSA-mediated EC
dysfunction. Thus, inhibition of SREBP2 or
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Figure 6. Obstructive sleep apnea (OSA) serum decreases iron–sulfur cluster assembly enzyme (ISCU) via SREBP2 (sterol regulatory
element–binding protein 2) induction of microRNA 210 (miR-210) in endothelial cells (ECs). (A, B, and D) Human umbilical vein ECs were
transfected with SREBP2 siRNA (si-BP2) or pretreated with betulin (0.2 mg/ml) for 24 hours, then HC or OSA serum for another 24 hours.
(C and E) ECs were isolated from aorta of EC-specific SREBP2-overexpression transgenic mice (three males and three females) and their WT
littermates (three males and three females). Protein concentrations of SREBP2, ISCU, and b-actin (loading control) were detected using western
blot analysis (A and B). SREBP2 and ISCU mRNA concentrations were detected using quantitative PCR with b-actin as an internal control (A–C).
Mitochondrial respiratory complex I activity was evaluated using enzyme activity assay (D). Data are shown as mean6SEM from at least three
independent experiments. Statistical significance was determined using the Kruskal-Wallis test with Dunn’s multiple comparisons or the two-
tailed Mann-Whitney U test. *P, 0.05 compared with control or between two indicated groups. BP2-Tg=endothelial cell–specific SREBP2-
overexpression transgenic; HC=healthy control; MT DNA=mitochondrial DNA; WT=wild-type.
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miR-210 via administration of SREBP2
inhibitors or miR-210–neutralizing
antagomirs may be promising therapeutic
avenues for mitigation of comorbidities
resulting fromOSA-induced endothelial
dysfunction.

Despite our study’s strengths, we
acknowledge several limitations. First, we did
not have interventional data from humans
after continuous positive airway pressure
therapy, for example. Thus, our human
findings are primarily cross-sectional,
although we view the findings as robust
given that they were reproducible from two
independent sources. We did not measure
ECmitochondrial dysfunction in humans.
Such measurements are notoriously

challenging, but we consider that our in vivo
mouse studies and our in vitro observations
are rigorous and robust. Third, our sample
size could be considered modest. However,
we are hopeful that our novel findings will
encourage more rigorous research. Despite
these limitations, we consider our new
findings worthy of further pursuit.

Conclusions
Using in vitro, in vivo, and human data, we
have demonstrated a potentially major role
of miR-210 in mediating OSA-induced
vascular risk. The mechanisms underlying
OSA risk may be modulated by
SREBP2–miR-210–induced mitochondrial
dysfunction in ECs. The findings provide

compelling evidence that miR-210 may be
a suitable candidate as an OSA biomarker
and a therapeutic target for subsequent
interventional studies. Only through rigorous
multidisciplinary research are new
therapeutic approaches for OSA likely to
emerge.�
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Figure 7. SREBP2 (sterol regulatory element–binding protein 2)–microRNA 210 (miR-210) impairs mitochondrial function in mice exposed to
intermittent hypoxia (IH). (A–G) Eight-week-old C57Bl/6j mice were exposed to normoxia (21% O2; control [Ctrl], n=10 male mice) or IH (cycles
of 60 s 21% O21 30 s 10% O2 for 8 h/d), with (n=12 males) or without (n=15 males) betulin. (A and G) Body weight, SBP, and DBP were
assessed before and 2 weeks after IH treatment or under normoxia. The concentrations of miR-210 in circulation (B) and in CD311 MPs (C)
were quantified using quantitative PCR. Caenorhabditis elegans microRNA 39 was used as a spike-in control. SREBP2 and ISCU1/2 (iron–sulfur
cluster assembly enzyme 1/2) mRNA concentration (D) or protein concentrations (E and H) in mice aortas were quantified using quantitative
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Data are shown as mean6SEM. Statistical significance was determined using one-way ANOVA followed by the Bonferroni post hoc test or
two-tailed Student’s t test (for parametric data). Statistical significance of nonparametric data was determined using the Kruskal-Wallis test with
Dunn’s multiple comparisons or the two-tailed Mann-Whitney U test. *P, 0.05 between indicated groups. CD31=cluster of differentiation 31;
DBP=diastolic blood pressure; FC= fold change; MP=microparticles; SBP=systolic blood pressure.
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