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TOPIC- MACHINE LEARNING 

Abstract 

In this paper we demonstrate how different forms of background knowledge can be 
integrated with a top-down inductive method for generating constant-free Horn­
clause theories. Furthermore, we evaluate, both theoretically and empirically, the 
value that these types of knowledge will have on the cost of generating a correct 
Horn-clause theory. The taxonomy of background knowledge and associated costs 
provides a useful guide in directing the acquisition of knowledge. Moreover, we 
demonstrate that a hybrid explanation-based and inductive learning method can 
advantageously use an approximate domain theory, even when this theory is incor­
rect and incomplete. 



1 Introduction 

Existing systems that combine empirical and explanation-based learning either 
severely restrict the domain theory (e.g. to attribute-value pairs (Lebowitz, 1986; 
Danyluk, 1989), or to unary predicates (Hirsh, 1989; Mooney & Ourston, 1989; 
Katz, 1989; Shavlik & Towell, 1989; Pazzani, 1989; Sarrett & Pazzani, 1989)) or 
they acquire general relational concepts but only under very restrictive circum­
stances (e.g., OCCAM (Pazzani, 1988), IOE (Flann & Dietterich, 1989), ML­
SMART (Bergadano, Giordana, & Ponsero, 1989)). Such simplistic domain the­
ories, necessitated in part by the empirical learning component, reduce the ex­
pressiveness of explanation-based learning and the applicability of the resulting 
integrated learning system. 

A recent advance in Horn-clause concept learning, FOIL (Quinlan, 1989 & Quin­
lan, in press), eliminates the need for limiting the expressiveness of domain theories. 
In this paper, we analyze the complexity of FOIL in terms of the size of hypothesis 
space generated and tested during learning. We describe how FOIL can be extended 
to use a variety of background knowledge either to increase the class of problems 
that can be solved or to decrease the hypothesis space explored. We introduce a new 
learning system, called Saran Wrap, that uses an information-based metric to evalu­
ate extensions to (possibly null) hypotheses of a concept definition. The extensions 
may be proposed either by an inductive component or by an explanation-based 
component. We demonstrate that the resulting system can make use of domain 
knowledge when available to constrain the search for a hypothesis and can utilize 
incomplete and incorrect domain theories in a uniform manner. 

A secondary goal of this paper is to create a taxonomy of various types of 
background knowledge and show the effect that each type of knowledge has on the 
size of the hypothesis space or the portion of the hypotheses space searched. It is 
hoped that this taxonomy can be used to illuminate the similarities and differences 
between the types of background knowledge used in a variety of systems including 
COBWEB (Fisher, 1988), CIGOL (Muggleton & Buntine, 1988) and OCCAM 
(Pazzani, 1988). 

2 Background: FOIL 

FOIL (Quinlan, in press) inductively generates constant-free Horn-clause the­
ories in a manner similar to that used by ID3 (Quinlan, 1986) which generates 
decision trees with attribute-value tests. In particular, FOIL uses a divide-and­
conquer approach guided by a heuristic based on information theory. In order to 
review Quinlan's approach we need to introduce some terminology. A Horn-clause 
definition for a concept Po(Vo,i, ... , Vo,no) consists of a disjunctive set of clauses. 
Each clause consists of a head and a conjunction of terms: 

Po(VO,i, ... , VO,n0 ): -P1(Vl,i, ... , Vi,nJ, ... , Pm(Vm,t, ... , Vm,nm)• 
We will call (Vm,i, ... , Vm,nm) a variablization of a predicate Pm. A variable Vm,i 

of a term Pm(Vm,1 , ... , Vm,nm) will be called old if it appears either in the head or in 
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any unnegated term to the left of Pm. Otherwise, the variable will be called new. 
Since FOIL is currently under development, we present here only its essential 

characteristics. 1 We assume that we are given a collection of labeled instances, a 
set of known predicates, and an unknown predicate P of known arity that we are 
to learn. The task is to determine a Horn-clause definition of P in terms of the 
given predicates as well as (in a limited manner) the predicate P. 

Let Pos be the set of positive instances and let Neg be the set of negative 
instances. Actually the notion of an instance requires some elaboration. Similar 
to AQ (Michalski, 1980), FOIL has tw~~~ding clauses to the theory 
until every positive instance is covered and forrg_ing clau_~~~that slo !:l~<?_t contain any 
negative instances. Positive instances are covered as follows: 

Until Pos is empty 
Construct a clause that covers some positive instance and avoids all 
negative instances. 

