
UCSF
UC San Francisco Previously Published Works

Title
A Deep Learning Approach for Automated Bone Removal from Computed Tomography 
Angiography of the Brain.

Permalink
https://escholarship.org/uc/item/2xc9d59d

Journal
Journal of Digital Imaging, 36(3)

Authors
Caton, M
Calabrese, Evan
Isikbay, Masis

Publication Date
2023-06-01

DOI
10.1007/s10278-023-00788-y
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2xc9d59d
https://escholarship.org
http://www.cdlib.org/


Vol:.(1234567890)

Journal of Digital Imaging (2023) 36:964–972
https://doi.org/10.1007/s10278-023-00788-y

1 3

A Deep Learning Approach for Automated Bone Removal 
from Computed Tomography Angiography of the Brain

Masis Isikbay1   · M. Travis Caton2   · Evan Calabrese1,3,4,5 

Received: 21 November 2022 / Revised: 29 January 2023 / Accepted: 30 January 2023 / Published online: 13 February 2023 
© The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2023

Abstract
Advanced visualization techniques such as maximum intensity projection (MIP) and volume rendering (VR) are useful for 
evaluating neurovascular anatomy on CT angiography (CTA) of the brain; however, interference from surrounding osseous 
anatomy is common. Existing methods for removing bone from CTA images are limited in scope and/or accuracy, particu-
larly at the skull base. We present a new brain CTA bone removal tool, which addresses many of these limitations. A deep 
convolutional neural network was designed and trained for bone removal using 72 brain CTAs. The model was tested on 15 
CTAs from the same data source and 17 CTAs from an independent external dataset. Bone removal accuracy was assessed 
quantitatively, by comparing automated segmentation results to manual segmentations, and qualitatively by evaluating VR 
visualization of the carotid siphons compared to an existing method for automated bone removal. Average Dice overlap 
between automated and manual segmentations from the internal and external test datasets were 0.986 and 0.979 respectively. 
This was superior compared to a publicly available noncontrast head CT bone removal algorithm which had a Dice overlap 
of 0.947 (internal dataset) and 0.938 (external dataset). Our algorithm yielded better VR visualization of the carotid siphons 
than the publicly available bone removal tool in 14 out of 15 CTAs (93%, chi-square statistic of 22.5, p-value of < 0.00001) 
from the internal test dataset and 15 out of 17 CTAs (88%, chi-square statistic of 23.1, p-value of < 0.00001) from the exter-
nal test dataset. Bone removal allowed subjectively superior MIP and VR visualization of vascular anatomy/pathology. The 
proposed brain CTA bone removal algorithm is rapid, accurate, and allows superior visualization of vascular anatomy and 
pathology compared to other available techniques and was validated on an independent external dataset.

Keywords  Machine learning · Deep learning · Artificial Intelligence · CT angiography · Brain · Neurovascular

Abbreviations
3D	�  Three dimensional
CTA​	�  Computed tomography angiography

DICOM	�  Digital Imaging and Communications in 
Medicine

DSA	�  Digital subtraction angiography
MIP	�  Maximum intensity projection
MRI	�  Magnetic resonance imaging
VR	�  Volume rendering

Background and Purpose

Medical image post-processing techniques are a powerful 
tool in the radiologist’s arsenal. In particular, maximum 
intensity projections (MIPs), volume rendering (VR), and 
cinematic rendering can be useful for evaluation of vas-
culature on cross-sectional angiographic imaging [1–5]. 
These techniques facilitate visualization of key pathology 
(such as intracranial aneurysms) and can be beneficial 
for pre-procedural planning (for example prior to endo-
vascular aneurysm coiling) [6]. Despite this utility, one 
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common obstacle for post-processing of CT angiography 
(CTA) images of the brain is interference from surround-
ing osseous anatomy, particularly at the skull base [7–9]. 
The complexity of skull base anatomy its similar density to 
contrast opacified vessels/arterial calcification often pre-
cludes detailed vessel evaluation in post-processed images. 
These limitations of existing post-processing techniques 
are most pronounced at vessel-bone interfaces (e.g., cli-
noidal and ophthalmic segments of the internal carotid 
artery, dural venous sinuses) and can result in missed or 
delayed diagnosis of potentially life-threatening vascular 
pathologies [10].

