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Abstract

Interactions in random structures

by

Ella Veronika Hiesmayr

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Steven N. Evans, Co-chair

Professor Shirshendu Ganguly, Co-chair

Interaction plays an important role in probability. When analyzing random structures, a
lot of understanding is to be gained from the relationship between different aspects of an
object, and the influence its different substructures have on each other. In this thesis we
will explore this theme through three projects.

The first project describes the edge of the spectrum of sparse Erdős-Rényi graphs. In those
graphs the spectral edge is typically determined by the neighborhood of the vertices with
the highest degrees. Our main results are a description of the largest eigenvalue in terms
of local geometric features of the graph, as well as the localization of the corresponding
eigenvectors in the balls around high-degree vertices. Many crucial elements of the proof
consist in showing that these small parts of the graph don’t interact with each other and
the rest of the graph. Our analysis of the largest eigenvalue and eigenvector of rooted
trees using continued fractions could potentially be useful in other contexts.

The second project combines two well-known probabilistic objects – sparse Erdős-Rényi
random graphs and random matrices – to obtain weighted random graphs. We once more
study the spectral edge, but this time from a large deviation perspective, i.e. we focus
on an extremely unlikely event. Depending on the tail of the weights, the graph and the
weights interact differently to produce a largest eigenvalue that is atypically large or small.
In the light-tailed case moderately large edge-weights on large stars turn out to be the most
competitive structure, and in the heavy-tailed case very large weights on small clique. We
provide large deviation probabilities, as well as a law of large numbers for the largest
eigenvalue in both cases. Surprisingly the large deviation probabilities are universal for
light-tailed weights, and identical to those of unweighted graphs. Our analysis also led to
a linear algebraic result relating entry-wise matrix norms to the operator norm of a given
matrix.
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The third project is more explicitly about interactions: we define a multi-type birth death
process, in which the evolution of a lineage depends on the empirical distribution of the
other lineages present in the system. The motivation for this project comes from germinal
centers, where antibodies are optimized for a specific immune response. This process
has properties, like a carrying capacity and frequency-dependent selection, that classical
models cannot reproduce. Our simulations suggest that by introducing this interaction
between cells we obtain a model that is closer to observations. We prove that the processes
effectively decouple in the limit and provide an implicit description of the limiting flow.
We crucially use ideas from propagation of chaos to show that the interaction leads to a
specific limiting flow, but disappears in the limit.
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Işlak, who was my advisor during my master, and believed in me, I would never have
started this journey.

Of course many other aspects of life beyond mathematics play a role when doing a PhD.
The statistics department staff made me feel very welcome and supported throughout my
time in Berkeley. I especially want to thank La Shana for supporting our individual needs
and for being a calming presence during the stressful moments. The statistics graduate
students offered incredible support to each other from the start to the end. In particular
I want to thank everyone in the SGSA for their work to create social and academic
possibilities for connection. Dan’s open-mindedness and his willingness to offer advice
and support was greatly felt. Working alongside Hoon, Karissa and Yaxuan in our office
was always uplifting, especially when going through a more difficult stretch. I thank my
cohort for working and winding down together, especially during the first years. Our
experience as graduate students is shaped in many ways by our employment and I am
thankful to our union for defending our rights.

The PhD was not always easy, and I am grateful that my therapists helped me live and
grow through my experiences. My life in Berkeley would not have been the same without
my friends here. Getting a break from the demands of the PhD while dancing, hiking,
climbing, talking, eating and swimming was just as important as the time spent working.
Adrian, Andy, Alex, Damir, Irem, Jake, Jess, Jimmy, Kao, Lalu, Olivia, Peyten, Tuğba, and
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Chapter 1

Introduction

Most objects we encounter in real life are in interaction with other objects of the same
kind, thus forming a network. For instance, people are always in interaction with other
people, be it physically, virtually, emotionally, economically or intellectually. On the other
hand, networks can be considered to be made of different components that interact: there
is of course the graph that simply records whether there is a connection or not, but each
node of the graph, and each connection between one or several nodes can have its own
properties. Furthermore the graph can be embedded in an environment, for instance
nodes can be located in a metric space. A social network can thus be considered to be a
combination of the individual properties of the people in the group, of the connections
of different types and strengths between them, as well as the biological, societal and
economic setting they are in. All of these parts interact and play a role in co-creating the
properties of the network.

By virtue of being completely abstract, mathematics has a big advantage compared
to other disciplines: it is generally much easier to study objects in isolation. We can
for instance simply study a graph where all nodes and connections are the same, without
needing to think about their individual properties or their environment. We can also study
a group of objects with the assumption that these are independent of each other, and thus
not interacting. This is one reason why mathematics can generate precise statements in a
way that other disciplines cannot.

Once objects are decently understood in isolation, it can nevertheless be fruitful to
combine them and study how their interaction creates an object that is richer than the
sum of the isolated parts. From a mathematical perspective it is interesting to see if new
properties emerge from this combination. These new objects are especially important
if there is desire for mathematics to be useful for understanding real world phenomena
despite its abstract nature. If the mathematical objects we study are complex enough they
might shed some light into what we observe in reality. From this perspective there is
a balance to strike between mathematical objects being too simple to be useful and too
complicated to be studied in a meaningful way.

Randomness is another important way of introducing complexity. By assuming that
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the elements of the structure we study are all samples from the same distribution, we obtain
a system with variability, while still having uniformity on a higher level. This allows us
to derive properties that most realizations of the system will have, and quantify just how
unlikely unusual behavior is. Interactions between different elements are particularly
interesting in this context, as typical behavior in one aspect can interact with atypical
behavior of another, or atypical behaviors of both can conspire to create unexpected
effects.

In this thesis we explore the topic of interaction in random structures in three different
ways. First, we see an example where we need to identify relevant local structures in a
graph and isolate them to get a picture of the whole. In this case the global picture, which
includes all connections in the graph, obstructs rather than clarifies understanding. A lot
of work in this case goes into showing that interaction between different structures is so
weak that it can essentially be ignored. Second, we merge two well-known structures,
sparse Erdős-Rényi graphs and random matrices, to obtain sparse weighted graphs, and
study how their dynamics interact. Here we focus on unlikely events, and our reasoning
is guided by the idea that unlikely events in weighted graphs occur due to unlikely
events in the graph, in the weight matrix, or a collaboration between the two. Which
of these mechanisms dominates depends on how unlikely each of the different events
is. The third part studies interacting branching processes. The descendants of a single
organism are typically represented by a tree. In isolation we have a good understanding
of these genealogical trees, but in practice these trees evolve in the presence of other trees,
which can substantially change their behavior. We define a model where a set of branching
processes interacts in a simple enough way so that we can still derive important properties
of the system. We now describe these three parts in more detail.

The first topic of this thesis, which corresponds to the first two parts mentioned above,
are properties of a specific type of random graph, namely Erdős-Rényi graphs. This
model is easily defined: for a fixed set of vertices labeled {1, . . . ,N}, connect any two
independently with probability p. A typical node in real-world graphs has constant
degree, even if the number of nodes increases. To mirror this property, we take p = d

N
with d constant or varying slowly with N. While this model is too simple to exhibit many
properties of real-world networks, it lends itself to many questions that are easily posed,
but hard to answer. This allows for the development of mathematical tools that can be
valuable when studying other random graph models that are closer to observed ones.

For random graphs, deriving the exact distribution of most statistics quickly becomes
overly complex, so the analysis is often focused on the asymptotic regime, where the
number of nodes tends to infinity. Given a certain statistic of the random graph, one can
then either study the typical behavior, i.e. what happens with high probability as the size
of the graph increases, or atypical events, and the structural changes they imply, in other
words, which changes must the graph undergo for these rare events to occur.

One specific perspective one can take on random graphs is to look at the spectral
properties of a matrix representation. A graph can be represented by several different
matrices. In this thesis we use its adjacency matrix, i.e. an N×N symmetric matrix whose
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entries are one whenever two vertices are connected, and zero otherwise. One generally
differentiates between the edge and the bulk of the spectrum. The latter is concerned with
the region where most eigenvalues lie, while the former focuses on the largest and smallest
eigenvalues and their eigenvectors. Those quantities capture some important features of
the graph: they can for instance describe the spread of a disease on the graph. While the
bulk of the eigenvalues of a random matrix tends to exhibit more universal behavior, as is
exemplified in Wigner’s semi-circle law, the effect of the precise distribution of the matrix
entries is generally more visible for the eigenvalues at the edge. We will study the edge
of the spectrum from two perspectives in this thesis.

The first contribution of this thesis is a description of the typical behavior of the largest
eigenvalues and eigenvectors of Erdős-Rényi graphs with close to constant average degree.
The goal here is to find geometric properties of the graph, like degrees, subgraphs, and
neighborhoods, to characterize the spectral edge. Regarding the eigenvectors, a crucial
question is whether they are localized or delocalized, in other words, how many vertices
concentrate most of the mass of the eigenvector, and how those vertices are related.

It is known that the largest eigenvalue of sparse Erdős-Rényi graphs, both in the
typical [KS03] and the large deviation case [BBG21], is equal to the square root of the
largest degree. The proofs of these statements rely on the idea that the eigenvectors of
the largest eigenvalues are localized around vertices with largest degrees. To prove this,
an elementary and important ingredient is that the eigenvalue of a star, which is a graph
consisting only of a central vertex of degree d and its neighbors, has eigenvalue

√
d.

This idea has been formalized and confirmed in a series of works, [ADK21a, ADK22,
ADK23b, ADK23a], where it is shown that in sparse graphs the largest eigenvalues are
determined by the neighborhoods of vertices with highest degrees and that the corre-
sponding eigenvectors are localized around one of those vertices. The general approach
developed in those papers is to look at the spectrum of truncated balls around high-degree
vertices, which are essentially disjoint trees, and can thus be analyzed more easily, and
then show that those essentially do not interact with the rest of the graph.

However, the case where p = d
N , with d constant, a problem mentioned by Alice Guion-

net in her plenary lecture at the European Congress of Mathematics [Gui21], remained
open. The main difficulty in this case is that the degrees of the neighbors of large degree
vertices, as well as the growth of the spheres around them, are less concentrated. With
Theo McKenzie, we used the general framework mentioned above, but expressed the
eigenvector of the truncated balls as a continued fraction, rather than finding an explicit
approximation for it. By working directly with the true eigenvector, larger fluctuations
can be tolerated, which allows us to derive the above mentioned properties for this sparser
case as well [HM23].

The second perspective we take on the spectral edge differs in two ways. Firstly, we
no longer consider the typical behavior, and rather focus on large deviations, in other
words, the event where the largest eigenvalue is atypically small or large. Secondly, we
now add independent weights to the graph. Thus each edge is assigned an independent
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random weight whose distribution has Weibull shape: its tails are of the form e−tα . When
0 < α < 2, then we consider these to be heavy tails, and when α > 2 the tails are considered
to be light. The case α = 2 essentially corresponds to Gaussian edge weights and was
treated in [GN22]. Conceptually, "α = ∞" corresponds to the case without edge weights,
for which large deviations results were obtained in [BBG21]. Those two previous results
guided us in our investigation, as the edge spectrum of graphs without Gaussian weights
is governed by entirely different structures than the graph without weights. While, as
mentioned above, high-degree vertices are the relevant structure in the latter case, small
cliques with very large edge weights turned out to be more competitive when Gaussian
weights are added to the model.

Together with my advisor Shirshendu Ganguly and Kyeongsik Nam [GHN24], we
derived lower and upper tail large deviation results for heavy- and light-tailed weights.
Based on our proofs, it seems like graphs with heavy-tailed edge weights behave similarly
to graphs with Gaussian tails, in that small cliques with very large weights are driving
the large deviations. Nevertheless there is a crucial difference: while the size of the clique
is bounded for α < 2, no matter the size of the deviation, the size of the optimal clique
goes to infinity in the Gaussian case. It is important to note that the two papers [BBG21]
and [GN22] actually prove structural results, while the structural conjectures we make for
both light- and heavy-tailed weights are based on our proof strategy.