Add clause to the theory. 
Remove those elements of Pos that are covered by the new clause. 

Constructing a clause that misses all negative instances can also be described 
simply. Note that the clause Po(Vo,1 , ... , Vo,n0 ) +-true covers all positive instances. 
To avoid negative examples, this clause is specialized in the following manner: 

Let Po(Vo,i, ... , Vo,n0 ) +- true be the initial clause 
· Let Old be (Vo,i, ... , Vo,n0 ). 

Let Pos be the positive examples not satisfied by the current definition. 
Let Neg be the negative examples. 
Until Neg is empty 

Choose the predicate and variabilization with the maximum gain. 
Make the variablized predicate a term in the body of the clause. 
Add any new variables in the term to Old. 
Let Pos be all extensions of Pos that are satisfied by the term. 
Let Neg be all extensions of Neg that are satisfied by the term. 

At this level of abstraction, FOIL is quite simple. It uses hill-climbing to add the 
term with the maximum information gain to a clause. For each variabilization of 
ea~h predicate P, FOIL measures the information gain, which is defined differently 
from ID3. Without going into the exact computation, (see Quinlan, in press) we 
note that, in effect, the information metric checks every possible value of each 
variable in the term for whether the term is true. The old variables take on values 

1 All of the experiments we report were run on a rational reconstruction of the initial version of 
FOIL. In particular, later versions allow for inexact clauses, post-pruning, heuristic search control 
and various search optimizations. 
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from the training examples (or extensions to training examples). The new variables 
take on every possible value from the constants of the domain. When FOIL adds 
a term to a clause, it updates the set of old variables with the new variables of the 
term, and extends the set of positive and negative examples by adding all values 
for the new variables (provided the term is true with these values). 

3.0 Analysis of FOIL 

To begin, we estimate the cost of adding a single term to a clause. There are 
two reasonable measures we might use to estimate this cost. One measure, called 
the theory-cost, is independent of the number of examples and tells us how many 
different terms can be choosen to extend the body of the given clause. The second 
measure, called the evaluation-cost, depends on the particular examples that are 
given and measures the total number of examples that are checked to compute the 
term with the maximum information gain. 

First, we give a worst-case analysis for the theory cost. For this analysis let 
Max be the maximum arity of any predicate, Pred be the number of predicates, 
and Var be the number of variables in the current clause. To add a new predicate 
we may choose from one of Pred predicates. If the predicate has arity Max (the 
worst case), then we must consider choosing Max variables from Var old variables 
and Max - 1 new variables (FOIL requires that at least one variable in a term be 
old). A simple upper bound on this is: (Var+ Max - l)Max - (Max - l)Max. 
Consequently, the theory cost is: 

TheoryCost = Pred *((Var+ Max - l)Max - (Max - l)Max) (1) 

A simpler approximation of this formula is: 

TheoryCost = Pred *(Var+ Max)Max (2) 

One can make a number of qualitative inferences from this formula. In particu­
lar, it shows that additional predicates increase the cost by a linear amount, while 
increasing the maximum arity of the predicates increases the size of the search space 
exponentially. 

In order to estimate the cost of evaluating a predicate, which is the main cost in 
running FOIL, we need to count the number of the examples being tested. At this 
stage in the algorithm, there are as many as Max variables which require instan­
tiations. Let Const be the number of constants or values that variables could take 
on. Then, in the worst case, that could lead to ConstMax examples. Consequently, 
the total cost of selecting the right predicate is bounded by: 

EvaluationCost = TheoryCost * ConstMax (3) 

This shows that arity of predicates and the length of clauses, in terms of the number 
of distinct variables, and the number of constants are all going to play a strong role 
in limiting the size of theories that can be learned. 
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In the subsequent sections we will show how by adding knowledge, we can 
reduce, sometimes dramatically, these costs. Somewhat surprisingly, this analysis 
will also show that sometimes large amounts of knowledge will have very little effect 
on reducing the search space. 

4.0 Saran Wrap 

Saran Wrap extends FOIL in a variety of ways. Each of these extensions af­
fect only how Saran Wrap selects terms to test while extending a (possibly empty) 
clause under construction. One class of extensions allows Saran Wrap to use se­
mantic constraints to limit the search space. A second class of extensions allows 
Saran Wrap to accept partial Horn-clause theories, containing both operational and 
non-operational predicates. These extensions allow Saran Wrap to take advantage 
of incorrect and incomplete domain theories with surprising success. 