There are several existing methods for removing osseous 
structures from CTA exams, each with their respective ben-
efits and limitations. These methods can be broadly catego-
rized as acquisition-based methods (i.e., using specific CTA 
acquisition strategies to isolate bone signal) and post-hoc 
methods (i.e., image processing methods using previously 
acquired standard CTA data). Acquisition-based methods 
include digital subtraction CTA [11], which first acquires 
a non-contrast CT and subtracts it from the subsequently 
acquired CTA, as well as photon energy-based techniques 
(i.e. dual-energy and photon counting CT) [12–14], which 
rely on spectral attenuation differences to isolate bone (cal-
cium) signal. Acquisition-based methods can be very accu-
rate but require specialized equipment. They often relying on 
proprietary acquisition/processing software, and some meth-
ods result in increased radiation dose to the patient. Post-hoc 
methods include manual (human) segmentation, and vari-
ous automated or semi-automated approaches. These include 
intensity threshold-based segmentation methods [15–17] and, 
more recently, deep learning-based methods [18]. These tech-
niques can be applied retrospectively to any standard CTA 
data and do not require any specialized equipment. Manual 
segmentation is the most straightforward approach but is 
time consuming and requires dedicated personnel with con-
siderable anatomic expertise. Threshold-based automated 
approaches, such as the free tool provided by the DICOM 
viewer Horos [15], produce rapid results but are hindered 
by similarities in density between contrast opacified vessels 
and adjacent bones. Deep learning-based methods have the 
potential to address many of the issues facing other bone 
removal methods; however, limited prior studies have raised 
concerns about the ability to accurately segment both arterial 
and venous structures, especially in the setting of vascular 
pathology or prior intracranial inetervention [18].

To address the limitations of existing techniques we 
developed and evaluated a new deep-learning approach for 
automated removal of osseous structures from CTA exams 
using free, open source, and multi-platform software. This 
technique was designed to be rapid, accurate, fully auto-
mated, and applicable to patients with or without neurovas-
cular pathology and/or prior intracranial intervention. Our 

technique does not require the use of any special scanning 
equipment or parameters, and the generalizability of our 
approach was tested on an independent, external dataset. In 
addition, the proposed algorithm is free and open source, 
which allows users to independently validate results.

Methods

Study Cohort

We retrospectively identified an “internal cohort” of 103 
adult patients (cohort details outlined in Table  1) who 
underwent CTA of the brain from 2021 to 2022 at a single 
medical center using enterprise radiology report search tools 
(mPower, Nuance, Burlington, MA) [19]. Patient data was 
de-identified at the time of download using the Automated 
Image Retrieval Portal [20] integrated into our PACS.

The cohort was manually selected to include a number of 
patients without significant pathology (approximately 50% 
of the cases) as well as patients with a variety of neurovas-
cular abnormalities including severe intracranial vascular 
calcifications (15%), significant senescent white matter 
changes (25%),intracranial hemorrhage (approximately 10% 
of cases), prior aneurysm clipping with craniotomy (approxi-
mately 15% of cases), and some with a combination of post-
surgical changes such as extra axial blood products, pneumo-
cephalus, surgical hardware, craniotomy, and/or ventricular 
catheters (approximately 25% of cases). Patients ranging in 
age from 25–94 years old were included in our dataset.

