
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Mapping and dissecting the post-transcriptional landscape in T cells

Permalink
https://escholarship.org/uc/item/2xc0k1w1

Author
Zhu, Wandi

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2xc0k1w1
https://escholarship.org
http://www.cdlib.org/


 

 

 
 
 
by 
 
 
 
 
Submitted in partial satisfaction of the requirements for degree of 
 
 
in 
 
 
 
in the 
 
GRADUATE DIVISION 
of the 
UNIVERSITY OF CALIFORNIA, SAN FRANCISCO 
 
 
 
 
 
 
 
 
 
 
 
 
Approved: 
 
______________________________________________________________________________ 

       Chair 
 
 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 
Committee Members 

Biomedical Sciences

Mapping and dissecting the post-transcriptional landscape in T cells

Wandi Zhu

DOCTOR OF PHILOSOPHY

DISSERTATION

Jason Cyster

K. Mark Ansel

David Erle



ii 
 

 

 

 

 

 

 

 

 

 

Copyright 2022 

by 

Wandi Zhu 

 

 

 

 

 

 

 



iii 
 

Dedication 

To my parents whose courage and resilience gave me the opportunity to pursue a career 

in science in the US. To my grandparents and relatives, whose support and care carried me 

through college and graduate school. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iv 
 

Acknowledgements 

 I would first like to thank my mentor Dr. Mark Ansel for guiding me through my project 

and graduate school. Whenever I felt doubt or pessimistic about my science, Mark would always 

be there at our one-on-one meetings or chats to highlight the positive things that I never saw at 

first. His immunological expertise, breadth of knowledge and scientific engagement have really 

helped me become a better scientist. I’m also very thankful to have had the opportunity to meet 

and hangout with the funniest dog, Roosevelt.  

 My project and thesis would not have been able to come together without the advice and 

support from my committee members Dr. Jason Cyster and Dr. David Erle. Whenever I got lost 

or wandered in the wrong direction, they were always there to help give clarity to my project and 

graduate school trajectory. I would also like to thank all the other mentors I’ve had through 

rotations and qualifying committees: Dr. Ari Molofsky, Dr. Alex Marson, Dr. Stephen Floor, Dr. 

Erin Gordon and Dr. Suneil Koliwad. I’d also like to thank the BMS program coordinator and 

administrative assistants (Demian Sainz, Ned Molyneaux and Manlio Maineri) for making the 

grad school experience a smooth one. 

 I am always thankful for the past and present members of the Ansel lab who’ve made 

the lab a fun and helpful space. Special thanks to Dr. Adam Litterman, who was my post-doc 

mentor in the beginning, and really helped guide the project off the ground. Thank you to Dr 

Marlys Fassett who has been a great neighbor in the lab bay and always willing to answer 

science and non-science questions. Thank you to the lab managers and research assistants 

Darryl Mar, Simon Zhou, Suparna Roy, Jaela Caston and Celeste Garza for helping the lab run 

smoothly, especially to Celeste who spent her weekends helping with EAE experiments. I am 

also grateful for the graduate students and other post-docs in the lab: John Gagnon, Eric 

Wigton, Ben Wheeler, Priscila Muñoz Sandoval and Kristina Johansson. Special thanks to Ben, 

Priscila and Kristina for helping with my experiments. Never would have been able to do the 



v 
 

assays without them. Also thank you to the Cyster and Lanier lab in HSE10. They graciously 

lent me reagents that saved a lot of my experiments.  

 I would not have been able to get into grad school without my undergrad mentor Katie 

Nicholas, who showed me how to be a great research scientist, and my post-bac mentor Dr. 

Jyoti Sen, who gave me the room and support to start working as an independent scientist.  

 Although grad school was long and at times really difficult, many good things came out 

of it, including all the friends I met in the BMS program. Their support, friendship and food 

adventures really helped me get through the rough times. The best thing that came out of grad 

school was meeting my partner Kamir Hiam Galvez. His continual support and presence 

brought a lot of joy into my life and really helped me make it through the mentally challenging 

parts of being a grad student. I’m eternally grateful for his support and affection for me. 

 Lastly, I’d like to thank my parents and grandparents for their love and support 

throughout my scientific career. I owe all my education, accomplishments and milestones to my 

parents, Jiajun Zhu and Dr Ying Sun, who have always supported my goals and never wavered 

in their belief in me. I’d like to especially acknowledge my mom, who is the most amazing and 

resilient scientist in my eyes. Her perseverance as a PI has been inspiring to see, and I hope to 

one day have even half the inner strength that she has.  

  

 

 

 

 

 

 

 



vi 
 

Contributions 

Text in Chapter 2 is a modified preprint published on bioRxiv that can be access here: 

https://www.biorxiv.org/content/10.1101/448654v1. The following authors contributed to the 

study: Adam J. Litterman, Harshaan S. Sekhon, Robin Kageyama, Maya M. Arce, Kimberly E. 

Taylor, Wenxue Zhao, Lindsey A. Criswell, Noah Zaitlen, David J. Erle, K. Mark Ansel. Kim and 

Lindsey provided the PICS SNP; Wenxue and David provided guidance on CRISPR dissection; 

Noah offered insight into statistical analysis; Maya helped with CRISPR dissection of 3’UTRs, 

Robin and Adam created GCLiPP technique and analysis pipeline; Harshaan performed 

computational analysis; Mark and Adam participated in project design, analysis and manuscript 

writing. Datasets in this paper are available on Gene Expression Omnibus accessions 

GSE94554 and GSE115886 

Chapter 3 is a manuscript in preparation. The following authors contributed to the 

project: Branka Popovic, Benjamin Wheeler, Sander Engels, Zhongmei Li, Helen Wu, Marissa 

Chou, Alexander Marson, Monika Wolkers and K Mark Ansel. Branka and Sander helped with 

the proteomics study. Zhongmei and Helen helped generate mutant mouse models with 

oversight from Alex. Marissa helped with generating bone marrow chimeras. Benjamin helped 

with experiments and Mark helped with experimental design, data interpretation and manuscript 

writing. 

 

 

 

 

 

 

 

 



vii 
 

Mapping and dissecting the post-transcriptional landscape in T cells 

Wandi Zhu 

Abstract 

T cells undergo dynamic and rapid changes in gene expression and protein output in 

response to cognate antigen, processes aided by post-transcriptional regulation. RNA binding 

proteins (RPBs) are important trans factors that bind to the 3’ untranslated region (3’UTR) of 

transcripts and modulate mRNA degradation and translation. Loss of function of these proteins, 

as well as mutations in their cis-regulatory binding sites, can alter T function and development 

and lead to immune-mediated diseases. While studies have characterized the network of RBPs 

present in T cells, as well as binding profiles of individual RBPs, the cis-regulatory landscape of 

the T cell transcriptome is yet to be defined. This body of work addresses this gap by 

developing a biochemical assay to map the RBP binding profile in T cells and identify post-

transcriptional cis-regulatory regions that regulate protein expression and T cell function. Using 

our technique, GCLiPP, we identified biochemically shared binding sites across conserved 

regions of human and mouse 3’UTRs that govern transcript stability. Additional dissections of 

predicted RBP binding sites in several 3’UTRs of immune-related genes revealed cis-regulatory 

regions critical for modulating protein expression. We performed further analysis on CD69, a 

negative regulator of T cell egress, and identified a conserved destabilizing region within the 

3’UTR. Absence of this region, as well as the whole 3’UTR, increased CD69 transcript half-life 

and led to higher CD69 expression as well as more CD69+ T cells in mouse and human. The 

post-transcriptional circuitry within Cd69 3’UTR had a profound effect on T cell migration, as 

mice with homozygous deletion of this region showed impaired thymic egress. Taken together, 

our studies provide a resource for mapping post-transcriptional cis-elements in the T cell 

transcriptome and demonstrate its utility for discovering functional cis-regulatory regions that 

contain variants associated with human immune-mediated diseases. 
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CHAPTER 1: General Introduction 

Overview of T cells 

T cells are critical players in mounting an immune response against foreign pathogens 

and malignancies. Their development begins in the thymus where they first undergo β selection, 

a process that selects for cells that have re-arranged their T cell receptor (TCR) β chain locus, 

and form a pre-TCR complex that interacts with CD3. Cells with successfully formed TCR 

signaling complexes upregulate CD4 and CD8 to form a large population of double positive (DP) 

cells (Germain, 2002). In this stage, thymocytes undergo TCRα rearrangement, forming αβ 

TCRs, positive selection and down-regulation of CD4 or CD8 to transition into semi-mature 

single positive (SP) thymocytes (Koch & Radtke, 2011). Once past the negative selection 

checkpoint at the DP and semi-mature SP stages, SP thymocytes will upregulate protein 

markers including L-selectin (CD62L), CD69 and sphinegosine-1-phosphate receptor 1 (S1PR1) 

to become mature SP cells (Xu & Ge, 2014). Using S1PR1, these cells egress from the thymus 

through S1P-mediated migration and become part of the peripheral repertoire (Allende et al., 

2004; Matloubian et al., 2004; Pappu et al., 2007). In the periphery, T cells continuously survey 

the body, circulating between blood and the lymphatic system, to be on alert for foreign 

pathogens. 

αβ T cells can be broadly separated into two main subsets with differing functions. CD8+ 

T cells directly kill target cells by producing and secreting effector molecules while CD4+ T cells 

aid in inflammatory responses by signaling to other immune cells through cytokines and 

chemokines. As T cells must migrate and mount a quick response against insults at target sites, 

they must also be able to leave and dampen their response as prolonged proinflammatory state 

can lead to tissue damage (Mueller et al., 2013). During development and following activation 

by antigens, T cells undergo dynamic and rapid changes in gene expression and protein output 
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(Howden et al., 2019; Wolf et al., 2020). Transcriptional control is critical for regulating the 

abundance of transcripts generated in the cell by inducing or silencing mRNA production in 

response to specific signals (Kuo & Leiden, 1999). Post-transcriptional regulation is another key 

step for modulating gene expression and generating an appropriate output (Jurgens et al., 

2021). Its regulatory mechanisms can not only aid in robust induction, but also dampen 

responses within T cells accordingly.  

 

RNA binding proteins  

RNA binding proteins (RBPs) and microRNAs (miRNAs) are important mediators of 

post-transcriptional processing of mRNAs. They bind to the coding region, introns and 

untranslated regions (UTR) of transcripts through linear and, in the case of RBPs, structural 

motifs to mediate transcript stability (Jurgens et al., 2021; Turner & DÍaz-Muñoz, 2018). Recent 

interest has focused on RBPs and their role in T cells. Thousands of proteins have been 

identified as RBPs (Queiroz et al., 2019; Trendel et al., 2019; van Nostrand et al., 2020), with 

over 1000 identified through RNA interactome capture methods in primary T cells (Hoefig et al., 

2021). These proteins regulate many post-transcriptional processes including RNA editing, 

localization and translation. Extensive studies into individual RBPs have highlighted the critical 

role these trans factors play in regulating T cell function. 

 A well-studied class of RBPs are AU-rich element (ARE) binding RBPs, which includes 

zinc-finger protein 36 (ZFP36) family members, ELAV like RNA binding protein 1 (ELAVL1/HuR) 

and T cell intercellular antigen 1 (TIA-1). These proteins bind to the ARE motif AUUUA to initiate 

polyA tail shortening and 3’- and 5’-exonuclease degradation (Akira & Maeda, 2021). Other 

RBPs, such as Roquin and Regnase family members, exert similar function by binding to a 

specific stem loop structure (Leppek et al., 2013a; Schlundt et al., 2014; Tan et al., 2014). RBPs 

can act cooperatively, recruiting other proteins to the site, or competitively for the same binding 

site (Akira & Maeda, 2021). For example, in macrophages, ZFP36 and ELAVL1 compete for 
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binding to Tumor Necrosis Factor α (TNFα) and can either initiate transcript degradation through 

ZFP36, or stabilize the mRNA through ELAVL1 (Tiedje et al., 2012). Although the proteins can 

recognize the same motif and site, their capacity to bind to specific regions can differ. In 

activated primary human T cells, ZFP36 showed higher binding specificity to Il-2 compared to 

ELAVL1 (Raghavan et al., 2001). Together, these examples demonstrate the complex and 

dynamic role RBPs play in post-transcriptional regulation. The following work in Chapter 2 and 

Chapter 3 will focus specifically on regulation of mRNA stability by RBPs.  

 

RBPs are critical mediators of T cell responses and differentiation 

Loss of function studies have shed light on the critical role of RBPs in modulating gene 

expression and T cell function, specifically restraining T cell responses. Mice with T cell specific 

deletion of Regnase-1 or Roquin-1/Roquin-2 develop systemic inflammation, autoantibodies and 

autoimmunity (Jeltsch et al., 2014; Minagawa et al., 2014; Uehata et al., 2013; Vogel et al., 

2013). A similar phenotype was also observed in mice with an intact but non-functional Roquin-

1 (Yu et al., 2007). These proteins were necessary for preventing inappropriate T cell activation 

and T follicular helper cell differentiation by degrading key transcripts such as Ox40 and Icos 

(Essig et al., 2017; Vogel et al., 2013). ZFP36 is another RBP with a functional role in immune 

tolerance. Mice with condition deletion of this protein in T cells had accelerated T cell activation 

and quicker responses to viral challenge (Moore et al., 2018). 

 In contrast to the previously mentioned RBPs, ELAVL1 stabilizes certain transcripts 

such as Gata3 (Stellato et al., 2011) in T cells and promotes early type 2 T helper cell 

differentiation in culture (Techasintana et al., 2017). ELAVL1 also stabilizes Il17a, promotes IL-

17 production in CD4+ T helper 17 cells (Th17) and contributes to the pathology in the 

experimental autoimmune encephalomyelitis disease model (J. Chen et al., 2013).  

RBPs are not only involved in mRNA degradation but also in translation. Memory T cells 

generated after an infection or challenge contain pre-formed mRNA necessary for rapid recall 
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responses, including Ifng and Tnf. To prevent continuous translation of these transcripts while in 

a quiescent state, ZFP36 like 2 (ZFP36L2) binds to the 3’UTR of Ifng and Tnf mRNAs and 

blocks translation of these rapidly induced proteins (Salerno et al., 2018). ELAVL1 exhibits a 

similar role as it was necessary for Il2ra translation (Techasintana et al., 2017). Together, these 

examples demonstrate the profound role post-transcriptional regulation and RBPs play in 

modulating T cell differentiation and responses. 

 

Methods for identifying RBP binding sites 

Various methods have been developed to identify RBP binding sites in the transcriptome 

(Lee & Ule, 2018). RNA immunoprecipitation (RIP) and cross-linking and immunoprecipitation 

methods in conjunction with sequencing (CLIP-Seq) are the most common techniques used to 

define individual RBP binding profiles (Hafner et al., 2021a). RIP approaches extract RNA-

protein complexes in native conditions. In contrast, CLIP techniques utilize irradiation of cells by 

UV to irreversibly cross-link RNA and nearby proteins, which allows for more precise purification 

of ribonucleoprotein complexes (RNPs). After extraction, the RNA is separated from the protein 

and sequenced to map RBP binding sites. The datasets from these methods are deposited in 

large repositories such as ENCORE (Encyclopedia of RNA Elements) (van Nostrand et al., 

2020), which have become valuable resources for the community. Although many RBP binding 

profiles have been generated through CLIP, very few have been performed in T cells. CLIP 

methods are also constrained by the availability of specific antibodies to perform protein IPs and 

by our knowledge of identified RBPs.  

Recent methods have addressed this last concern, using broad approaches to 

characterize and define RBPs in cells. Some of these methods, such as orthogonal organic 

phase separation (OOPS) (Queiroz et al., 2019) and XRNAX (Trendel et al., 2019), leverage 

organic phase separation to extract RNA-bound RBPs and identify the proteins through mass 

spectrometry. OOPs and global RNA interactome capture (RIC) were used to identify RBPs in 
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primary mouse and human CD4+ T cells and characterize the networks of RBPs that interact 

and regulate mRNA targets (Hoefig et al., 2021). Although current work has expanded our 

understanding of the RBPome in T cells, a global RNA binding profile of the T cell transcriptome 

remains to be studied.  

 

Cis-regulatory elements in 3’UTRs 

The 3’UTR contains cis-regulatory elements that interact with RBPs and miRNAs to 

initiate post-transcriptional processes. Although a non-coding region, the 3’UTR contains many 

regions with potential functional activity. Fine-mapping of disease variants associated with 

immune-mediated disorders identified over hundreds of predicted causal single nucleotide 

polymorphisms (SNPs) in 3’UTRs (Farh et al., 2015; Taylor et al., 2021), suggesting a potential 

role for RNA cis-elements in disease pathology. Indeed, there have been examples of mutations 

in miRNA and RBP binding sites that have led to changes in gene expression and cell function 

(di Marco et al., 2001; Steri et al., 2018a). For instance, a genome-wide association study 

identified a SNP in TNFSF13B, associated with multiple sclerosis in Sardinians, that altered a 

miRNA binding site (Steri et al., 2017). This mutation yielded a shorter transcript, which escaped 

miRNA degradation, and led to increased production of soluble B-cell activating factor (Steri et 

al., 2017).  

Dissection of 3’UTRs have yielded specific insight into individual cis-regulatory elements 

within the region. Development of genome-wide approaches, such as massively parallel 

reporter systems, have provided a way to systematically 1) identify novel cis-regulatory 

elements, 2) evaluate the effects of genetic variation on cis-regulatory regions (Zhao et al., 

2014) and 3) analyze the relationships between sequence composition and post-transcriptional 

regulatory functions (Litterman et al., 2019). These methods, combined with CRISPR-Cas9 

mediated functional dissections (Zhao et al., 2017), provide an unbiased approach to 

understanding the post-transcriptional regulatory networks in 3’UTRs. Despite recent work 
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systematically uncovering linear and structural motifs (Goodarzi et al., 2012), there remains a 

need for a map of global cis-regulatory RNA elements in T cells.  

 

Overview of Thesis 

The interaction of RBPs and cis-regulatory elements is critical for regulating T cell 

differentiation and responses, as well as for maintaining the fine balance between inflammatory 

and quiescent states. This body of work addresses the gaps in the field through the following: 

1)  Mapping the post-transcriptional cis-regulatory landscape in human and mouse T 

cells through a new biochemical technique (Chapter 2) 

2) Evaluating how post-transcriptional machinery modulates protein expression and T 

cell function for a specific immunologically important gene (Chapter 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

References 

Akira, S., & Maeda, K. (2021). Control of RNA Stability in Immunity. Annual Review of 

Immunology, 39(1), 481–509. https://doi.org/10.1146/annurev-immunol-101819-075147 

Allende, M. L., Dreier, J. L., Mandala, S., & Proia, R. L. (2004). Expression of the Sphingosine 

1-Phosphate Receptor, S1P1, on T-cells Controls Thymic Emigration . Journal of 

Biological Chemistry, 279(15), 15396–15401. https://doi.org/10.1074/JBC.M314291200 

Chen, J., Cascio, J., Magee, J. D., Techasintana, P., Gubin, M. M., Dahm, G. M., Calaluce, R., 

Yu, S., & Atasoy, U. (2013). Posttranscriptional Gene Regulation of IL-17 by the RNA-

Binding Protein HuR Is Required for Initiation of Experimental Autoimmune 

Encephalomyelitis. The Journal of Immunology, 191(11), 5441–5450. 

https://doi.org/10.4049/JIMMUNOL.1301188 

di Marco, S., Hel, Z., Lachance, C., Furneaux, H., & Radzioch, D. (2001). Polymorphism in the 

3′-untranslated region of TNFα mRNA impairs binding of the post-transcriptional regulatory 

protein HuR to TNFα mRNA. Nucleic Acids Research, 29(4), 863–871. 

https://doi.org/10.1093/NAR/29.4.863 

di Yu, Tan, A. H. M., Hu, X., Athanasopoulos, V., Simpson, N., Silva, D. G., Hutloff, A., Giles, K. 

M., Leedman, P. J., Lam, K. P., Goodnow, C. C., & Vinuesa, C. G. (2007). Roquin 

represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 

2007 450:7167, 450(7167), 299–303. https://doi.org/10.1038/nature06253 

Essig, K., Hu, D., Guimaraes, J. C., Alterauge, D., Edelmann, S., Raj, T., Kranich, J., Behrens, 

G., Heiseke, A., Floess, S., Klein, J., Maiser, A., Marschall, S., Hrabĕ de Angelis, M., 

Leonhardt, H., Calkhoven, C. F., Noessner, E., Brocker, T., Huehn, J., … Heissmeyer, V. 

