
UC Irvine
ICS Technical Reports

Title
The utility of knowledge in inductive learning

Permalink
https://escholarship.org/uc/item/2xd1k9bk

Authors
Pazzani, Michael Pazzani
Kibler, Dennis Kibler

Publication Date
1990-06-25

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2xd1k9bk
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

The JJtility of Knowledge in Inductive Learning

Michael Pazzani Dennis Kibler
0 ·:>

Department of Information and Computer Science

University of California, Irvine, CA 92717

June 25, 1990

Technical Report 90-18

This research is partially supported by NSF Grant IRI-8908260. We would like to thank Ross Quinlan

for his advice on FOIL and Tim Cain, Caroline Ehrlich, Ross Quinlan, Wendy Sarrett and Glenn Silverstein

for reviewing a draft of this paper.

The Utility of Knowledge in Inductive Learning

Michael Pazzani
pazzani@ics.uci.edu

Dennis Kibl~r
kibler@ics.uci.edu

Department of Information & Computer Science
University of California, Irvine

Irvine, CA 92717 U.S.A.
(714) 856-5951

TOPIC- MACHINE LEARNING

Abstract

In this paper we demonstrate how different forms of background knowledge can be
integrated with a top-down inductive method for generating constant-free Horn­
clause theories. Furthermore, we evaluate, both theoretically and empirically, the
value that these types of knowledge will have on the cost of generating a correct
Horn-clause theory. The taxonomy of background knowledge and associated costs
provides a useful guide in directing the acquisition of knowledge. Moreover, we
demonstrate that a hybrid explanation-based and inductive learning method can
advantageously use an approximate domain theory, even when this theory is incor­
rect and incomplete.

1 Introduction

Existing systems that combine empirical and explanation-based learning either
severely restrict the domain theory (e.g. to attribute-value pairs (Lebowitz, 1986;
Danyluk, 1989), or to unary predicates (Hirsh, 1989; Mooney & Ourston, 1989;
Katz, 1989; Shavlik & Towell, 1989; Pazzani, 1989; Sarrett & Pazzani, 1989)) or
they acquire general relational concepts but only under very restrictive circum­
stances (e.g., OCCAM (Pazzani, 1988), IOE (Flann & Dietterich, 1989), ML­
SMART (Bergadano, Giordana, & Ponsero, 1989)). Such simplistic domain the­
ories, necessitated in part by the empirical learning component, reduce the ex­
pressiveness of explanation-based learning and the applicability of the resulting
integrated learning system.

A recent advance in Horn-clause concept learning, FOIL (Quinlan, 1989 & Quin­
lan, in press), eliminates the need for limiting the expressiveness of domain theories.
In this paper, we analyze the complexity of FOIL in terms of the size of hypothesis
space generated and tested during learning. We describe how FOIL can be extended
to use a variety of background knowledge either to increase the class of problems
that can be solved or to decrease the hypothesis space explored. We introduce a new
learning system, called Saran Wrap, that uses an information-based metric to evalu­
ate extensions to (possibly null) hypotheses of a concept definition. The extensions
may be proposed either by an inductive component or by an explanation-based
component. We demonstrate that the resulting system can make use of domain
knowledge when available to constrain the search for a hypothesis and can utilize
incomplete and incorrect domain theories in a uniform manner.

A secondary goal of this paper is to create a taxonomy of various types of
background knowledge and show the effect that each type of knowledge has on the
size of the hypothesis space or the portion of the hypotheses space searched. It is
hoped that this taxonomy can be used to illuminate the similarities and differences
between the types of background knowledge used in a variety of systems including
COBWEB (Fisher, 1988), CIGOL (Muggleton & Buntine, 1988) and OCCAM
(Pazzani, 1988).