Data Acquisition and Preprocessing

All CTA data in the internal cohort was acquired at a sin-
gle institution on a variety of General Electric CT scanners 
(Eagle Revolution X, Revolution XRD, Light Speed 16 slice, 
VCT Light Speed 64 slice, and Discovery 750 HD 64 slice) 
using a standard helical acquisition with a reconstruction 
slice matrix of 512 × 512 (variable in plane resolution based 
on field of view) and slice thickness of 0.625 mm. Minimal 
automated data preprocessing steps included resampling 
to 0.5-mm isotropic resolution and voxel intensity scaling 
such that − 1000 Houndsfield units (HU) corresponded to an 
image intensity value of − 1.0 and 1000 HU corresponded to 
an image intensity value of 1.0.

Table 1   Patient cohort details for internal CTA dataset

Mean age (SD) Patient sex Intracranial 
pathology

Prior surgery

63 (7.3) Male 57 (55%)
Female: 43 

(45%)

Yes: 51 (50%)
No: 52: (50%)

Yes: 41 (40%)
No: 62: (60%)
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Manual Segmentation of CTA Data

Initial brain segmentations for 20 CTA exams were achieved 
using simple thresholding at 300 Hounsfield units (HU) fol-
lowed by binary morphologic erosion, isolation of the largest 
26-connected three-dimensional component, and morphologic 
dilation using a 3-voxel spherical kernel. Segmentations were 
manually corrected by senior radiology trainees and approved 
by a fellowship-trained attending neuroradiologist utilizing the 
ITK-SNAP software [21]. Segmentation included the entire 
intracranial and visible upper cervical intrathecal contents 
(regardless of density), all major intracranial blood vessels 
(inclusive of any vascular calcifications/age related changes), 
and any intracranial surgical material (e.g. shunts, aneurysm 
clips). Segmentation was truncated in the plane of skull base 
foramina (except foramen magnum) and in the plane of any 
existing craniotomy defects. The entire intracranial internal 
carotid artery (including the petrous segment) was included in 
the segmentation to the level of the carotid foramen. The first 
20 manually corrected exams were used to train a preliminary 
neural network as described in the next section. This prelimi-
nary network was then used to generate initial segmentations 
for the remaining internal and external cases, which were sub-
sequently manually corrected and reviewed by an attending 
neuroradiologist as previously described.

Automated Segmentation Network Architecture

A 3D deep convolutional neural network (dCNN) based on 
the U-net architecture and adapted from a previously pub-
lished method for brain extraction from 3D MRI data was 
implemented in Python 3.8 and Tensorflow 2.9.1 [22, 23]. 
The encoder limb of the U-net consisted of 3 sets (3, 3, and 4, 
respectively) of bottleneck residual convolution blocks with 
3 × 3 × 3 voxel kernels, which were separated by 2-strided con-
volution down-sampling blocks. The decoder limb was the 
reverse separated by 2-strided convolution transpose upsam-
pling blocks. Long range concatenation skip connections 
were included before each down-sampling/up-sampling step. 
A base of 32 output filters was chosen for convolution layers, 
which was doubled with each down-sampling step and halved 
with each upsampling step. The output layer consisted of a 3D 
convolutional layer with a single output filter (logit), which 
was transformed into a probability using the sigmoid logistic 
function. Batch normalization and 40% feature dropout was 
implemented at each bottleneck residual convolution block. 
The final model had a total of 799,937 trainable parameters.

Network Training and Validation

The internal cohort dataset was randomly divided according 
to a 70%/15%/15% training/validation/testing split. Training 
comprised 20 epochs iterating through the entire training 

dataset (72 CTAs). Training inputs consisted of 80 × 80x80 
voxel overlapping 3D patches from the training data. Random 
dimension swaps and 3-axis rotations of ± 30 degrees were 
employed for data augmentation. Model weights were initial-
ized using the Glorot and Bengio [24] initializer at the begin-
ning of training. The training loss function was the product of 
the voxel wise Dice coefficient and voxel wise binary cross 
entropy and was minimized using the Adam optimizer. The 
learning rate was set to 0.001 for the first 12 epochs, and 
then halved prior to each subsequent epoch. Training was 
accomplished using two Nvidia A6000 GPUs with a mir-
rored distribution strategy and a batch size of 12 samples per 
GPU (24 samples per training step). Training validation was 
accomplished using the 15% validation split after each train-
ing epoch. The model weights yielding the lowest validation 
loss (epoch 20/20) were used for subsequent testing.