(2017). Roquin Suppresses the PI3K-mTOR Signaling Pathway to Inhibit T Helper Cell 

Differentiation and Conversion of Treg to Tfr Cells. Immunity, 47(6), 1067-1082.e12. 

https://doi.org/10.1016/J.IMMUNI.2017.11.008 



8 
 

Farh, K. K.-H., Marson, A., Zhu, J., Kleinewietfeld, M., Housley, W. J., Beik, S., Shoresh, N., 

Whitton, H., Ryan, R. J. H., Shishkin, A. A., Hatan, M., Carrasco-Alfonso, M. J., Mayer, D., 

Luckey, C. J., Patsopoulos, N. A., de Jager, P. L., Kuchroo, V. K., Epstein, C. B., Daly, M. 

J., … Bernstein, B. E. (2015). Genetic and epigenetic fine mapping of causal autoimmune 

disease variants. Nature, 518(7539), 337–343. https://doi.org/10.1038/nature13835 

Germain, R. N. (2002). T-cell development and the CD4–CD8 lineage decision. Nature Reviews 

Immunology 2002 2:5, 2(5), 309–322. https://doi.org/10.1038/nri798 

Goodarzi, H., Najafabadi, H. S., Oikonomou, P., Greco, T. M., Fish, L., Salavati, R., Cristea, I. 

M., & Tavazoie, S. (2012). Systematic discovery of structural elements governing stability 

of mammalian messenger RNAs. Nature 2012 485:7397, 485(7397), 264–268. 

https://doi.org/10.1038/nature11013 

Hafner, M., Katsantoni, M., Köster, T., Marks, J., Mukherjee, J., Staiger, D., Ule, J., & Zavolan, 

M. (2021). CLIP and complementary methods. Nature Reviews Methods Primers 2021 

1:1, 1(1), 1–23. https://doi.org/10.1038/s43586-021-00018-1 

Hoefig, K. P., Reim, A., Gallus, C., Wong, E. H., Behrens, G., Conrad, C., Xu, M., Kifinger, L., 

Ito-Kureha, T., Defourny, K. A. Y., Geerlof, A., Mautner, J., Hauck, S. M., Baumjohann, D., 

Feederle, R., Mann, M., Wierer, M., Glasmacher, E., & Heissmeyer, V. (2021). Defining 

the RBPome of primary T helper cells to elucidate higher-order Roquin-mediated mRNA 

regulation. Nature Communications, 12(1), 5208. https://doi.org/10.1038/s41467-021-

25345-5 

Howden, A. J. M., Hukelmann, J. L., Brenes, A., Spinelli, L., Sinclair, L. v., Lamond, A. I., & 

Cantrell, D. A. (2019). Quantitative analysis of T cell proteomes and environmental 

sensors during T cell differentiation. Nature Immunology 2019 20:11, 20(11), 1542–1554. 

https://doi.org/10.1038/s41590-019-0495-x 

Jeltsch, K. M., Hu, D., Brenner, S., Zöller, J., Heinz, G. A., Nagel, D., Vogel, K. U., Rehage, N., 

Warth, S. C., Edelmann, S. L., Gloury, R., Martin, N., Lohs, C., Lech, M., Stehklein, J. E., 



9 
 

Geerlof, A., Kremmer, E., Weber, A., Anders, H. J., … Heissmeyer, V. (2014). Cleavage of 

roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed 

targets to promote TH17 differentiation. Nature Immunology, 15(11), 1079–1089. 

https://doi.org/10.1038/ni.3008 

Jurgens, A. P., Popović, B., & Wolkers, M. C. (2021). T cells at work: How post-transcriptional 

mechanisms control T cell homeostasis and activation. European Journal of Immunology, 

51(9), 2178–2187. https://doi.org/10.1002/EJI.202049055 

Koch, U., & Radtke, F. (2011). Mechanisms of T Cell Development and Transformation. 

Http://Dx.Doi.Org/10.1146/Annurev-Cellbio-092910-154008, 27, 539–562. 

https://doi.org/10.1146/ANNUREV-CELLBIO-092910-154008 

Kuo, C. T., & Leiden, J. M. (1999). TRANSCRIPTIONAL REGULATION OF T LYMPHOCYTE 

DEVELOPMENT AND FUNCTION. Annual Review of Immunology, 17(1), 149–187. 

https://doi.org/10.1146/annurev.immunol.17.1.149 

Lee, F. C. Y., & Ule, J. (2018). Advances in CLIP Technologies for Studies of Protein-RNA 

Interactions. Molecular Cell, 69(3), 354–369. 

https://doi.org/10.1016/J.MOLCEL.2018.01.005/ATTACHMENT/D9C4D9B7-CB44-4400-

9899-CB2149FA812B/MMC1.XLSX 

Leppek, K., Schott, J., Reitter, S., Poetz, F., Hammond, M. C., & Stoecklin, G. (2013). Roquin 

Promotes Constitutive mRNA Decay via a Conserved Class of Stem-Loop Recognition 

Motifs. Cell, 153(4), 869–881. https://doi.org/10.1016/J.CELL.2013.04.016 

Litterman, A. J., Kageyama, R., le Tonqueze, O., Zhao, W., Gagnon, J. D., Goodarzi, H., Erle, 

D. J., & Ansel, K. M. (2019). A massively parallel 3′ UTR reporter assay reveals 

relationships between nucleotide content, sequence conservation, and mRNA 

destabilization. Genome Research, 29(6), 896–906. 

https://doi.org/10.1101/GR.242552.118 



10 
 

Matloubian, M., Lo, C. G., Cinamon, G., Lesneski, M. J., Xu, Y., Brinkmann, V., Allende, M. L., 

Proia, R. L., & Cyster, J. G. (2004). Lymphocyte egress from thymus and peripheral 

lymphoid organs is dependent on S1P receptor 1. Nature, 427(6972), 355–360. 

https://doi.org/10.1038/nature02284 

Minagawa, K., Wakahashi, K., Kawano, H., Nishikawa, S., Fukui, C., Kawano, Y., Asada, N., 

Sato, M., Sada, A., Katayama, Y., & Matsui, T. (2014). Posttranscriptional Modulation of 

Cytokine Production in T Cells for the Regulation of Excessive Inflammation by TFL. The 

Journal of Immunology, 192(4), 1512–1524. https://doi.org/10.4049/JIMMUNOL.1301619/-

/DCSUPPLEMENTAL 

Moore, M. J., Blachere, N. E., Fak, J. J., Park, C. Y., Sawicka, K., Parveen, S., Zucker-Scharff, 

I., Moltedo, B., Rudensky, A. Y., & Darnell, R. B. (2018). ZFP36 RNA-binding proteins 

restrain T cell activation and anti-viral immunity. ELife, 7, 33057. 

https://doi.org/10.7554/eLife.33057 

Mueller, S. N., Gebhardt, T., Carbone, F. R., & Heath, W. R. (2013). Memory T Cell Subsets, 

Migration Patterns, and Tissue Residence. Annual Review of Immunology, 31(1), 137–

161. https://doi.org/10.1146/annurev-immunol-032712-095954 

Pappu, R., Schwab, S. R., Cornelissen, I., Pereira, J. P., Regard, J. B., Xu, Y., Camerer, E., 

Zheng, Y. W., Huang, Y., Cyster, J. G., & Coughlin, S. R. (2007). Promotion of lymphocyte 

egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science, 

316(5822), 295–298. 

https://doi.org/10.1126/SCIENCE.1139221/SUPPL_FILE/PAPPU.SOM.PDF 

Queiroz, R. M. L., Smith, T., Villanueva, E., Marti-Solano, M., Monti, M., Pizzinga, M., Mirea, D.-

M., Ramakrishna, M., Harvey, R. F., Dezi, V., Thomas, G. H., Willis, A. E., & Lilley, K. S. 

(2019). Comprehensive identification of RNA–protein interactions in any organism using 

orthogonal organic phase separation (OOPS). Nature Biotechnology 2019 37:2, 37(2), 

169–178. https://doi.org/10.1038/s41587-018-0001-2 



11 
 

Raghavan, A., Robison, R. L., McNabb, J., Miller, C. R., Williams, D. A., & Bohjanen, P. R. 

(2001). HuA and Tristetraprolin Are Induced following T Cell Activation and Display 

Distinct but Overlapping RNA Binding Specificities. Journal of Biological Chemistry, 

276(51), 47958–47965. https://doi.org/10.1074/JBC.M109511200 

Salerno, F., Engels, S., van den Biggelaar, M., van Alphen, F. P. J., Guislain, A., Zhao, W., 

Hodge, D. L., Bell, S. E., Medema, J. P., von Lindern, M., Turner, M., Young, H. A., & 

Wolkers, M. C. (2018). Translational repression of pre-formed cytokine-encoding mRNA 

prevents chronic activation of memory T cells. Nature Immunology, 19(8), 828–837. 

https://doi.org/10.1038/s41590-018-0155-6 

Schlundt, A., Heinz, G. A., Janowski, R., Geerlof, A., Stehle, R., Heissmeyer, V., Niessing, D., & 

Sattler, M. (2014). Structural basis for RNA recognition in roquin-mediated post-

transcriptional gene regulation. Nature Structural & Molecular Biology 2014 21:8, 21(8), 

671–678. https://doi.org/10.1038/nsmb.2855 

Stellato, C., Gubin, M. M., Magee, J. D., Fang, X., Fan, J., Tartar, D. M., Chen, J., Dahm, G. M., 

Calaluce, R., Mori, F., Jackson, G. A., Casolaro, V., Franklin, C. L., & Atasoy, U. (2011). 

Coordinate Regulation of GATA-3 and Th2 Cytokine Gene Expression by the RNA-Binding 

Protein HuR. The Journal of Immunology, 187(1), 441–449. 

https://doi.org/10.4049/JIMMUNOL.1001881 

Steri, M., Idda, M. L., Whalen, M. B., & Orrù, V. (2018). Genetic variants in mRNA untranslated 

regions. Wiley Interdisciplinary Reviews: RNA, 9(4), e1474. 

https://doi.org/10.1002/WRNA.1474 

Steri, M., Orrù, V., Idda, M. L., Pitzalis, M., Pala, M., Zara, I., Sidore, C., Faà, V., Floris, M., 

Deiana, M., Asunis, I., Porcu, E., Mulas, A., Piras, M. G., Lobina, M., Lai, S., Marongiu, M., 

Serra, V., Marongiu, M., … Cucca, F. (2017). Overexpression of the Cytokine BAFF and 

Autoimmunity Risk. New England Journal of Medicine, 376(17), 1615–1626. 



12 
 

https://doi.org/10.1056/NEJMOA1610528/SUPPL_FILE/NEJMOA1610528_DISCLOSURE

S.PDF 

Tan, D., Zhou, M., Kiledjian, M., & Tong, L. (2014). The ROQ domain of Roquin recognizes 

mRNA constitutive-decay element and double-stranded RNA. Nature Structural & 

Molecular Biology 2014 21:8, 21(8), 679–685. https://doi.org/10.1038/nsmb.2857 

Taylor, K. E., Ansel, K. M., Marson, A., Criswell, L. A., & Farh, K. K.-H. (2021). PICS2: next-

generation fine mapping via probabilistic identification of causal SNPs. Bioinformatics. 

https://doi.org/10.1093/BIOINFORMATICS/BTAB122 

Techasintana, P., Ellis, J. S., Glascock, J., Gubin, M. M., Ridenhour, S. E., Magee, J. D., Hart, 

M. L., Yao, P., Zhou, H., Whitney, M. S., Franklin, C. L., Martindale, J. L., Gorospe, M., 

Davis, W. J., Fox, P. L., Li, X., & Atasoy, U. (2017). The RNA-Binding Protein HuR 

Posttranscriptionally Regulates IL-2 Homeostasis and CD4 + Th2 Differentiation . 

ImmunoHorizons, 1(6), 109–123. https://doi.org/10.4049/IMMUNOHORIZONS.1700017/-

/DCSUPPLEMENTAL 

Tiedje, C., Ronkina, N., Tehrani, M., Dhamija, S., Laass, K., Holtmann, H., Kotlyarov, A., & 

Gaestel, M. (2012). The p38/MK2-Driven Exchange between Tristetraprolin and HuR 

Regulates AU–Rich Element–Dependent Translation. PLOS Genetics, 8(9), e1002977. 

https://doi.org/10.1371/JOURNAL.PGEN.1002977 

Trendel, J., Schwarzl, T., Horos, R., Prakash, A., Bateman, A., Hentze, M. W., & Krijgsveld, J. 

(2019). The Human RNA-Binding Proteome and Its Dynamics during Translational Arrest. 

Cell, 176(1), 391-403.e19. https://doi.org/https://doi.org/10.1016/j.cell.2018.11.004 

Turner, M., & DÍaz-Muñoz, M. D. (2018). RNA-binding proteins control gene expression and cell 

fate in the immune system review-article. In Nature Immunology (Vol. 19, Issue 2, pp. 

120–129). Nature Publishing Group. https://doi.org/10.1038/s41590-017-0028-4 

Uehata, T., Iwasaki, H., Vandenbon, A., Matsushita, K., Hernandez-Cuellar, E., Kuniyoshi, K., 

Satoh, T., Mino, T., Suzuki, Y., Standley, D. M., Tsujimura, T., Rakugi, H., Isaka, Y., 



13 
 

Takeuchi, O., & Akira, S. (2013). Malt1-Induced Cleavage of Regnase-1 in CD4+ Helper T 

Cells Regulates Immune Activation. Cell, 153(5), 1036–1049. 

https://doi.org/10.1016/J.CELL.2013.04.034 

van Nostrand, E. L., Freese, P., Pratt, G. A., Wang, X., Wei, X., Xiao, R., Blue, S. M., Chen, J.-

Y., Cody, N. A. L., Dominguez, D., Olson, S., Sundararaman, B., Zhan, L., Bazile, C., 

Bouvrette, L. P. B., Bergalet, J., Duff, M. O., Garcia, K. E., Gelboin-Burkhart, C., … Yeo, 

G. W. (2020). A large-scale binding and functional map of human RNA-binding proteins. 

Nature, 583(7818), 711–719. https://doi.org/10.1038/s41586-020-2077-3 

Vogel, K. U., Edelmann, S. L., Jeltsch, K. M., Bertossi, A., Heger, K., Heinz, G. A., Zöller, J., 

Warth, S. C., Hoefig, K. P., Lohs, C., Neff, F., Kremmer, E., Schick, J., Repsilber, D., 

Geerlof, A., Blum, H., Wurst, W., Heikenwälder, M., Schmidt-Supprian, M., & Heissmeyer, 

V. (2013). Roquin Paralogs 1 and 2 Redundantly Repress the Icos and Ox40 Costimulator 

mRNAs and Control Follicular Helper T Cell Differentiation. Immunity, 38(4), 655–668. 

https://doi.org/10.1016/J.IMMUNI.2012.12.004 

Wolf, T., Jin, W., Zoppi, G., Vogel, I. A., Akhmedov, M., Bleck, C. K. E., Beltraminelli, T., 

Rieckmann, J. C., Ramirez, N. J., Benevento, M., Notarbartolo, S., Bumann, D., Meissner, 

F., Grimbacher, B., Mann, M., Lanzavecchia, A., Sallusto, F., Kwee, I., & Geiger, R. 

(2020). Dynamics in protein translation sustaining T cell preparedness. Nature 

Immunology 2020 21:8, 21(8), 927–937. https://doi.org/10.1038/s41590-020-0714-5 

Xu, X., & Ge, Q. (2014). Maturation and migration of murine CD4 single positive thymocytes and 

thymic emigrants. Computational and Structural Biotechnology Journal, 9(15), 

e201403003-9. https://doi.org/10.5936/CSBJ.201403003 

Zhao, W., Pollack, J. L., Blagev, D. P., Zaitlen, N., McManus, M. T., & Erle, D. J. (2014). 

Massively parallel functional annotation of 3′ untranslated regions. Nature Biotechnology 

2014 32:4, 32(4), 387–391. https://doi.org/10.1038/nbt.2851 



14 
 

Zhao, W., Siegel, D., Biton, A., le Tonqueze, O., Zaitlen, N., Ahituv, N., & Erle, D. J. (2017). 

CRISPR–Cas9-mediated functional dissection of 3′-UTRs. Nucleic Acids Research, 

45(18), 10800–10810. https://doi.org/10.1093/NAR/GKX675 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

CHAPTER 2: A global map of RNA binding protein occupancy guides 
functional dissection of post-transcriptional regulation of the T cell 

transcriptome 
 
 
 
 
 
 
Abstract 

RNA binding proteins (RBPs) mediate constitutive RNA metabolism and gene specific 

regulatory interactions. To identify RNA cis-regulatory elements, we optimized a biochemical 

technique, GCLiPP, that detects RBP occupancy transcriptome-wide in T cells. GCLiPP 

sequence tags corresponded with known RBP binding sites, specifically correlating to abundant 

cytosolic RBPs. Comparison of human Jurkat T cells and mouse primary T cells uncovered 

hundreds of biochemically shared peaks of GCLiPP signal across homologous regions of 

human and mouse 3’ UTRs, including the 3’ UTR of the proto-oncogene PIM3. To demonstrate 

the utility of our occupancy profiles, we performed functional dissection of 3’UTRs of 

immunological genes using CRISPR/Cas9 genome editing. Detailed mapping revealed a cis-

regulatory element corresponding to a biochemically shared peak in PIM3 3’UTR that governs 

transcript stability in mouse and human, as well as potential stabilizing regions in CD5, STAT6 

and IKZF1 3’UTR. Our GCLiPP datasets and visualization tool provide a rich and easily 

accessible resource for investigation of post-transcriptional regulation in the immune system. 
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Introduction 

The life cycle of protein coding RNA transcripts involves their transcription from DNA, 5′ 

capping, splicing, 3′ polyadenylation, nuclear export, cellular localization, translation and 

degradation (Garneau et al., 2007; Martin & Ephrussi, 2009; Reed, 2003). RNA binding proteins 

(RBPs) coordinately regulate these processes through interaction with RNA cis-regulatory 

elements, often in the 5′ and 3′ untranslated regions (UTRs) whose sequences are not 

constrained by a functional coding sequence (Keene, 2007). Mammalian genomes encode 

hundreds of RBPs (Castello et al., 2012) and mutations in individual RBPs or binding sites can 

induce strong developmental, autoimmune and neurological defects in human patients and 

mouse models (Bassell & Kelic, 2004; Gebauer et al., 2021; Kafasla et al., 2014; Schwerk & 

Savan, 2015).  

Recent systematic analyses that map protein-RNA interactions have expanded our 

understanding of post-transcriptional regulatory circuits. Methods utilizing organic phase 

separation such as protein-Xlinked RNA extraction (XRNAX) (Trendel et al., 2019), orthogonal 

organic phase separation (OOPS) (Queiroz et al., 2019) and others (van Ende et al., 2020) 

have expanded the repertoire of known RBPs through unbiased extraction of over 1000 distinct 

RNA-bound proteins in human cell lines and primary T cells (Hoefig et al., 2021). These studies, 

as well as those employing RNA interactome capture techniques (Perez-Perri et al., 2018a), 

have mostly focused on the trans factors involved in RNA regulation. Systematic analysis of the 

corresponding protein-occupied cis-regulatory regions in mRNAs remains limited to human cell 

lines (Baltz et al., 2012) and yeast (Freeberg et al., 2013). In addition, a biochemical study of 

150 individual RBPs and their binding sites through enhanced CLIP (eCLIP) as part of the 

Encyclopedia of DNA elements (ENCODE) project has provided a valuable database for 

evaluating RNA cis-regulatory elements (a.k.a. ENCORE) (van Nostrand et al., 2020). New 

modes of transcriptome analysis inspired new methods for computational analysis of the 
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resulting data, which require dedicated tools to quantify, compare and catalogue transcriptomic 

features (Hafner et al., 2021b). 

Post-transcriptional regulation plays an important role in fine-tuning T cell responses to 

external stimuli (Nicolet et al., 2021). As much as half of the extensive gene expression changes 

that occur during T cell activation occur post-transcriptionally (Raghavan et al., 2002), and 

several RBPs are known to be critical determinants of immune function and homeostasis 

(Kafasla et al., 2014). A large proportion of probable causal genetic variants associated with 

immune-mediated diseases map to non-coding regions with potential regulatory functions in 

immune cells (Farh et al., 2015; Steri et al., 2018b), but the mechanistic role of the large 

majority of these variants in immune cells is unknown. A map of RBP occupancy in T cells can 

be a powerful tool for interrogating post-transcriptional gene regulation in the immune system 

and, in combination with genetic analysis, dissecting the genetic basis of immune-mediated 

diseases. 