2 Background: FOIL

FOIL (Quinlan, in press) inductively generates constant-free Horn-clause the­
ories in a manner similar to that used by ID3 (Quinlan, 1986) which generates
decision trees with attribute-value tests. In particular, FOIL uses a divide-and­
conquer approach guided by a heuristic based on information theory. In order to
review Quinlan's approach we need to introduce some terminology. A Horn-clause
definition for a concept Po(Vo,i, ... , Vo,no) consists of a disjunctive set of clauses.
Each clause consists of a head and a conjunction of terms:

Po(VO,i, ... , VO,n0): -P1(Vl,i, ... , Vi,nJ, ... , Pm(Vm,t, ... , Vm,nm)•
We will call (Vm,i, ... , Vm,nm) a variablization of a predicate Pm. A variable Vm,i

of a term Pm(Vm,1 , ... , Vm,nm) will be called old if it appears either in the head or in

1

any unnegated term to the left of Pm. Otherwise, the variable will be called new.
Since FOIL is currently under development, we present here only its essential

characteristics. 1 We assume that we are given a collection of labeled instances, a
set of known predicates, and an unknown predicate P of known arity that we are
to learn. The task is to determine a Horn-clause definition of P in terms of the
given predicates as well as (in a limited manner) the predicate P.

Let Pos be the set of positive instances and let Neg be the set of negative
instances. Actually the notion of an instance requires some elaboration. Similar
to AQ (Michalski, 1980), FOIL has tw~~~ding clauses to the theory
until every positive instance is covered and forrg_ing clau_~~~that slo !:l~<?_t contain any
negative instances. Positive instances are covered as follows:

Until Pos is empty
Construct a clause that covers some positive instance and avoids all
negative instances.

Add clause to the theory.
Remove those elements of Pos that are covered by the new clause.

Constructing a clause that misses all negative instances can also be described
simply. Note that the clause Po(Vo,1 , ... , Vo,n0) +-true covers all positive instances.
To avoid negative examples, this clause is specialized in the following manner:

Let Po(Vo,i, ... , Vo,n0) +- true be the initial clause
· Let Old be (Vo,i, ... , Vo,n0).

Let Pos be the positive examples not satisfied by the current definition.
Let Neg be the negative examples.
Until Neg is empty

Choose the predicate and variabilization with the maximum gain.
Make the variablized predicate a term in the body of the clause.
Add any new variables in the term to Old.
Let Pos be all extensions of Pos that are satisfied by the term.
Let Neg be all extensions of Neg that are satisfied by the term.

At this level of abstraction, FOIL is quite simple. It uses hill-climbing to add the
term with the maximum information gain to a clause. For each variabilization of
ea~h predicate P, FOIL measures the information gain, which is defined differently
from ID3. Without going into the exact computation, (see Quinlan, in press) we
note that, in effect, the information metric checks every possible value of each
variable in the term for whether the term is true. The old variables take on values

1 All of the experiments we report were run on a rational reconstruction of the initial version of
FOIL. In particular, later versions allow for inexact clauses, post-pruning, heuristic search control
and various search optimizations.

2

from the training examples (or extensions to training examples). The new variables
take on every possible value from the constants of the domain. When FOIL adds
a term to a clause, it updates the set of old variables with the new variables of the
term, and extends the set of positive and negative examples by adding all values
for the new variables (provided the term is true with these values).

3.0 Analysis of FOIL

To begin, we estimate the cost of adding a single term to a clause. There are
two reasonable measures we might use to estimate this cost. One measure, called
the theory-cost, is independent of the number of examples and tells us how many
different terms can be choosen to extend the body of the given clause. The second
measure, called the evaluation-cost, depends on the particular examples that are
given and measures the total number of examples that are checked to compute the
term with the maximum information gain.

First, we give a worst-case analysis for the theory cost. For this analysis let
Max be the maximum arity of any predicate, Pred be the number of predicates,
and Var be the number of variables in the current clause. To add a new predicate
we may choose from one of Pred predicates. If the predicate has arity Max (the
worst case), then we must consider choosing Max variables from Var old variables
and Max - 1 new variables (FOIL requires that at least one variable in a term be
old). A simple upper bound on this is: (Var+ Max - l)Max - (Max - l)Max.
Consequently, the theory cost is:

TheoryCost = Pred *((Var+ Max - l)Max - (Max - l)Max) (1)

A simpler approximation of this formula is:

TheoryCost = Pred *(Var+ Max)Max (2)

One can make a number of qualitative inferences from this formula. In particu­
lar, it shows that additional predicates increase the cost by a linear amount, while
increasing the maximum arity of the predicates increases the size of the search space
exponentially.