In the following sections, we describe these extensions in more detail and eval­
uate the effect of each extension on the number of terms tes· -·d by SaranvVrap. To 
illustrate these extensions we use two domains. The first d, , nain, that of learning 
the member predicate, illustrates how a simple recursive concept can be learned. 
FOIL is provided with positive and negative examples of the member predicate 
(e.g., member(b, [a, b, c]) notmember( a, [b, c]) and the component predicate (e.g., 
component( a, [b, c], [a, b, c]) and learns a recursive definition for member: 

member(X, Y): -component(X, Z, Y). 
member(X, Y): -component( A, B, Y), member(X, B). 

The second domain is much more complicated and was introduced by Muggleton 
et al. (1989). The concept description varies from four to eleven clauses, depending 
upon the predicates used. The predicate to be learned is illegal(A,B,C,D,E,F) 
which is true if a chessboard containing a white king and rook and black king is in 
an illegal state. A state is illegal if either king is in check or more than one piece 
occupies the same space. A. and Bare the position of the white king (file and rank), 
C and D are the white rook's position, and E and F are the black king's position. 
In this example, the operational predicates used are between(X, Y, Z) (the value 
of Y is between the values of X and Z), adjacent(X, Y) (the value of X is either 
one greater or one less than the value of Y) and equal(X, Y) (the values of X and 
Y are equal). This domain suggests that Saran Wrap can handle realistically sized 
problems. 
4.1 Semantic Constraints: Single arguments Semantic constraints may be 

placed on either the type of arguments or the combination of arguments. Type 
constraints provide a useful and inexpensive way of incorporating a simple form 
of background knowledge. Saran Wrap can easily take advantage of typing infor­
mation. Typing information reduces the search space in two manners. 2 First, 

2Quinlan (in press) mentions how type constraints may be used (in combination with the 
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it is not necessary to test terms where the types of old variables conflict with 
the usage of these variables as arguments to a predicate. More precisely, let 
us assume that a domain has T types and in the best case these types are dis­
tributed equally among the variables. Then, with typing, theory-cost can reduce to 
TheoryCost = Pred *(Var+ Max)/TMax, an exponential reduction. Second, 
it is not necessary to test terms against examples where the type of the con­
stant conflicts with the type of the variable. This reduces the evaluation cost to 
TheoryCost * (Const/T)Ma:r:/T. This shows that in the best case typing can reduce 
the search space by an exponential amount. In practice, the reduction, though 
significant, is less the best case. 

In the chess domain, typing information was used to ensure that the predicates 
between, equal, and adjacent were only applied to either all ranks or all files. The 
benefit of typing is illustrated by the fact that Saran Wrap, using typing, tests 3240 
terms and 242,982 examples as compared to 10,366 terms and 820,030 examples 
for Saran Wrap without typing when learning illegal from 641 randomly selected 
positive and negative training examples. 
4.2 Semantic Constraints: Multiple Arguments A second type of semantic 
constraint involves inter-argument constraints, the relationship between the argu­
ments of a predicate. For example, equal(X, X) is trivially true and between(X, X, Y) 
is trivially false. Such expressions should not play a part in a concept definition 
and therefore it is wasteful to test hypotheses including these terms. 

So far, we have only implemented the case in which it is necessary for all of the 
variables in a term to differ. Providing such inter-argument constraints on terms 
when Saran Wrap learns illegal considerably reduces the size of the hypothesis space 
explored. Unlike typing, inter-argument constraints only reduce the number of 
variablized terms generated and do not reduce the number of examples on which a 
term is tested to compute the information gain. 

The value of inter-argument constraints is illustrated by the fact that Saran Wrap 
using typing and inter-argument constraints tests 1296 terms and 109,350 examples 
as compared to 3240 terms and 242,982 examples for Saran Wrap using only typing. 
4.3 Operational Domain theory In the next sections, we consider ways in which 
a domain theory can improve upon inductive learning. First we will consider the 
case where the domain theory is a (possibly incorrect) partial, operational Horn-: 
clause definition of a concept, and then we will consider the non-operational case. 
The second case divides into two cases: one where we are given non-operational 
predicates and the other where we have a non-operational concept definition. 