Here, we create global RBP occupancy maps for a human T cell line, Jurkat, and 

primary mouse T cells. Comparing RBP occupancy for thousands of mRNAs across species 

identified biochemically shared regulatory sites, which are enriched for phylogenetically 

conserved sequences. With the map as guidance, we used a scalable system of CRISPR 

dissection to define regions of functional activity in 3’ UTRs of mouse and human transcripts of 

immunological importance through shared conservation. Targeted analysis revealed regulatory 

activity in regions of RBP occupancy that mapped to probable-causal genetic variants 

associated with human immune-mediated diseases. Our findings demonstrate the utility of RBP 

occupancy maps as valuable resources for functional analysis of post-transcriptional regulation 

in T cells. 
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Results 

Transcriptome-wide analysis of RBP occupancy in T cells  

To achieve transcriptome-wide RBP binding site profiling in T cells, we adapted 

biochemical methods for crosslinking purification of all mRNA-RBP complexes. Our Global 

CrossLinking  Protein Purification method, abbreviated as GCLiPP, features: crosslinking of 

endogenous ribonucleoprotein complexes using high energy UV light (no photo-crosslinkable 

ribonucleotide analogues); oligo-dT pulldown prior to biotinylation to enrich for mRNA species; 

chemical biotinylation of primary amines using a water soluble reagent with a long, flexible 

linker; brief RNase digestion with RNase T1; and on-bead linker ligation with radiolabeled 3′ 

linker to facilitate downstream detection of ligated products (Fig 2.1A).  We used the guanine 

specific ribonuclease T1 to favor larger average fragment sizes than would be produced with an 

RNA endonuclease with less stringent nucleotide specificity, such as RNase A. We first applied 

GCLiPP to interrogate RBP-occupied regions of RNA in human Jurkat T cells. Linker-ligated 

RBP-protected fragments were separated by PAGE and detected by radiography (Fig 2.1B, 

lanes 1-3). Single-stranded RNA oligonucleotides of 19 and 24 nt, the same length as the 5’ and 

3’ linkers, were ligated to the radiolabeled 3’-linker and served as size markers (Fig 2.1B, lane 

4). Material greater than 24 nt + 3’-linker in length were predicted to contain RBP-bound RNA 

fragments, and these were extracted and processed for small RNA library preparation and 

sequencing. Excluding the protein biotinylation or UV-crosslinking steps greatly diminished the 

yield of ligated RNA fragments (Fig 2.1B, lanes 5-8), indicating that the GCLiPP procedure 

preferentially captures RNA sequences interacting with RBPs in living cells. 

We called local peaks of GCLiPP sequence read density and measured the distribution 

of GCLiPP reads within those peaks to assess the reproducibility of the technique. Local read 

density within individual transcripts was similar between experiments, as GCLiPP fragments 

yielded highly reproducible patterns in technical replicates (Fig 2.1C). The distribution of read 
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coverage from Jurkat GCLiPP libraries was strongly enriched within mature mRNAs and long 

non-coding RNAs (Fig 2.1D-E) compared to other transcriptome features.  

RBPs bind to linear and structural motifs to regulate the stability and/or translation of the 

mRNAs that they bind (Corley et al., 2020). We observed GCLiPP read coverage corresponding 

to known RBP recognition motifs. Nuclear Receptor subfamily 4 group A member 1 (NR4A1), 

which encodes the NUR77 protein that mediates T cell tolerance, is an example of RBP-mRNA 

interaction through linear sequence recognition. A local maximum of GCLiPP read density in the 

NR4A1 3’UTR corresponded with a region that contains multiple AU rich elements (AREs) that 

destabilize mRNA (C.-Y. A. Chen & Shyu, 1994) (Fig 2.1F). Similarly, the 3’UTR of IER3, an 

immediate early response gene that protects cells from Fas- or TNFα-induced apoptosis, 

contains a local maximum of GCLiPP read coverage at the previously characterized structurally-

determined stem-loop binding motif regulated by the RBP Roquin (Leppek et al., 2013b) (Fig 

2.1G). These examples provide snapshots of different motifs represented in GCLiPP protein 

occupancy maps. Further examination of individual 3’UTRs of interest can be accessed through 

our visualization tool, Thagomizer (http://thagomizer.ucsf.edu). Thagomizer utilizes a database 

of GCLiPP and Argonaute 2 (Ago2) HITS-CLIP experiments (Gagnon et al., 2019; Loeb et al., 

2012) along with miRNA binding site predictions from the TargetScan database (Agarwal et al., 

2015) to map RBP-mRNA and miRNA-mRNA interactions in mouse and human T cell 3’ UTRs. 

We also performed a systematic analysis to determine the dominant structural 

characteristics of protein-occupied RNA regions detected by GCLiPP. We used CLIPper (Lovci 

et al., 2013) to call peaks in our data, and calculated the base-pairing probability for every 

nucleotide pair in each 200bp sequence peak using RNAfold in the ViennaRNA package(Lorenz 

et al., 2011). Matrices for all peaks were averaged to generate an average base-pairing 

probability. This analysis revealed a decreased probability of base-pairing at the center of 

GCLiPP peaks compared to surrounding regions, indicating an enrichment for single-stranded 

RNA (ssRNA) at the center of GCLiPP peaks in Jurkat cell 3’UTRs (Fig 2.2A). A similar pattern 

http://thagomizer.ucsf.edu/
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was observed in eCLIP peaks for Polypyrimidine Tract Binding Protein 1 (PTBP1), an RBP that 

binds to C/U-rich ssRNA through 4 RNA recognition motif (RRM) domains (Supplementary Fig 

2.1A) (Oberstrass et al., 2005). Among known RBPs, those with ssRNA-binding RRM domains 

are the highest expressed in Jurkat cells (Fig 2.2B). RBPs captured in primary human CD4 T 

cells through RNA interactome capture (RNA-IC) (Hoefig et al., 2021) also predominantly 

contained the RRM motif compared to other domains (Fig 2.2C). Together, these data indicate 

that RBP-occupied regions detected by GCLiPP are predominantly composed of the most 

abundant structural motif, ssRNA, in T cells. 

 

GCLiPP read density represents cytosolic RBP occupancy  

Further analysis of GCLiPP and other interactome capture methods revealed shared 

characteristics. We compared CLIPper-called peaks in Jurkat GCLiPP data with compiled peaks 

from ENCORE eCLIP datasets (Sundararaman et al., 2016), and peaks detected in the phase 

separation-based RNA interactome methods, XRNAX (Trendel et al., 2019) and OOPs (Queiroz 

et al., 2019). We then assessed the phylogenetic conservation of RBP-RNA interaction sites 

detected by each of these techniques. PhyloP scores for each 200nt CLIPper called peak were 

averaged for all binding sites and then normalized around a mean of 0. Both GCLiPP and 

ENCORE peaks displayed greater sequence conservation at peak centers, although GCLiPP 

showed a slightly broader local maximum of conservation, perhaps indicating lower resolution of 

RBP binding sites (Fig 2.2D). We observed a similar, but even broader pattern of phylogenetic 

conservation in global RBP binding data from XRNAX and OOPS. We conclude that all of these 

methods, including GCLiPP, capture conserved RBP binding sites in the transcriptome.  

To determine whether GCLiPP detects previously identified predicted RBP binding sites, 

we systematically compared GCLiPP occupancy maps and eCLIP analyses of RBP binding 

profiles from ENCORE (Sundararaman et al., 2016). We examined pairwise correlations of 

normalized read density across individual 3’ UTRs between GCLiPP and individual RBP eCLIP 



21 
 

samples (Fig 2.2E, Supplementary Fig 2.1B). In parallel, we compared GCLiPP to the input 

control for each eCLIP experiment. eCLIP for many RBPs, such as TIA1 and IGF2BP1, 

matched GCLiPP read density much more closely than the eCLIP control input across the 

transcriptome (Fig 2.2F, Supplementary Fig S2.1C), indicating a relatively high contribution of 

these RBPs to the overall GCLiPP signal. For other proteins, such as PUM2, this comparison 

showed poor correlation, indicating a low contribution to total RBP occupancy transcriptome-

wide. Yet we found evidence that GCLiPP captured focal RBP binding to specific sites (UGUA 

motifs in the case of PUM2) that were overrepresented in GCLiPP reads, although they did not 

dominate the overall signal (Supplementary Fig 2.1B, bottom panel). This was revealed when 

we called GCLiPP peaks with CLIPper (Lovci et al., 2013) and compared these peaks with 

CLIPper called peaks in eCLIP datasets. The observed fraction of PUM2 eCLIP peaks that 

overlap GCLiPP peaks (0.56) was much greater than the fraction overlapping eCLIP peaks 

randomly shuffled across the 3’ UTRs from which they were derived (Supplementary Fig 2.1D, 

bottom panel). Similar results were obtained for TIA-1 (Fig 2.2G) and IGF2BP1 (Supplementary 

Fig 2.1D, top panel). These enrichments above background binding for IGF2BP1, TIA1 and 

PUM2 were among the highest 8 of the 87 RBPs whose eCLIP signals were examined 

(Supplementary Fig 2.2).  

 We performed genome wide correlation analysis for 87 RBPs obtained from eCLIP data, 

and compared the correlation between eCLIP and GCLiPP with RBP abundance previously 

determined via mass spectrometry (Baltz et al., 2012). There was an overall significant 

correlation between RBP abundance and correspondence between RBP eCLIP and GCLiPP 

profiles (r=0.28, p=0.02). However, stratifying RBPs by their predominant cellular localization 

(Binder et al., 2014) showed that this correlation was driven almost entirely by cytosolic RBPs 

with no correlation for non-cytoplasmic RBPs (Fig 2.2H, Supplementary Fig 2.2E). The fraction 

of eCLIP peaks that overlapped GCLiPP peaks above a shuffled background was also 

significantly greater for cytosolic versus non-cytosolic RBPs (p=0.003, Supplementary Fig 2.2 
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inset). These findings were expected, as the GCLiPP experimental protocol preferentially 

samples the cytosol by eliminating most nuclear material. In summary, we conclude that 

GCLiPP read density represents conserved sequences and predominantly reflects cytosolic 

RBP occupancy. 

 

RBP Occupancy of RNA cis-regulatory elements in primary T cells     

Previous global RBP profiling has been conducted with cell lines. To examine 

transcriptome-wide RBP occupancy in primary T cells, we performed GCLiPP on primary mouse 

CD8 and CD4 type 2 helper T cells (Th2) (Fig 2.3A). Local read density at peaks showed 

reproducible patterns between multiple pooled experiments for the two T cell subsets 

(Supplementary Fig 2.3A). Similar to Jurkat cells (Fig 2.1D-E), distribution of reads in primary 

mouse T cells was enriched in mature transcripts and long non-coding RNAs (Supplementary 

Fig 2.3B-C). The most striking difference was the greater proportion of reads derived from 

transposable elements in mouse GCLiPP libraries. This increase is likely due to the greater 

amount of annotated transposable elements in the mouse genome since the relative coverage 

of these elements was similar between species. We examined the GCLiPP profiles at previously 

characterized cis-regulatory elements of various functional and structural categories in primary 

mouse T cells. As in Jurkat cells, we observed GCLiPP read density at Roquin/Regnase binding 

site in the 3′ UTR of Ier3 (Fig 2.3B). 

Known cis-regulatory elements involved in transcript localization were also represented 

by local regions of GCLiPP read density. The Beta-actin “zipcode” element is responsible for 

localization of Actb mRNA to the cellular leading edge in chicken embryo fibroblasts (Kislauskis 

et al., 1994) and contains conserved linear sequence elements separated by a variable linker. 

These conserved sequence elements are thought to form the RNA/protein contacts in a 

complex involving the actin mRNA and the RNA binding protein Igf2bp1 (previously known as 

Zbp1) where the non-conserved sequence winds around the RBP (Chao et al., 2010). This 
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sequence corresponds to the center of the second highest peak of GCLiPP read density in the 

Actb transcript (Fig 2.3C). 

The canonical polyadenylation signal AAUAAA is a known linear sequence motif that 

binds to a number of RBPs in the polyadenylation complex, including CPSF and PABP (Millevoi 

& Vagner, 2010), as part of constitutive mRNA metabolism. We examined T cell lineage-

defining transcripts with well-resolved GCLiPP profiles (due to their high expression levels), 

including Cd3g (Fig 2.3D), Cd3e, Cd4, and Cd8b1 (Supplementary Fig 2.4). The canonical 

polyadenylation signal sequences in these transcripts were contained within called GCLiPP 

peaks, often as the peak with the highest GCLiPP read density in the entire transcript. 

Interestingly, the GCLiPP profile of Cd8b1 contained direct biochemical evidence for alternative 

polyadenylation signal usage (Supplementary Fig 2.4C), a phenomenon that has previously 

been described to be important in activated T cells (Sandberg et al., 2008). GCLiPP peaks 

appeared in multiple canonical polyadenylation signal sequences in Cd8b1, coincident with 

clear evidence for both short and long 3′ UTR isoform usage indicated by lower RNAseq read 

counts after the initial canonical polyadenylation signal. A similar pattern was apparent in Hifa 

(Supplementary Fig 2.4D) and a number of other highly expressed transcripts. 

The insertion of the selenium containing amino acid selenocysteine into selenoproteins 

represents a unique case of RBP regulation of protein translation. Selenoproteins are redox 

enzymes that use selenocysteine at key reactive residues (Johansson et al., 2005; Vanda Papp 

et al., 2007). Selenocysteine is encoded by the stop codon UGA. This recoding occurs only in 

mRNAs that contain 3′ UTR cis-regulatory elements (termed SECIS elements) that bind to 

RBPs that recruit the elongation factor Eefsec and selenocysteine-tRNA (Berry et al., 1993; 

Tujebajeva et al., 2000). SECIS elements were prominent peaks of GCLiPP read coverage in 

selenoprotein mRNAs. For example, the predicted SECIS element (Mariotti et al., 2013) in the 3′ 

UTR of Gpx4 was entirely covered by GCLiPP reads (Fig 2.3E). Indeed, a canonical 

polyadenylation signal and the full hairpin structure containing the SECIS element account for 
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essentially all of the GCLiPP reads in the Gpx4 3′ UTR (Fig 2.3F). Comparing transcriptome-

wide in vivo folding data from icSHAPE (Spitale et al., 2015) and GCLiPP data supports the 

identification of an RBP bound, structured SECIS element (Fig 2.3G-H). Furthermore, this 

analysis suggests that the folded, RBP bound structure is even larger than that predicted by 

SECISearch 3, with regions of GCLiPP read density and apposed high and low icSHAPE 

signals spanning almost the entire 3′ UTR. Thus, GCLiPP recapitulated previously described 

structured and single-stranded RNA cis-regulatory elements that mediate constitutive RNA 

metabolism, transcript localization, regulation of gene expression, and translation.  

 

Cross-species comparison of GCLiPP reveals patterns of biochemically shared post-

transcriptional regulation 

 Next, we sought to compare RBP occupancy in mouse and human T cells. To do so, we 

performed Clustal Omega sequence alignments of thousands of human 3’ UTRs and their 

corresponding sequences in the mouse genome, and then designed an algorithm to identify 

correlated peaks of normalized GCLiPP read density along the aligned nucleotides (Fig 2.4A). 

Using this approach, we identified 1047 high-stringency biochemically shared GCLiPP peaks 

derived from 901 3’ UTRs. As a class, biochemically shared peaks exhibited significantly higher 

sequence conservation than the full 3’ UTRs in which they reside (Fig 2.4B). The highly 

conserved, biochemically shared peak in USP25 exemplifies this general pattern (Fig 2.4C, right 

panel). However, many biochemically shared peaks did not exhibit corresponding increases in 

local sequence conservation. For example, the ARRB2 mRNA that encodes β-arrestin, another 

regulator of T cell migration in response to chemoattractant gradients (Fong et al., 2002), 

exhibited a common peak of RBP occupancy in Jurkat cells and primary mouse T cells that is 

roughly equally conserved as the rest of the 3’ UTR (Fig 2.4C, left panel). 

To examine which RBPs contributed to biochemically shared peaks more than other 

GCLiPP peaks, we used HOMER motif calling software (Heinz et al., 2010) to identify enriched 
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motifs. Strikingly, of the six linear sequence motifs present in >10% of biochemically shared 

peaks with p ≤ 10-10, five resemble well-known regulatory sequences (Fig 2.4D). The two most 

common appeared to represent canonical CELF (Timchenko et al., 1996) and PUM (Hafner et 

al., 2010) binding motifs. Three other identified motifs corresponded to runs of homo-polymers: 

an A-rich motif that resembled the canonical polyadenylation signal (Proudfoot, 2011); a poly-U 

containing motif similar to a sequence that has long been known to stabilize mRNAs (Zubiaga et 

al., 1995) and a poly-C containing motif similar to the C-rich RNAs bound by poly-C binding 

proteins (Makeyev & Liebhaber, 2002). We used Metascape (Tripathi et al., 2015) to identify 

categories of biologically related genes enriched among mRNAs that contained biochemically 

shared GCLiPP peaks (Fig 2.4E). Interestingly, 3 of the 5 most enriched categories were related 

to RNA regulation (“regulation of mRNA metabolism,” “large Drosha complex,” “RNA splicing”), 

with the broad category “post-transcriptional regulation of gene expression” also in the top 10. 

Thus, biochemically shared GCLiPP binding sites are generally more well conserved than their 

local sequence context, enriched for well-studied RBP binding motifs, and occur preferentially in 

genes that encode proteins involved in post-transcriptional gene regulation. Together, these 

observations suggest the presence of conserved autoregulatory gene expression networks. 

 

GCLiPP-guided CRISPR dissection of biochemically shared post-transcriptional cis-

elements 

We hypothesized that functionally conserved destabilizing cis-regulatory elements could 

be identified by examining biochemically shared GCLiPP peaks in 3’ UTRs of labile transcripts. 

To prioritize candidates, we computed Pearson correlation coefficients for the normalized 

GCLiPP profiles of 3’ UTRs of genes expressed in both Jurkat cells and primary mouse T cells 

(Fig 2.5A, black histogram) and examined transcript instability by RNAseq analysis of primary 

mouse T cells treated with actinomycin D (Fig 2.5A, red histogram). The proto-oncogene PIM3 

emerged as an outstanding candidate with both strong interspecies GCLiPP correlation and 
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very high transcript instability. Alignment of the GCLiPP profiles of human and mouse PIM3 

revealed a dominant shared peak of GCLiPP read density (Fig 2.5B). This peak corresponded 

to a highly conserved region of the transcript that contains a G-quadruplex, followed by a 

putative AU-rich element (ARE) and a CELF binding motif (Fig 2.5C). Another conserved region 

with G-quadruplex followed by a putative ARE appeared upstream of the biochemically share 

GCLiPP peak. We numbered these conserved regions ARE1 and ARE2 according to their order 

in the 3’UTR, and hypothesized that ARE2 would exert greater cis-regulatory activity than 

ARE1, given its RBP occupancy in both species and the relative lack of occupancy in ARE1. To 

test this hypothesis, we performed CRISPR dissections of both the human and mouse PIM3 3’ 

UTRs (Fig 2.5). These analyses produced largely concordant patterns of post-transcriptional 

cis-regulatory activity in the human and mouse 3’UTR with the greatest significant destabilizing 

effect corresponding to the shared region of GCLiPP read intensity covering the CR2 element 

(Fig 2.5 D-K). Consistent with this portrait of the entire 3’ UTR, when we filtered specifically for 

mutations that completely deleted either CR1 or CR2, we observed significantly greater 

expression of transcripts derived from cells with CR2 deleted versus CR1 (Fig 2.5 L-M). Thus, 

PIM3 is a very unstable transcript with highly concordant RBP occupancy in human and mouse. 

Functional dissection of the post-transcriptional regulatory landscape of this gene revealed that 

this biochemical concordance between mouse and human cells is mirrored at a functional level, 

with the most highly occupied region indicated by GCLiPP read density corresponding to the 

most destabilizing region of the 3’ UTR.   

 

GCLiPP-guided CRISPR dissection of biochemically shared post-transcriptional cis-

elements 

We hypothesized that RBP occupancy maps may help guide functional annotation of 

sequence variants in cis-regulatory elements. To test this, we intersected our Jurkat GCLiPP 

peaks with probable casual single nucleotide polymorphisms (SNPs) associated with human 
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immune-mediated diseases. A previously developed algorithm, Probabilistic Identification of 

Casual SNPs (PIC2) (Farh et al., 2015) identified candidate causal SNPs through fine-mapping 

that were linked to an immune-mediated disease. PICS2 (Taylor et al., 2021) has expanded that 

list to include variants identified with more recently collected GWAS data. Within these variants, 

we identified 63 SNPs that occurred within a GCLiPP peak in a 3’UTR in Jurkat cells.  These 

variants were associated with a variety of immune-mediated disorders and appeared in a variety 

of genes that are expressed in T cells (Fig 2.6A).  