In order to estimate the cost of evaluating a predicate, which is the main cost in
running FOIL, we need to count the number of the examples being tested. At this
stage in the algorithm, there are as many as Max variables which require instan­
tiations. Let Const be the number of constants or values that variables could take
on. Then, in the worst case, that could lead to ConstMax examples. Consequently,
the total cost of selecting the right predicate is bounded by:

EvaluationCost = TheoryCost * ConstMax (3)

This shows that arity of predicates and the length of clauses, in terms of the number
of distinct variables, and the number of constants are all going to play a strong role
in limiting the size of theories that can be learned.

3

In the subsequent sections we will show how by adding knowledge, we can
reduce, sometimes dramatically, these costs. Somewhat surprisingly, this analysis
will also show that sometimes large amounts of knowledge will have very little effect
on reducing the search space.

4.0 Saran Wrap

Saran Wrap extends FOIL in a variety of ways. Each of these extensions af­
fect only how Saran Wrap selects terms to test while extending a (possibly empty)
clause under construction. One class of extensions allows Saran Wrap to use se­
mantic constraints to limit the search space. A second class of extensions allows
Saran Wrap to accept partial Horn-clause theories, containing both operational and
non-operational predicates. These extensions allow Saran Wrap to take advantage
of incorrect and incomplete domain theories with surprising success.

In the following sections, we describe these extensions in more detail and eval­
uate the effect of each extension on the number of terms tes· -·d by SaranvVrap. To
illustrate these extensions we use two domains. The first d, , nain, that of learning
the member predicate, illustrates how a simple recursive concept can be learned.
FOIL is provided with positive and negative examples of the member predicate
(e.g., member(b, [a, b, c]) notmember(a, [b, c]) and the component predicate (e.g.,
component(a, [b, c], [a, b, c]) and learns a recursive definition for member:

member(X, Y): -component(X, Z, Y).
member(X, Y): -component(A, B, Y), member(X, B).

The second domain is much more complicated and was introduced by Muggleton
et al. (1989). The concept description varies from four to eleven clauses, depending
upon the predicates used. The predicate to be learned is illegal(A,B,C,D,E,F)
which is true if a chessboard containing a white king and rook and black king is in
an illegal state. A state is illegal if either king is in check or more than one piece
occupies the same space. A. and Bare the position of the white king (file and rank),
C and D are the white rook's position, and E and F are the black king's position.
In this example, the operational predicates used are between(X, Y, Z) (the value
of Y is between the values of X and Z), adjacent(X, Y) (the value of X is either
one greater or one less than the value of Y) and equal(X, Y) (the values of X and
Y are equal). This domain suggests that Saran Wrap can handle realistically sized
problems.
4.1 Semantic Constraints: Single arguments Semantic constraints may be

placed on either the type of arguments or the combination of arguments. Type
constraints provide a useful and inexpensive way of incorporating a simple form
of background knowledge. Saran Wrap can easily take advantage of typing infor­
mation. Typing information reduces the search space in two manners. 2 First,

2Quinlan (in press) mentions how type constraints may be used (in combination with the

4

it is not necessary to test terms where the types of old variables conflict with
the usage of these variables as arguments to a predicate. More precisely, let
us assume that a domain has T types and in the best case these types are dis­
tributed equally among the variables. Then, with typing, theory-cost can reduce to
TheoryCost = Pred *(Var+ Max)/TMax, an exponential reduction. Second,
it is not necessary to test terms against examples where the type of the con­
stant conflicts with the type of the variable. This reduces the evaluation cost to
TheoryCost * (Const/T)Ma:r:/T. This shows that in the best case typing can reduce
the search space by an exponential amount. In practice, the reduction, though
significant, is less the best case.