For light tails we were guided by the idea that high-degree vertices remain the relevant
structure. Here too there is a crucial difference, compared to the unweighted case, as the
vertices with maximum degree might no longer be competitive. The reason behind this
is that there are too few of them. Dependent on α, the group of vertices with large but not
quite maximum degree has collectively a better chance at accumulating large weights on
their edges. To our surprise the large deviation probability is universal for light tails, in
the sense that it does not depend on the precise weight distribution, which is given by the
parameter α. Indeed, it is identical to the one for unweighted graphs. Such a universality
phenomenon is unexpected in the large deviation regime.

The second main topic of this thesis is an interacting multi-type birth-death process,
which I studied with my advisor Steven Evans, William S. DeWitt and Sebastian Hummel
[DEHH24]. The initial motivation for this project was antibody maturation in germinal
centers, where cells are optimized to bind to a virus that just entered a body. There are a
lot of discrepancies between observations of this process and the existing mathematical
models. For instance such centers have a carrying capacity, which means that the growth
of the process slows down as the number of cells increases.

To better match the observations, we define a system of multi-type birth-death pro-
cesses. For each branching process in the system, its birth, death and mutation rates
depend strongly on its own state and weakly on the state of the other processes present
in the system. This is modeling the process in a germinal cell, where we start with an
initial set of cells, which then each reproduce, die and mutate. The rates at which each
cell does this depends on its affinity to bind to the virus that just entered the immune
system, relative to the binding affinity of all the other cells present in the germinal center.
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Since interactions make this process substantially more complicated, we restrict ourselves
to mean-field interactions, which means that we can focus on one process that interacts
with the other ones through the empirical measure. Besides an implicit description of the
flow of the empirical measure when the number of initial particles tends to infinity, we
also show that any finite number of branching processes effectively decouple in the limit,
which means that while the interactions lead to a specific limiting marginal distribution,
the interactions are no longer locally visible.

Structure of this thesis

The rest of this thesis consists of six chapters, the first five focusing on random graphs
and the last chapter introducing our multi-type birth death process. We start by introduc-
ing known and new results that will be necessary to prove our main theorems. In Chapter
2 we first introduce a new result relating the spectral norm of a matrix to its entry-wise
Lp-(quasi)norm, which generalizes the classical Motzkin-Strauss theorem [MS65]. We then
state a few basic spectral properties of graphs.

Structural properties of sparse Erdős-Rényi graphs are gathered in Chapter 3. We start
by citing results about the profile of the large degrees in the graph. In other words we
quantify how large the maximum degree typically is, and prove or state results on the
number of vertices whose degree is equal to a fraction of that maximum degree. We then
study the degree profile closer to the maximum degree more closely, by estimating the
number of vertices that deviate from the maximum degree by an additive constant. We
also prove results about the local neighborhoods of vertices with large degree, and end
the chapter with some results on the existence of a clique and the connectivity structure
of highly sub-critical graphs.

Chapter 4, the last introductory chapter, focuses on distributions that are relevant in
our proofs, which are the Binomial and the Poisson distribution. After some results that
quantify the asymptotic equivalence of the Binom(N, d/N) and the Pois(d) distribution,
we state tail bounds for both of these, that we will regularly use. We then show that in
Erdős-Rényi graphs, this equivalence can not only be applied to each individual degree
in the graph, but also holds true for the largest degrees and their neighborhoods. We end
the chapter by providing bounds on the tails of sums of independent random variables.
In both projects such quantities will show up in our expression for the spectrum.

The remaining three chapters are each devoted to one project. Each of those chapters
starts with an introduction of the problem, followed by the main theorems, relevant
previous results, and a sketch of the proofs, before providing those in full detail.

In Chapter 5 we state and prove a precise description of the edge spectrum of Erdős-
Rényi graphs with close to constant average degree. Importantly we can relate each
eigenvalue at the edge of the spectrum to a high-degree vertex and express it up to a small
error only using its degree and the number of neighbors of its neighbors. Our other main
result shows that the corresponding eigenvectors are localized in a small ball around the
high-degree vertices.
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We continue by studying the spectrum of weighted Erdős-Rényi graphs in Chapter 6.
We derive upper and lower tail large deviation probabilities for the largest eigenvalue of
Erdős-Rényi graphs with constant average degree for both heavy- and light-tailed edge
weights. As a consequence of these results we also get a law of large numbers for the
largest eigenvalue.

In the final chapter we introduce our multi-type birth death process model with mean
field interactions, and derive some of its asymptotic properties. We start by showing that
its empirical measure converges to a deterministic flow of measures, and because of the
mean field interactions, we show that this also corresponds to the marginal distribution
of an individual process. Finally we provide some simulations that demonstrate how a
simple variety of our process exhibits some of the properties we were hoping to model.

When proofs were either simple, similar to previously published proofs, or less clearly
related to the overall topic of this thesis, we moved them to the appendix.
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Chapter 2

Spectral properties of graphs

In this chapter we prove and state results about the spectrum of the adjacency matrix
of graphs. Finding the spectrum and eigenvectors of the adjacency matrix of graphs is
an ubiquitous problem in combinatorics and spectral theory, with important applications
to computer science and mathematical physics, see [Chu97, KS97, Alo98] for general
overviews on their applicability. None of the results in this section are probabilistic, but
we will use them to analyze our random graphs later on.

Let us first introduce some notation. For any graph G, denote by V = V(G) and
E = E(G) the set of vertices and edges in G respectively. For any vertex v ∈ V(G), define
d(v) to be the degree of a vertex v, and let d1(G) be the maximum degree of G. For any
graph G = (V,E) with a vertex set V = [N] := {1, 2, · · · ,N}, we write each undirected edge
joining two vertices i and j with i < j as (i, j). We use the notation i ∼ j for two vertices i, j
if i and j are connected by an edge. We denote by AG, or A, when G is clear from context,
the adjacency matrix of G. A is the symmetric matrix that satisfies aii = 0, and for i , j,
ai j = 1 if i ∼ j and 0 otherwise.

We also use the notation G = (V,E,A) to denote a network with an underlying graph
G = (V,E) having A, a real n × n symmetric matrix, as its weight matrix. We abuse the
notation, but only slightly, as a graph can be considered as a network where all edges
have weight 1. In other words, ai j = a ji is the weight of an edge (i, j), given that (i, j) ∈ E,
and 0 otherwise.

For a symmetric matrix Z, we denote its eigenvalue in non-increasing order by λ1(Z) ≥
λ2(Z) ≥ · · · ≥ λn(Z). When it is clear from the context we will suppress Z in the notation.
We will also sometimes use the notation λmax(Z) to denote the maximum eigenvalue of Z.

For a vector v ∈ Rn we denote by ‖v‖ its Euclidean norm. For a matrix A in Rm×n, we
denote by ‖A‖ the operator norm, i.e. ‖A‖ = supv∈Rn

‖Av‖2
‖v‖2

.
Here and throughout, when writing x � y, we mean that x = o(y), x . y means

x = O(y), and x � y means x = Θ(y).
1X, 1(X) denote the indicator on the event X occurring.

We start with a key ingredient in our proofs for heavy-tailed weights in the form
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of a new deterministic bound on the largest eigenvalue in terms of the ‘entry-wise’ Lp-
(quasi)norm of the matrix, generalizing the classical Motzkin-Straus theorem [MS65] cor-
responding to p = 2 case. The idea of proof in Section 6.1 explains why this bound is
crucial in the case of heavy-tailed weights. We then state some basic spectral properties
of graphs, some of which were originally stated for unweighted graphs, but generalize
easily.

The first section of this chapter comes from [GHN24], while the second section contains
results from both [GHN24] and [HM23], as well as results from other papers.

2.1 Spectral norm and Lp-(quasi)norm

For p > 0, we denote by ‖A‖p the entry-wise Lp-(quasi)norm1 of the symmetric matrix
A:

‖A‖p :=
( ∑

1≤i, j≤n

|ai j|
p
)1/p

.

To state our bound for the largest eigenvalue of the symmetric matrix A in terms of
‖A‖p, we first recall the following auxiliary function which appeared in the statement of
Theorem 6.3: For θ > 1 and any integer k ≥ 2, let

φθ(k) := sup
f=( f1,··· , fk):‖ f‖1=1

∑
i, j∈[k],i, j

| fi|
θ
| f j|

θ. (2.1)

We will assume without loss of generality that the vector f appearing above is non-
negative.

Proposition 2.1. Suppose that 1 < p < 2 and let k ≥ 2 be an integer. Then, for any network
G = (V,E,A) such that the maximum size of clique contained in G is k,

λ1(A) ≤ φ p
2(p−1)

(k)
p−1

p ‖A‖p . (2.2)

In the case 0 < p ≤ 1, for any network G = (V,E,A),

λ1(A) ≤ 2−
1
p ‖A‖p . (2.3)

Before proving this proposition, we state some useful lemmas. First, the next lemma
identifies the structure that leads to the equality in the above expressions. We will need
those characterizations when planting the structures that lead to an atypically large eigen-
value in the heavy-tailed edge-weights case.

1A quasinorm satisfies the norm axioms except that the triangle inequality is replaced by ‖x + y‖ ≤
K(‖x‖ + ‖y‖) for some K > 1.
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Lemma 2.1. Assume that 1 < p < 2. Then, for any integer k ≥ 2, there exist k1, k2 ≥ 0 with
k1 + k2 ≤ k and x, y ≥ 0 such that if G = (V,E) is a clique with V = [k] and A = (ai j)i, j∈[k] is a
block matrix given by

ai j =


x2 i , j, i, j ∈ {1, · · · , k1} =: V1,

y2 i , j, i, j ∈ {k1 + 1, · · · , k1 + k2} =: V2,

xy i ∈ V1, j ∈ V2 or i ∈ V2, j ∈ V1,

0 otherwise,

(2.4)

then A satisfies the equality in (2.2).
In the case 0 < p ≤ 1, the equality in (2.3) holds when A is the adjacency matrix of a clique
of size 2, i.e. a graph consisting of a single edge.

Note that this matrix is not unique, as for any tuple (k1, k2, x, y) and any constant c, the
tuple (k1, k2, cx, cy) also satisfies the equality.

We defer the proof of this lemma to the end of this section. To prove Proposition 2.1,
we rely on an alternative characterization of φθ(k), which is given in the following lemma.
It turns out that φθ(k) is equal to the supremum of the same objective function (which we
call φ̂θ(k)) over all graphs G whose maximum clique size is k.

Lemma 2.2. For θ > 1 and an integer k ≥ 2, define

φ̂θ(k) := sup
G=(V,E)

sup
f=( f1,··· , f|V|):‖ f‖1=1

∑
i, j∈[|V|],i∼ j

| fi|
θ
| f j|

θ. (2.5)

Here, the first supremum is taken over all graphs G whose maximum clique size is k.
Recall that in the summation, i ∼ j means that vertices i and j are connected by an edge.
Then, we have that

φ̂θ(k) = φθ(k).

We defer the proof to the end of this section. Given this lemma, one can conclude the
proof of Proposition 2.1.

Proof of Proposition 2.1. Let V = [n] and ai js denote the edge-weights. By the variational
characterization of the largest eigenvalue,

λ1(A) = sup
‖ f‖2=1

∑
i∼ j

ai j fi f j. (2.6)

We now consider the different ranges of p. In the case 1 < p < 2, we apply Hölder’s
inequality to bound the above quantity, whereas in the case 0 < p ≤ 1, we simply use the
monotomicity of `p norms.
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Case 1: 1 < p < 2. Setting q =
p

p−1 > 2 to be the conjugate of p, by Hölder’s inequality,∑
i∼ j

ai j fi f j ≤
(∑

i∼ j

|ai j|
p
) 1

p
(∑

i∼ j

| fi|
q
| f j|

q
) 1

q
.