To test whether disease-associated probable causal variants overlapping GCLiPP peaks 

mark functional RNA cis-regulatory elements, we deleted 4 individual RBP binding sites in the 

3’UTRs of 3 distinct immunologically important genes using a dual guide RNA (gRNA) CRISPR-

Cas9 editing approach. CD5 encodes an inhibitory receptor expressed on T cells (Voisinne et 

al., 2018). It's 3’UTR contains a probable causal SNP associated with rheumatoid arthritis that 

lies within a GCLiPP peak detected in Jurkat cells (Fig 2.6B). Deletion of this region with paired 

gRNAs (at 50-60% editing efficiency; data not shown) decreased CD5 expression (Fig 2.6C), 

suggesting the presence of a cis-regulatory element in the 3’UTR. 

SNP rs1059513 in the 3’UTR of STAT6 had a PICS2 probability score of 0.985 for 

association with allergy, making it by far the most likely causal variant in the locus for this trait. 

STAT6 is an important signaling protein and transcription factor that is pivotal for mounting a 

type 2 inflammatory response. It is activated by Janus kinase (JAK)-mediated phosphorylation 

downstream of IL-4 and IL-13 signaling (Goenka & Kaplan, 2011). To determine whether the 

identified RBP binding site affected STAT6 expression and function, we used CRISPR-Cas9 to 

generate a small deletion (Fig 2.6D) and treated the edited cells with IL-4 to measure phospho-

STAT6 (pSTAT6). STAT6 3’UTR edited cells showed similar phosphorylation kinetics as control 

(Supplementary Fig 2.5A), but overall decreased pSTAT6 expression compared to controls (Fig 

2.6E, Supplementary 2.5B). 
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Finally, we intersected PICS2 and GCLiPP data to identify functional elements in the 

3’UTR of Ikaros family zinc finger 1 (IKZF1), a pleiotropic transcription factor involved in 

lymphocyte differentiation (Heizmann et al., 2018). We generated two separate deletions (Fig 

2.7F), both of which contained a probable causal SNP associated with systemic lupus 

erythematosus. Jurkat cells lacking either region expressed less IKZF1 protein compared to 

control cells (Fig 2.6G-H). In summary, a GCLiPP-guided analysis of probable causal SNPs in 

3’UTRs efficiently identified functional RNA cis-regulatory elements that regulate protein 

expression. These findings demonstrate the utility of a transcriptome-wide profile of RBP 

occupancy in the T cell transcriptome. 

 

Discussion 

Interconnected networks of bound RBPs and RNAs form a complex layer of post-

transcriptional regulation that affects all biological processes. Understanding these networks 

remains one of the key challenges in deciphering how the genome encodes diverse cell 

identities and behaviors (Farh et al., 2015; Simeonov et al., 2017). Methods like DNase I 

hypersensitivity and ATAC-seq that query regulatory element accessibility and occupancy 

without prior knowledge of their protein binding partners have proven themselves as powerful 

techniques for the systematic mapping of cis-regulatory sequences in DNA (Buenrostro et al., 

2013; Thurman et al., 2012). Their development has allowed for comparisons in the regulatory 

structure of diverse cell types (Corces et al., 2016) and for functional analysis of genetic variants 

(Simeonov et al., 2017). Large-scale analyses of individual RBPs have begun the intensive 

process of documenting RBP binding sites in the transcriptome of a few model cell systems, 

providing a useful repository of RNA regulatory data (van Nostrand et al., 2020). Pioneering 

work utilizing RNA-interactome capture (RIC) (Perez-Perri et al., 2021) and organic phase 

separation (Smith et al., 2020) have furthered our understanding of RNA-RBP interactome. 
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Using GCLiPP, an RNA interaction capture technique, we generated and validated a RBP 

binding map of the transcriptome in T cells and used it as a guide to identify cis-regulatory 

elements in 3’UTRs. As ATAC-seq has been used to define global regulatory elements involved 

in transcription, we used GCLiPP to discover RNA regulatory elements that mediate post-

transcriptional gene regulation.  

Dissection of the human PIM3 and mouse Pim3 3’UTRs demonstrated the utility of 

GCLiPP for decoding biochemically shared and functionally conserved post-transcriptional 

regulation. The PIM family of serine/threonine kinases exert profound regulatory effects on MYC 

activity, cap-dependent translation independent of MTOR, and BAD mediated antagonism of 

apoptosis (Narlik-Grassow et al., 2014). Post-transcriptional regulation of PIM kinases is 

important, as proviral integrations in the Pim1 3’ UTR are highly oncogenic (Nawijn et al., 2010). 

Pim3 mRNA was abundant but highly labile in T cells, with a turnover rate in the top 2% of 

expressed mRNAs. PIM family members contain multiple ARE like repeats of AUUU(A), but the 

specific sequences responsible for rapid mRNA decay have not been described and cannot be 

predicted from the primary sequence alone. The PIM3 3’UTR contains two phylogenetically 

conserved regions with very similar predicted ARE sequences. Of these regions, we predicted 

that greater regulatory activity would be exerted by the region with GCLiPP evidence for RBP 

occupancy in both human and mouse cells. CRISPR dissection bore out this prediction in both 

species. The inactive conserved region may be structurally inaccessible to RBP occupancy, or it 

may be occupied and exert regulatory activity only in other cell types or signaling conditions.  

Targeted dissection of GCLiPP peaks within 3’UTRs of immunologically relevant genes 

also led to discovery of cis-regulatory regions that modulate protein expression. Decreased 

expression of both CD5 and IKZF1 after deletion of the targeted regions suggests the presence 

of a post-transcriptional stabilizing or translational element. Lower levels of pSTAT6 similarly 

indicate stabilizing activity in STAT6 3’UTR. The mechanism by which these elements affect 

protein expression, and their role in regulating T cell biology is not yet well-defined. Changes in 



30 
 

CD5 and IKZF1 through the dissected regions could potentially contribute to changes in T cell 

activation and immune cell differentiation, respectively (Alexander et al., 1995; Heizmann et al., 

2018; Voisinne et al., 2018). Phosphorylation of STAT6 in T cells and its important role in 

immune-associated allergy and asthma has been well-defined (Goenka & Kaplan, 2011). It will 

be interesting to investigate how the RBP binding region, and potentially the asthma-associated 

SNP, regulates protein activity and its effect on T cell biology in the context of type 2 immune 

responses. Together, these targeted dissections further highlight the utility of unbiased 

biochemical determination of RBP occupancy for annotating the regulatory transcriptome in 

conjunction with genetic data. Future studies will evaluate the effects of these regulatory regions 

on T cell biology and their mechanism.  

Systematic comparison with eCLIP data for 87 individual RBPs (Sundararaman et al., 

2016) indicated that GCLiPP roughly represented a weighted average of all potential eCLIP 

experiments for cytosolic RBPs. GCLiPP peaks overlapped eCLIP peaks at a frequency much 

greater than would be expected by chance, even though different cell types were used for the 

GCLiPP and eCLIP experiments. These findings are consistent with the prior observation that 

binding sites for individual proteins detected by eCLIP generally differ little between cell types 

with different tissue origin (van Nostrand et al., 2020). Nevertheless, the precise profiles of RBP 

occupancy and regulation of individual transcripts may be subject to cell type and context-

dependent differences in RBP expression, binding activity, and site accessibility. Overall 

GCLiPP read density correlated with eCLIP read density in a manner that corresponded with the 

relative abundance of a given RBP in purified cellular mRNPs (Baltz et al., 2012). Still, the 

eCLIP peaks for some low abundance RBPs were significantly enriched in GCLiPP profiles. The 

strongest correlations were observed for abundant cytosolic RBPs, and the correspondence 

between eCLIP and GCLiPP was only apparent for cytosolic, but not non-cytosolic RBPs. This 

result was expected since the GCLiPP protocol selectively enriches for cytosolic polyadenylated 

RNA. GCLiPP could be modified to intentionally enrich for nuclear RBPs to examine the 



31 
 

regulatory landscape of mRNA biogenesis. Although GCLiPP cannot identify the proteins bound 

at specific sites in the transcriptome, we overcame this limitation by utilizing available RBP CLIP 

datasets to predict and map RBP-RNA interactions. 

We leveraged the matched datasets from similar cell types to perform a cross species 

comparison of the post-transcriptional regulatory landscape. As might be expected, the 

sequences of 3’ UTR regions that appeared as peaks of RBP occupancy in both species were 

in general more conserved than the full length 3’ UTRs in which they occurred. These 

biochemically shared peaks were enriched in well-known RBP-binding cis-regulatory sequences 

including PUM motifs, CELF motifs and canonical polyadenylation signals. We also found clear 

biochemically shared peaks with relatively poor sequence conservation. These regions retain 

RBP occupancy despite an evident lack of strong selective pressure on their primary sequence, 

perhaps due to highly degenerate and/or structural determinants of RBP occupancy. RNAs with 

conserved structure and RBP binding but poorly conserved primary sequence have been 

reported before, and they are enriched in gene regulatory regions (Seemann et al., 2017; 

Weinreb et al., 2016). Finally, we noted that transcripts with biochemically shared peaks tended 

to encode proteins that were themselves involved in post-transcriptional gene regulation. This 

pattern is consistent with previous suggestions that auto-regulatory or multi-component 

feedback loops may be a conserved mode of post-transcriptional gene regulation (Kanitz & 

Gerber, 2010). 

The GCLiPP datasets reported here provide a rich resource for the annotation and 

experimental dissection of cis-regulatory function in mRNAs. GCLiPP detected RBP occupancy 

at many known cis-regulatory regions, including canonical polyadenylation signals and elements 

that control mRNA localization, translation and stability. These data are provided to the scientific 

community for browsing and mining in a readily accessible form online. Combining GCLiPP with 

unbiased biochemical assays, genetic analyses and other future datasets probing RNA 
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regulatory circuits will yield a roadmap for the dissection of post-transcriptional regulatory 

networks and hypothesis generation of multi-omics studies. 

Materials and Methods 

Cells 

Jurkat cells were grown in RPMI supplemented with fetal bovine serum (Omega). 

Primary CD4+ and CD8+ mouse T cells were isolated from C57BL/6J mouse peripheral lymph 

nodes and spleen using positive and negative selection Dynabeads, respectively, according to 

the manufacturer’s instructions (Invitrogen). All mice were housed and bred in specific 

pathogen-free conditions in the Animal Barrier Facility at the University of California, San 

Francisco. Animal experiments were approved by the Institutional Animal Care and Use 

Committee of the University of California, San Francisco. Cells were stimulated with immobilized 

biotinylated anti-CD3 (clone 2C11, 0.25 µg/mL, BioXcell) and anti-CD28 (clone 37.51, 1 µg/mL, 

BioXcell) bound to Corning 10 cm cell culture dishes coated with Neutravidin (Thermo) at 10 

µg/mL in PBS for 3 h at 37 °C. Cells were left on stimulation for 3 days before being transferred 

to non-coated dishes in T cell medium (Steiner et al., 2011) supplemented with recombinant 

human IL-2 (20 U/mL). Th2 cell cultures were also supplemented with murine IL-4 (100 U/mL) 

and anti-mouse IFN-γ (10 µg/mL). CD8 T cell cultures were also supplemented with 10 ng/mL 

recombinant murine IL-12 (10 ng/mL). For re-stimulation, cells were treated with 20 nM phorbol 

12-myristate 13-acetate (PMA) and 1 µM ionomycin (Sigma) for 4 hours before harvest.

Measurement of mRNA Decay 

Cells were stimulated with PMA and Ionomycin for 4 hours and then additionally treated 

with Actinomycin-D (Sigma-Aldrich) at 5 µg/mL for an additional 0, 1, 2 or 4 hours. After 

treatment, cells were lysed with Trizol LS (Life Technologies) and processed with Direct-zol ™ 
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96 well RNA (Zymogen). RNA was quantified with an ND-1000 spectrophotometer (NanoDrop) 

and reverse transcribed with SuperScript III First Strand Synthesis Kit (Invitrogen). cDNA was 

quantified using TB Green Premix Ex Taq (Takara Bio).  

GCLiPP and RNAseq 

~100 × 106 mouse T cells cultured from 3 mice or ~100 × 106  Jurkat T cells were 

washed and resuspended in ice cold PBS and UV irradiated with a 254 nanometer UV 

crosslinker (Stratagene) in three doses of 4000 mJ, 2000 mJ and 2000 mJ, swirling on ice 

between doses. Cells were pelleted and frozen at -80 °C. Thawed pellets were rapidly 

resuspended in 400 µL PXL buffer without SDS (1X PBS with 0.5% deoxycholate, 0.5% NP-40, 

Protease inhibitor cocktail) supplemented with 2000 U RNasin (Promega) and 10 U DNase 

(Invitrogen). Pellets were incubated at 37 °C with shaking for 10 min, before pelleting of nuclei 

and cell debris (17000 g for 5 min). Supernatants were biotinylated by mixing at room 

temperature for 30 min with 500 µL of 10 mM EZ-Link NHS- SS-Biotin (Thermo) and 100 µL of 1 

M sodium bicarbonate. Supernatants were mixed with 1 mg of washed oligo-dT beads (New 

England Biolabs) at room temperature for 30 min and washed 3 times with magnetic separation. 

Oligo-dT selected RNA was eluted from beads by heating in poly-A elution buffer (NEB) at 65 

°C with vigorous shaking for 10 min. An aliquot of eluted RNA was treated with proteinase K and 

saved for RNAseq analysis using Illumina TruSeq Stranded Total RNA Library Prep Kit 

according to the manufacturer’s instructions. Cells treated with Actinomycin-D as described 

above were also collected for RNAseq to generate transcriptome wide measurements of 

transcript stability.  

The remaining crosslinked, biotinylated mRNA-RBP complexes were captured on 250 

µL of washed M-280 Streptavidin Dynabeads (Invitrogen) for 30 min at 4 °C with continuous 

rotation to mix. Beads were washed 3 times with PBS and resuspended in 40 µL of PBS 
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containing 1000 U of RNase T1 (Thermo) for 1 min at room temperature. RNase activity was 

stopped by addition of concentrated (10% w/v) SDS to a final concentration of 1% SDS. Beads 

were washed successively in 1X PXL buffer, 5X PXL buffer and twice in PBS. 24 pmol of 3′ 

radiolabeled RNA linker was ligated to RBP bound RNA fragments by resuspending beads in 20 

µL ligation buffer containing 10 U T4 RNA Ligase 1 (New England Biolabs) with 20% PEG 8000 

at 37 degrees for 3 h. Beads were washed 3X with PBS and free 5′ RNA ends were 

phosphorylated with polynucleotide kinase (New England Biolabs). Beads were washed 3X with 

PBS and resuspended in ligation buffer containing 10 U T4 RNA Ligase 1, 50 pmol of 5′ RNA 

linker and 20% PEG 8000 and incubated at 15 °C overnight with intermittent mixing. Beads 

were again washed 3 times in PBS and linker ligated RBP binding fragments were eluted by 

treatment with proteinase K in 20 µL PBS with high speed shaking at 55 °C. Beads and 

supernatant were mixed 1:1 with bromophenol blue formamide RNA gel loading dye (Thermo) 

and loaded onto a 15% TBE-Urea denaturing polyacrylamide gel (BioRad). Ligated products 

with insert were visualized by autoradiography and compared to a control ligation (19 and 24 nt 

markers). Gel slices were crushed and soaked in gel diffusion buffer (0.5 M ammonium acetate; 

10 mM magnesium acetate; 1 mM EDTA, pH 8.0; 0.1% SDS) at 37 °C for 30 min with high 

speed shaking, ethanol precipitated and resuspended in 20 µL of RNase free water. Ligated 

RNAs were reverse transcribed with Superscript III reverse transcriptase (Invitrogen) and 

amplified with Q5 polymerase (New England Biolabs). PCR was monitored using a real time 

PCR thermal cycler and amplification was discontinued when it ceased to amplify linearly. PCR 

products were run on a 10% TBE polyacrylamide gel, size selected for an amplicon with the 

predicted 20-50 bp insert size to exclude linker dimers and purified from the gel (Qiagen). 

Cleaned up library DNA was quantified on an Agilent 2100 Bioanalyzer using the High 

Sensitivity DNA Kit before being sequenced. All GCLiPP and RNAseq sequencing runs were 

carried out on an Illumina HiSeq 2500 sequencer.  
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GCLiPP and RNAseq bioinformatics analysis pipeline 

FastQ files were de-multiplexed and trimmed of adapters. Each experiment was 

performed on three technical replicates per condition (resting and stimulated) per experiment. 

Cloning replicates and experiments were pooled in subsequent analyses.  Jurkat and mouse T 

cell trimmed sequence reads were aligned to the hg38 human or mm10 mouse genome 

assembly using bowtie2, respectively. After alignment, PCR amplification artifacts were 

removed by de-duplication using the 2-nt random sequence at the 5′ end of the 3′ linker using a 

custom script that counted only a single read containing a unique linker sequence and start and 

end position of alignment per sequenced sample. Peaks of GCLiPP read density were called by 

convolving a normal distribution against a sliding window of the observed read distribution with a 

custom script (utr_peak_finder.pl). A 70 nucleotide window was analyzed centered on every 

nucleotide within the 3’ UTR. For each window, the observed distribution of read density was 

compared to a normal distribution of the same magnitude as the nucleotide in the center of the 

window. The Pearson’s correlation coefficient was computed for each nucleotide and peaks 

were defined as local maxima of goodness of fit between observed GCLiPP read density and 

the normal distribution, requiring a read depth above 20% of the maximum read depth in the 3’ 

UTR global minimum of 10 reads. RNAseq reads were aligned using STAR Aligner 

(https://github.com/alexdobin/STAR) (Dobin et al., 2013)  to align against the mm10 genome, 

and gene expression data were calculated as fragments per kilobase per million reads. Source 

code for data visualization software Thagomizer can be found at https://github.com/sskhon-

2014/Graphy. 

Comparison of GCLiPP to individual eCLIP datasets 

eCLIP data (Sundararaman et al., 2016) from K562 cell line were downloaded via the 

ENCODE data portal (http://www.encodeproject.org/). The first replicate set of bigwig files were 

downloaded for each RBP deposited online at the time of analysis (December 2017) as well as 

https://github.com/sskhon-2014/Graphy
https://github.com/sskhon-2014/Graphy
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CLIPper called peaks for the same. To facilitate comparisons with GCLiPP we called GCLiPP 

peaks in the Jurkat data using CLIPper (Lovci et al., 2013) after re-aligning Jurkat GCLiPP 

reads to hg19. Correlation analysis was performed with a custom perl script that calculated the 

Spearman correlation for read depth at each nucleotide in the 3’ UTR of all genes that were 

expressed in each dataset (as determined by CLIP read depth). ~5000-15000 expressed genes 

were included in the correlation analysis for each RBP.  For comparison to mRNP abundancy, 

log10 RBP mass spectrometry spectra counts of HEK293 cells were utilized from (Baltz et al., 

2012). To stratify RBPs by subcellular localization, data were taken from the COMPARTMENTS 

database, with RBPs with a localization score of 5 in the cytosol counted as cytosolic and lower 

counted as non-cytosolic  (Binder et al., 2014). All custom scripts are available as STAR 

Methods Key Resource. 

RBP Domain Analysis 

For the following analysis, we called Jurkat GCLiPP peaks aligned to hg38 using 

CLIPper2.0 (Lovci et al., 2013). Each peak was resized to 200bp and oriented at the original 

peak center. The 200bp RNA sequence of each peak was analyzed using pf_fold method from 

ViennaRNA (RNAlib version 2.4.13) (Lorenz et al., 2011) to calculate base pairing probability for 

each pair of nucleotides and presented as an average for all the identified RBP binding sites. 

Matrix from Figure 2.2A is zoomed into central 150bp region. PTBP1 eCLIP dataset (hg38) from 

K562 cells was downloaded from ENCORE (GSM2424223) and processed in similar manner as 

described above. 

We used available resting and activated Jurkat expression data (Ling Felce et al., 2021) 

(GSE145453) to calculate read counts mapped to RBP domains using annotations from 

RBPDBv1.3 (Cook et al., 2011) as a reference. Proteomics data of RBPs expressed in human 

Th0 cells was obtained and identified as described (Hoefig et al., 2021). RBPs that contained 



37 

more than one annotated domain based on RBPDBv1.3 were considered as an individual count 

in each appropriate category.  

Conservation of RBP binding sites across various datasets and methods 

To evaluate sequence conservation across various datasets, we performed CLIPper2.0 

on our Jurkat data from GCLiPP, as well as sequencing data obtained through XRNAX (Trendel 

et al., 2019) and OOPS (Queiroz et al., 2019). The average PhyloP conservation score, 

obtained from UCSC genome browser as a bigwig of PhyloP scores of conservation 100 

vertebrates, was calculated across all the sites within each method. This average was then 

standardized to contain a mean of 0 and a standard deviation of 1. Sequencing data for XRNAX 

(PRJEB26441; run accession ERR2537875) and OOPS (PRJEB26736; run accession 

SAMEA4663545, SAMEA4663546, SAMEA4663547, SAMEA4663548) was retrieved from 

EMBL-EBI ENA server and mapped to hg38 before CLIPper2.0 analysis. Specifically, our 

analysis used XRNAX data without ribosomal depletion and OOPS data performed using 

150mJ/cm2 crosslinking condition. 