In the chess domain, typing information was used to ensure that the predicates
between, equal, and adjacent were only applied to either all ranks or all files. The
benefit of typing is illustrated by the fact that Saran Wrap, using typing, tests 3240
terms and 242,982 examples as compared to 10,366 terms and 820,030 examples
for Saran Wrap without typing when learning illegal from 641 randomly selected
positive and negative training examples.
4.2 Semantic Constraints: Multiple Arguments A second type of semantic
constraint involves inter-argument constraints, the relationship between the argu­
ments of a predicate. For example, equal(X, X) is trivially true and between(X, X, Y)
is trivially false. Such expressions should not play a part in a concept definition
and therefore it is wasteful to test hypotheses including these terms.

So far, we have only implemented the case in which it is necessary for all of the
variables in a term to differ. Providing such inter-argument constraints on terms
when Saran Wrap learns illegal considerably reduces the size of the hypothesis space
explored. Unlike typing, inter-argument constraints only reduce the number of
variablized terms generated and do not reduce the number of examples on which a
term is tested to compute the information gain.

The value of inter-argument constraints is illustrated by the fact that Saran Wrap
using typing and inter-argument constraints tests 1296 terms and 109,350 examples
as compared to 3240 terms and 242,982 examples for Saran Wrap using only typing.
4.3 Operational Domain theory In the next sections, we consider ways in which
a domain theory can improve upon inductive learning. First we will consider the
case where the domain theory is a (possibly incorrect) partial, operational Horn-:
clause definition of a concept, and then we will consider the non-operational case.
The second case divides into two cases: one where we are given non-operational
predicates and the other where we have a non-operational concept definition.

Incremental concept learning systems such as COBWEB (Fisher, 1987) build up
a partial (operational) concept definition. This partial concept definition influences

closed-world assumption) to generate negative examples of the predicate to be learned from the
positive examples. However, type constraints are not used to eliminate terms from consideration
or to extend both positive and negative examples.

5

how further examples are processed. Langley (1989) has argued that a hypothesis
maintained by an incremental learning system is analogous to the domain theory
of an explanation-based learning system. The extension of SaranWrap to use a
partial, operational Horn-clause theory is straightforward. Saran Wrap processes
each clause in the order they are given. Processing a clause consists of computing
the positive and negative examples that satisfy the clause. If there are no positive
examples, then the clause is deleted. If there are no negative examples, then the
clause is accepted verbatim as part of the concept definition. If there are both
positive and negative examples satisfied by the clause, Saran Wrap specializes the
clause by conjoining new terms in the same manner as FOIL extends a clause. The
processing and possible extension of each clause insures that there is at least one
positive example and no negative examples satisfied by each clause. At this stage,
the partial definition may not correctly classify all positive examples. If there are
positive examples not satisfied by the current Horn-clause theory, additional clauses
are added in the same manner that FOIL creates new clauses.

The effect of providing a partial concept definition is quite surprising. In general,
search in FOIL is dominated by the last term of the clause with the largest number
of variables. This means that if a partial theory that is nearly complete, but omits
the last conjunct of the clause with the largest number of distinct variables, reduces
the search by only a negligible amount.

This is illustrated by the following experiment. We gave Saran Wrap three partial
definitions of the member function, namely:

1. member(X, Y): -component(X, Z, Y).
2. member(X, Y): -component(X, Z, Y).

member(X, Y): -component(A, B, Y).
3. member(X, Y) : -component(X, Y, Z).