Incremental concept learning systems such as COBWEB (Fisher, 1987) build up 
a partial (operational) concept definition. This partial concept definition influences 

closed-world assumption) to generate negative examples of the predicate to be learned from the 
positive examples. However, type constraints are not used to eliminate terms from consideration 
or to extend both positive and negative examples. 
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how further examples are processed. Langley (1989) has argued that a hypothesis 
maintained by an incremental learning system is analogous to the domain theory 
of an explanation-based learning system. The extension of SaranWrap to use a 
partial, operational Horn-clause theory is straightforward. Saran Wrap processes 
each clause in the order they are given. Processing a clause consists of computing 
the positive and negative examples that satisfy the clause. If there are no positive 
examples, then the clause is deleted. If there are no negative examples, then the 
clause is accepted verbatim as part of the concept definition. If there are both 
positive and negative examples satisfied by the clause, Saran Wrap specializes the 
clause by conjoining new terms in the same manner as FOIL extends a clause. The 
processing and possible extension of each clause insures that there is at least one 
positive example and no negative examples satisfied by each clause. At this stage, 
the partial definition may not correctly classify all positive examples. If there are 
positive examples not satisfied by the current Horn-clause theory, additional clauses 
are added in the same manner that FOIL creates new clauses. 

The effect of providing a partial concept definition is quite surprising. In general, 
search in FOIL is dominated by the last term of the clause with the largest number 
of variables. This means that if a partial theory that is nearly complete, but omits 
the last conjunct of the clause with the largest number of distinct variables, reduces 
the search by only a negligible amount. 

This is illustrated by the following experiment. We gave Saran Wrap three partial 
definitions of the member function, namely: 

1. member(X, Y): -component(X, Z, Y). 
2. member(X, Y): -component(X, Z, Y). 

member(X, Y): -component( A, B, Y). 
3. member(X, Y) : -component(X, Y, Z). 

The first two definitions are partial but correct. The last is incorrect. Saran­
Wrap tests 268, 228 and 308 terms and 20140, 12167 and 23358 examples with 
the above partial concept definitions as compared to FOIL's 308 terms and 23,057 
examples. Note that the correct partial definitions given do not significantly re­
duce the number of terms tested because the majority of the work is needed to add 
the last term to the last clause of member. The incorrect partial definition does 
not increase the number of terms tested but does increase the number of examples 
tested. 
4.4 Non-Operational Predicates Partial theories involving operational pred­
icates are not necessarily very valuable. Next, we consider domain theories using 
non-operational predicates, i.e., ones which are defined in terms of operational and 
other non-operational predicates. Systems such as CIGOL (Muggleton & Bun­
tine, 1988)' make use of (or invent) a background knowledge of this form. For 
example, if an operational definition of the predicate between(X, Y, Z) is not pro­
v ,d, it could be defined in terms of the operational predicate less..than by: 
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between(X, Y, Z) : -less_than(X, Y), less.:than(Y, Z). 
One advantage of the non-operational predicates is illustrated by the fact that 

between(X, Y, Z) may have positive information gain, while less_than(X, Y) and 
less.:than(Y, Z) may have negative gain. Therefore, FOIL's hill-climbing search 
may not learn a concept that involves less_than(X, Y), less_than(Y, Z). Note that 
it would be computationally prohibitive to consider all conjunctions of length two 
of the operational predicates. In general, this would more than square the theory­
cost and nearly square the evaluation-cost, both of which are usually large. Non­
operational predicates provide information on what particular combinations of op­
erational predicates may be useful and allow Saran Wrap to simulate a selective 
look-ahead. 

Non-operational predicates are evaluated in the same manner as operational 
predicates in Saran ·wrap. The information gain of all terms that variablize a 
non-operational predicate is computed. If the term with the most gain is non­
operational, then the term is operationalized and the operational definition is added 
to the clause under construction. 

The operationalization process in Saran Wrap differs from that of EBL in that 
it is guided by an information gain metric over a set of both positive and negative 
examples rather than a single positive example. As in EBL, the operational defini­
tion for a predicate may specialize the predicate if the domain theory is disjunctive 
(i.e., if there are multiple clauses for any non-operational predicate). In EBL, the 
predicates that are the leaves of the proof tree of the single training example are 
used as the operational definition. In Saran Wrap, the information gain metric is 
used to determine how to expand a proof tree, in the following manner: 

operationalize(Predicate, Pos, Neg): 
Initialize body to the empty set. 
for each clause in the definition of Pred of Predicate 

compute_gain( clause, Pos, Neg) 
for the clause with the maximum gain 

for each term T in the clause 
if T is operational add T to body 
else add operationalize(T, Pos, Neg) to body. 

Due to its reliance on hill-climbing search, FOIL is unable to learn a completely 
correct definition of illegal using only less_than, equal and adjacent. When Saran­
Wrap is also given a non-operational definition of between in terms of less_than, it 
finds a completely correct definition in terms of the operational predicates less.than, 
equal and adjacent. 