CRISPR editing 

Guide RNA sequences were selected using the Benchling online CRISPR design tool 

(https://benchling.com/crispr) with guides selected to target genomic regions of GCLiPP read 

density. Synthetic crRNAs and tracrRNA (Dharmacon) were resuspended in water at 160 µM at 

1:1 ratio and allowed to hybridize at 37 c for 30 m. For CRISPR dissection experiments, all 

crRNAs were mixed at an equimolar ratio before annealing to tracrRNA. This annealed gRNA 

complex (80 µM) was then mixed 1:1 by volume with 40 µM S. pyogenes Cas9-NLS (University 

of California Berkeley QB3 Macrolab) to a final concentration of 20 µM Cas9 ribonucleotide 

complex (RNP). This complexed gRNA:Cas9 RNP was mixed with a carrier solution of salmon 

sperm DNA (Invitrogen) and diluted to a final concentration between  5-20 µM. The diluted 
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gRNA:Cas9 RNPs were nucleofected into primary mouse T cells (24 hours after stimulation) 

with the P3 Primary Cell 96-well Nucleofector ™ Kit and into Jurkat cells with the SE Cell Line 

96-well Nucleofector ™ Kit using a 4-D Nucleofector following the manufacturer’s 

recommendations (Lonza). Cells were pipetted into pre-warmed media and then returned to 

CD3/CD28 stimulation for another two days and expanded an additional 3 days for primary 

mouse T cells or an additional 3-10 days in resting conditions for Jurkat cells.  

3’ UTR dissection 

3’ UTR dissection was performed as described (Zhao et al., 2017). Gene edited cells 

were harvested into Trizol reagent (Invitrogen) and total RNA was phase separated and purified 

from the aqueous phase using the Direct-zol™ RNA Miniprep Kit with on-column DNase 

treatment (Zymogen). Genomic DNA was extracted from the remaining organic phase by 

vigorous mixing with back extraction buffer (4 M guanidine thiocyanate, 50 mM sodium citrate, 1 

M Tris base). cDNA was prepared with oligo-dT using the SuperScript III reverse transcription 

kit (Invitrogen). cDNA and genomic DNA were used as a template for PCR using MyTaq 2X Red 

Mix (Bioline). To equilibrate the number of target molecules and number of PCR cycles between 

samples, we performed semi-quantitative PCR followed by agarose gel electrophoresis to 

determine a PCR cycle number where genomic DNA first showed visible bands. This cycle 

number was then used with a titration of cDNA concentrations. A concentration that amplified 

equivalently was selected for analysis by deep sequencing. To quantify relative RNA/DNA 

ratios, cDNA and genomic DNA amplicons were purified using a QIAquick PCR purification up 

kit (Qiagen) and quantified on an Agilent 2100 Bioanalyzer using the High Sensitivity DNA Kit 

(Agilent). 

 Amplicons were tagmented with the Nextera XT kit (Illumina) and sequenced on an 

Illumina 2500 HiSeq. Reads were aligned to a custom genome consisting of the targeted PCR 

amplicon using STAR aligner and mutations were scored using an awk script 
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(https://github.com/alexdobin/STAR/blob/master/extras/scripts/sjFromSAMcollapseUandM.awk). 

RNA/DNA read ratios were calculated for all mutations over 20 nucleotides long and less than 

250 nucleotides long, and relative expression was quantified as the median normalized 

RNA/DNA ratio for this subset of mutations. Mutations had to have at least 10 reads in both the 

RNA and gDNA amplicons and mutations with an RNA/DNA ratio of greater than 10 were 

excluded as outliers.  Effect sizes for each nucleotide of the amplicon in each experiment were 

computed by comparing this median normalized RNA/DNA ratio for all mutations spanning a 

given nucleotide to all other mutations. Combined p-values were calculated using a Welch’s two 

sample t-test comparing all mutations spanning a given nucleotide with all other mutations.   

Shared peak calling, motif analysis and icSHAPE and Phylogenetic analyses 

3′ UTR alignments of mouse and human were performed by downloading hg38 RefSeq 

3’ UTRs from UCSC genome browser, (http://genome.ucsc.edu), identifying syntenic regions of 

the mouse genome in mm10 with the KentUtils liftOver program 

(https://github.com/ucscGenomeBrowser/kent) and aligning UTRs with Clustal Omega 

(http://www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers et al., 2011). Alignments were 

programmatically performed for all human 3’ UTRs with a custom perl script 

(get_alignment_from_fasta.pl).  Biochemically shared peaks were called by the following 

algorithm (implemented in conserved_peak_finder.pl). This algorithm normalizes GCLiPP read 

density (i.e. the fraction of the maximal read depth within that 3’ UTR) at each position, and 

calculates the correlation between mouse and human normalized signal. To favor regions with a 

clear local peak of GCLiPP read density, the algorithm further calculates the correlation 

between the observed data and a normal distribution centered at the point being examined in 

both the mouse and human data tracks. These three Spearman correlations were added 

together to calculate a numerical score, and shared peaks were defined as local maxima of 

these scores. To identify high stringency peaks, peaks were only accepted if they 1) had a 
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correlation of >0.75 between mouse and human, 2) had a peak that had a read density of >0.5 

of the maximum read density within that 3’ UTR in one data track (mouse or human) and >0.2 in 

the other and 3) had >10 reads at that location in both mouse and human datasets. Biological 

enrichment of genes with shared peaks was calculated using the Metascape (Tripathi et al., 

2015) online interface (http://metascape.org) using the default settings, with the exception that a 

background set of genes was included in the analysis, specifically all genes that contain a called 

GCLiPP peak in both human and mouse datasets that do not contain a biochemically shared 

peak. 

For motif calling, HOMER (Heinz et al., 2010)  was used in RNA mode with the 

“noweight” option to turn off GC correction to search for motifs of width 5, 6 or 7 nucleotides, 

with otherwise default parameters. The positive sequence set was the mouse and human 

sequences of the biochemically shared GCLiPP peaks, the negative sequence set was all other 

GCLiPP called peaks from Jurkat and mouse T cells that were not shared across species. For 

icSHAPE we used a published bigwig file of locally normalized icSHAPE signal intensity 

generated in mouse ES cell (Spitale et al., 2015). Conservation of loci in the mouse and human 

genomes were obtained from the UCSC genome browser as a bigwig of PhyloP scores of 

conservation across 60 placental mammals (mouse) and 100 vertebrates (human)  

(http://hgdownload.cse.ucsc.edu/goldenpath/mm10/phyloP60way/,  

http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/).  

Mapping SNPs within GCLiPP peaks 

We intersected our list of 3’UTR RBP peaks, determined using our peak calling 

algorithm, with a curated list of predicted disease causal SNPs (Taylor et al., 2021) to identify 

SNPs within predicted RBP binding regions. We limited our analysis to SNPs located in the 

3’UTR of genes that contained at least 1 GCLiPP peak. Specific regions in the 3’UTR of CD5, 

IKZF1 and STAT6 were deleted in resting Jurkats using CRISPR-Cas9 RNPs as previously 
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mentioned. Protein expression of the edited genes was measured by flow cytometry 3-5 days 

after nucleofection. Briefly, cells were stained with Live/Dead efluor780 (Invitrogen) and anti-

human CD5 (UCHT2) or IKZF1 (16B5C71). For pSTAT6 expression, Jurkat cells were treated 

with recombinant IL-4 (R&D, 12.5ng/mL) for 0, 5, 10, 15 or 30min, immediately fixed with 1.5% 

PFA for 10min and permeabilized with ice-cold methanol for 15min before staining with pSTAT6 

(18/P-stat6) for 1 hour at room temperature. Cells were analyzed on LSRII and FACSAria 

cytometers. Graphpad Prism was used for data visualization and for Mann-Whitney two-tailed t-

test. 

Oligonucleotide and primer sequences 

GCLiPP 3′ RNA linker: 5′-NNGUGUCUUUACACAGCUACGGCGUCG-3′ 

GCLiPP 5′ RNA linker: 5′-CGACCAGCAUCGACUCAGAAG-3′ 

GCLiPP Reverse transcription primer: 5′-

CAAGCAGAAGACGGCATACGAGATNNNNNNCGCTAGTGACTGGAGTTCAGACGTGTGCTC 

TTCCGATCCGACGCCGTAGCTGTGTAAA-3′ (NNNNNN is barcode for demultiplexing) 

GCLiPP 3′ PCR primer: 5′-CAAGCAGAAGACGGCATACGAGAT-3′ 

GCLiPP 5′ PCR primer: 5′-

AATGATACGGCGACCACCGAGATCTACACTGGTACTCCGACCAGCATCGACTCAGAAG-3′ 

Read1seq sequencing primer for GCLiPP: 5′-

ACACTGGTACTCCGACCAGCATCGACTCAGAAG-3′Index sequencer primer for GCLiPP: 5′-

GATCGGAAGAGCACACGTCTGAACTCCAGTCAC-3′ 

PIM3 (human) gRNA1: TGTGCAGGCATCGCAGATGG 

PIM3 (human) gRNA2: GACTTTGTACAGTCTGCTTG 

PIM3 (human) gRNA3: GTGGCTAACTTAAGGGGAGT 

PIM3 (human) gRNA4: AAACAATAAATAGCCCCGGT 

PIM3 (human) gRNA5: TTGAGAAAACCAAGTCCCGC 
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PIM3 (human) gRNA6: CAGGAGGAGACGGCCCACGC 

PIM3 (human) gRNA7: TTTATGGTGTGACCCCCTGG 

PIM3 (human) gRNA8: CCAAGCCCCAGGGGACAGTG 

Pim3 (mouse) gRNA1: GTTCAATTCTGGGAGAGCGC 

Pim3 (mouse) gRNA2 CTGGTTCAAGTATCCACCCA 

Pim3 (mouse) gRNA3: CCATAAATAAGAGACCGTGG 

Pim3 (mouse) gRNA4: GCTTCCTCCCGCAAACACGG 

Pim3 (mouse) gRNA5: CTGGTGTGACTAAGCATCAG 

Pim3 (mouse) gRNA6: TGGAGAAGGTGGTTGCTTGG 

CD5 gRNA1: GGAGCCTCGGGTCTGATCAA 

CD5 gRNA2: GCTCTTCCAGACTTATTATG 

IKZF1 R1 gRNA1: AAGGCTGACTTGTGTTCATG 

IKZF1 R1 gRNA2: GCAACAAACTGACTCTAAGA 

IKZF1 R2 gRNA1: TTATCATTGCATATCAGCAA 

IKZF1 R2 gRNA2: ACATAATGCTTTTGGTGCGA 

STAT6 gRNA1: GGGGTTAGCATATGTCAGAG 

STAT6 gRNA2: CCAAATTCCTGTTAGCCAGG 

Primers 

PIM3 F (human): TCCAGCAGCGAGAGCTTGTGAGGAG 

PIM3 R(human): TGATCTCCAGACATCTCACTTTTGAACTG 

PIM3 R2(human): 

TGAGATAGGTGCCTCACTGATTAAGCATTGGTGATCTCCAGACATCTCACTTTTGAACTG 

Pim3 F (mouse): GCGTTCCAGAGAACTGTGACCTTCG 

Pim3 R (mouse): TATGATCTTCAGACATTTCACACTTTTG 
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Figures 

Figure 2.1. GCLiPP sequencing reveals RNA transcript protein occupancy. 

(A) GCLiPP method of global RBP profiling. T cell RNAs are crosslinked to RBPs and lysates
are biotinylated on primary amines. mRNAs are enriched with oligo-dT beads, and RBP
protected sites are digested, captured, sequenced and aligned to the genome. (B) Film image of
RBP-bound RNAs captured from Jurkats that underwent either UV crosslinking (UV 254nm),
protein biotinylation or both. Lane marked “M” contains 19 and 24 nucleotide (nt) ssRNA ligated
to radiolabeled 3’linker. RNA greater than 24nt+3’linker size were extracted and processed for



44 

sequencing. (C) Normalized GCLiPP read depth (fraction of reads in called peak relative to all 
GCLiPP reads in annotated 3′ UTR) in two replicates of Jurkat cells. ρ represents Pearson 
correlation. (D) Proportion of mapped GCLiPP reads derived from genomic features. (E) 
Relative coverage of genomic features in GCLiPP sequencing reads relative to total length of 
genomic features of indicated class. (F) GCLiPP track of NR4A1 focusing on 3’UTR. Red bars 
indicate presence of ARE motif (AUUUA). (G) GCLiPP track of IER3 gene along with predicted 
roquin binding loop in the 3’UTR. 

Figure 2.2. GCLiPP detects cytosolic RBP binding sites with characteristic sequence 
conservation and structural properties. 

(A) Base-pairing probability was calculated for each pair of nucleotides within 200bp peak called
by CLIPper2.0 in Jurkat cells. The average base-pairing matrices for all peaks in the 3’UTR is
shown here as a heatmap. (B) Jurkat RNA-seq reads mapped to known RBPs were categorized
into different RBDs. Top 10 occurring domains were determined by total reads that can be
ascribed to specific domain motif. (C) Number of RBPs identified through RNA-IC in activated
primary human T cells that contain certain domain. Only top 10 occurring motifs are shown.
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RBPDB databased was used as a reference for categorizing RBPs in (B) and (C). (D) 
Sequence conservation of called peaks from various CLIP-Seq methods. Datasets used include 
RBP-bound RNAs detected by GCLiPP, phase-separation methods XRNAX and OOPS, as well 
as amalgamation of 87 RBP eCLIP data from ENCORE. Peaks in all data were identified using 
CLIPper2.0. (E) Genomic snapshots of individual 3’ UTR showing exemplary correlation 
between TIA1 eCLIP dataset and GCLiPP. GCLiPP is shown in red, while the indicated RBP 
eCLIP data is shown in blue, and matched control input samples are shown in gray, shown for 
the 3’ UTRs of the indicated gene. r indicates Pearson correlation between pairs of normalized 
read density at a given nucleotide for the indicated comparisons. (F) 2D density plots showing 
matched correlations between GCLiPP and TIA1 eCLIP (X-axis) and GCLiPP and the matched 
control input sample (Y-axis) for individual 3’ UTR for all expressed genes in eCLIP and GCLiPP 
datasets. The t-statistic shown is for a paired t-test of the correlations. (G) Overlap of CLIPper 
called peaks in 3’ UTRs in GCLiPP and TIA1 eCLIP. Red lines indicate observed overlap of 
GCLiPP peaks and eCLIP peaks. Grey distribution represents bootstrapped expected overlap, 
computed by shuffling called eCLIP peaks within the same 3’ UTR and computing overlap of 
shuffled set with GCLiPP called peaks. This analysis was repeated 500 times. The indicated 
distance represents the number of standard deviations above the mean shuffled overlap of the 
observed overlap. (H) Correlation of eCLIP-GCLiPP paired t-tests from (D) and RBP abundance 
in mRNPs. RBPs in red are cytosolic localized (5 cytosolic according to COMPARTMENTS). 
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Figure 2.3. GCLiPP recapitulates previously described mRNA-RBP interactions in 
primary T cells. 

(A) GCLiPP was performed on primary mouse Th2 and CD8 T cells as shown in the schematic.
RNAseq and GCLiPP tracks for (B) Ier3 (C) Actb (D) Cd3g and (E-G) Gpx4. RNAseq track is
from resting Th2 cells. GCLiPP is sum of five experiments, three in Th2 and two in CD8 T cells.
Locations of known RBP binding determinants are shown as insets.



47 

Figure 2.4. Comparison between mouse and human GCLiPP reveals principles of shared 
post-transcriptional regulation. 

(A) Schematic illustration of 3’ UTR alignment and biochemically shared GCLiPP peak calling.
(B) Distribution of conservation across 100 vertebrates (PhyloP score) of regions in the human
genome. Blue indicates biochemically shared peaks and gray indicates the 3’ UTRs of the
transcripts that those peaks are contained within. For both peaks within ARRB2 and USP25,
their matched conservation of peak and UTR are indicated by connected vertical lines. (C)
Human and mouse normalized GCLiPP density and conservation (PhyloP) across aligned
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nucleotides of the indicated 3’ UTRs. Biochemically shared peaks of GCLiPP read density are 
indicated in pink. (D) HOMER called motifs enriched in biochemically shared peaks. 
Percentages indicate the frequency of occurrence of the indicated motif in biochemically shared 
peaks versus non-shared background peaks. P-value indicates HOMER calculated p-value of 
enrichment. (E) Metascape called biological enrichment categories of genes containing 
biochemically shared peaks. The background set was all genes that contained peaks in both 
mouse and human GCLiPP datasets that did not contain a shared peak.  
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Figure 2.5. Biochemically and functionally shared post-transcriptional regulation of PIM3 
in human and mouse cells. 

(A) Z-scores of Pearson correlation between mouse and human GCLiPP (black distribution) and
transcript instability as measured by comparing transcript read abundance in untreated versus
actinomycin-D treated mouse T cells (red distribution) for 7541 genes with matched data.
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Vertical lines indicate observations for PIM3. (B) Normalized human and mouse GCLiPP read 
density and (C) PhyloP across aligned nucleotides of PIM3 3’ UTR (as depicted in Figure 5). 
Insets show sequences of putative regulatory elements. (D-G) Dissection of human PIM3 3’UTR 
in Jurkat T cells. (D) GCLiPP peaks aligned to schematic illustration of 3’UTR. (E) Change in 
expression along the 3’UTR relative to median expression of all possible deletions. Per-
nucleotide effect score was calculated by comparing median normalized RNA/gDNA ratio for all 
shown deletions spanning a given nucleotide with median of all shown deletions. Experiment 1 
and 2 are biological duplicates which were transfected with 80μM or 120μM of gRNAs 
respectively. Red bars indicate putative ARE-containing cis regulatory elements. (F) Unadjusted 
-log10 p-values from Welch’s two sample t-test comparing all deletions spanning a nucleotide
with all other deletions across both experiments. (G) Size of deletions generated using CRISPR-
Cas9. Arrow heads represent gRNA placement. (H-K) Dissection of mouse Pim3 3’UTR. Data
are represented identically to human data, except that mouse primary CD8 T cells were used,
and both mouse experiments 1 and 2 used a gRNA concentration of 80μM. (L) Effect of
deletions spanning putative ARE containing cis-regulatory elements. The RNA/DNA ratio for
mutants deleting ARE1 and ARE2 are shown in human Jurkat T cells. (M) Same as in (L) but
using data from mouse primary T cells.
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Figure 2.6. GCLiPP and PICS2 identified probable causal SNPs guide dissection of cis-
regulatory elements in 3’UTR. 

(A) Top 15 PICS2 SNPs within GCLiPP peaks with gene location (x-axis) and ranked by PICS2
probability score (y-axis). Various diseases associated with the SNPs are marked by color. (B)
GCLiPP track of CD5 3’UTR in Jurkats. Arrow heads represent gRNA placement for deletion.
Vertical dotted line indicates variant location (C) Representative flow plot of CD5 expression in
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control (Ctrl) (shaded grey) and CD5 3’UTR edited Jurkats (red line) (left). Ctrl Jurkats were 
given control gRNAs and CD5 3’UTR Jurkats given paired gRNAs to generate deletion. 
Normalized gMFI is depicted in a bar graph (right). (D) GCLiPP track of STAT6 3’UTR in 
Jurkats, similar annotations as (B). (E) pSTAT6 gMFI for Ctrl, STAT6 KO or STAT6 3’UTR-
edited Jurkats after treatment with IL-4 for 0, 5, 10, 15 or 30 minutes. (F) CRISPR dissection of 
two regions in IKZF1 3’UTR, labeled as region 1 (R1) and region 2 (R2).  Same annotations and 
GCLiPP track as seen in (B) and (D). (G) Representative flow plots of IKZF1 expression in 
Jurkats with IKZF1 3’UTR R1 (blue) or R2 deletion (red), as well as controls (grey). Normalized 
IKZF1 gMFI expression quantified in (H). 

Supplementary Figure 2.1. Comparison GCLiPP with eCLIP datasets. 