The first two definitions are partial but correct. The last is incorrect. Saran­
Wrap tests 268, 228 and 308 terms and 20140, 12167 and 23358 examples with
the above partial concept definitions as compared to FOIL's 308 terms and 23,057
examples. Note that the correct partial definitions given do not significantly re­
duce the number of terms tested because the majority of the work is needed to add
the last term to the last clause of member. The incorrect partial definition does
not increase the number of terms tested but does increase the number of examples
tested.
4.4 Non-Operational Predicates Partial theories involving operational pred­
icates are not necessarily very valuable. Next, we consider domain theories using
non-operational predicates, i.e., ones which are defined in terms of operational and
other non-operational predicates. Systems such as CIGOL (Muggleton & Bun­
tine, 1988)' make use of (or invent) a background knowledge of this form. For
example, if an operational definition of the predicate between(X, Y, Z) is not pro­
v ,d, it could be defined in terms of the operational predicate less..than by:

6

between(X, Y, Z) : -less_than(X, Y), less.:than(Y, Z).
One advantage of the non-operational predicates is illustrated by the fact that

between(X, Y, Z) may have positive information gain, while less_than(X, Y) and
less.:than(Y, Z) may have negative gain. Therefore, FOIL's hill-climbing search
may not learn a concept that involves less_than(X, Y), less_than(Y, Z). Note that
it would be computationally prohibitive to consider all conjunctions of length two
of the operational predicates. In general, this would more than square the theory­
cost and nearly square the evaluation-cost, both of which are usually large. Non­
operational predicates provide information on what particular combinations of op­
erational predicates may be useful and allow Saran Wrap to simulate a selective
look-ahead.

Non-operational predicates are evaluated in the same manner as operational
predicates in Saran ·wrap. The information gain of all terms that variablize a
non-operational predicate is computed. If the term with the most gain is non­
operational, then the term is operationalized and the operational definition is added
to the clause under construction.

The operationalization process in Saran Wrap differs from that of EBL in that
it is guided by an information gain metric over a set of both positive and negative
examples rather than a single positive example. As in EBL, the operational defini­
tion for a predicate may specialize the predicate if the domain theory is disjunctive
(i.e., if there are multiple clauses for any non-operational predicate). In EBL, the
predicates that are the leaves of the proof tree of the single training example are
used as the operational definition. In Saran Wrap, the information gain metric is
used to determine how to expand a proof tree, in the following manner:

operationalize(Predicate, Pos, Neg):
Initialize body to the empty set.
for each clause in the definition of Pred of Predicate

compute_gain(clause, Pos, Neg)
for the clause with the maximum gain

for each term T in the clause
if T is operational add T to body
else add operationalize(T, Pos, Neg) to body.

Due to its reliance on hill-climbing search, FOIL is unable to learn a completely
correct definition of illegal using only less_than, equal and adjacent. When Saran­
Wrap is also given a non-operational definition of between in terms of less_than, it
finds a completely correct definition in terms of the operational predicates less.than,
equal and adjacent.

A disadvantage of using non-operational predicates in this manner is that each
additional non-operational predicate, particularly those with many arguments, in­
creases the search space. This has the undesirable consequence that the more one

7

knows, the slower one learns. This became obvious when we added rules from a
domain theory of chess to Saran Wrap. These rules indicate facts such as a king
is in check if there is an opposing rook in the same file as the king and there is
not another piece between the rook and king. With this domain theory, Saran Wrap
tested 3063 terms and 283,602 examples to find an operational concept definition as
opposed to 1296 terms and 109,350 examples when just the operational predicates
are searched.
4.5 Non-Operational Concept Definitions In the previous section, we pointed
out how adding background knowledge in the form of a. domain theory can increase
the ability of Saran Wrap to find solutions. However, increasing the size of the
domain theory may increase the search space explored by the learning program.
In explanation-based learning, the search for a concept definition is facilitated by
providing the learning system with a target concept (Mitchell, Keller, & Kedar­
Cabelli, 1986). The target concept is assumed to be a correct, non-operational
definition of the concept to be learned and the domain theory is assumed to be
correct. In Saran ·wrap, we relax the assumptions that the target concept and the
domain theory are correct. Because Saran Wrap makes use of multiple training
examples, it has the potential of learning a correct concept definition in spite of
these inaccuracies.