By the definition of φ̂ q
2

and since φ q
2

= φ̂ q
2

(see Lemma 2.2), for any vector f such that∥∥∥ f
∥∥∥

2
= 1, ∑

i∼ j

| fi|
q
| f j|

q
≤ φ̂ q

2
(k) = φ q

2
(k)

(note that in (2.5), supremum is taken over
∥∥∥ f

∥∥∥
1

= 1). Therefore, we have

λ1(A) ≤ φ q
2
(k)

1
q ‖A‖p = φ p

2(p−1)
(k)

p−1
p ‖A‖p .

Case 2: 0 < p ≤ 1. Since | fi f j| ≤
1
2 for any i , j,whenever

∥∥∥ f
∥∥∥

2
= 1, by the monotonicity

of `p norms,

λ1(A) = 2 sup
‖ f‖2=1

∑
i< j,i∼ j

ai j fi f j ≤

∑
i< j,i∼ j

|ai j| ≤
( ∑

i< j,i∼ j

|ai j|
p
) 1

p
= 2−

1
p
(∑

i∼ j

|ai j|
p
) 1

p
.

�

We now establish some useful properties of the function φθ.

Lemma 2.3. Let θ > 1. Then,

1. For each k ≥ 2, there exists a k-dimensional vector f of the form
(x, · · · , x, y, · · · , y, 0, · · · , 0) which attains the maximum of φθ(k) in (2.1). In other
words, there exist k1, k2 ≥ 0 with k1 + k2 ≤ k and x, y ≥ 0 such that k1x + k2y = 1 and

φθ(k) =
∑

i, j∈[k],i, j

f θi f θj

holds with f1 = · · · = fk1 = x, fk1+1 = · · · = fk1+k2 = y and fk1+k2+1 = · · · = fk = 0.

2. For any k ≥ 2,

φθ(k) ≤
(2θ − 2
2θ − 1

)2θ−2
−

(2θ − 2
2θ − 1

)2θ−1
. (2.7)

3. For any k ≤ 2θ−1
2θ−2 ,

φθ(k) =
1

k2θ−2 −
1

k2θ−1 . (2.8)

In addition,

φθ(2) =
1

22θ−1 . (2.9)
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4. φθ(k) is non-decreasing and becomes constant for large enough k.

We give a brief interpretation of this lemma. The statement (1) implies that for any
k ≥ 2, maximum of φθ(k) in (2.1) is attained at the vector f with at most two distinct
non-zero elements. (2) states a general upper bound for the function φθ(k). (3) states that
for k ≤ 2θ−1

2θ−2 , the maximum of φθ(k) is attained at the k-dimensional vector ( 1
k , · · · ,

1
k ). The

fact that φθ(k) becomes constant for large k, stated in (4), is a crucial ingredient in our
analysis.

Proof of Lemma 2.3.
Proof of (1). We assume, without loss of generality, that the supremum is taken over

all k-tuples ( f1, · · · , fk) with
∑k

i=1 fi = 1 and fi ≥ 0. Since the collection of such k-tuples is
a compact set, the function ( f1, · · · , fk) 7→

∑
i, j∈[k],i, j f θi f θj over this set attains its maximum.

Note that there may be several k-tuples which attain the maximum, and in this case we
arbitrarily choose one of them. We further assume, without loss of generality, that for
some integer 1 ≤ ` ≤ k, the maximum is attained in the interior of the (` − 1)-dimensional
simplex f1 + · · · + f` = 1 with f`+1 = · · · = fk = 0 (i.e. 0 < f1, · · · , f` < 1). By the Lagrange
multiplier theorem [Ste15, Chapter 14.8], which states that the gradient of the objective
function at a local extreme point is a scalar multiple of the gradient of the constraint
function, applied to our maximization problem on this simplex, setting s := f θ1 + · · · + f θ` ,
we have

(s − f θ1 ) f θ−1
1 = · · · = (s − f θ` ) f θ−1

` .

Defining 1i := f θ−1
i and θ̄ := 2θ−1

θ−1 > 1, this implies that the quantities
1θ̄i −1

θ̄
j

1i−1 j
are all equal to

s for any 1 ≤ i < j ≤ ` for which 1i , 1 j. By the mean value theorem applied to the convex
function x 7→ xθ̄, one can deduce that there are at most two distinct (non-zero) values that
1is (and thus fis) for 1 ≤ i ≤ ` can take. This concludes the proof of (1).

Proof of (2). Applying Hölder’s inequality and using that
∑k

i=1 fi = 1,

k∑
i=1

f θi ≤

 k∑
i=1

fi


θ

2θ−1
 k∑

i=1

f 2θ
i


θ−1
2θ−1

=

 k∑
i=1

f 2θ
i


θ−1
2θ−1

. (2.10)

Thus, setting r :=
∑k

i=1 f 2θ
i , we have∑
i, j∈[k],i, j

f θi f θj =

 k∑
i=1

f θi


2

−

k∑
i=1

f 2θ
i ≤ r

2θ−2
2θ−1 − r. (2.11)

The function t 7→ t
2θ−2
2θ−1 − t is increasing on

(
0,

(
2θ−2
2θ−1

)2θ−1)
and decreasing on

((
2θ−2
2θ−1

)2θ−1
,∞

)
.

Thus, ∑
i, j∈[k],i, j

f θi f θj ≤
(2θ − 2
2θ − 1

)2θ−2

−

(2θ − 2
2θ − 1

)2θ−1

. (2.12)
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Note that the equality above may not be attained in general. In fact, if the equality is
attained, then by the equality condition in the Hölder’s inequality (2.10), f1 = · · · = fm = 1

m
and fm+1 = · · · = fk = 0 for some integer 1 ≤ m ≤ k. Also, in order that (2.12) becomes an

equality,
∑k

i=1 f 2θ
i = r =

(
2θ−2
2θ−1

)2θ−1
. Since

∑k
i=1 f 2θ

i = m · ( 1
m )2θ = ( 1

m )2θ−1, the equality in (2.12)
is possible only when 2θ−1

2θ−2 is a positive integer.
Proof of (3). We first prove the first part of the statement. By Hölder’s inequality,

1 =

k∑
i=1

fi ≤
( k∑

i=1

f 2θ
i

) 1
2θ

k1− 1
2θ . (2.13)

Hence, if k ≤ 2θ−1
2θ−2 , then r =

∑k
i=1 f 2θ

i ≥
(

1
k

)2θ−1
≥

(
2θ−2
2θ−1

)2θ−1
. Thus, recalling that the function

t 7→ t
2θ−2
2θ−1 − t is decreasing on

((
2θ−2
2θ−1

)2θ−1
,∞

)
and using r ≥ ( 1

k )2θ−1,∑
i, j∈[k],i, j

f θi f θj
(2.11)
≤ r

2θ−2
2θ−1 − r ≤

1
k2θ−2 −

1
k2θ−1 .

One can also deduce that the maximum of φθ(k) is attained when f1 = · · · = fk = 1
k . To

see this, by the above inequality, if f attains the maximum, then r = ( 1
k )2θ−1, which implies

that f satisfies the equality in (2.13). By the equality condition in the Hölder’s inequality,
all the fis are same and thus f1 = · · · = fk = 1

k .
The second statement (2.9) follows from the fact that |xy| ≤ 1

4 whenever |x| + |y| = 1.
Proof of (4). It is straightforward to observe that φθ(k) is non-decreasing in k since as k

increases, the supremum is taken over a larger class of vectors f . We now show that φθ(k)
becomes constant for large enough k. By considering f1 = · · · = fk = 1

k , we have

φθ(k) ≥
1

k2θ−2 −
1

k2θ−1 .

Since φθ(k) is non-decreasing in k and the function t 7→ 1
t2θ−2 −

1
t2θ−1 is decreasing for any

large enough t, we have that for large enough k,

φθ(k) ≥ sup
n

( 1
n2θ−2 −

1
n2θ−1

)
.

If the equality holds for all large enough k, we are done. Otherwise, there is K0 > 0 such
that

φθ(k) > sup
n

( 1
n2θ−2 −

1
n2θ−1

)
(2.14)

for all k ≥ K0. We show that this implies that the the support of the maximizer f of φθ(k)
in (2.1) is uniformly bounded in k.
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By the statement (1) of this lemma, for any k, the maximum of the objective function
φθ(k) is attained at some vector f = ( fi)i with f1 = · · · = fk1 = x, fk1+1 = · · · = fk1+k2 = y, and
fk1+k2+1 = · · · = fk = 0 for some k1, k2 ≥ 0 with k1 +k2 ≤ k and x, y ≥ 0. Thus, if the support of
f is not bounded in k (without loss of generality we assume k2 →∞), then for sufficiently
small ι > 0,

φθ(k) = 2
(
k1

2

)
x2θ + 2

(
k2

2

)
y2θ + 2k1k2xθyθ ≤ 2

(
k1

2

)
1

k2θ
1

+
[
2
(
k2

2

)
1

k2θ
2

+ 2k2
1
kθ2

]
≤

1
k2θ−2

1

−
1

k2θ−1
1

+ ι

≤ sup
n

( 1
n2θ−2 −

1
n2θ−1

)
+ ι

(2.14)
< φθ(k),

where we used k1xθ ≤ k1x ≤ 1, y ≤ 1
k2

in the first inequality and k2 → ∞, θ > 1 in the
second inequality. The final RHS bound yields a contradiction. Hence, we conclude that
the support of the vector f which maximizes the objective function φθ(k) is uniformly
bounded in k. This implies that φθ(k) becomes constant for large k. �

Using this lemma, one can establish Lemma 2.1 which provides the equality condition
of the inequalities in Proposition 2.1.

Proof of Lemma 2.1. Let us first consider the case 1 < p < 2. Let q > 2 be the conjugate of
p. By Lemma 2.3, there exist k1, k2 ≥ 0 with k1 + k2 ≤ k and x, y ≥ 0 such that the vector
f =

(
f1, · · · , f[k]

)
defined by

fi =


x i ∈ {1, · · · , k1} =: V1,

y i ∈ {k1 + 1, · · · , k1 + k2} =: V2,

0 otherwise

satisfies
∥∥∥ f

∥∥∥
1

= 1 and

φ q
2
(k) =

∑
i, j∈[k],i, j

f
q
2

i f
q
2

j .

Now define the vector f̃ =
(

f̃1, · · · , f̃k

)
by setting f̃i =

√
fi so that ‖ f̃ ‖2 =

∥∥∥ f
∥∥∥

1
= 1. Next,

define the k × k matrix A = (ai j)i, j∈[k] by

ai j :=


x

1
p−1 i , j, i, j ∈ V1,

y
1

p−1 i , j, i, j ∈ V2,

x
1

2(p−1) y
1

2(p−1) i ∈ V1, j ∈ V2 or i ∈ V2, j ∈ V1,

0 otherwise.
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Note that we defined A so that ap
ij = f

q
2

i f
q
2

j = f̃ q
i f̃ q

j for i , j. This implies that

‖A‖p =

( ∑
i, j∈[k],i, j

f̃ q
i f̃ q

j

) 1
p

=

( ∑
i, j∈[k],i, j

f
q
2

i f
q
2

j

) 1
p

= φ q
2
(k)

1
p = φ p

2(p−1)
(k)

1
p (2.15)

and ∑
i, j∈[k],i, j

ai j f̃i f̃ j =
∑

i, j∈[k],i, j

f̃ q
i f̃ q

j =
∑

i, j∈[k],i, j

f
q
2

i f
q
2

j = φ q
2
(k) = φ p

2(p−1)
(k). (2.16)

By the variational characterization of the largest eigenvalue (recall that ‖ f̃ ‖2 = 1) and
Proposition 2.1,

φ p
2(p−1)

(k)
(2.16)
=

∑
i, j∈[k],i, j

ai j f̃i f̃ j ≤ λ1(A) ≤ φ p
2(p−1)

(k)
p−1

p ‖A‖p
(2.15)
= φ p

2(p−1)
(k),

which establishes that equality holds in (2.2).
Now, let us consider the case 0 < p ≤ 1. Note the largest eigenvalue of a network with

a single edge is nothing other than the edge-weight which we call a. Since ‖A‖p = 2
1
p a for

the 2 × 2 matrix A =

(
0 a
a 0

)
, which corresponds to a single edge with weight a, we obtain

the equality in (2.3). �

We now establish Lemma 2.2, which claims that our two characterizations of φθ and
φ̂θ are equivalent.