(A) Average base-pairing probability for all PTBP1 binding sites captured through eCLIP in
K562 cells. Peaks were called using CLIPper and matrix is shown as a heatmap similar to Fig
2.2A. (B) Snapshots of individual 3’UTRs showing correlation between GCLiPP and IGF2BP1
(top) and PUM2 (bottom) eCLIP datasets. GCLiPP shown in red, eCLIP in blue and matched
control input samples in gray. r indicates Pearson correlation between pairs of normalized read
density at a given nucleotide for the indicated comparison. (C) 2D density plots showing
matched correlations between GCLiPP and eCLIP for indicated RBP (X-axis), and GCLiPP and
control input sample (Y-axis) for individual 3’UTRs for all expressed genes in GCLiPP and
eCLIP datasets. Paired t-test was used for the correlations. (D) Overlap of CLIPper called peaks
in 3’UTRs of GCLiPP and eCLIP for indicated RBP. Red lines indicated observed overlap of
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GCLiPP peaks with eCLIP peaks. Green distribution represents bootstrapped expected overlap. 
Computed shuffling was conducted as described in Fig 2.2G. (E) Correlation of eCLIP-GCLiPP 
paired t-tests from (B) and RBP abundance in mRNPs not localized in the cytosol (<5 cytosolic 
according to COMPARTMENTS). 

Supplementary Figure 2.2. Overlap of GCLiPP peaks and cytosolic RBP eCLIP peaks.  
Overlap of CLIPper called peaks in 3’ UTRs in GCLiPP and eCLIP as in Fig 2.2G. The number 
of standard deviations between the observed fraction of eCLIP peaks that overlap with GCLiPP 
peaks above a background of 500 shuffled versions of the eCLIP peaks is depicted as the size 
of the bar. Peaks are shuffled across 3’ UTRs containing eCLIP and GCLiPP peaks. Inset 
depicts a comparison of the scores of RBPs defined as cytosolic versus non-cytosolic as in 
Figure 2.2. 
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Supplementary Figure 2.3. GCLiPP read coverage in primary mouse T cells. 

(A) Normalized GCLiPP read depth (fraction of reads in called peak relative to all GCLiPP reads
in annotated 3’UTR) in mouse primary Th2 and CD8 T cells. r represents Pearson correlation.
(B) Proportion of mapped GCLiPP reads derived from genomic features and (C) coverage of
features relative to total length of genomics features of indicated class.
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Supplementary Figure 2.4. GCLiPP detects RBP binding of canonical polyadenylation 
signal.  

(A-D) RNAseq and GCLiPP read densities, conservation, called GCLiPP peaks and location of 
canonical polyadenylation signals (red lines) for indicated genes. 
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Supplementary Figure 2.5. STAT6 expression in 3’UTR edited Jurkat cells. 

(A) Change in pSTAT6 gMFI for 0, 5, 10, 15 and 30min treatment with IL-4 relative to 0min for
control, STAT6 3’UTR-edited and STAT6 knockout (KO) Jurkat cells. (B) Change in pSTAT6
gMFI normalized to control within individual timepoints for all groups.
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CHAPTER 3: Post-transcriptional control of mRNA stability modulates CD69 

expression and thymic egress 

 

Abstract 

T cells undergo dynamic and rapid changes upon activation to migrate and respond to 

foreign pathogens in tissues. CD69, an inducible cell surface protein, regulates T cell migration 

by inhibiting sphingosine-1-phosphate (S1P)-mediated egress from lymphoid and peripheral 

organs. While the mechanisms regulating CD69 transcriptionally and post-translationally have 

been characterized, how it’s regulated post-transcriptionally remains to be studied. Here, we 

evaluate how post-transcriptional regulatory networks in the 3’UTR of CD69 modulate CD69 

and T cell function. Absence of CD69 3’UTR in human and mouse T cells resulted in higher 

CD69 transcript and protein expression. This un-regulated expression of CD69 inhibited T cell 

egress from the thymus in mice. Further dissection of the 3’UTR revealed a conserved region 

containing multiple predicted RNA binding protein sites that was necessary for regulating CD69 

expression. Homozygous deletion of the destabilizing region in mice resulted in T cells with 

higher CD69 levels and higher proportion of CD69+ T cells after activation. Together, our data 

demonstrates the crucial role post-transcriptional circuitry plays in modulating CD69 expression 

and T cell migration.  
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Introduction 

T cells are critical for mounting an adaptive immune response against foreign 

pathogens. Upon antigen presentation, these cells must respond rapidly to exert their effector 

function as well as migrate to specific sites of infection (Mueller et al., 2013). Just as T cells 

must quickly alter their gene expression profile and protein composition when activated, they 

must also alter their programming to enter a resting state as well as egress from tissues when 

infections are resolved, as prolonged proinflammatory T cell responses can lead to tissue 

damage (Jurgens et al., 2021; Mueller et al., 2013). Targeting the mechanisms that regulate T 

cell migration can therefore provide therapeutic benefits for T cell-mediated inflammatory 

disorders as well as be harnessed to improve vaccine efficacy. 

CD69 is a type II C-lectin membrane protein that is highly regulated. It’s rapidly 

upregulated on the cell surface in response to T cell receptor stimulation (Testi et al., 1989; 

Yamashita et al., 1993) and interferon I exposure (Shiow et al., 2006), and down-regulated 

within ~48-72 hours after activation. Commonly used as an early T cell activation marker, CD69 

is also a negative regulator of T cell egress. On the cell surface, it couples with sphingosine-1-

phosphate receptor 1 (S1PR1) and leads to internationalization and degradation of the receptor 

(Bankovich et al., 2010), which inhibits S1P-mediated egress and migration (Shiow et al., 2006). 

This interaction also leads to downregulation of CD69 on the surface and is a post-translational 

mechanism that governs CD69 expression. Modulating levels of CD69 on the cell surface has 

profound effects on T cell migration. T cells lacking CD69 can not accumulate and retain in 

tissues after challenge (Miki-Hosokawa et al., 2009; Takamura et al., 2016), which can lead to 

decreased formation of tissue resident memory cells (MacKay et al., 2013; Mackay et al., 2015). 

Overexpression of CD69 impairs T cell egress from the thymus, leading to low numbers of 

peripheral T cells (Feng et al., 2002; Kimura et al., 2002). While studies have elucidated the 

transcriptional circuitry that regulates CD69 (Laguna et al., 2015; López-Cabrera et al., 1995), 

how the mRNA is regulated post-activation and in a quiescent T cell state remains unclear. 
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T cells employ several regulatory mechanisms, including post-transcriptional regulation, 

to rewire their gene expression in response to environmental signals (Jurgens et al., 2021). 

RNA binding proteins (RBPs) are one of the trans factors that regulate post-transcriptional 

processes including mRNA localization, editing, splicing, translation, editing and decay (Turner 

& DÍaz-Muñoz, 2018). They recognize and bind to secondary structural motifs like the 

constitutive decay element (Leppek et al., 2013a; Schlundt et al., 2014; Tan et al., 2014) or 

short linear sequences such as AU-rich elements (AREs) in the 3’untranslated region (3’UTRs) 

of mRNA to mediate post-transcriptional processes (Chen & Shyu, 1995). The 3’UTRs of 

cytokines and other immunological mediators contain several RBP binding motifs that play a 

necessary role in tightly regulating the expression of these proteins in appropriate cellular 

contexts (Chen et al., 2013; Salerno et al., 2018; Techasintana et al., 2017). Mutations in RBP 

binding sites, as well as loss of function of RBPs, have been associated with changes in T cell 

fate and function that induce strong immune-related diseases (Gebauer et al., 2021; Steri et al., 

2017). Previous work using reporter constructs identified AREs in the 3’UTR of CD69 as 

destabilizing regulatory elements (Santis et al., 1995). How the 3’UTR regulates CD69 in its 

native contexts, as well as its effect on T cell function, is unknown. 

In this study, we show that the 3’UTR of CD69 is necessary for regulating CD69 

expression and T cell function, as absence of the region resulted in impaired T cell egress from 

tissues. Further dissection of the 3’UTR found a conserved region in mouse and human T cells 

that contains a decay element critical for regulating degradation of CD69 transcript and for 

regulating CD69 expression on activated T cells. These results provide insight into the post-

transcriptional circuitry that regulates CD69 and its necessary role in modulating T cell 

migration.  
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Result 

Post-transcriptional circuitry in the 3’UTR regulates CD69 protein expression in T cells 

To understand how post-transcriptional regulation affects CD69 expression, paired 

CRISPR-Cas9 ribonucleoproteins (RNPs) were used to delete the 3’UTR of CD69 in primary 

human CD4 T cells (Fig 3.1A). The polyadenylation signal at the 3’ end of the region was kept 

intact. Bulk edited cells that lacked CD69 3’UTR (Δ3’UTR) showed increased CD69 in resting 

condition as well as higher proportion of cells that were CD69+ (Fig 3.1B). Activating the 

Δ3’UTR cells with PMA and Ionomycin for 4 hours similarly led to higher expression of the 

protein (Fig 3.1C), indicating that the 3'UTR is necessary for modulating CD69. 

CD69 3’UTR is well-conserved between mouse and human, with ~70% sequence 

conservation. To determine whether the effect observed in human T cells also occurs in mice, 

the 3’UTR of Cd69 was deleted in primary mouse CD4 cells in vitro as was done in human T 

cells (Fig 3.1D). In mouse T cells, there was higher expression of CD69 and a greater 

proportion of CD69+ cells in resting condition (Fig 3.1E) as well as higher expression after 

activation (Fig 3.1F).  

As the previous studies were conducted in bulk edited CD4 cells, a mouse model with 

the same 3’UTR deletion as conducted in Fig 3.1D-F was generated to evaluate the region’s 

effect on CD69 expression. CD4 and CD8 T cells from secondary lymphoid organs (SLO), 

spleen and inguinal lymph nodes (iLNs), of Δ3’UTR mouse had higher CD69 expression (Fig 

3.1G-H), similar to in vitro bulk edited cells. In the thymus, there was higher CD69 expression 

on CD4+CD8+ double positive (DP), CD8 single positive (SP) and CD4 SP thymocytes in 

Δ3’UTR mice compared to wild-type (WT) (Fig 3.1I-J). These data suggest that the Cd69 3’UTR 

contains conserved cis-regulatory elements critical for regulating protein expression. 
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Absence of Cd69 3’UTR leads to decreased peripheral T cells and accumulation of SP 

cells in the thymus 

The Δ3’UTR mice were used to evaluate how absence of post-transcriptional control of 

CD69 affects T cell maintenance in vivo. At baseline, Δ3’UTR had significantly lower frequency 

of CD8 T cells in iLNs with a trend towards lower cell numbers for both CD4 and CD8 T cells 

(Fig 3.2A-B) compared to WT. In the spleen, Δ3’UTR had significantly lower proportion of CD4 

and CD8 T cells, also with a trend towards lower cell numbers (Fig 3.2C-D). Previous work on 

CD69 transgenic mice demonstrated a similar decrease in peripheral T cells which resulted from 

an accumulation of SP thymocytes (Feng et al., 2002; Kimura et al., 2002). To determine 

whether Δ3’UTR mice express the same phenotype, we examined the thymus and found that 

the thymocyte populations in Δ3’UTR mice skewed towards higher proportion of CD4 SP and 

CD8 SP cells and lower frequency of DP cells (Fig 3.2E-F). Δ3’UTR had comparable cell 

numbers of DP thymocytes and a trend towards higher SP thymocyte numbers (Fig 3.2E-F). 

 CD69 negatively regulates T cell egress through its interaction with S1PR1 (Allende et 

al., 2004; Matloubian et al., 2004), their expression mutually exclusive. Because the Δ3’UTR 

mice showed accumulation of SP thymocytes, similar to S1PR1-deficient mice (Matloubian et 

al., 2004), we hypothesized that thymic egress in Δ3’UTR mice may be impaired due to 

decreased S1PR1 expression. Δ3’UTR mice had higher proportion and numbers of CD69+ SP 

cells and lower proportions of S1PR1+ cells compared to WT (Fig 3.2G-H). These data indicate 

that without the Cd69 3’UTR, thymic T cells overexpress CD69, which decreases S1PR1 on the 

surface and impairs T cell egress into the periphery. 

 

Higher CD69 expression and impaired T cell egress in Δ3’UTR mice is cell intrinsic 

To determine whether the 3’UTR affects CD69 expression and T cell egress in a cell 

intrinsic manner, 1:1 ratio of WT:WT or Δ3’UTR:WT bone marrow were reconstituted in WT 

recipients to generate bone marrow chimeras (Fig 3.3A). As expected, thymocytes generated 
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from Δ3’UTR donor marrow expressed higher CD69 on the surface compared to cells from WT 

marrow in the same recipient (Supplementary Fig 3.1A-B). In the spleen, recipients 

reconstituted with Δ3’UTR:WT marrow had lower ratio of CD4 and CD8 cells compared to those 

with WT:WT donors (Fig 3.3B-C). Interestingly, the ratio of Δ3’UTR:WT was only lower in CD8 

cells in iLNs (Fig 3.3B-C). The decreased presence of Δ3’UTR CD8 cells in the periphery may 

be a consequence of SP thymocyte accumulation, as the chimeras also showed greater ratio of 

Δ3’UTR:WT CD8 SP cells compared to mice with WT:WT marrow (Fig 3.3D). 

To determine whether this accumulation is due to impaired S1PR1-mediated egress, 

S1PR1 and CD69 expression was measured for SP thymocytes. There was a decrease in 

S1PR1+ CD4 SP and CD8 SP from Δ3’UTR:WT recipients (Fig 3.3E). S1PR1 FMO control was 

used to determine S1PR1+ expression (Supplementary Fig 3.1C). Ratio of S1PR1+ CD4 and 

CD8 cells in iLNs (Supplementary Fig 3.1D-E) and spleen (Supplementary Fig 3.1F) was also 

lower in Δ3’UTR:WT compared to WT:WT. Further analysis revealed an increase in mature-like 

SP thymocytes in Δ3’UTR:WT mice, which had higher ratios of CD62Lhi and Qa-2+ CD4 SP 

(Fig 3.3F) and CD8 SP (Fig 3.3G) cells compared to WT:WT. Immature SP thymocytes were 

unaffected, as CD62Llo and Qa-2- populations were comparable (Fig 3.3F-G). This suggests 

that the increase in SP cells is likely due to accumulation of mature thymocytes as seen in other 

models (Feng et al., 2002; Kimura et al., 2002; Matloubian et al., 2004) rather than alterations in 

SP thymocyte maturation. Together these data demonstrate the cell intrinsic role the 3’UTR 

plays in regulating CD69 expression and thymic egress. 

 

Guided dissection of decay elements in CD69 3’UTR 

A previous biochemical technique had identified potential RBP binding sites in CD69 

3’UTR (Fig 3.4A), suggesting the presence of cis-regulatory elements in the region (Litterman et 

al., 2018). To identify the cis-regulatory region modulating the post-transcriptional effect on 

CD69 expression, various regions along the 3’UTR were deleted using Cas9 RNPs in primary 
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human CD4 T cells (Fig 3.4A). Deletion of Region A (ΔA) and B (ΔB) significantly increased 

CD69 expression and proportion of CD69+ resting T cells compared to cells with intact 3’UTR 

(Ctrl) (Fig 3.4B), with Region B having the greater effect compared to Region A. Cells stimulated 

with PMA and Ionomycin for 4 hours had a trend towards increased CD69 expression in cells 

with Region B (Fig 3.4C).  

As deletions were induced in bulk edited populations (~40-50% editing efficiency), 

single-cell Jurkat clones expressing homozygous deletions of the different regions in the 3’UTR 

were generated. There was a greater abundance of CD69 mRNA in clones that lacked the 

3’UTR and all the individual regions, with Region B expressing the highest relative amount 

compared to the other regions (Fig 3.4D). To determine whether these regions contained 

destabilizing elements that were affecting transcript and protein expression, Jurkat clones were 

activated and then treated with actinomycin D to inhibit transcription before measuring the 

mRNA half-life. Removing the 3’UTR and Region B led to longer CD69 mRNA half-life (Fig 

3.4E) compared to cells with intact 3’UTR. This led to significantly higher protein expression for 

Δ3’UTR and ΔB clones (Fig 3.4F-G). While the cells with an intact CD69 3’UTR downregulated 

CD69 after 24 and 48 hours of rest, Δ3’UTR cells maintained high CD69 expression, a pattern 

also observed in ΔB (Fig 3.4F-G). Previous work had identified AU rich elements in Region D of 

the 3’UTR that exhibited destabilizing activity (Santis et al., 1995). Measuring the destabilizing 

activity of the individual regions using a dual luciferase reporter showed a decrease in reporter 

expression for the construct with Region D, but also for Regions A and B (Supplementary Fig 

3.2). While Region D contained destabilizing AREs, Region B was necessary for controlling 

CD69 mRNA and protein expression in vitro. 

 

Post-transcriptional activity in Region B maps to RBP binding sites 

Region B is a ~250bp sequence that contains various RBP binding sites and motifs. To 

fine-map the exact regions that expressed destabilizing activity, constructs with 20bp deletions 
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that spanned across Region B were generated and cloned into a dual luciferase vector (Fig 

3.5A). Luciferase activity was measured in Jurkat cells. Constructs Δ2, Δ3, Δ5 and Δ6 had 

significantly higher reporter expression compared to the construct with the full length Region B 

(Fig 3.5B), indicating the presence of destabilizing elements within these specific regions. Δ12 

also displayed a trend towards higher reporter activity but did not reach statistical significance 

(Fig 3.5B). Constructs with scrambled (scr) sequences at sections 2-3, 5-6 and 12 showed the 

same increase in reporter activity (Fig 3.5C-E). These sections with destabilizing activity 

mapped to RBP binding peaks (Fig 3.5A), which suggests the regulation may be mediated by 

the interaction between RBPs and cis-regulatory elements. 

To determine the RBP that may be binding to the identified regions, proteins from 

cytoplasmic Jurkat lysates that bound to Region B were isolated using the streptavidin-binding 

RNA aptamer 4xS1m (Leppek & Stoecklin, 2014), which expresses the sequence from Region 

B. To control for false positive candidates, aptamers that expressed the individual scrambled 

sequences (scr 2-3, scr5-6 and scr12) were included. The analysis identified several proteins 

that bound to WT but not scr2-3 (Fig 3.5F), scr 5-6 (Fig 3.5G) or scr12 (Fig 3.5H) sequences. 

Notable proteins include ARE binding proteins ZFP36L2, which binds to Cd69 transcript in 

mouse T cells (Salerno et al., 2018), and ELAVL1 (Fig 3.5F). These proteins may bind to the AU 

rich region (CUUUAUAUUAUU) in section 2-3 in the 3’UTR. IGF2BP2, an RBP that recognizes 

N6-methyladenosine modifications (Huang et al., 2018) and splicing protein KHDRBS3 (Vernet 

& Artzt, 1997) were both differentially expressed between WT and scr5_6 (Fig 3.5G). Their 

function in T cells has not been studied. RBMS1, which has been shown to regulate stability of 

certain transcripts in T cells (Hoefig et al., 2021) is another interesting candidate as well as 

PUM2 (Fig 3.5H) which can bind to the motif UGUA (White et al., 2001) in section 12. Future 

studies will validate the RBPs that bind and regulate CD69 through Region B. 
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Post-transcriptional destabilizing elements in CD69 3’UTR are conserved between mouse 

and human 

As the sequence and overall function of the CD69 3’UTR is conserved between mouse 

and human, there may also be destabilizing elements in mouse Cd69 3’UTR that are necessary 

for regulation of CD69. Various regions in Cd69 3’UTR that contained RBP binding peaks were 

deleted in primary mouse CD4 cells using Cas9 RNPs (Fig 3.6A). In resting CD4 cells, deleting 

Region β (Δβ) significantly increased CD69 expression and proportion of cells that were CD69+ 

(Fig 3.6B). This increase was also observed in activated cells (Fig 3.6C). Δβ cells expressed a 

trend towards higher amounts of Cd69 transcript compared to non-edited cells (Ctrl) (Fig 3.6D). 

As the data was from bulk edited cells, the presence of WT alleles may obscure the results from 

edited alleles in the qPCR assay. Further analysis revealed that deleting the 3’UTR extended 

Cd69 mRNA half-life as did deleting Regions α and β (Fig 3.6E). Together, this suggests that 

Region β is most likely necessary for regulating CD69 protein expression and transcript levels in 

mouse T cells.  

 Overlapping the RBP binding profile and sequences from mouse and human CD69 

3’UTR revealed shared RBP peaks (Fig 3.6F). Interestingly, Region B, which contains 

destabilizing activity in human T cells, and Region β share RBP binding sites (Fig 3.6F, gray 

bar). Although the coverage at the site is different between mouse and human, the region 

contains two conserved sequences as indicated by the PhyloP score, suggesting a potential 

shared RBP and cis-regulatory element interaction. 