When a non-operational target concept is provided to Saran Wrap, it computes
the information gain of the terms that are conjoined together to form the tar­
get concept. Saran Wrap operationalizes the term in the target concept with the
maximum gain (provided the gain is positive). Otherwise, the clause is extended
inductively by incorporating the variablization of operational predicate with the
maximum gain. In this manner, Saran Wrap prefers to use an explanation-based
method but can use an inductive method if the domain theory is incomplete or
inaccurate (Pazzani, 1988)3 • When Saran Wrap is provided with a correct target
concept and the domain theory of the pr ·ious section, it finds a correct definition
of illegal by testing 72 terms and 9713 t .nples.

This extension will tolerate incomplete and incorrect theories because the terms
used to extend a clause are tested by an information-based based metric to make
sure they have positive gain. If there is no explanation-based extension with positive
gain, then Saran Wrap incorporates terms inductively. We have tested Saran Wrap
with an incorrect target concept (which leaves out the constraint that a chessboard
is illegal if two pieces occupy the same square). In this case, Saran Wrap tests 432
terms and 22, 788 examples. We also tested Saran Wrap with an incorrect domain
theory that included an erroneous clause stating that a king could move like a knight
(and therefore it is illegal for the opposing kings to be a knight's move apart). In

3We have also experimented with a version that compares the information gain of all opera­
tional terms to the information gain of the terms in the target concept. In all of the experiments
reported in this paper, this alternative requires more search.

8

this case, Saran Wrap tested 435 terms and 47,195 examples.
In the next section, we present experiments in which we systematically perturb

the domain theory and indicate the effects on the search performed by Saran Wrap.

5.0 Experiments

The following experiments demonstrate that Saran Wrap, using a combination of
explanation-based and empirical learning methods, can advantageously use partial
domain theories, even when these theories contain severe errors. Incorrect domains
theories for the definition of illegal are generated from a correct theory by four
different perturbation operators, specifically randomly deleting or adding either a
term or clause from/to the given theory. Note that deleting a term or adding a
clause causes the theory to become overly general while adding a term or deleting
a clause causes the theory to become overly specialized.

In the first set of experiments each perturbation operator was applied individ­
ually but possibly multiple times. Figure 1 plots the accuracy of the resulting
domain theory (averaged over 10 trials on either the positive or the negative train­
ing examples as appropriate according to the type of modification) and the number
of terms tested by Saran vVrap for each operation as a function of the number of
modifications to the domain theory. (There were fewer than 10 modifications pos­
sible for deleting clauses or terms.) Note that in every case Saran Wrap learns a
concept that is more than 99% accurate when tested on a set of 2,000 examples
in spite of a domain theory that is quite inaccurate. In each case, the same 641
randomly selected training examples are used. Also note that Saran Wrap is able to
exploit extremely inaccurate domain theories to constrain the search for a concept
definition.

Through a single mechanism, Saran Wrap responds to each type of modified
domain theory in a different manner. If these modifications result in negative gain,
Saran Wrap will not operationalize this rule but instead finds an accurate definition
using as much of the domain theory as possible and fills in the remainder with its
bottom-up inductive method.
5.1 Term Deletion: If the terms defining a clause have positive gain, then
Saran Wrap can operationalize the clauses that are not altered in a purely top-down
fashion. If the clause has positive gain with the term deleted, then Saran Wrap can
operationalize this clause and then use bottom-up inductive methods to complete
the definition. Quite often, using bottom-up methods, the operational definition
contains the term that was deleted.
5.2 Clause Deletion: If the terms relying on a rule have positive gain, then
Saran Wrap can operationalize the clauses that are not deleted. Operational de­
scriptibns equivalent to the remaining clauses (i.e., they cover the positive training
examples not covered by the remaining clauses and do not cover any negative ex­
amples) are added in a bottom-up fashion.
5.3 Term Addition: Often, the clauses unaffected will have greater positive gain