A disadvantage of using non-operational predicates in this manner is that each 
additional non-operational predicate, particularly those with many arguments, in­
creases the search space. This has the undesirable consequence that the more one 
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knows, the slower one learns. This became obvious when we added rules from a 
domain theory of chess to Saran Wrap. These rules indicate facts such as a king 
is in check if there is an opposing rook in the same file as the king and there is 
not another piece between the rook and king. With this domain theory, Saran Wrap 
tested 3063 terms and 283,602 examples to find an operational concept definition as 
opposed to 1296 terms and 109,350 examples when just the operational predicates 
are searched. 
4.5 Non-Operational Concept Definitions In the previous section, we pointed 
out how adding background knowledge in the form of a. domain theory can increase 
the ability of Saran Wrap to find solutions. However, increasing the size of the 
domain theory may increase the search space explored by the learning program. 
In explanation-based learning, the search for a concept definition is facilitated by 
providing the learning system with a target concept (Mitchell, Keller, & Kedar­
Cabelli, 1986). The target concept is assumed to be a correct, non-operational 
definition of the concept to be learned and the domain theory is assumed to be 
correct. In Saran ·wrap, we relax the assumptions that the target concept and the 
domain theory are correct. Because Saran Wrap makes use of multiple training 
examples, it has the potential of learning a correct concept definition in spite of 
these inaccuracies. 

When a non-operational target concept is provided to Saran Wrap, it computes 
the information gain of the terms that are conjoined together to form the tar­
get concept. Saran Wrap operationalizes the term in the target concept with the 
maximum gain (provided the gain is positive). Otherwise, the clause is extended 
inductively by incorporating the variablization of operational predicate with the 
maximum gain. In this manner, Saran Wrap prefers to use an explanation-based 
method but can use an inductive method if the domain theory is incomplete or 
inaccurate (Pazzani, 1988)3 • When Saran Wrap is provided with a correct target 
concept and the domain theory of the pr ·ious section, it finds a correct definition 
of illegal by testing 72 terms and 9713 t .nples. 

This extension will tolerate incomplete and incorrect theories because the terms 
used to extend a clause are tested by an information-based based metric to make 
sure they have positive gain. If there is no explanation-based extension with positive 
gain, then Saran Wrap incorporates terms inductively. We have tested Saran Wrap 
with an incorrect target concept (which leaves out the constraint that a chessboard 
is illegal if two pieces occupy the same square). In this case, Saran Wrap tests 432 
terms and 22, 788 examples. We also tested Saran Wrap with an incorrect domain 
theory that included an erroneous clause stating that a king could move like a knight 
(and therefore it is illegal for the opposing kings to be a knight's move apart). In 

3We have also experimented with a version that compares the information gain of all opera­
tional terms to the information gain of the terms in the target concept. In all of the experiments 
reported in this paper, this alternative requires more search. 
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this case, Saran Wrap tested 435 terms and 47,195 examples. 
In the next section, we present experiments in which we systematically perturb 

the domain theory and indicate the effects on the search performed by Saran Wrap. 

5.0 Experiments 

The following experiments demonstrate that Saran Wrap, using a combination of 
explanation-based and empirical learning methods, can advantageously use partial 
domain theories, even when these theories contain severe errors. Incorrect domains 
theories for the definition of illegal are generated from a correct theory by four 
different perturbation operators, specifically randomly deleting or adding either a 
term or clause from/to the given theory. Note that deleting a term or adding a 
clause causes the theory to become overly general while adding a term or deleting 
a clause causes the theory to become overly specialized. 

In the first set of experiments each perturbation operator was applied individ­
ually but possibly multiple times. Figure 1 plots the accuracy of the resulting 
domain theory (averaged over 10 trials on either the positive or the negative train­
ing examples as appropriate according to the type of modification) and the number 
of terms tested by Saran vVrap for each operation as a function of the number of 
modifications to the domain theory. (There were fewer than 10 modifications pos­
sible for deleting clauses or terms.) Note that in every case Saran Wrap learns a 
concept that is more than 99% accurate when tested on a set of 2,000 examples 
in spite of a domain theory that is quite inaccurate. In each case, the same 641 
randomly selected training examples are used. Also note that Saran Wrap is able to 
exploit extremely inaccurate domain theories to constrain the search for a concept 
definition. 