Proof of Lemma 2.2. Assuming that G is not a clique of size k, we can choose two vertices
v1 and v2 that are not connected by an edge in G. Without loss of generality, we assume
that

∑
i∼v1

f θi ≥
∑

j∼v2
f θj . Since∑

i∼ j

f θi f θj =
(∑

i∼v1

f θi
)

f θv1
+

(∑
j∼v2

f θj
)

f θv2
+

∑
i, j,v1,v2,i∼ j

f θi f θj ,

the objective function does not decrease when we move the weight from v2 to v1 by
replacing f = (· · · , fv1 , · · · , fv2 , · · · ) by f (1) = (· · · , fv1 + fv2 , · · · , 0, · · · ). This follows from the
fact that for θ > 1, if a ≥ b ≥ 0, then maxx+y=s,x,y≥0 axθ + byθ = a · sθ + b · 0θ = asθ.

After removing the zero at v2, we obtain a new vector f (1) on the new graph G1 obtained
by a deletion of the vertex v2 and the edges incident on it. We repeat this procedure to get
a sequence of vectors f (1), · · · , f (m) and graphs G1, · · · ,Gm such that Gi+1 is obtained by the
removal of some vertex wi+1 together with the edges incident on it in Gi. This procedure
can be repeated until Gm becomes a clique, showing that the maximum of φ̂θ(k) is attained
at a clique of size k. �
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We finish this section by introducing a technical lemma that will be useful when
estimating the largest eigenvalue of tree-like networks.

Lemma 2.4. Suppose that G is a tree with a vertex set [n]. Let s, ξ > 0 and θ ≥ 1 be
constants. Then, for any vector f = ( f1, · · · , fn) with

∑n
i=1 fi = s and 0 ≤ fi ≤ ξ for all i,

∑
i< j,i∼ j

f θi f θj ≤

 1
4s2θ if s < 2ξ,
ξθ(s − ξ)θ if s ≥ 2ξ.

(2.17)

In particular, if 0 < ξ ≤ 1
2 , θ ≥ 1,

∑n
i=1 f 2

i = 1 and 0 ≤ fi ≤ ξ, then∑
i< j,i∼ j

f 2θ
i f 2θ

j ≤ ξ
2θ. (2.18)

Note that the above estimates still hold even when G is a forest (i.e. vertex-disjoint
union of trees), since fis are all non-negative and one can easily construct a tree on the
same vertex set as G with the latter as a subgraph and apply the above result.

Proof. Let ρ := arg maxi fi (there may be several vertices which attain the maximum, and
in this case we choose any of them) and regard G as a tree rooted at ρ. Then, since every
edge can be seen as connecting a vertex i to its unique parent pi,∑

i< j,i∼ j

f θi f θj =
∑

(i, j)∈E(G)

f θi f θj =
∑
i,ρ

f θpi
f θi ≤

∑
i,ρ

f θρ f θi ≤ f θρ (s − fρ)θ,

where the last inequality follows from the fact that xθ1 + · · ·+xθm ≤ (x1 + · · ·+xm)θ whenever
θ ≥ 1 and x1, · · · , xm ≥ 0, which itself is a straightforward consequence of convexity of
the function x → xθ on the positive real line. Finally, since the function x 7→ x(s − x) is
increasing on [0, s

2 ] and fρ ≤ ξ, (2.17) follows.
(2.18) is a direct consequence of (2.17), by replacing fi with f 2

i and setting s = 1. �

2.2 Basic spectral properties of graphs
We end this chapter by introducing basic but crucial spectral properties of general

weighted graphs. The first two statements of the following lemma appear as [KS03,
Proposition 3.1] for unweighted graphs, but it is straightforward to see that a weighted
version holds as well. The last statement follows from the variational characterization of
the largest eigenvalue, since for any subset of vertices W and a subnetwork AW induced
by these vertices,

λ1(AW) = sup
unit vector v supported on W

vᵀAv ≤ λ1(A).
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Lemma 2.5. Let G = (V,E,A) be any network. Suppose that G1, · · · ,Gk are subgraphs of
G and let A1, · · · ,Ak be the corresponding networks. If E(G) = ∪k

i=1E(Gi), then λ1(A) ≤∑k
i=1 λ1(Ai). If in addition, the graphs G1, · · · ,Gk are vertex disjoint, then λ1(A) =

maxi=1,··· ,k λ1(Ai). Moreover, for any network A1 induced by a subset of the vertices
of G, we have that λ1(A) ≥ λ1(A1).

The next lemma characterizes the largest eigenvalue of the weighted star graph in
terms of the Frobenius norm of its weight matrix.

Lemma 2.6. If G = (V,E,A) is a weighted star graph with s + 1 vertices and edge-weights

w1, · · · ,ws, then λ1(A) =
√∑s

j=1 w2
j .

Proof. Note that A is of the form

A =


0 w1 . . . ws

w1 0
...

. . .
ws

 .
Setting u := (1, 0, . . . , 0) and v :=

(∑
i w2

i

)− 1
2 (0,w1, . . . ,ws), one can write

A =
(∑

i w2
i

) 1
2 (

uvT + vuT) . Since u and v are unit vectors satisfying 〈u, v〉 = 0, the spec-
trum of uvT + vuT counted with multiplicity is exactly {1,−1, 0, . . . , 0}, which implies the
result. �

The next lemma bounds the largest eigenvalue of tree in terms of its maximum degree.

Lemma 2.7. [Kes59] If T is an unweighted forest with maximum degree bounded by ∆,
then λmax(AT) ≤ 2

√
∆ − 1.

The result below gives an upper bound for the largest eigenvalue of symmetric matri-
ces.

Lemma 2.8. For any symmetric matrix A = (ai j)i, j whose diagonal entries are all zero,

λ1(A) ≥ max
i, j
|ai j|. (2.19)

Proof. Let |ak`| be the maximal value, i.e. |ak`| = maxi, j |ai j|. Let the vector v = (vi)i be
defined by vk = 1

√
2
, v` =

sgn(ak`)
√

2
and vi = 0 otherwise, then ‖v‖2 = 1 and vTAv = |ak`|. The

result now follows by the variational formulation for λ1(A) applied to the vector v. �

We conclude this section by citing a result that quantifies the proximity of true eigen-
values and eigenvectors to approximate ones.



CHAPTER 2. SPECTRAL PROPERTIES OF GRAPHS 17

Lemma 2.9 ([ADK23b], Lemma 4.10). Consider a self-adjoint matrix M and ∆, ε > 0
satisfying 5ε ≤ ∆. For λ ∈ R, assume M has a unique eigenvalue µ in the interval
[λ−∆, λ+∆] with eigenvector w. If there is a normalized vector v such that ‖(M−λ)v‖ ≤ ε,
then

µ − λ = 〈v, (M − λ)v〉 + O
(
ε2

∆

)
, ‖w − v‖ = O

(
ε
∆

)
In particular this lemma will be used in the following form when describing the

spectrum of sparse Erdős-Rényi graphs in detail.

Lemma 2.10. For i ≥ 2, let A be the adjacency matrix of the ball of radius i around a vertex
x of degree α, such that Bi(x) is an unweighted tree, |S2(x)|

α ≤ s � α and the degree of each
vertex in Bi(x)\{x} is at most t ≤ α

5 .
Then the maximum eigenvalue µ of A satisfies

µ =
√
α + O

(
s
√
α

)
.

Proof. We take as our test vector w the eigenvector corresponding to the star graph con-
sisting of the central vertex x and its neighbors. Thus w|x = 1

√
2

and for y ∼ x, w|y = 1
√

2α
.

Since Bi(x) is a tree, each z ∈ S2(x) has exactly one neighbor in S1(x), so (Aw)|z = 1
√

2α
.

Moreover the number of non-zero entries in Aw −
√
αw is |S2(x)| ≤ αs.

The above implies that

‖Aw −
√
αw‖ ≤

√
αs

1
2α

=

√
s
2
,

which corresponds to ε in Lemma 2.9.
To utilize Lemma 2.9 we require ∆ such that A has a unique eigenvalue in [λ−∆, λ+∆].

For this we use eigenvalue interlacing: after deleting the row and column of A correspond-
ing to x, the matrix is the adjacency matrix of a forest with degree at most t. By the spectral
radius of a tree from Lemma 2.7, the maximum eigenvalue of this submatrix is at most
2
√

t. Thus A has at most one eigenvalue in the interval
[
2.1
√

t, 2
√
α − 2.1

√
t
]
, namely, if

any, its maximum eigenvalue. Thus we can take ∆ =
√
α − 2.1

√
t ≥

(
1 − 2.1/

√
5
) √

α in
Lemma 2.9. The estimates on the errors now simply follow from plugging in our values
for ε and ∆, since ε =

√
s
2 � ∆ by assumption. �
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Chapter 3

Structure of sparse Erdős-Rényi graphs

One of the oldest and most studied random graph models is the Erdős-Rényi random
graph GN,p, where there is an edge between any two of N vertices independently with
probability p. How this graph looks like changes a lot according to the dependence of p on
N, for instance with high probability the graph is connected if p� log N

N and disconnected
if p� log N

N [ER60]. See the monograph of Guionnet for an overview of known results and
the state of the field for this model [Gui21].

In terms of many applications, the regime of p of most interest is the sparse regime
(i.e. p→ 0 as N→∞). In particular, the constant average degree regime of sparsity p = d

N
(d > 0 is a constant), i.e., when the typical number of connections of a single vertex tends
to stay constant, arises naturally in several models in statistical mechanics (see [DM10]
for a comprehensive treatment of statistical physics models on such sparse graphs).

Before embarking on the study of the spectrum of sparse Erdős-Rényi graphs, we now
give some background on the structure of sparse Erdős-Rényi graphs, which will be useful
later. The results below apply to G

(
N, d

N

)
. The dependence of d on N will be specified in

each result or section.
The combinatorial aspects of an Erdős-Rényi graph are governed by binomial distribu-

tions. Therefore, by Bin(k; N, p) we denote the probability that a binomial random variable
with N trials and success probability p is equal to k.

3.1 Profile of large degrees
All new results in this section are from the paper [GHN24].
We first record that the maximum degree is almost deterministic when d is small.

Lemma 3.1 ([Bol01], Theorem 3.7). Defineµk = NBin(k; N−1, d
N ) to be the expected number

of vertices of degree k in the graph. Now define

u := arg min
k∈Z

{
max

{
µk, µ

−1
k

}}
. (3.1)
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Then if d = o(log N), with high probability the maximum degree is in {u − 1, u}.

In order to calculate u, note that by the Stirling approximation, having µk ≈ 1 implies(
1 + oN(1)

)
log N − u log u + u − d + u log d −

1
2

log(2πu) = 0.