9

than the affected clause and will be operationalized f:. 1t. At this point, the terms
relying on a modified clause will not have positive gain, and an operational descrip­
tion equivalent to the clause before modification is added inductively. Occasionally,
the clause has positive gain, and it is included in a concept definition anyway. To
cover additional positive examples, Saran Wrap inductively adds clauses. Saran­
vVrap does not delete terms from operationalized descriptions and does not sim­
plify Horn-clauses after learning. Therefore, when a clause with an additional term
definition is operationalized, it is possible that an additional, more general term
is learned inductively. This does not affect the accuracy of the resulting concept,
but merely results in the induced theory having redundant clauses. A simple post­
processor could be added to detect and simplify the definition (Quinlan, personal
communication).
5.4 Clause Addition: Saran Wrap operationalize clauses with maximum gain and
it is unlikely that random'.:: added c! rnses will have more gain. In effect, Saran Wrap
uses information gain as a method to find a subset of the domain theory that is
accurate. Cohen (1990) also presents a technique to deal with this problem by
finding all possible explanations and using a greedy set covering technique to find
a useful subset of the domain theory. In contrast, Saran Wrap serially finds an
operational specialization with the highest positive gain on all training examples
and makes this the first clause. It removes those positive training examples covered
by that clause, and finds the next specialized operational definition.

It is important to stress that Saran Wrap does not contain any special code to
deal with each type of modification. Rather, the above behavior falls out of using a
uniform, information-based heuristic to judge the usefulness of operationalizing the
target concept or using bottom-up methods to extend or add a clause. With these
modifications, Saran Wrap with a domain theory performed sufficiently better than
Saran Wrap without a domain theory even using domain theories that classified
fewer than 50% of the training examples correctly.

We also ran experiments in which all of the above modifications were performed
simultaneously on the domain theory, yielding an domain theory that misclassifies
both positive and negative examples. Figure 2 plots the accuracy of the domain
theory and the number of terms expanded by Saran Wrap mode when the domain
theory was modified by adding or deleting clauses and terms as a function of the
number of modifications to the domain theory (averaged over 12 trails). As in the
previous examples, the concept learned by Saran Wrap is greater than 99% accurate
when tested on 2000 test examples.

The results of adding and deleting clauses and terms indicate that Saran Wrap
with an incorrect and incomplete domain theory generally explores a smaller portion
of the search space than Saran Wrap without a domain theory until the domain
theory falls below 70% accuracy.

10

1 ..
0

6 Conclusions

In this paper, we have evaluated a number of types of knowledge with regard
to aiding the inductive task of theory formation. We demonstrated that semantic
constraints, whether on single arguments as in typing or on multiple arguments,
are easy to add and yield great benefit. We also considered background knowledge
in the form of partial theories. Somewhat surprisingly, we saw that an operational
partial definition will reduce the search very little, while a non-operational partial
definition and a supporting domain theory can reduce search by an exponential
amount. A domain theory without a non-operational partial definition (i.e., a
target concept) can increase the number of problems solved by hill-climbing and
the cost of increasing the size of the search space for all problems. By classifying
the various types of knowledge and knowing the value of each piece of knowledge,
knowledge acquisition can be better directed. In addition, we demonstrated a means
for uniformly combining theory and inductive learning into a method which can
naturally and advantageously use and correct inconsistent and incomplete theories.

Acknowledgements

This research is partially supported by NSF grant IRI-8908260. We would like
to thank Ross Quinlan for his advice on FOIL and Tim Cain, Caroline Ehrlich,
Ross Quinlan, Wendy Sarrett and Glenn Silverstein for reviewing a draft of this
paper.

1500

• +Clau..
1000 -c> -ClauMS ... +Terms

e 500
...

...
•

- Terms
NoDT

+ WithDT
+ NoDT

0 0
0 2 4 8 8 1 0

1.0

a.a
,.. 0.6
u

• + Clausee (neg)
-c> • Clauaes (pol) ... +Terms (pol)

e
~

0.4 • Tenna (neg)
u

0.2 u c
0.0

0 2 4 8 8 10

Number of MocUflcatlona to Domain Theory

Figure 1. Individual modifications to the Domain
Theory. +Terms indicates deleting terms
from the domain theory, - Causes indicates
deleting clauses, etc. No OT indicates the
domain theory was not used.