 

Post-transcriptional element in Region β regulates CD69 expression in T cells in vitro and 

in vivo 

As previous in vitro studies on Region β in Cd69 3’UTR was performed in bulk edited 

cells, a mouse with germline deletion of Region β (Δβ) was generated to further analyze the 

effect of this region on CD69 expression in vitro and in vivo. To understand how Region β 
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affects Cd69 transcript and protein expression in T cells during activation and rest, CD4+CD69- 

cells were isolated from WT, Δβ and Δ3’UTR mice and stimulated ex vivo for 3 days and then 

rested for 4 days afterwards (Fig 3.7A). During activation, Δβ and Δ3’UTR cells expressed 

significantly higher amounts of Cd69 transcript compared to WT cells at different timepoints 

during stimulation, peaking at 4 hours (Fig 3.7B). Δβ and Δ3’UTR maintained higher levels of 

transcript even after cells were taken off stimulants and rested for 2-4 days (Fig 3.7C). On the 

protein level, Δβ cells displayed a trend towards higher CD69 expression when activated, 

although not as high as Δ3’UTR cells (Fig 3.7D). After cells were rested, Δ3’UTR consistently 

expressed higher CD69 at various timepoints and maintained residual CD69 expression even 

after WT cells had returned to baseline (Fig 3.7E). Δβ cells in the first 24 hours after activation 

expressed higher levels of CD69 compared to WT but expressed similar levels of the protein 2-4 

days of rest (Fig 3.7E).  

This higher upregulation was also observed in an in vivo challenge. CD69- CD4 naïve 

cells from WT (WT-OTII) and Δβ mice (Δβ-OTII) mice that expressed OTII, ovalbumin(OVA)-

specific TCR transgene, were transferred into WT recipients at 1:1 ratio. Mice were then 

sensitized and challenged with OVA and house dust mite (HDM) through the airways to activate 

the donor cells in vivo (Fig 3.7F). After acute challenge, a significantly greater proportion of lung 

memory Δβ-OTII cells expressed CD69 compared to WT independent of congenic background 

(Fig 3.7G-H). Within CD69+ cells, Δβ cells also expressed higher levels of CD69 compared to 

co-transferred WT cells (Fig 3.7I). Together, this suggests that Region β is necessary for 

regulating CD69 and the absence of the destabilizing element within the region leads to 

uncontrolled protein and transcript expression.  

 

Δβ mice do not have impaired T cell egress at baseline  

 To understand whether Region β affects T cell maintenance and egress in vivo, 1:1 ratio 

of WT and WT or WT and Δβ donor bone marrow was reconstituted in WT recipients. As 
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expected, Δβ thymocytes expressed higher CD69 at various T cell development stages 

compared to WT (Supplementary Fig 3.3 A-B). Comparison of WT:WT and Δβ:WT thymocytes 

revealed similar ratios of DP and SP cells (Supplementary Fig 3.3C). In the periphery, Δβ:WT 

and WT:WT chimeras had similar ratios of CD4 and CD8 cells in the spleen, but higher ratios of 

both subsets in iLNs from Δβ:WT (Supplementary Fig 3.3D). In both SLOs, there were more 

CD69+ Δβ T cells compared to WT, but comparable number of cells expressing S1PR1 

(Supplementary Fig 3.3D). Further analysis showed higher CD69+ and significantly lower ratios 

of S1PR1+ cells in Δβ:WT recipients (Supplementary Fig 3.3E-F). In contrast, S1PR1 

expression was similar between WT:WT and Δβ:WT T cells from iLNs (Supplementary Fig 

3.3G) and spleen (Supplementary Fig 3.3H) despite greater proportion of CD69+ cells in 

Δβ:WT. Unlike Δ3’UTR, Δβ mice do not exhibit abnormal thymic egress and are phenotypically 

similar to WT at baseline. 

 

Discussion 

Previous studies have shown how CD69 expression is controlled on the transcriptional 

level through transcription factor binding at enhancers and the promoter (Laguna et al., 2015; 

Vazquez et al., 2009), as well as post-translationally (Shiow et al., 2006). In this work, we 

demonstrate how post-transcriptional regulation is also critical for regulating CD69 expression in 

T cells. Human and mouse T cells that lacked CD69 3’UTR expressed higher amounts of CD69 

transcript and protein. Further dissection of the 3’UTR revealed a specific region in mouse and 

human that contained a decay element necessary for regulating CD69 protein output.  

CD69 3’UTR contains many AU-rich motifs, particularly clustered towards the 3’end of 

the region. When expressed in a reporter construct in T cells, we, along with others (Santis et 

al., 1995), found this AU-rich region to be destabilizing in T cells. Although deleting this AU rich 

region (Region D) in Jurkat cells resulted in higher CD69 protein, eliminating Region B had the 
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greatest effect on transcript decay, expression, and protein output in vitro. The exact motif and 

trans factor driving the post-transcriptional effect is yet undefined. As Region B also contains an 

ARE, this element, rather than the ones in Region D, may be the primary regulators of CD69 

mRNA degradation in the cells. Preferential use of specific AREs within the same 3’UTR have 

been observed in other genes such as PIM3 (Litterman et al., 2018). It’s also possible that the 

post-transcriptional decay of CD69 is driven by another RBP. Our proteomics analysis identified 

a list of RBPs that may bind to Region B, including ZFP36L2 which binds to Cd69 transcript in 

mouse and human T cells (Salerno et al., 2018). On-going studies will determine whether 

ZFP36L2, as well as the other RBPs, bind to Region B in the 3’UTR and regulate CD69 

transcript and protein expression. 

The destabilizing activity discovered in Region B of human CD69 3’UTR was conserved 

in mouse 3’UTR. Although the local peak maxima of GCLiPP read coverage differed between 

mouse and human at these sites, the aligned sequences at the peaks were highly conserved 

and contained AREs, which suggests a shared post-transcriptional mechanism between the two 

species. At baseline, Δβ mice were phenotypically similar to WT in terms of T cell distributions in 

the thymus and SLOs despite higher CD69 expression. The difference in phenotype between 

Δβ and Δ3’UTR may be driven by different levels of CD69 expressed on the cell surface. In 

CD69 transgenic mice, transgene copy number was inversely correlated with the number and 

proportion of peripheral T cells (Feng et al, 2002). Mice with high copy numbers also had 

increased SP thymocyte accumulation similar to Δ3’UTR mice. Overexpression of CD69 down-

regulates S1PR1 from the cell surface (Bankovich et al., 2010). It’s possible that CD69 

expression on Δβ thymocytes may not reach the threshold in which it alters the ratio of 

CD69:S1PR1 on the surface and inhibits S1P-mediated egress. This balance between CD69 

and S1PR1 may be especially sensitive in CD8 T cells, which we observed to be significantly 

decreased in the periphery of Δ3’UTR mice. In contrast, CD4 T cells have higher S1PR1 

expression and may tolerate higher CD69 on the cell surface without affecting egress.  
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We demonstrate an effect of Δβ on CD69 expression in vivo and show that sensitization 

and challenge with antigen can induce more CD69+ memory cells on Δβ OTII cells in the lung, 

which also express higher CD69 levels compared to CD69+ WT memory cells. Many questions 

remain about the function of Δβ T cells in peripheral tissues that is not addressed in this study. 

How the absence of Region β affects T cell maintenance in peripheral tissues is unclear. CD69+ 

memory resident T cells in non lymphoid tissues need to upregulate S1PR1 and subsequently 

down-regulate CD69 to egress and re-circulate (Fonseca et al., 2020). The absence of Region β 

in T cells may therefore impair the cell’s ability to down-regulate CD69 and delay their migration 

out of the tissue. On-going studies will address this area. 

Recent genetic analysis has suggested that post-transcriptional elements in the 3’UTR 

may be involved in immune-mediated diseases. Two single nucleotide polymorphisms (SNPs) 

associated with multiple sclerosis (MS) (Beecham et al., 2013) and type 1 diabetes (Onengut-

Gumuscu et al., 2015) were identified to be likely causal SNPs through the Probabilistic 

Identification of Causal SNPs algorithm (PICS) (Farh et al., 2015; Taylor et al., 2021). The 

variant associated with MS, rs11052877, is especially interesting as it has a high PICS 

probability (0.79) and lies within an RBP binding site in Region B in human CD69 3’UTR. 

Treatment for MS commonly includes S1PR1 agonist FTY720 and indicates a critical role for 

S1P-mediated migration (Chun & Hartung, 2010). Therefore having regulatory mechanisms, 

even on the post-transcriptional level, to modulate CD69 expression and T cell egress may be 

critical for preventing a proinflammatory states in tissues like the central nervous system. 

Together, the genetic and biochemical analysis suggest an important functional role of this 

region in regulating CD69 and T cell function in autoimmune disorders. Future studies will 

examine how the 3’UTR and Region β affects T cell function in vivo by inducing experimental 

autoimmune encephalomyelitis in mice, an animal model of MS. 

In conclusion, we demonstrate the critical role post-transcriptional regulation has in 

modulating CD69 transcript and protein expression in mouse and human T cells. To our 
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knowledge, our work is the first to identify a specific region within the 3’UTR that contains a 

destabilizing element with significant effects on transcript half-life and protein output in vitro and 

in vivo. On-going work will decipher the RBPs involved in regulating CD69 as well as the 

impacts of these post-transcriptional elements on T cell function in inflammatory settings. 

Materials and Methods 

Mice 

Mice with Cd69 3’UTR deletion (Δ3’UTR) and region β deletion (Δβ) were generated by the 

UCSF Mouse Genetic Core by microinjection of Cas9 ribonucleoprotein into C57BL/6 zygotes. 

Briefly, paired crRNAs (160µM) (Δβ used mCD69 3’UTR 2 and 3; Δ3’UTR used mCD69 3’UTR 

1 and 5) were incubated with tracrRNA (160µM) for 30min at 37°C in injection buffer (10mMTris, 

150mM KCl) and then incubated with Cas9 (40uM) for 15min at 37°C. The mixture was 

microinjected into the cytoplasm of C57BL/6 single-cell zygotes isolated from super-ovulated 

females. Δ3’UTR and Δβ mouse line was established by backcrossing founder for at least one 

generation before breeding to homozygosity. Guide sequences can in Supplementary Table 4. 

Δβ mice were crossed to TCR OT-II transgenic mice (Jackson Laboratory) to generate Δβ-OTII 

mice that were homozygous for deletion and expressed OT-II transgene. WT-OTII and Δβ-OTII 

on CD45.2 background mice were bred to BoyJ CD45.1+ mice to generate strains that were 

CD45.1/CD45.2. Male and female age and sex matched mice were used between 6-12 weeks 

of age. All mice were housed and bred in specific pathogen-free conditions in the Animal Barrier 

Facility at the University of California, San Francisco. Animal experiments were approved by the 

Institutional Animal Care and Use Committee of the University of California, San Francisco. 
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Mixed Bone Marrow Chimeras 

To generate mixed bone marrow chimeras, 8-9 week old CD45.1+ BoyJ mice (The Jackson 

Laboratory) recipients were lethally irradiated (2X360 rad) and reconstituted with 1:1 ratio of WT 

(CD45.1/CD45.2) and either WT (CD45.2), Δβ (CD45.2) or Δ3’UTR (CD45.2) bone marrow 

cells. Animals were analyzed 8 weeks later.  

Allergic Inflammation Model 

Naïve CD4 cells were isolated from spleen and lymph nodes of age-matched female WT-OTII 

and Δβ-OTII mice using EasySep Mouse Naïve CD4+ T Cell Isolation Kit (Stem Cell 

Technologies). 2µg of anti-mouse CD69 biotin was added along with the CD4 Isolation cocktail 

from the kit to select against CD69+ cells. Naïve CD4+CD69- cells from WT-OTII and Δβ-OTII 

animals were mixed at 1:1 ratio and injected into anesthetized female CD45.1+ BoyJ through 

i.v. The next day, recipients were anesthetized and sensitized with 10 µg of house dust mite 

extract (HDM) (Greer Laboratories) and 50µg of ovalbumin (OVA) in 20uL PBS administered to 

the lung by oropharyngeal (o.p.) aspiration. Seven days later mice were then challenged with 10 

µg of HDM and 10 µg OVA by o.p. daily for 5 consecutive days. Mice were euthanized for tissue 

processing 2 days after the last challenge. 

Tissue Processing 

Spleen, lymph nodes and thymus were dissociated into single-cell suspension and passed 

through 70µM filter. Lungs were digested with 1.2mg/mL of Collagenase D (Roche) and 10U/mL 

of deoxyribonuclease I (Roche) for 30min at 37°C and dissociated with gentleMACS dissociator 

(Miltenyi Biotec). Enzymatic reaction was inhibited with cold PBS with 2% fetal bovine serum 

(FBS) (Omega). Cells were filtered through 70µM filter, pelleted through centrifugation and 

incubated with ACK Lysis Buffer (Gibco) to remove red blood cells before final suspension in 

PBS with 2% FBS. 
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Flow Cytometry 

FC receptors of cells were blocked with anti-mouse CD16/32 (BioXCell). Cells were surface 

stained with anti-mouse monoclonal antibodies from BioLegend and BD Biosciences including: 

anti-CD4 (RM4-5), anti-CD8 (53-6.7), anti-CD44 (IM7), anti-CD45.1 (A20), anti-CD45.2 (104), 

anti-CD69 (H1.2F3), anti-CD62L (MEL-14) and anti-Qa2 (695H1-9-9). Dead cells were excluded 

with Fixable Viability Dye eFluor780 (eBiosciences). Samples were collected with BD Fortessa 

and analyzed with FlowJo software (TreeStar). 

For intravascular staining, mice were anesthetized and injected with 2µg of anti-mouse CD45 

(30-F11) in 100uL PBS by iv for ~3min and euthanized by CO² asphyxiation. 

For intracellular Foxp3 expression, cells were fixed and permeabilized using Foxp3 

Transcription Factor Staining Buffer Set (eBiosciences) and stained with anti-mouse Foxp3 

(FJK-16s). 

For S1PR1 staining, cells were incubated with rat anti-mouse S1PR1 Antibody (MAB7089, R&D 

Systems), followed by APC donkey anti-rat IgG Fc-fragment (Jackson ImmunoResearch) as 

previously described (Arnon et al., 2011). Samples given secondary APC IgG fragment but not 

S1PR1 antibody (S1PR1 FMO) was used as background stain for S1PR1.  

In Vitro Cell Cultures 

Jurkat cells were grown in RPMI supplemented with 10% FBS and 2mM L-glutamine 

(Invitrogen). Primary CD4+ mouse T cells were isolated from mouse peripheral lymph nodes and 

spleen using EasySep Mouse CD4 Negative Isolation Kit (StemCell Technologies) according to 

the manufacturer’s instructions. Cells were stimulated with immobilized biotinylated anti-CD3 
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(clone 2C11, 0.25 µg/mL, BioXcell) and anti-CD28 (clone 37.51, 1 µg/mL, BioXcell) bound to 

Corning cell culture dishes coated with Neutravidin (Thermo) at 10 µg/mL in PBS for 3 h at 37 

°C. Cells were left on stimulation and treated with 10µg/mL of anti-interferon gamma (αIFNγ) for 

3 days before being transferred to non-coated dishes in T cell medium supplemented with 

recombinant human IL-2 (20 U/mL) and 10µg/mL of αIFNγ . For re-stimulation, cells were 

treated with 20nM phorbol 12-myristate 12-acetate (PMA) and 1 µM ionomycin (Sigma) for 4 

hours before harvest. 

Measurement of mRNA Decay 

Cells were stimulated with PMA and Ionomycin for 4 hours and then additionally treated with 

Actinomycin-D (Sigma-Aldrich) at 5 µg/mL for an additional 0, 1, 2 or 4 hours. After treatment, 

cells were lysed with Trizol LS (Life Technologies) and processed with Direct-zol ™ 96 well 

RNA (Zymogen). RNA was quantified with an ND-1000 spectrophotometer (NanoDrop) and 

reverse transcribed with SuperScript III First Strand Synthesis Kit (Invitrogen). Primers used are 

listed in Supplementary Table 1. qPCR was performed in technical duplicates on Realplex² 

(Eppendorf) using TB Green Advantage qPCR Premix (Takara Bio). Ct values were normalized 

to housekeeping gene described in figure legends. 

Luciferase Assays 

Jurkats were transfected with luciferase reporter constructs using E6.1 Jurkat program on 

Amaxa 4D-Nucleofector 96-well Unit (Lonza Biosciences). Luciferase activity was measured 20-

24 h after transfection with the Dual Luciferase Reporter Assay System (Promega) and a 

FLUOstar Optima plate-reader (BMG Labtech). Fragments of human CD69 3’UTR were cloned 

into the psiCHECK-2 luciferase reporter construct using Xho1 and Not1 sites (Promega). 

Primers for cloning are listed in Supplementary Table 2. Site-directed mutagenesis (SDM) was 
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performed using Q5 Site-Directed Mutagenesis Kit (New England BioLabs) following 

manufacturer's protocol using primers in Supplementary Table 3. 

CRISPR Editing of T cells 

Guide RNA sequences were selected using the Benchling online CRISPR design tool 

(https://benchling.com/crispr) with guides selected to target genomic regions of GCLiPP read 

density. Synthetic crRNAs and tracrRNA (Dharmacon) were resuspended in water at 160 µM at 

1:1 ratio and allowed to hybridize at 37 c for 30 m. This annealed gRNA complex (80 µM) was 

then mixed 1:1 by volume with 40 µM S. pyogenes Cas9-NLS (University of California Berkeley 

QB3 Macrolab) to a final concentration of 20 µM Cas9 ribonucleotide complex (RNP). The 

diluted gRNA:Cas9 RNPs along with a random 200bp single-stranded DNA fragment were 

nucleofected into primary human (48 hours after stimulation) or mouse CD4 T cells (24 hours 

after stimulation) with the P3 Primary Cell 96-well Nucleofector ™ Kit and into Jurkat cells with 

the SE Cell Line 96-well Nucleofector ™ Kit using the 4-D Nucleofector following the 

manufacturer’s recommendations (Lonza Biosciences). Cells were pipetted into pre-warmed 

media and then returned to anti-CD3 and anti-CD28 stimulation for another 2 days for primary 

mouse T cells, 1 day for primary human T cells or an additional 3-10 days in resting conditions 

for Jurkat cells. crRNA sequences are listed in Supplementary Table 4.  

Generation of Single-Cell Clones 

Jurkats were nucleofected with Cas9 RNPs to delete various regions within CD69 3’UTR as 

described above. The cells were rested in culture for a few days and then single-cell sorted into 

96-well plate using FACS Aria (BD Biosciences) and propagated for 2-3 weeks. Genomic DNA 

from clones was extracted with QuickExtract Buffer (Lucigen) and mixed with CD69 3’UTR 

primers (Table S1) as well as MyTaq Red Mix (Meridian Biosciences) and run on Mastercycler 
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(Eppendorf). The resulting PCR product was run on 2% agarose gel to identify clones that were 

homozygous for the specific deletions. These clones were propagated for analysis. 

Cloning CD69 3’UTR Fragments into 4xS1m Aptamer 

Human CD69 3’UTR variants were cloned into pSP73-4xS1m vector (Leppek) through BamHI 

and EcoRI sites as previously described (Salerno et al., 2018). To generate 4xS1m RNA 

aptamers alone or containing CD69 3’UTR fragments, plasmids were linearized with nDel, in 

vitro transcribed using Ampliscribe T7-flash transcription kit (Epicentre), and RNA was purified 

using the mini Quick Spin Oligo columns (Roche). The RNA quality and quantity was 

determined by RNAnano Chip assay (Agilent). Primers used to clone fragments into vector are 

listed in Supplementary Table 5.  

4xS1m RNA Aptamer-Protein Pull Down 

Resting Jurkat T cells were washed with PBS and the pellet was snap frozen on dry ice. Cells 

were homogenized using 5-mm steel beads and a tissue lyser (Qiagen TissueLyser II) 6x at 25 

Hz for 15 s. The homogenate was then solubilized and precleared as previously described 

(Salerno et al., 2018). Cell lysates were incubated with RNA-aptamer-coupled beads for 3.5 h at 

4 °C under rotation in the presence of 60 U RNasin (Ambion). For each pull-down, about 30 μg 

of in vitro transcribed RNA, coupled to Streptavidin Sepharose High Performance beads (GE 

Healthcare), and 5-10 mg cell lysate protein was used. RNA-bound proteins were eluted by 

adding 1 μg RNaseA (Thermo Scientific) in 100 μ 100 mM Tris-HCl, pH 7.5 (Gibco-Invitrogen). 