Therefore, in our regime of d,

u =
(
1 + oN(1)

) log N
log log N − log d

. (3.2)

and u = Θ
(

log N
log log N

)
.

In this part, all subsequent results assume that d is constant. Regarding large deviations
of the largest degrees of G

(
N, d

N

)
we have the following result.

Proposition 3.1. [BBG21, Proposition 1.3] Let us denote by ds, the s-th largest degree of
G = GN, d

N
with d constant. Then, setting

tN :=
log N

log log N
,

we have, for any δ1, . . . , δp ≥ 0,

lim
n→∞

− logP (d1 ≥ (1 + δ1)tN, . . . , dr ≥ (1 + δr)tN)
log N

=

r∑
s=1

δs. (3.3)

For our result on the large deviations of weighted Erdős-Rényi graphs, we need a more
precise description of the degree distribution. An important input in our arguments will
be that, for any constant κ > 0:

1. For any fixed 0 < γ < 1, with high probability, there exist N1−γ−κ vertices having
at least γ log N

log log N neighbors with no edges between each other. This is captured by
Proposition 3.2.

2. For a suitable discretization {γi}i=1,2,··· of (0, 1), with high probability, the number of
vertices of degree betweenγi

log N
log log N andγi+1

log N
log log N is at most N1−γi+κ for all i = 1, 2, · · · .

This is formalized in Proposition 3.4.

In order to establish (1), we first estimate the probability that a vertex has a large degree in
GN, d

N
. For a subset L ⊆ V = V(G), we denote by dL(v) the number of vertices in L connected

to v. Throughout the thesis to simplify the notation, for γ ≥ 0, define

1(γ) :=
⌈
γ

log N
log log N

⌉
. (3.4)
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By a well-known binomial tail estimate (see Lemma 4.5 in the Appendix), for any
vertex v,

P(d(v) ≥ 1(γ)) = N−γ+o(1). (3.5)

In the next lemma, we state a simple extension of (3.5), i.e. d(v) replaced with dL(v)
for general subsets L ⊆ V. Although a straightforward consequence of a binomial tail
estimate, we provide a proof, which consists of straightforward but tedious algebra, for
the sake of completeness.

Lemma 3.2. For 0 < ρ < 1, let L be any subset of V of size bρNc. Then for any vertex v ∈ Lc

and γ > 0,
P

(
dL(v) ≥ 1(γ)

)
= N−γ+o(1). (3.6)

Note that this probability does not depend on the parameter ρ, which shows that as
long as |L| is of order N, the probability is of the same order.

Proof. Since dL(v) is distributed as Bin
(
bρNc, d

N

)
, by the mentioned bound in Lemma 4.5,

setting θ := 1
bρNc1(γ) = 1

bρNcdγ
log N

log log Ne,

1√
8bρNcθ(1 − θ)

e
−bρNcI d

N
(θ)
≤ P

(
dL(v) ≥ 1(γ)

)
≤ e
−bρNcI d

N
(θ)
.

Since d
N = o

(
1
bρNcdγ

log N
log log Ne

)
, by the relative entropy estimate (see Lemma 4.4),

I d
N

(θ) = (1 + o(1))
1
bρNc

⌈
γ

log N
log log N

⌉
log

(
n
d

1
bρNc

⌈
γ

log N
log log N

⌉)
.

Thus, bρNcI d
N

(θ) = bρNc (1+o(1))γ log N
bρNc = (γ + o(1)) log N.

The correction term in the lower bound, namely 1√
8bρNcθ(1−θ)

, is No(1),which implies the

matching bound N−γ+o(1).
�

We now proceed to estimate the number of such high-degree vertices satisfying addi-
tional useful properties.

Proposition 3.2. For 0 < γ, ρ < 1, let Aγ,ρ be the event that there exist m := dN1−γ−ρ
e

vertices v1, · · · , vm and m subsets W1, · · · ,Wm ⊆ V of size 1(γ) satisfying the following
properties:

1. Vertices v1, · · · , vm and elements in W1, · · · ,Wm are all distinct.

2. For each i, the vertex vi is connected to all the elements in Wi.
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3. For each i, there are no edges within Wi.

Then,

P(Aγ,ρ) ≥ 1 − e−N1−γ−ρ+o(1)
.

Proof. Let us partition the set of vertices into two subsets S := {s1, . . . , sdN
2 e
}, which are the

potential centers of the stars, and L := Sc = {`1, . . . , `bN
2 c
}, which will be the potential leaves

of the stars. The ordering on these two sets of vertices is arbitrary and only necessary so
that the following algorithm is well-defined. Now we sequentially reveal the neighbors
of vertex s1 in L, by first checking whether `1 is its neighbor, and so on. Then,

1. We either obtain 1(γ) neighbors of s1 before all edges from s1 to vertices in L are
revealed, or

2. There are less than 1(γ) neighbors of s1 in L.

In the first case, we mark s1 and define L1 to be the collection of the first 1(γ) revealed
vertices connected to s1. In the second case, we do not mark s1 and set L1 = ∅.

Assume that we implemented the above process up to the k-th vertex sk in S and
obtained subsets L1, · · · ,Lk ⊆ L. We then proceed similarly for sk+1, but we only reveal
edges from sk+1 to vertices in L\ ∪k

i=1 Li. This guarantees that Lis are all disjoint. As
before, we mark sk+1 and define Lk+1 to be the collection of the first 1(γ) revealed vertices
connected to sk+1 in the former case, and set Lk+1 = ∅ in the latter case. We stop this process
either once dN1−γ−ρ

e vertices in S are marked, in which case we consider the process to be
successful, or once we revealed edges to vertices in L for all vertices in S.

Let B be the event that the this revealing process is successful. We now show that
this event happens with high probability. Since we discard exactly 1(γ) vertices in L for
each marked vertex, at each k-th step, the set L\∪k−1

i=1 Li contains at least
⌊

N
2

⌋
−N1−γ−ρ1(γ) ≥

N
4 vertices, as long as n is large enough. Since the edges we reveal at each step are
independent of any edges that have been revealed before, by Lemma 3.2 the probability
that sk has at least 1(γ) neighbors in L\ ∪k−1

i=1 Li is N−γ+w for some w = o(1). Hence

P(B) ≥ P
(
Binom

(⌈N
2

⌉
,N−γ+w

)
≥ N1−γ−ρ

)
,

and thus, by Lemma 4.5,

P(B) ≥ 1 − exp
(
−

⌈N
2

⌉
In−γ+w

(n1−γ−ρ

d
n
2 e

))
.

Since N1−γ−ρ

d
N
2 e
≤

1
2N−γ+w for large N, by Lemma 4.3, there exists a constant c > 0 such that

IN−γ+w

(
N1−γ−ρ

d
N
2 e

)
≥ cN−γ+w = N−γ+o(1).
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Thus,
P(B) ≥ 1 − e−d

N
2 eN

−γ+o(1)
≥ 1 − e−N1−γ+o(1)

.

Conditioned on the event B, let us enumerate the marked vertices by v1, · · · , v⌈
N1−γ−ρ

⌉
and the collection of 1(γ) neighbors that we revealed by W1, · · · ,W⌈

N1−γ−ρ
⌉ respectively.

We call a vertex vi good if there are no edges within Wi. Since having edges within Wi is
independent of the revealing process, for large enough n,

P(vi is good|B) =

(
1 −

d
N

)(1(γ)
2 )
≥

1
2
. (3.7)

Since Wis for i = 1, . . . ,
⌈
N1−γ−ρ

⌉
are disjoint, by independence, the number of good

vertices stochastically dominates Binom
(
dN1−γ−ρ

e, 1
2

)
. Thus, again by Lemma 4.5, for

some constant c′ > 0,

P
(
There exist at least

1
4

N1−γ−ρ good vertices
∣∣∣B) ≥ 1 − e−c′N1−γ−ρ

.

Hence, putting things together yields that the probability that there exist at least 1
4N1−γ−ρ

good marked vertices is at least(
1 − e−N1−γ+o(1)

) (
1 − e−c′N1−γ−ρ

)
≥ 1 − e−N1−γ−ρ+o(1)

.

Since one can absorb the factor 1
4 into the exponent of N by adjusting the parameter ρ > 0,

we are done. �

Now we focus on the unlikely appearance of vertices of degree close to γ log N
log log N for

γ > 1. By (3.3), the probability of the existence of such vertex is N1−γ+o(1). In the next
proposition, we improve this statement by further requiring the absence of edges between
the neighbors of such vertex.

Proposition 3.3. For γ > 1, let A′γ be the event that there exists a vertex v and a subset

W ⊆ V of size 1(γ) =
⌈
γ

log N
log log N

⌉
satisfying the following properties:

1. The vertex v is connected to all elements in W.

2. There are no edges within W.

Then,

P
(
A
′

γ

)
= N1−γ+o(1).
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Proof. Since the upper bound immediately follows from (3.3) with r = 1 and δ1 = γ − 1,
we only prove the lower bound. We again partition the vertices into the subsets S :={
s1, . . . , sdN

2 e

}
and L := Sc =

{
`1, . . . , `bN

2 c

}
. Then, by Lemma 3.2, for each sk ∈ S,

P
(
dL(sk) ≥ 1(γ)

)
= N−γ+o(1).

Let B be the event that there exists a vertex sk ∈ S such that dL(sk) ≥ 1(γ). Since |S| = dN
2 e,

P(B) ≥ 1 − (1 −N−γ−o(1))d
N
2 e ≥ 1 − e−N1−γ+o(1)

≥ N1−γ+o(1), (3.8)

where we used the fact that 1 − e−x
≥

x
2 for small x > 0. Given the event B, let us take any

subset W ⊆ L of size 1(γ) consisting of neighbors of sk. Then, as in (3.7) in the previous
proof, using the independence between different edges,

P
(
There are no edges within W|B

)
≥

1
2
. (3.9)

Therefore, the statement follows by multiplying (3.8) and (3.9). �

The next result concerns the degree profile of high-degree vertices of G. To this end
we define, for γ ≥ 0,

Dγ :=
{
v ∈ V : d(v) ≥ 1(γ)

}
. (3.10)

By (3.5), if 0 ≤ γ < 1, then the expected number of elements in Dγ is of order N1−γ. In
Proposition 3.2, we established that with high probability, |Dγ| ≥ N1−γ−ρ for any ρ > 0,
which corresponds to a bound on the lower tail of |Dγ| for 0 ≤ γ < 1.

Now, we establish (2) mentioned in the beginning of Section 3.1. To accomplish this,
we start by estimating the moments of |Dγ|.

Lemma 3.3. For any 0 ≤ γ < 1, ε > 0 and a positive integer j, for sufficiently large n,

E
[∣∣∣Dγ

∣∣∣ j
]
≤ N j− jγ+ jε. (3.11)

Proof. First note that the bound is trivial for γ = 0, since |Dγ|
j
≤ |V| j ≤ N j for any integer j.