Network Testing

The trained model was evaluated on the held out 15% test 
split from the internal dataset. Quantitative model perfor-
mance was evaluated using the Dice coefficient between the 
model generated segmentations and manual segmentations. 
The Dice of our algorithm was then compared against a pub-
licly available non-contrast head CT bone removal algorithm 
[25] utilizing the same patient datasets.

External Testing

An independent external testing dataset consisting of 17 
CTAs was selected from the UCLH Stroke EIT Dataset 
[26] This dataset consisted of a total of 22 patients who had 
stroke related imaging, however only 17 of the patients had 
CTA imaging of the head as part of their workup. Scanner 
make and model and details of acquisition technique were not 
available for this dataset. Data preprocessing methods were 
identical to the internal dataset. All external dataset manual 
segmentations were reviewed for accuracy and approved by 
both a fellowship-trained neuroradiology attending and a 
fellowship-trained neurointerventional radiology attending. 
The trained segmentation model was evaluated on the exter-
nal dataset using identical methods to the internal testing.

Data Visualization and Volume Rendering

Automatically segmented data from the internal and 
external test datasets were visualized with MIP and VR 
techniques using publicly available software (Horos15) 
which could be used to all analyze internal and external 
data regardless of acquisition technique. Qualitative seg-
mentation accuracy was assessed by determining which 
bone removal method yielded subjectively superior three-
dimensional VR visualization of the carotid siphons (with 
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an emphasis on identifying cases which were missing 
significant portions of one or both carotid arteries after 
bone removal). Upon identifying these cases, chi-square 
analysis was performed comparing the frequency of suc-
cessful carotid siphon segmentation (those cases with both 
carotids segmented without gaps) between the Horos bone 
removal tool and our algorithm.

Results

Study Design

A diagrammatic flow chart of the study design is presented 
as Fig. 1.

Network Training

Training comprised 20 epochs, each with > 300,000 indi-
vidual training examples and lasting approximately 135 mi 
for a total training time of approximately 45 h. A graphical 
schematic of the model is provided as Supplementary Fig. 1. 
The loss function decremented appropriately throughout 
training with a total loss reduction of ~ 130 × between the 
first and last epoch (Supplementary Fig. 2). Validation loss 
also decremented appropriately throughout training and 
reached its lowest value at the final (20th) epoch; however, 
some validation loss oscillation was noted in the last 10 
epochs indicating that additional training epochs would be 
unlikely to provided substantial improvement in model per-
formance [27, 28].

Fig. 1   Summary of study design including the number of patients 
included in the internal training, validation, and both internal/exter-
nal test sets. Segmentation accuracy was compared quantitatively to 

manual segmentations (Dice coefficient) and qualitatively to an exist-
ing publicly available automated bone removal algorithm
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Quantitative Assessment of Segmentation Results

After training, the average Dice overlap between automated 
and manually corrected segmentations was 0.986 for the 
internal test dataset, and 0.979 for the external test data-
set. Figure 2 shows areas of over- and under-segmentation 
for a representative CTA brain image from the external test 
dataset. The corresponding Dice overlap utilizing another 
publicly available bone removal algorithm was 0.947 for the 
internal test dataset, and 0.938 for the external test dataset. 
Example segmentation masks (for representative internal 
and external dataset cases) comparing algorithms are shown 
in Supplementary Fig. 3.

Qualitative Assessment of Segmentation Results

Qualitative analysis with the publicly available automated 
bone removal tool from Horos revealed that both carotid 
siphons were segmented without any gaps in 0/15 internal 
cases and 0/17 external cases. This was compared to our 
developed algorithm which segmented both carotid siphons 
without gaps in 14/15 (93%) of internal cases (chi-square 
statistic of 22.5, p-value of < 0.00001) and 15/17 CTAs 

(88%) in the external dataset (chi-square statistic of 23.1, 
p-value of < 0.00001). A representative visual (VR) com-
parison of the two bone removal methods is shown in Fig. 3.