11

,..
i
~
Q

~

2 4 8 8 10 12 14 16

1.0

0.9

0.8

0.7 -0.8

0.5 _. _.,
0 2 4 8 8 10 12 14 18

Number of llodlftcatlona to Dom.In Theory

Figure 2. Combined Modification to the
Domain Theory

Positive
Negative

References

Bergadano, F., Giordana, A., & Ponsero, S. (1989). Deduction in top-down induc­
tive learning. Proceedings of the Sixth International Workshop on Machine
Learning (pp. 23-25). Ithaca, NY: Morgan Kaufmann.

Cohen, "William (1990). Abductive explanation-based learning: A solution to
the multiple explanation-problem (ML-TR-29). New Brunswick, NJ: Rutgers
University.

Danyluk, A. (1989). Finding new rules for incomplete theories: Explicit biases for
induction with contextual information. Proceedings of the Sixth International
Workshop on Machine Learning (pp. 34-36). Ithaca, NY: Morgan Kaufmann.

Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering.
Machine Learning, 2, 139-172.

Flann, N., & Dietterich, T. (in press). A study of explanation- based methods for
inductive learning, Machine Learning.

Hirsh, H. (1989). Combining empirical and analytical learning with version spaces.
Proceedings of the Sixth International Workshop on Machine Learning (pp.
29-33). Ithaca, NY: Morgan Kaufmann.

Katz, B. (1989). Integrating learning in a neural network. Proceedings of the
Sixth International Workshop on Machine Learning (pp. 69-71). Ithaca,
NY: Morgan Kaufmann.

Langley, P. (1989). Unifying themes in empirical and explanation-based learning.
Proceedings of the Sixth International Workshop on Machine Learning (pp.
2-4). Ithaca, NY: Morgan Kaufmann.

Lebowitz, M. (1986). Integrated learning: Controlling explanation. Cognitive
Science, 10.

Michalski, R. (1980). Pattern recognition as rule-guided inductive inference,IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2, 349-361.

Mitchell, T., Keller, R., & Kedar-Cabelli, S., (1986). Explanation-based learning:
A unifying view. Machine Learning1 1, 47-80.

Mooney, R., & Ourston, D. (1989). Induction over the unexplained: Integrated
learning of concepts with both explainable and conventional aspects. Pro­
ceedings of the Sixth International Workshop on Machine Learning (pp. 5-7).
Ithaca, NY: Morgan Kaufmann.

12

Muggleton, S., Bain, M., Hayes-Michie, J., & Michie, D. (1989). An experimental
comparison of human and machine learning formalisms. Proceedings of the
Sixth International Workshop on Machine Learning (pp. 115-118). Ithaca,
NY: Morgan Kaufmann.

Muggleton, S. & Buntine, W. (1988). Machine invention of first-order predicates
by inverting resolution Proceedings of the Fifth International Workshop on
Machine Learning (pp. 339-352). Ann Arbor, MI: Morgan Kaufmann.

Pazzani, M. J. (1988). Learning causal relationships: An integration of empirical
and explanation-based learning methods. Doctoral dissertation, University of
California, Los Angeles.

Pazzani, M. (1989). Explanation-based learning with weak domain theories. Pro­
ceedings of the Sixth International Workshop on Machine Learning (pp. 72-
74). Ithaca, NY: Morgan Kaufmann.

Quinlan, J. R. (1986). Induction of decision trees. !vfachine Learning) 1, 81-106.

Quinlan, J. R. (1989). Learning relations: Comparison of a symbolic and a con­
nectionist approach. Technical Report, University of Sidney, Syndey.

Quinlan, J. R. (in press) Learning logical definitions from relations.

Sarrett, vV., & Pazzani, M. (1989). One-sided algorithms for integrating empirical
and explanation-based learning Proceedings of the Sixth International Work­
shop on Machine Learning (pp. 26-28). Ithaca, NY: Morgan Kaufman.

Shavlik, J. & Towell, G. (1989). Combining explanation-based learning and ar­
tificial neural networks. Proceedings of the Sixth International ·workshop on
Afachine Learning (pp. 90-93). Ithaca, NY: Morgan Kaufmann.

13

11

3 1970 00802 9180