As before, let us arbitrarily label all vertices and partition the set of vertices V = {v1, · · · , vM}

into two subsets S := {v1, . . . , v j} and L := V\S. This definition makes dL(v1), · · · , dL(v j)
independent (recall that dL(v) denotes the number of vertices in L connected to v), which
we will crucially use in the following moment calculations. First note that

E
[∣∣∣Dγ

∣∣∣ j
]

= E


 N∑

i=1

1
(
d(vi) ≥ 1(γ)

)
j
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≤

j∑
k=1

(
N
k

)
k jP

(
d(v1), . . . , d(vk) ≥ 1(γ)

)
. (3.12)

The above can be seen by expanding the sum and noting that each term is a product of j
indicators. Given v1, . . . , vk with k ≤ j, the number of summands leading to the indicator
involving exactly these vertices is at most k j, since each of the j factors can be one of
v1, . . . , vk. Further, exchangeability of the vertex degrees leads to the

(N
k

)
factors, yielding

the inequality.
We now proceed to estimate the joint probabilities of interest. Since each vertex vi ∈ S

can have at most j − 1 edges into S, for any 1 ≤ k ≤ j, for large enough n,

P
(
d(v1), . . . , d(vk) ≥ 1(γ)

)
≤ P

(
dL(v1), . . . , dL(vk) ≥ 1(γ) − j + 1

)
≤ P

(
dL(v1), . . . , dL(vk) ≥ 1

(
γ −

ε
2

))
≤

( 1
Nγ− ε2 +o(1)

)k

,

where we used the independence of dL(v1), · · · , dL(vk) and a tail probability estimate for
the vertex degree (Lemma 3.2) in the last inequality. Applying this estimate to each term
in (3.12), for all 1 ≤ k ≤ j,(

N
k

)
k jP

(
d(v1), . . . , d(vk) ≥ 1(γ)

)
≤

1
k!

k jNk(1−γ+ ε
2 )+o(1)

≤ N j(1−γ+ ε
2 )+o(1),

since 1 − γ + ε
2 > 0. Therefore, (3.12) is bounded by j · n j(1−γ+ ε

2 )+o(1)
≤ N j(1−γ+ε) for large N,

which concludes the proof. �

The moment bound yields the following.

Proposition 3.4. For any 0 < κ < 1, let m be an integer such that mκ < 1 ≤ (m + 1)κ. Then,
for any µ > 0 and sufficiently large n,

P
(
|Diκ| ≤ N1−iκ+κ for all i = 0, 1, · · · ,m

)
≥ 1 −N−µκ. (3.13)

Proof. By a union bound and the Markov’s inequality combined with Lemma 3.3, for any
ε > 0 and a positive integer j,

P
(
|Diκ| ≥ N1−iκ+κ for some i = 0, 1, · · · ,m

)
≤

m∑
i=0

P
(
|Diκ| ≥ N1−iκ+κ

)
≤

m∑
i=0

E
[
|Diκ|

j
]

N j− jiκ+ jκ ≤ (m + 1)N jε− jκ.

Taking ε = κ
2 , and noticing that m < 1

κ , the above expression is bounded by (m + 1)N− j κ2 ≤(
1
κ + 1

)
N− j κ2 . Since j is an arbitrary integer, this concludes the proof. �

Note that the previous lemma and proposition could be stated with an asymptotic
notation rather than the additional constants ε and µ, but the current phrasing will make
it easier to use the results in our main proofs.
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3.2 Degree profile near the maximum degree
For our precise description of the largest eigenvalues and eigenvectors of the un-

weighted graph G we follow [ADK23b] by analyzing the spectral contribution of high
degree vertices, which we separate into three regimes. After defining these regimes we
analyze their sizes. These results are different from the previous ones in that they contain
estimates of the number of vertices whose degree is very close to the largest degree in the
graph, i.e. of order u, with a small additive correction term. They all appear in the paper
[HM23].

Once more, we first need to define some notation. For a vertex x ∈ [N] and i ≥ 0, we
denote by Bi(x) the ball of radius i around x, rooted at x. Moreover, we define Si(x), the
sphere of radius i around x, to be the set of vertices y such that the shortest path from x
to y is of length i. In other words Si(x) are all vertices that are not in Bi−1(x), and that are
connected to x by a path of length i.

Given a root vertex x, we define a partial ordering on vertices by writing u ≤ v if there
is a shortest path from x to v that goes through u. We also write for y ∈ [N],

Ny :=
∣∣∣∣{u ∈ [N] : u ≥ y,u ∼ y

}∣∣∣∣ (3.14)

as the number of children of y in the rooted graph. Similarly, for a rooted or unrooted
graph, for a vertex y ∈ [N] we define Γy = {z ∈ [N] : z ∼ y} to be the neighborhood of y.

The following parameters will be used to approximate the largest eigenvalues.

Definition 3.1. We denote by

1. αx := |Γx|, the degree of the vertex x

2. βx :=
∑

y∼x Ny, the number of vertices in S2(x), which we also call the size of the
2-neighborhood,

3. β(1,1)
x =

∑
y2∈S2(x) Ny2 , the number of vertices in S3(x), and

4. β(2)
x =

∑
y∼x N2

y.

As we will see, the largest eigenvalues are mostly determined by these four statistics.
In our regime, the last two statistics (as well as all others) are well concentrated enough
that we can write an accurate enough formula for the eigenvalues based on only αx, βx,
for the vertices x with the largest degrees.

We define the following sets of high degree vertices in our graph. For m ≥ 0, let

Xm :=
{
x ∈ [N] : αx ≥ u −m

}
.

Using this notation we can define the regimes into which we split up the high-degree
vertices:
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Definition 3.1. We differentiate:

1. the fine regime: W := Xu1/4 ,

2. the intermediate regime: V := Xu2/3 , and

3. the rough regime: U := Xu/2.

The precise thresholds are not significant and rather of technical nature, our analysis
would continue to work if we replaced these thresholds with u − uc1 , u − uc2 , c3u for some
constants satisfying 0 < c1 < 1/2, 1/2 < c2 < 1 and 0 < c3 < 1.

For large N, we haveW ⊂ V ⊂ U. First we bound the sizes of these sets. The upper
bounds will let us perform union bounds, whereas the lower bound on |Xm| tells us that
all of our highest degree vertices have almost the same degree.

Lemma 3.4. Let log−1/15 N ≤ d ≤ log1/40 N. For m ≥ 0, with probability 1 −O
((
u

d

)−(m+1/2)
)
,

|Xm| ≤
3
2

(
u

d

)m+1/2

. (3.15)

Moreover, for 1 ≤ m ≤ uc with c < 1/2, with probability 1 −O
((
u

d

)−(m−1/2)
)
,

|Xm| ≥
1
2

(
u

d

)m−1/2

. (3.16)

Proof. By Lemma 3.11 in [Bol01], we know that Var(|Xm|) = O(E[|Xm|]). By Chebyshev’s
inequality, we have that with probability 1 −O

(
1

E[|Xm|]

)
,

1
2
E[|Xm|] ≤ |Xm| ≤

3
2
E[|Xm|]. (3.17)

Therefore, it is sufficient to show that E[|Xm|] and E[|U|] satisfy the above bounds, and
that each is ωN(1). Recall that µk := NP( a vertex is of degree k ) = NBin(k; N − 1, p). Thus
for any k ∈N,

µk+1

µk
=

Bin(k + 1; N − 1, p)
Bin(k; N − 1, p)

=
(N − k − 1)p
(k + 1)(1 − p)

. (3.18)

By the definition of u, and the fact that µk monotonically decreases in k,

µ−1
u ≤ µu−1 =

Nu
(
1 − d

N

)
d(N − u)

µu,

µu ≤ µ
−1
u+1 =

N(u + 1)
(
1 − d

N

)
d(N − u − 1)

µ−1
u
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Therefore (
1 − oN(1)

)√d
u
≤ µu ≤

(
1 + oN(1)

)√u
d
.

We have by (3.18), for m ≤ u,

µu−m = µu

(
N − d

d

)m m∏
i=1

u − i + 1
N − u + i − 1

=
(
1 + oN(1)

)
µu
um

dm

m∏
i=1

(1 −
i − 1
u

).

An upper bound on this is (1 + oN(1))(ud )m+1/2. Summing over all 0 ≤ n ≤ m gives (3.15).
Assuming that m ≤ uc for c < 1/2,

(
1 + oN(1)

)
µu
um

dm

m∏
i=1

(
1 −

i − 1
u

)
≥

(
1 + oN(1)

)
µu
um

dm e−m2/u
≥

(
1 + oN(1)

)
µu
um

dm ,

giving (3.16).
�

Corollary 3.1. For our regimes this implies that with high probability

|W| � euc
for any c >

1
4

|V| � euc
for any c >

2
3

|U| � Nc for any c >
1
2
.

Remark 3.1. Note that in the proof we derive bounds on the expected values of the sizes
of these sets, which immediately imply bounds on the probability that a given vertex falls
into one of the sets, since for any set T , E[|T |] = NP( vertex 1 ∈ T ).

3.3 Local neighborhoods
When analyzing the largest eigenvalues and eigenvectors of G we will need a precise

understanding of the local neighborhoods around the high degree vertices. In this section
we assume that log N−1/15

≤ d ≤ log N1/40. All results in this section are from the paper
[HM23].
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Structure around the vertices in the fine and intermediate regime

We first define an event under which the balls around vertices in V have a nice
structure. The approximate eigenvalue and eigenvalues will be defined using Br(x) for
some fixed r. The following structural results are for slightly larger balls so that we can
also bound the error coming from truncating the balls and guarantee that there is no
intersection with balls of radius 3 around vertices fromU.

Definition 3.2. Define Ω3.2 to be the event that the following are true.

1. For all x , y ∈ V, Br+3(x) ∩ Br+3(y) = ∅.

2. For all x ∈ V, Br+3(x) is a tree.

3. For 1 ≤ i ≤ r and every vertex x ∈ V,∣∣∣∣∣∣Si(x)
∣∣∣ − di−1αx

∣∣∣ = O
(
di−3/2 + 1

)
u

7
8

Moreover, for every vertex x ∈ W,∣∣∣∣∣∣Si(x)
∣∣∣ − di−1αx

∣∣∣ ≤ O
(
di−3/2 + 1

)
u

2
3 .

4. For x ∈ V, every y ∈ Br+3(x)\{x}, satisfies Ny ≤ u
3/4.

Moreover, for x ∈ W, every y ∈ Br+3(x)\{x} satisfies Ny ≤ u
1/3.

5. For every x ∈ V, ∣∣∣∣∣∣∣ ∑
y∈S1(x)

N2
y −

(
d2 + d

)
αx

∣∣∣∣∣∣∣ ≤ O
(
u3/2

)
.

Moreover, for every x ∈ W,∣∣∣∣∣∣∣ ∑
y∈S1(x)

N2
y −

(
d2 + d

)
αx

∣∣∣∣∣∣∣ ≤ O
(
u2/3

)
.

Note that statement 3 in 3.2 implies that |S2(x)| ≤ 2dαx for our regime of d. If d was
smaller than log−c N, for some c > 1

4 , this would no longer be true.
Because of the sparsity of the graph and concentration of independent binomials, we

can show that the event Ω3.2 almost always occurs. Considering statements similar to most
of these bounds have appeared previously, in, e.g. [ADK23b], we defer the proof of the
following lemma to the appendix in Section A.1.

Lemma 3.5. The event Ω3.2 occurs with high probability.
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Structure around the vertices in the rough regime

For the vertices in the rough regime we use a different approach to construct approx-
imate eigenvectors, because the growth of the spheres and the maximum degree in the
balls around them cannot be bounded as tightly as for vertices in V. We now state two
weaker structural lemmas around vertices in U. Firstly we have weaker bounds on the
neighborhood growth and the fluctuations of the degrees of the neighbors. The following
lemma has a similar proof as Lemma 3.5, and we defer the proof to Section A.1 of the
appendix.

Lemma 3.6. We have that with high probability for any vertex x ∈ U simultaneously and
any i ≤ 3, the sphere Si(x) at distance i from x satisfies

|Si(x)| = O
(
(d + log log N)i−1u

)
.

Moreover, ∑
y∈S1(x)

(
Ny − d

)2
≤ O

((
log N

)2
)
.

Next, we show the balls around vertices in U are close to disjoint trees: with high
probability the neighborhoods around vertices in the rough regime are almost trees and
contain few disjoint paths that contain other vertices from the rough regime. This result
basically corresponds to Lemma 5.5 and Lemma 7.3 in [ADK21b], albeit for a different
regime of d. The proof is also very similar and is deferred to Section A.1 of the appendix.