Visualization of Neurovascular Anatomy 
and Pathology

MIP reformats were generated to allow visualization of key 
vascular anatomy such as the basilar artery (Fig. 4A) to dem-
onstrate that bone removal allows for subjectively improved 
visualization of normal anatomy (Fig. 4B). Similarly, bone 
removal subjectively improved visualization of skull base 
vascular pathology such as an ophthalmic segment carotid 
artery aneurysm (Fig. 4C, D).

Data and Code Availability

The entire codebase for this project is open source and publicly 
available at https://​github.​com/​ecala​br/​brain_​mask (specific 
commit ID: ee86a9678d07508c2f990f5d878350b3dae8ac51). 
The final trained model weights are also provided. External 
image data is available at https://​doi.​org/​10.​5281/​zenodo.​11993​
9826. Internal cohort image data is not publicly available.

Fig. 2   Regions of over- and 
under-segmentation for a 
representative automated CTA 
brain segmentation from the 
external test dataset. Regions of 
over-segmentation are shown 
as red pixels while regions of 
under-segmentation are shown 
in green. Accurately segmented 
regions are shown in blue

https://github.com/ecalabr/brain_mask
https://doi.org/10.5281/zenodo.119939826
https://doi.org/10.5281/zenodo.119939826
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Discussion

Here we report a new deep learning-based technique for 
bone removal from standard CTA images of the brain, 
which addresses many of the issues that limit previously 
available methods. The proposed technique is generalizable 
in its applicability, as it was able to remove bone accurately 
and reliably from standard CTA brain data regardless of 
scanner type. This included cases from an external dataset 
where scanner model and technique was neither controlled 
nor available at the time of processing. We further demon-
strate the potential utility of this method by using it to visu-
alize the internal carotid arteries at the skull base, a loca-
tion which has proved challenging for many existing bone 
removal techniques. The proposed bone removal algorithm 
yielded superior VR visualization of skull base vascular 
anatomy compared to other currently available techniques, 
and outperformed other previously created bone removal 
algorithms.

The advantages of our developed tool are that it can be more 
broadly applied than acquisition-based techniques that require 
special equipment (digital subtraction CTA, dual energy/

photon counting CT), it is more accurate than currently avail-
able threshold-based approaches, and it is significantly faster 
than manual segmentation. In contrast to prior deep learning-
based approaches, the proposed technique was trained and 
evaluated on patients with and without neurovascular pathol-
ogy and/or prior intracranial intervention, and was designed 
to accurately segment both venous and arterial anatomy [18].

The broad applicability of the proposed technique opens 
the door for a variety of neurovascular visualization applica-
tions. For example, automated bone removal can simplify 
generation of MIP or VR visualizations of the circle of 
Willis, which are often created by CT technologists and/or 
radiologists for standard diagnostic CTAs of the brain. In 
addition, vascular pathology that closely opposes osseous 
structures (such as the relationship of the internal carotid 
arteries to the clivus) can be more clearly visualized after 
bone removal. This is demonstrated by the superior visu-
alization of an ophthalmic segment internal carotid artery 
aneurysm following bone removal as shown in Fig. 4C 
and D. While we did not assess diagnostic accuracy in this 
study, it is possible that these improvements in visualiza-
tion of neurovascular anatomy may improve detection and 