Proteins were reduced, alkylated and digested into peptides using trypsin (Promega). Peptides 

were desalted and concentrated using Empore-C18 StageTips and eluted with 0.5 % (v/v) 

acetic acid, 80 % (v/v) acetonitrile. Sample volume was reduced by SpeedVac and 

supplemented with 2 % acetonitrile and 0.1 % TFA. 
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Mass Spectrometry Data Acquisition 

Tryptic peptides were separated by nanoscale C18 reverse chromatography coupled online to 

an Orbitrap Fusion Tribrid mass spectrometer via a NanoElectroSpray Ion Source (both Thermo 

Scientific). Peptides were loaded on a 20 cm 75-360 μm inner-outer diameter fused silica 

emitter (New Objective) packed in-house with ReproSil-Pur C18-AQ 1.9 μm resin (Dr Maisch 

GmbH). The column was installed on a Dionex Ultimate3000 RSLC NanoSystem (Thermo 

Scientific) using a MicroTee union formatted for 360 μ outer diameter columns (IDEX) and a 

liquid junction. The spray voltage was set to 2.15 kV. Buffer A was composed of 0.5 % acetic 

acid and buffer B of 0.5 % acetic acid, 80 % acetonitrile. Peptides were loaded for 17 min at 300 

nl/min at 5 % buffer B, equilibrated for 5 min at 5 % buffer B (17-22 min) and eluted by 

increasing buffer B from 5 to 15 % (22-87 min) and 15 to 38 % (87-147 min), followed by a 10 

min wash to 90 % and a 5 min regeneration to 5 %. Survey scans of peptide precursors from 

400 to 1,500 m/z were performed at 120 K resolution (at 200 m/z) with a 4 × 105 ion count 

target. Tandem mass spectrometry was performed by isolation with the quadrupole with 

isolation window 1.6, HCD fragmentation with normalized collision energy of 30 and rapid scan 

mass spectrometry analysis in the ion trap. The MS2 ion count target was set to 104 and the 

maximum injection time was 35 ms. Only those precursors with charge states 2-7 were sampled 

for MS2. The dynamic exclusion duration was set to 30 s with a 10-p.p.m. tolerance around the 

selected precursor and its isotopes. Monoisotopic precursor selection was turned on. The 

instrument was run in top speed mode with 3 s cycles. All data were acquired with Xcalibur 

software. 

Mass spectrometry data analysis 

The raw mass spectrometry files were processed with the MaxQuant computational platform, 

1.6.2.10 (Cox & Mann, 2008). Proteins and peptides were identified using the Andromeda 

search engine by querying the human Uniprot database (downloaded February 2017 and 
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February 2019, 89,796 entries) for the RNA pull-down. Standard settings with the additional 

options match between runs, and unique peptides for quantification were selected. The 

generated ‘proteingroups.txt’ data were imported in R and processed with the Differential 

Enrichment analysis of Proteomics data (DEP) R package (Zhang et al., 2018). Identified 

peptides were filtered for potential contaminants, only identified by site and reverse hits. The 

raw intensity values were transformed in log2 scale and averaged, and log2 fold change (LFC) 

was calculated. We only included proteins that were identified in at least 2 out of 3 replicates in 

this analysis. To select for RBPs, we compiled the 1153 RBPs identified by RNA-interactome 

capture on HeLa and Jurkat cells (Castello et al., 2016; Perez-Perri et al., 2018b) with 1542 

computationally predicted RBPs based on the presence of a defined list of RNA-binding 

domains (RBDs) (Gerstberger et al., 2014). Filtered data are shown as log2 median-centered 

intensities.  

Quantification and Statistical Analysis 

Excel (Microsoft), Prism (GraphPad), Flowjo (TreeStar) and R Studio (Rstudio Team) were used 

for data analysis. Individual statistical tests performed are included in the data legends. All data 

was assumed to be normally distributed unless stated otherwise. 

Data Availability  

The GCLiPP data reported in this paper can be accessed at GSE115886 on Gene Expression 

Omnibus. 
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Figures 

Figure 3.1. CD69 3’UTR modulates CD69 protein expression. 

(A) Schematic of human CD69 gene. Red arrows represent cut sites to remove the 3’UTR using
CRISPR-Cas9 editing. (B) Representative flow cytometry plot of CD69 expression on resting
primary human CD4 T cells (left). Red line represents cells with 3’UTR deletion and grey
histogram shows background cells given control (Ctrl) gRNAs. Quantification of mean
fluorescence intensity (MFI) and percentage of CD69+ CD4 cells shown on right. MFI was
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normalized to average Ctrl values for each experiment and plotted as fold change (right). (C) 
CD69 expression on human primary CD4 cells activated with PMA and Ionomcyin for 4 hours 
(left). CD69 MFI was normalized to Ctrl and quantified on the right. (D) Schematic of mouse 
Cd69 3’UTR. Green arrows represent cut sites for CRISPR-Cas9 editing. (E) Representative 
flow cytometry plot of CD69 expression on resting mouse CD4 T cells (left). Grey histogram 
represents cells given Ctrl gRNA and green line represents edited cells without the 3’UTR. MFI 
was normalized to average Ctrl. (F) CD69 MFI on mouse CD4 cells activated with PMA and 
Ionomcying for 4 hours (left). MFI normalized to Ctrl (right). (G) CD69 expression on CD4 and 
CD8 T cells from spleen and inguinal lymph nodes (iLN), quantified in (H). Gray histogram 
represents wild-type (WT) mice and orange line represents mice with homozygous deletion of 
Cd69 3’UTR (Δ3’UTR). (I) CD69 expression on double positive (DP), CD4 single positive (SP) 
and CD8 SP thymocytes. MFI is quantified in (J). Each dot represents a single mouse or human 
subject. Data shows mean ± SEM. Significance was calculated using student’s t-test. **** 
p<0.0001, *** p<0.001, **p<0.01, *p<0.05 
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Figure 3.2. Δ3’UTR mice have impaired thymic egress. 

(A) Representative flow cytometry plot of CD4 and CD8 T cells in iLNs. Proportion of CD4 and 
CD8 T cells, as well as cell numbers, are shown in (B). (C) Representative flow cytometry plot 
of CD4 and CD8 T cells in spleen with numbers and percentage of live cells shown in (D). (E) 
Representative flow cytometry plot with gates on DP, CD4 SP and CD8 SP thymocytes. The 
percentage of live cells and cell numbers are quantified in (F). (G) Representative flow 
cytometry plots of CD4 SP and CD8 SP showing CD69 and S1PR1 expression. Gates for 
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S1PR1 were set using S1PR1 fluorescence minus one (FMO) in which S1PR1 antibody was not 
added. (H) Percentage of CD69+ and S1PR1+ cells and cell numbers for CD4 SP (top) and 
CD8 SP (bottom). Black represents WT and orange represents Δ3’UTR mice. Results are from 
2-3 independent experiments with N=6-7 total. Šídák multiple comparisons tests was used to 
calculate significance. **** p<0.0001, *** p<0.001, **p<0.01, *p<0.05 
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Figure 3.3. 3’UTR regulates CD69 protein expression and T cell egress in cell-intrinsic 
manner. 

(A) Diagram of mixed bone marrow chimeras. WT recipients were re-constituted with 1:1 ratio of 
WT:WT or Δ3’UTR:WT bone marrow. (B) Representative flow cytometry plots showing CD4 and 
CD8 T cells in spleen (top) and iLNs (bottom) from WT (CD45.2) or Δ3’UTR (CD45.2). Ratio of 
WT/WT or Δ3’UTR/WT plotted in (C). (D) Representative flow cytometry plot showing WT or 
Δ3’UTR thymocyte populations. Ratio of WT:WT or Δ3’UTR:WT plotted in (D). (E) CD69 and 
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S1PR1 expression on CD4 SP (top) and CD8 SP (bottom). Ratios of WT or Δ3’UTR over co-
transferred WT quantified on right. (F-G) CD62L (left) and Qa-2 (right) expression on CD4 SP 
thymocytes (F) and CD8 SP (G). Gates demarcate CD62Llo and CD62Lhi, as well as Qa-2- and 
Qa-2+. Ratio of WT:WT and Δ3’UTR:WT plotted on bottom for each population. Black 
represents WT:WT and orange represents Δ3’UTR:WT. Results are from 2-3 independent 
experiments with N=16-26 total. Šídák multiple comparisons tests was used to calculate 
significance. **** p<0.0001, *** p<0.001, **p<0.01, *p<0.05 
 
 

 
 
Figure 3.4. Dissection of 3’UTR identifies destabilizing elements that regulate CD69 
mRNA and protein expression. 

(A) Schematic of CD69 3’UTR with red arrows showing gRNA placement and boxes indicating 
regions that were deleted. (B) Representative flow cytometry plot of CD69 expression on resting 
primary human CD4 T cells (left). CD69 MFI and percentage of CD69+ cells are quantified on 
right. Ctrl samples were given control gRNAs and express intact 3’UTR. MFI normalized to 
average Ctrl per experiment. (C) CD69 expression in Jurkat clones that contained various 
deletions indicated in (A) shown in a representative flow cytometry plot (left). MFI is quantified 
on the right. (D) CD69 mRNA levels were normalized to housekeeping gene GAPDH. (E) CD69 
mRNA levels, normalized to housekeeping gene and then to 0 hour timepoint, at various times 
during treatment with actinomycin-D (act-D). (F) Representative plots showing CD69 expression 
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in the different clones after 4h activation with PMA and Ionomycin and resting for 24 or 48h 
post-stimulation. MFI was normalized to Ctrl for all timepoints and quantified in (G). N=3 for 
experiments with primary human T cells and N=2-4 for assays with Jurkat clones. Statistics 
were calculated using Dunnett’s multiple comparisons test, using Ctrl as control. **** p<0.0001, 
*** p<0.001, **p<0.01, *p<0.05 
 
 

 
 
Figure 3.5. Fine-mapping reveals destabilizing activity in RBP binding sites. 

(A) GCLiPP read coverage of Region B in CD69 3’UTR depicting RBP binding peaks. Lines 
below are examples of constructs with 20bp deletion spanning the region. Gray bars indicate 
sites with destabilizing activity. (B) Dual luciferase reporter expression for empty vector (EV), 
construct with intact Region B (B) and constructs with deletions cross Region B(Δ). Expression 
is normalized to EV. Data is compiled from 2-3 individual experiments. Reporter expression 
from constructs with deletions and scrambled sequences in section 2-3 (C), 5-6 (D) and 12 (E) 
were normalized to construct B. (F-H) Volcano plots represent RBPs quantified by mass 
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spectrometry from pull down with Jurkat lysates using 4xS1m RNA aptamer expressing WT, 
scr2_3 (F) scr 5-6 (G) or scr 12 (H) as shown in (C-E). Relative abundance of proteins between 
scrambled and WT constructs was calculated using raw protein intensity values expressed as 
log2 fold change. Statistics were calculated using Dunnett’s multiple comparisons test, using 
Ctrl as control. **** p<0.0001, *** p<0.001, **p<0.01, *p<0.05 
 

(A) Schematic of mouse Cd69 3’UTR with predicted RBP binding peaks represented by 
GCLiPP read density. Red arrows indicate gRNA placement and boxes show deleted region. 
(B) CD69 expression in resting primary mouse CD4 T cells shown as a representative flow 
cytometry plot (left). CD69 MFI and percentage of CD69+ CD4 cells is quantified on the right. 
MFI was normalized to average Ctrl for each independent experiment. (C) CD69 expression in 
primary mouse T cells activated for 4 hours with PMA and Ionomycin shown in representative 
flow cytometry plot (left) and normalized MFI values (right). (D) Cd69 mRNA abundance in 
activated mouse CD4 T cells. After activation, mRNA abundance was measured during 
treatment with act-D in (E). (F) GCLiPP read coverage of human and mouse CD69 3’UTR were 
aligned by sequence. RBP occupancy is plotted on top, and sequence conservation is indicated 

Figure 3.6. Conserved destabilizing activity in Cd69 3’UTR between mouse and human. 
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below by the PhyloP score. Green represents mouse and red represents human RBP binding 
occupancy. Brackets show region with mapped destabilizing activity. Statistics were calculated 
using Dunnett’s multiple comparisons test, using Ctrl as control. **** p<0.0001, *** p<0.001, 
**p<0.01, *p<0.05 
 

 
 
Figure 3.7. Region β contains destabilizing elements that regulate CD69 expression in T 
cells. 

(A) Diagram showing timeline of CD4 T cell cultures. Primary mouse CD69- CD4 cells were 
activated with anti-CD3 (αCD3) and anti-CD28 (αCD28) for 3 days and rested for 4 days 
afterwards (N=4-6). Cd69 mRNA transcript expression was measure during activation (B) and 
during rest (C). Values were normalized to housekeeping gene B2m and then to unstimulated 
cells (0h activation timepoint). Similar normalization was performed for CD69 MFI in activated 
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(D) and resting cells (E). (F) Allergen sensitization and challenge model. CD69- naïve CD4 T 
cells from WT-OTII and Δβ-OTII mice were adoptively transferred at 1:1 ratio into WT recipients. 
Mice were sensitized with HDM and OVA at day 0, challenged 5 times from day 7 to day 11 and 
euthanized on day 14 for analysis. (G) CD69 expression of lung memory CD4 T cells (CD45iv-
CD4+CD44+CD62L-) from WT-OTII or Δβ-OTII donors. Grey histogram represents WT and blue 
lines shows Δβ cells on different congenic backgrounds. Percentage of CD69+ lung memory 
cells shown in (H). (I) CD69 MFI in CD69+ lung memory T cells. Open bars represent one 
mixture with CD45.2 WT-OTII and CD45.1/CD45.2 Δβ-OTII, while striped bars represent 
mixture with CD45.1/CD45.2 WT-OTII and CD45.2 Δβ-OTII. Šídák multiple comparisons tests or 
student’s t-test was used to calculate significance. **** p<0.0001, *** p<0.001, **p<0.01, 
*p<0.05 
 

 
Supplementary Figure 3.1. CD69 and S1PR1 expression on thymocytes in bone marrow 
chimeras. 

(A) CD69 expression on thymocyte populations from WT (CD45.1/.CD45.2) and Δ3’UTR 
(CD45.2) in WT: Δ3’UTR chimeras. (B) Plot showing CD69 MFI for WT:WT or Δ3’UTR:WT 
chimeras in DP and SP thymocytes calculated as fold change. (C) S1PR1 FMO samples were 
used to set S1PR1 gate. (D) Representative plots of CD69+ and S1PR1+ CD4 and CD8 T cells 
in iLNs. Ratio of WT:WT and Δ3’UTR:WT cells that are CD69+ or S1PR1+ quantified in (E). 
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Same ratios for spleen in (F). Black represents WT:WT and orange represents Δ3’UTR:WT. 
Šídák multiple comparisons tests was used to calculate significance. **** p<0.0001, *** 
p<0.001, **p<0.01, *p<0.05 
 

 
Supplementary Figure 3.2. Dual luciferase reporter expression of fragments in CD69 
3’UTR. 

Fragments of CD69 3’UTR were cloned into dual luciferase reporter. Expression was 
normalized to empty vector (EV). Dunnett’s multiple comparison test was performed. Statistic 
was calculated using Dunnett’s multiple comparisons test, using 3’UTR as control. **** 
p<0.0001, *** p<0.001, **p<0.01, *p<0.05 
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Supplementary Figure 3.3. Δβ mice are similar to WT mice at baseline. 

(A) CD69 expression on WT (CD45.1/.CD45.2) and Δβ (CD45.2) thymocytes from Δβ:WT 
chimeras. (B) Fold change of CD69 MFI in WT:WT or Δβ:WT chimeras. (C) Thymocyte 
populations in WT:WT (black) or Δβ:WT (blue) chimeras. Representative flow cytometry plots on 
top. Ratios quantified on bottom. (D) Representative flow cytometry plots of CD4 and CD8 T cells 
in spleen (top) and iLNs (bottom) from chimeras with W:T or WT:Δβ marrow. Ratio of WT:WT and 
Δβ:WT within each T cell population plotted on right. CD69 and S1PR1 expression in WT 
(CD45.2) or Δβ (CD45.2) on CD4SP and CD8 SP thymocytes (E-F) as well as CD4 and CD8 T 
cells in spleen (G) and iLNs (H). Ratios were calculated for CD69+ and S1PR1+ cells. Color 
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scheme for WT:WT and Δβ:WT are consistent throughout figure. Šídák multiple comparisons 
tests was used to calculate significance. **** p<0.0001, *** p<0.001, **p<0.01, *p<0.05 
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Tables 

Supplementary Table 3.1. Human and mouse primers. 

 Primers Sequence 

Mouse 

Cd69 3'UTR F GTGGACTGTGAGGCAAACTTCCACTG 
Cd69 3'UTR R GGCAATAAATAGTAACTCTAGAGCTAGTCAG 
Cd69 F GCTCTCATTGCCTTAAATGTGGGCAAG 
Cd69 R GTAGCAGCATCTTCAGAACAAGAGCG 
B2m F TGGTCTTTCTGGTGCTTGTC 
B2m R GGGTGGAACTGTGTTACGTAG 

Human 

CD69 3'UTR F TGGAATGTGAGAAGAATTTATACTGG 
CD69 3'UTR R GAACTTTCTTGGAAACCATTGTG 
CD69 F TTTGCATCCGGAGAGTGGAC 
CD69 R TTGGCCCACTGATAAGGCAA 
GAPDH F GACCACTTTGTCAAGCTCATTTC 
GAPDH R CTCTCTTCCTCTTGTGCTCTTG 

 

Supplementary Table 3.2. Primers for cloning into dual luciferase vector. 

CD69 3'UTR Fragments Sequence (include XhoI and Not1 sites) 
Cd69 3'UTR F1 TAAGCAGCTCGAGTAAGGAAACATGTTCACTTATTGAC 
Cd69 3'UTR F2 TGCTTAGGCGGCCGCCTAGTATTATTCTAGGTCTGAAG 
Region A F TAAGCAGCTCGAGTAAGGAAACATGTTCACTTATTG 
Region A R TGCTTAGGCGGCCGCGTCATTCTTCTCATTCTTGGGC 
Region B F TAAGCAGCTCGAGGAATGACTATGCAACCTTTGGATGCAC 
Region B R TGCTTAGGCGGCCGCCCCTGAGTTTAAGGGATTCAATTAG 
Region C F TAAGCAGCTCGAGGCTGTAGACAGGTCCTTTTCGATGG 
Region C R TGCTTAGGCGGCCGCCTAGTATTATTCTAGGTCTGAAG 
Region D F TAAGCAGCTCGAGGAGAAATTTGCCAATTTACTTTG 
Region D R TGCTTAGGCGGCCGCCTAGTATTATTCTAGGTCTGAAG 

 
 
Supplementary Table 3.3. Primers for site directed mutagenesis. 

SDM Primers Sequence 
scr2_3 F tagtatgtattcTCCAGAAATAATGAAATAACTAG 
scr2_3 R taactaatcgaatAAGGTTGCATAGTCATTC 
scr5_6 F gatatcattgTTGCTGAATGACTACCAAC 
scr5_6 R gattgcaaccAGTTATTTCATTATTTCTGGATTC 
scr12 F ttcctaatgctagttatGACTACCAACAGTGAGAG 
scr12 R ctcgaattatgttcaaccTTCATTATTTCTGGATTCAAAATAATATAAAG 
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Supplementary Table 3.4. Human and mouse crRNA. 

 crRNA Sequence 

Mouse 

mCd69 3'UTR 1 TGACTGTGCCATAGCACCAC 
mCd69 3'UTR 2 TCCAGGAAGATCCCTTGACC 
mCd69 3'UTR 3 GTGCAAATGCGTAAAGGCAC 
mCd69 3'UTR 4 GATGGAGTTACTGCAAAGCT 
mCd69 3'UTR 5 TTATTCCAAGGTCAAACCAC 

Human 

CD69 3'UTR 1 CTCAAGGAAATCTGTGTCAG 
CD69 3'UTR 2 TCATTCTTGGGCATGGTTAT 
CD69 3'UTR 3 AAGAATGACTATGCAACCTT 
CD69 3'UTR 4 TAATTGAATCCCTTAAACTC 
CD69 3'UTR 5 TGTAGACAGGTCCTTTTCGA 
CD69 3'UTR 6 TATTTTTCCCCAAAAAGAAT 
CD69 3'UTR 7 TGATGTGGCAAATCTCTATT 

Control 
Ctrl1 GGTTCTTGACTACCGTAATT 
Ctrl2 TCGGATGTAAATTATGCCGT 
Ctrl2 CAGCTCATCGGTGTCCTACT 

 

Supplementary Table 3.5. Primers for RNA aptamer cloning. 

Fragment Original Sequence Scrambled Sequence 
Region B 2_3 TGGATGCACTTTATATTATTttgaa ATTCGATTAGTTATAGTATGTATTC 
Region B 5_6 taaataGTAAGTCCACGCCT GGTTGCAATCGATATCATTG  
Region B 12 gaatgtaaacaaaggAATTA AagAgataagAtacaTagaT 
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