Through a single mechanism, Saran Wrap responds to each type of modified 
domain theory in a different manner. If these modifications result in negative gain, 
Saran Wrap will not operationalize this rule but instead finds an accurate definition 
using as much of the domain theory as possible and fills in the remainder with its 
bottom-up inductive method. 
5.1 Term Deletion: If the terms defining a clause have positive gain, then 
Saran Wrap can operationalize the clauses that are not altered in a purely top-down 
fashion. If the clause has positive gain with the term deleted, then Saran Wrap can 
operationalize this clause and then use bottom-up inductive methods to complete 
the definition. Quite often, using bottom-up methods, the operational definition 
contains the term that was deleted. 
5.2 Clause Deletion: If the terms relying on a rule have positive gain, then 
Saran Wrap can operationalize the clauses that are not deleted. Operational de­
scriptibns equivalent to the remaining clauses (i.e., they cover the positive training 
examples not covered by the remaining clauses and do not cover any negative ex­
amples) are added in a bottom-up fashion. 
5.3 Term Addition: Often, the clauses unaffected will have greater positive gain 
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than the affected clause and will be operationalized f:. 1t. At this point, the terms 
relying on a modified clause will not have positive gain, and an operational descrip­
tion equivalent to the clause before modification is added inductively. Occasionally, 
the clause has positive gain, and it is included in a concept definition anyway. To 
cover additional positive examples, Saran Wrap inductively adds clauses. Saran­
vVrap does not delete terms from operationalized descriptions and does not sim­
plify Horn-clauses after learning. Therefore, when a clause with an additional term 
definition is operationalized, it is possible that an additional, more general term 
is learned inductively. This does not affect the accuracy of the resulting concept, 
but merely results in the induced theory having redundant clauses. A simple post­
processor could be added to detect and simplify the definition (Quinlan, personal 
communication). 
5.4 Clause Addition: Saran Wrap operationalize clauses with maximum gain and 
it is unlikely that random'.:: added c! rnses will have more gain. In effect, Saran Wrap 
uses information gain as a method to find a subset of the domain theory that is 
accurate. Cohen (1990) also presents a technique to deal with this problem by 
finding all possible explanations and using a greedy set covering technique to find 
a useful subset of the domain theory. In contrast, Saran Wrap serially finds an 
operational specialization with the highest positive gain on all training examples 
and makes this the first clause. It removes those positive training examples covered 
by that clause, and finds the next specialized operational definition. 

It is important to stress that Saran Wrap does not contain any special code to 
deal with each type of modification. Rather, the above behavior falls out of using a 
uniform, information-based heuristic to judge the usefulness of operationalizing the 
target concept or using bottom-up methods to extend or add a clause. With these 
modifications, Saran Wrap with a domain theory performed sufficiently better than 
Saran Wrap without a domain theory even using domain theories that classified 
fewer than 50% of the training examples correctly. 

We also ran experiments in which all of the above modifications were performed 
simultaneously on the domain theory, yielding an domain theory that misclassifies 
both positive and negative examples. Figure 2 plots the accuracy of the domain 
theory and the number of terms expanded by Saran Wrap mode when the domain 
theory was modified by adding or deleting clauses and terms as a function of the 
number of modifications to the domain theory (averaged over 12 trails). As in the 
previous examples, the concept learned by Saran Wrap is greater than 99% accurate 
when tested on 2000 test examples. 

The results of adding and deleting clauses and terms indicate that Saran Wrap 
with an incorrect and incomplete domain theory generally explores a smaller portion 
of the search space than Saran Wrap without a domain theory until the domain 
theory falls below 70% accuracy. 
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6 Conclusions 

In this paper, we have evaluated a number of types of knowledge with regard 
to aiding the inductive task of theory formation. We demonstrated that semantic 
constraints, whether on single arguments as in typing or on multiple arguments, 
are easy to add and yield great benefit. We also considered background knowledge 
in the form of partial theories. Somewhat surprisingly, we saw that an operational 
partial definition will reduce the search very little, while a non-operational partial 
definition and a supporting domain theory can reduce search by an exponential 
amount. A domain theory without a non-operational partial definition (i.e., a 
target concept) can increase the number of problems solved by hill-climbing and 
the cost of increasing the size of the search space for all problems. By classifying 
the various types of knowledge and knowing the value of each piece of knowledge, 
knowledge acquisition can be better directed. In addition, we demonstrated a means 
for uniformly combining theory and inductive learning into a method which can 
naturally and advantageously use and correct inconsistent and incomplete theories. 
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