Fig. 3   Frontal A, C and lateral 
B, D three-dimensional volume 
rendered visualization with 
surface shaded display of the 
same CTA brain data after 
bone removal with a publicly 
available threshold-based bone 
removal method A, B and the 
proposed deep learning method 
C, D. Visualizations of both 
methods are shown with the 
same window/level and lighting 
parameters. Notably both arte-
rial and venous anatomy is more 
clearly visualized with the deep 
learning method
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accurate characterization of key vascular pathology. This is 
especially relevant given the various factors that contribute 
to diagnostic error [29], commonly reported “blind spots” 
on head/neck imaging [30], and that 33% of missed cerebral 
aneurysms involve the internal carotid artery [31]. Interest-
ingly, other bone removal techniques have been reported to 
contribute to the misdiagnosis of certain aneurysms [32], 
which can have a significant impact on patient outcomes 
[10]. For this reason, thorough clinical assessment of this, or 
any similar postprocessing technique, will be required prior 
to clinical implementation.

More creative applications of this technique are also 
now a possibility. Given the ease by which 3D reformats 
can be manipulated after bone removal, processed CTA 
data could be used for endovascular neurosurgical plan-
ning such as determining the optimal projections for visu-
alizing the pathology of interest (for example an aneurysm 
to be coiled) prior to the intervention. The deep learning 
method described here may also be applicable to other 
similar neuroimaging tasks given that bone removal will 
not impact standard 3D processing techniques of the 
source data such as surface shaded display (SSD) and the 

application of Laplacian filters. The network architec-
ture that this work is based on (U-net) has proven to be 
extremely adaptable for a variety of semantic segmentation 
tasks, and we have taken steps to optimize this architecture 
for standard CT data. Further, we have made the codebase 
for this project freely available, including the network 
training code, to allow this algorithm to be retrained for 
other tasks. Possible future applications include extending 
this algorithm for bone removal of CTA neck and adapting 
for bone removal of non-contrast head CT to aid in the 
detection of extra axial hemorrhage.

This study has several important limitations, which 
should be carefully considered when interpreting the pre-
sented results. First, this algorithm was only evaluated on 
CTA brain data from the skull vertex to the skull base, and it 
was neither designed nor evaluated for segmentation below 
this level. In addition, our algorithm was trained on CTA 
images reconstructed at 0.65 mm slice thickness (before 
resampling to 0.5 mm isotropic). While this type of data 
is now routinely acquired and can be reconstructed from 
most current generation CT scanners, older scans acquired 
with thicker slices (such as 2–5-mm slices) are unlikely to 

Fig. 4   Maximum intensity 
projection (MIP) images of the 
basilar artery before A and after 
bone removal B demonstrates 
subjectively superior visualiza-
tion of normal anatomy with 
bone removal. Similarly, MIP 
images of the internal carotid 
artery before C and after 
bone removal D demonstrates 
subjectively superior visualiza-
tion of an ophthalmic segment 
aneurysm after bone removal 
(yellow dashed circles)
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perform as well with our algorithm. Another limitation is the 
relatively small training set of < 100 patients used to build 
the model. While we specifically curated the internal cohort 
to include a variety of neurovascular pathologies and inter-
ventions, there are many others (e.g., ECA to MCA bypass) 
that were not included and could lead to unexpected results 
during inference. This could be solved by training the algo-
rithm on a much larger more varied cohort, which will be 
an important area of future work. Finally, we employed a 
“human in the loop” semiautomated AI approach for gen-
erating gold-standard segmentations [33], which has some 
degree of inherent bias and could artificially boost quantita-
tive evaluation results. While this bias is very likely to be 
present, it is also likely to be small and should be further 
mitigated by the fact that segmentations were manually cor-
rected and reviewed by attending radiologists prior to use.

Conclusion

The proposed technique is a rapid and accurate method for 
automated removal of the skull from standard CTA of the 
brain. It outperforms existing publicly available methods for 
VR visualization of skull base vasculature, and closely mim-
ics expert reviewed manual segmentations. This technique 
facilitates post-processing and three-dimensional visualiza-
tion of both arterial and venous neurovascular anatomy in 
normal, diseased, and postoperative states, and may ulti-
mately be helpful for increasing efficiency and accuracy for 
diagnosing neurovascular pathology.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10278-​023-​00788-y.
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