Lemma 3.7. Let Uη =
{
x ∈ [N] : αx ≥ ηu

}
, and s be some positive integer, then with high

probability for some constants C1 and C2 that only depend on η, simultaneously for all
x ∈ Uη,

1. |E (Bs(x)) | < |V (Bs(x))| − 1 + C1 and

2. Bs(x) contains less than C2 edge disjoint paths in Bs(x) containing other vertices from
Uη.

Note thatU =U 1
2

and that it is enough to take constants C1 = 2 and C2 > 2
η .

We now construct a “pruned” graph in which the neighborhoods of vertices inU are
disjoint trees. The construction works in the same manner as in Lemma 7.2 of [ADK21b]
and we use it to prove a statement similarly to Proposition 6.19 in [ADK23b]. Once more
the proof can be found in the appendix.

Lemma 3.8. Recall that we denote by G the random graph sampled from G
(
N, d

N

)
. With

high probability, there is a subgraph Ĝ ⊂ G such that for all vertices x ∈ U,

1. Balls of radius 3 around x in Ĝ, which we denote by B̂3(x), are disjoint;
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2. The subgraphs induced by B̂3(x) are trees;

3. The maximum degree of G − Ĝ is bounded;

4. For i ≤ 3, the spheres Ŝi(x) in the pruned graph Ĝ satisfy∣∣∣Ŝi(x)
∣∣∣ = O

(
(d + log log N)i−1u

)
;

5. We have that ∑
y∈Ŝ1(x)

(
N̂y(x) −

β̂

α̂

)2

≤ O
(
(log N)2

)
.

3.4 Probability of the existence of a clique
As will be explained in the idea of proof section, atypically high degree stars (with

high edge-weights on them) are the driving mechanism behind the largest eigenvalue in
the case of light-tailed weights. In the case of heavy-tailed weights on the other hand, a
similar role is played by cliques. In this short section, we state a bound from [GHN24]
for the probability that G ∼ GN, d

N
, with d constant, contains a clique of size k. While the

lower bound can be seen for instance in [GN22, Lemma 4.3], the upper bound follows
from the first moment method: there are

(M
k

)
≤ Nk possible cliques of size k, and each of

them requires the existence of
(k

2

)
edges, with each has a probability d/N of appearing.

Lemma 3.9. For any integer k ≥ 3, there exists a constant C = C(k, d) > 0 such that

CN−(
k
2)+k
≤ P(G contains a clique of size k) ≤ d(k

2)N−(
k
2)+k.

3.5 Connectivity structures of highly sub-critical
Erdős-Rényi graph

As a key step in our proofs about weighteds graphs, we will decompose the underlying
graph X into graphs with low and high edge-weights respectively. Because of the threshold
we choose, the latter graph turns out to be a highly subcritical graph GN,q with

q ≤
d′

N(log N)ε
(3.19)

for some constants ε, d′ > 0. In this section, we record some properties of such graphs,
namely that all connected components look like trees and that their sizes are well-
controlled.

Throughout this section, we assume that the edge density q satisfies (3.19). First, we
have a bound on the largest degree denoted by d1(GN,q), as a direct consequence of (3.3).
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Lemma 3.10. For δ1 > 0, define the event

Dδ1 :=
{

d1(GN,q) ≤ (1 + δ1)
log N

log log N

}
. (3.20)

Then,

lim inf
N→∞

− logP
(
D

c
δ1

)
log N

≥ δ1.

Proof. Note that Dδ1 is a decreasing event and that GN,q is stochastically dominated by
GN, d

N
. Hence, by (3.3), we obtain the result. �

Next, we state a quantitative bound on the size of the largest connected component.
The next two results can be obtained from the cited lemmas by noting that the sparsity
considered in [GN22] is of the form d′

N(log N)ε/2 , while it is d′
N(log N)ε in our case.

Lemma 3.11 ([GN22, Lemma 5.4]). Let C1, · · · ,CL denote the connected components of
GN,q. For δ2 > 0, define the event

Cε,δ2 :=
{

max
i=1,...,L

|Ci| ≤ (1 + δ2)
1
ε

log N
log log N

}
.

Then,

lim inf
N→∞

− logP
(
C

c
ε,δ2

)
log N

≥ δ2. (3.21)

Note that in this lemma, we replaced δ2 in [GN22, Lemma 5.4] by 2δ2.

To conclude this section we state two results about the structure of the connected
components. The first one quantifies how similar all connected components are to trees,
in the sense that they have a small number of tree-excess edges. The second one concerns
the event that all connected components are trees.

Lemma 3.12 ([GN22, Lemma 5.6]). Let C1, · · · ,CL denote the connected components of
GN,q. For δ3 > 0, define the event

Eδ3 :=
{

max
i=1,...,L

{
|E(Ci)| − |V(Ci)|

}
≤ δ3

}
. (3.22)

Then,

lim inf
N→∞

− logP
(
E

c
δ3

)
log N

≥ δ3. (3.23)
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In addition, define the event

T :=
{
|E(Ci)| = |V(Ci)| − 1, ∀i = 1, · · · ,L

}
.

In other words, T is the event that all the connected components of GN,q are trees. Then,
there is a constant C > 0 that depends on d, such that

P
(
T

c
)
≤

C
(log N)2ε . (3.24)
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Chapter 4

Distributional properties of sparse
Erdős-Rényi graphs

Many statistics of Erdős-Rényi graphs follow the binomial distribution. In particular
the degree of a single vertex is Binom (N − 1, d/N), and when d is small and N large, this can
be well approximated by a Pois(d) distribution. Moreover any two degrees only depend on
each other very weakly, so we expect that in some ways, the whole collection of degrees
should behave similarly to a collection of independent Poisson random variables of a
similar size. The third section contains a precise statement of that form with regards to the
maximal degrees and their neighborhoods. We start by collecting a few results regarding
the Binomial and the Poisson distribution in the first section, as well as comparisons
between them in the second. Those will be used repeatedly in this and other chapters.
We end this chapter with a section that contains some results about the tails of sums of
independent random variables, which show up for different reasons in the two projects
about Erdős-Rényi graphs. The proof of the approximations in the first two and the last
sections are given in the appendix in Section A.2.

The new results in this section are aggregated from [GHN24] and [HM23].

4.1 Distributional comparisons

Lemma 4.1. If X ∼ Binom(n, p) and Y ∼ Pois(np), and if k,np ≤
√

n, then

P(X = k) =

(
1 + O

(
k2 + (np)2 + 1

n

))
P(Y = k).

This implies that the tails are also the same up to a small error.
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Corollary 4.1. If X ∼ Binom(n, p) and Y ∼ Pois(np), and if k ≤
√

n, np ≤ n1/2−c for some
fixed constant c, then

P(X ≥ k) =

(
1 + O

(
k2 + (np)2 + 1

n

))
P(Y ≥ k) + O

((
ep
√

n
)√n

)
.

4.2 Distributional identities

Poisson tails

Having established these comparisons, we use very tight bounds on the Poisson tail.
Tao gives such a tight bound on his blog [Tao22], where he notes that forms of this bound
are given previously [Gly87, Tal95]. In the post, Tao gives the proof of the upper bound
and leaves the proof of the lower bound to the reader. We prove both sides in the appendix
in Section A.2.

Lemma 4.2. For X ∼ Pois(λ) and δ ≥ 1
√
λ

, for sufficiently large λ

P
(
X ≥ λ(1 + δ)

)
≤

e−λh(δ)

√
λmin{δ, δ2}

,

where h(δ) = (δ + 1) log(δ + 1) − δ.
Moreover, if λ(1 + δ) is an integer, then there is a universal constant c4.2 such that for

sufficiently large λ

P
(
X ≥ λ(1 + δ)

)
≥ c4.2

e−λh(δ)

√
λmin{δ, δ2}

.

The integrality assumption is necessary as for very large δ, the difference in probability
between P(X ≥ λ(1 + δ)) and P(X ≥ λ(1 + δ) + 1) is large enough that for very small c > 0,
this two sided bound could not possibly hold for dλ(1+δ)e and bλ(1+δ)c+c simultaneously.
For its use in our proofs, the integrality assumption is irrelevant, as we will only need the
lower bound in the small δ regime.

Corollary 4.2. For X ∼ Pois(λ), if λδ3 = oλ(1) and δ ≥ 1
√
λ

, then

(
1 − oλ(1)

)
c4.2

e−
λδ2

2

δ
√
λ
≤ P

(
X ≥ λ(1 + δ)

)
≤

(
1 + oλ(1)

) e−
λδ2

2

δ
√
λ
. (4.1)

Binomial tails

Although we will mostly approximate the degrees by Poisson random variables it is
sometimes more convenient to work with the precise distribution. To this end we state
here some classical tail bounds we will use, that rely on the relative entropy.



CHAPTER 4. DISTRIBUTIONS OF SPARSE ERDŐS-RÉNYI GRAPHS 35

We denote by Ip the relative entropy functional

Ip(q) := q log
q
p

+ (1 − q) log
1 − q
1 − p

. (4.2)

Lemma 4.3. There is a universal constant c > 0 such that for any 0 < p < 1,

Ip

(p
2

)
≥ cp. (4.3)

This implies that I1−p

(
1 − p

2

)
≥ cp and for any 0 < q ≤ p

2 , Ip(q) ≥ cp.

Lemma 4.4 (Lemma 3.3 in [LZ17]). If 0 < p� q (i.e. q
p →∞ as p, q→ 0) and q ≤ 1− p then

Ip(p + q) = (1 + o(1))q log
(q
p

)
.

The next lemma provides a sharp bound on the tail probability of the Binomial distri-
bution.

Lemma 4.5 (Lemma 4.7.2 in [Ash65]). For m ∈N and 0 < q < 1, let X be a random variable
that has the distribution Binom(m, q). Then, for any q < θ < 1,

1√
8mθ(1 − θ)

e−mIq(θ)
≤ P (X ≥ θm) ≤ e−mIq(θ). (4.4)

By applying the above to the random variable m − X and using that Iq(θ) = I1−q(1 − θ)
we additionally have that, for 0 < θ < q < 1,

1√
8mθ(1 − θ)

e−mIq(θ)
≤ P (X ≤ θm) ≤ e−mIq(θ). (4.5)

As we will be interested in vertices of large degree in our graph, and the degrees follow
a binomial distribution, we will repeatedly use tail bounds such as the following.

Lemma 4.6. Let m = n + o(n) and p = d
n , and define X ∼ Bin(m, p) then, for τ = o(n), and

τ > md
n , it holds for some constant c, that for n large enough,

P (X ≥ τ) ≤ e−τ log(τ)+cτmax{log d,1}. (4.6)

We will use a weaker, simpler version of this bound for low probability events.

Lemma 4.7 ([JRL11] Theorem 2.1). If X ∼ Binom(N, p), and λ = Np, then for t ≥ 0

P(X − λ ≥ t) ≤ exp
(
−

t2

2λ + 2t/3

)
, P(X − λ ≤ −t) ≤ exp

(
−

t2

2λ

)
.
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4.3 Poisson approximation in sparse Erdős-Rényi graphs
In our analysis of the spectral edge of unweighted Erdős-Rényi graphs we will crucially

use that we can approximate high-degree vertices and their local neighborhoods using
Poisson random variables. The first result is similar to [ADK23b] Lemma 7.1, but proven
in a somewhat different way. It shows that if we consider a set of fixed vertices that is not
too big, their degrees and the size of their 2-neighborhoods are close to the distribution of
Poisson random variables.

Lemma 4.8. For log−1/9 N ≤ d ≤ log1/40 N, let G be a graph generated from the Erdős-Rényi
graph distribution G

(
N, d

N

)
. Moreover, for k ≤ elo12/3N, consider vertices z1, . . . zk ∈ [N],

along with 1
2u ≤ v1, . . . , vk ≤ 2u and w1, . . .wk such that 1 ≤ wi ≤ dvi + u7/8 for 1 ≤

i ≤ k. Then define i.i.d. X1,X2, . . .Xk ∼ Pois(d) and independent Yv1 ∼ Pois(dv1),Yv2 ∼

Pois(dv2), . . . ,Yvk ∼ Pois(dvk). If A is the event that there are no intersections between the
balls of radius 1 around the vertices z1, . . . , zk, and no edges from S1(zi) to S1(z j) for any i, j
(including i=j), then

P

 k⋂
i=1

{
αzi = vi, βzi = wi

}
∩ A

 =
(
1 + N−1+oN(1)

) k∏
i=1

P(Xi = vi)P(Yvi = wi) (4.7)

Proof. Let Z = {z1, . . . , zk}, with AZ being the adjacency matrix of Z. Recall that Γzi denotes
the neighbors of a vertex zi.

We analyse the event that ∩i{αzi = vi} and that there are no edges between any zi, as
well as no intersection between the neighborhoods of the zi, sequentially.

That AZ = 0 happens with probability (1−d/N)(
k
2). Then we first need to choose exactly

v1 vertices among [N]\Z connected to z1. Subsequently we need to choose exactly v2

vertices among [N]\(Z ∪ Γz1) and make sure that there are no edges between z2 and Γz1 ,
and so on. Note that this way the edges we consider at each step are independent of
the previously considered events and moreover the number of edges between zi and
[N]\(Z ∪ ∪i−1

j=1Γ j) is binomially distributed with parameters N − k −
∑i−1

j=1 vi and d/N. This
gives

P

 k⋂
i=1

{
αzi = vi

}⋂{
AZ = 0

}⋂{
∩

k
i=1 Γzi = ∅

}
=

 k∏
i=1

P

Binom

N − k −
i−1∑
j=1

v j,
d
N

 = vi


(
1 −

d
N

)∑i−1
j=1 vi


(
1 −

d
N

)(k
2)
.

We now use Lemma 4.1 to approximate the binomial probabilities, the bound on the error
terms follows from our assumptions on vi, k and the bounds on d from 5.1.
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P

Binom

N − k −
i−1∑
j=1

v j,
d
N

 = vi

 =
(
1 + Õ

(
N−1

))
P

Pois

d −
d
(
k +

∑i−1
j=1 v j

)
N

 = vi


=

(
1 + N−1+oN(1)

)
P (Pois(d) = vi) .

Moreover
(
1 − d

N

)∑i−1
j=1 vi

as well as
(
1 − d

N

)(k
2) can also be written as 1 + N−1+oN(1). There

are NoN(1) such error terms, which all together implies that

P

 k⋂
i=1

{
αzi = vi

}⋂{
AZ = 0

} ⋂{ k⋂
i=1

Γzi = ∅
} =

(
1 + N−1+oN(1)

)
P
(
Pois(d) = vi

)
. (4.8)

We now condition on the event
⋂k

i=1

{
αzi = vi

}⋂ {
AZ = 0

}⋂ {⋂k
i=1 Γzi = ∅

}
and similarly

analyse
{
βzi = wi

}
. Note that the event A does not require that the S2(zi) are all disjoint

which makes the analysis slightly simpler. The number of edges from S1(zi) to [N]\(Z∪ΓZ)
is Binomial with parameters vi

(
N − k −

∑k
j=1 v j

)
and d

N , and those random variables are

independent since we condition on AZ = 0 and
⋂k

i=1 Γzi = ∅. Finally, the probability that
there are no edges within and across any Γzi is equal to (1 − d/N)

∑
i, j viv j+

∑
i (vi

2).
Thus, defining AΓ to be the adjacency matrix of ΓZ =

⋃k
i=1 Γzi , we get

P

 k⋂
i=1

{
βzi = wi

}⋂{
AΓ = 0

}∣∣∣ k⋂
i=1

{
αzi = vi

}⋂{
AZ = 0

}⋂{ k⋂
i=1

Γzi = ∅
}

=

 k∏
i=1

P

Binom

vi

N − k −
k∑

j=1

v j

 , d
N

 = wi



(
1 −

d
N

)∑k
i, j=1,i, j viv j+

∑k
i=1 (vi

2)

The last term can as before be written as 1 + N−1+oN(1). When vi = 0, we can immediately
replace the Binomial random variables by Poisson random variables with parameter 0,
since they are both constant 0. For vi > 0, we once more use the Poisson approximation
from Lemma 4.1, which together with our bounds on vi, wi, k and d, gives

P

Binom

vi

N − k −
k∑

j=1

v j

 , d
N

 = wi


=

(
1 + Õ

(
N−1

))
P

Pois

vid

1 −
k +

∑k
j=1 v j

N


 = wi


=

(
1 + N−1+oN(1)

)
P
(
Pois (vid) = wi)

)
Combining this with (4.8), implies the result. �
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Our next result basically shows that what is true for a fixed number of vertices is also
true for the vertices with the largest degrees. Crucially, the number of vertices we are
allowed to consider in Lemma 4.8 is larger than the number of vertices with very high
degree we typically have in our graph.

We start by stating a lemma from [ADK23b] that expresses the distribution of a point
process in terms of the point probabilities. Define the parameter (Zx)x∈[N] to be an ex-
changeable family of random variables in a measurable space Z. The point process Φ is
defined to be equal to

∑
x∈[N] δZx . We then introduce for F ⊂ Zk and the point process Φ,

the correlation measure

qΦ(F) := N(N − 1) · · · (N − k + 1)P
(

(Z1, . . .Zk) ∈ F
)
.

Lemma 4.9 ([ADK23b], Lemma 7.8). For n,m ∈N and disjoint, measurable I1, . . . In

P (Φ(I1) = k1, . . . ,Φ(In) = kn) =
1

k1! · · · kn!

∑
`1,...,`n∑
`i≤m

(−1)
∑

i `i

`1! · · · `n!
qΦ

(
Ik1+`1
1 × · · · × Ikn+`n

n

)

+ O

 1
k1! · · · kn!

∑
`1,...,`n∑
`i=m+1

(−1)
∑

i `i

`1! · · · `n!
qΦ

(
Ik1+`1
1 × · · · × Ikn+`n

n

) . (4.9)

We use this lemma to show that the edge of the process of the pairs (αx, βx), is close to
the maxima of a set of Poisson random variables.

Proposition 4.1. Let Φ :=
{
(αx, βx) : x ∈ [N], αx > u − 2 log1/8 N

}
denote the point process

consisting of the largest degrees in G, with their two-neighborhoods. Let P := {(Xi,Yi)}i∈[N]

denote a set of i.i.d. random variables with Xi ∼ Pois(d) and Yi|Xi = x ∼ Pois(dx). Then
set Ψ′ :=

{
(Xi,Yi) : i ∈ [N], u − 2 log1/8 N ≤ Xi ≤ u, 0 ≤ Yi ≤ uXi + u7/8

}
. It holds that

dTV(Φ,Ψ′) = oN(1).

Proof. We begin by restricting Φ to points (x, y) such that u − 2 log1/8 N ≤ x ≤ u and
0 ≤ y ≤ dx + u7/8, and to the event that all neighborhoods of vertices with such degrees
are disjoint and tree-like. More precisely we define A(x, y) to be the event that for the
ordered pair (x, y) ∈N2, u− 2 log1/8 N ≤ x ≤ u and 0 ≤ y ≤ dx + u7/8, and let B be the event
that the neighborhoods around all such vertices v ∈ [N] are disjoint tree-like. Now we set
Φ′ :=

{
(αx, βx)1A(αx,βx)∩B : x ∈ [N]

}
. Then Φ′ = Φ with high probability by Lemma 3.5. Thus

it is enough to show that dTV(Φ′,Ψ′) = oN(1).
We enumerate all possible location of points for these point processes, in other words,

all potential ordered pairs (x, y) such that u − 2 log1/8 N ≤ x ≤ u and 0 ≤ y ≤ dx + u7/8.
Therefore, if nx := 2 log1/8 N + 1,ny = du + u7/8+1, there are at most n := nxny possibilities.
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Define |Φ′((x, y))| to be the number of points the point process Φ′ has at (x, y). We
consider an event E, which for some set KE of vectors in Nn, is defined as follows. We
write E(X) here to mean that the event X occurs.

E :=
⊔
k∈KE

E

(∣∣∣Φ′((x1, y1))
∣∣∣ = k1, . . . ,

∣∣∣Φ′((xnx , yny))
∣∣∣ = kn

)
.

By Lemma 4.9,

Pr
(∣∣∣Φ′((x1, y1))

∣∣∣ = k1, . . . ,
∣∣∣Φ′((xnx , yny))

∣∣∣ = kn

)
=

1
k1! · · · kn!

∑
`1,...,`n∑

li≤elog2/3 N/2−1

(−1)
∑

i `i

`1! · · · `n!
qΦ′

(
Ik1+`1
1 × · · · × Ikn+`n

n

)

+ O


1

k1! · · · kn!

∑
`1,...,`n∑

`i=elog2/3 N/2

qΦ′

(
Ik1+`1
1 × · · · × Ikn+`n

n

) (4.10)

where Ii is the lattice point (xi, yi).
We use this threshold for

∑
ki, as by Lemma 3.4 and Markov’s inequality, with probabil-

ity 1−e−Ω(log2/3 N), there are at most elog2/3 N/2−1 vertices with degree larger than u−2 log1/8 N,
which implies that we only need to consider vectors such that k :=

∑n
i=1 ki ≤ elog2/3 N/2 − 1.

By Lemma 4.8,∑
k∈KE

1
k1! · · · kn!

∑
`1,...,`n∑

li≤elog2/3 N/2−1

(−1)
∑

i `i

`1! · · · `n!
qΦ′

(
Ik1+`1
1 × · · · × Ikn+`n

n

)

=
(
1 + N−1+oN(1)

) ∑
k∈KE

1
k1! · · · kn!

∑
`1,...,`n∑

li≤elog2/3 N/2−1

Nk+` (−1)
∑

i `i

`1! · · · `n!

·

n∏
i=1

(
P(Pois(d) = xi)P(Pois(dxi) = yi)

)ki+`i
.

Also,

1
k1! · · · kn!

∑
`1,...,`n∑

`i=elog2/3 N/2

qΦ′

(
Ik1+`1
1 × · · · × Ikn+`n

n

)

= O


1

k1! · · · kn!

∑
`1,...,`n∑

`i=elog2/3 N/2

1
(`/n)!n Nk+`P

(
Pois(d) = u − 2 log1/8 N

)k+`

 .
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where ` =
∑

i `i = elog2/3 N/2. By the definition of the Poisson,

1
k1! · · · kn!

∑
`1,...,`n∑

`i=elog2/3 N/2

1
((`/n)!)n Nk+`P

(
Pois(d) = u − 2 log1/8 N

)k+`
= e−Ω

(
elog2/3 N

)
.

By using Lemma 4.9 once again,

1
k1! · · · kn!

∑
∑
`1...,`n≤elog2/3 N/2−1

Nk+` (−1)
∑

i `i

`1! · · · `n!

n∏
i=1

(
P(Pois(d) = xi)P(Pois(dxi) = yi)

)ki+`i

=
(
1 + N−1+oN(1)

)
Pr

(
Ψ′(I1) = k1 + `1, . . . ,Ψ

′(In) = kn + `n,Ψ
′(In) = kn

)
+ e−Ω

(
elog2/3 N

)
.

We now wish to pass from this error to total variation distance. The total number
of possibilities of k for

∑n
i=1 ki ≤ elog2/3 N/2 is given by the balls and bins paradigm as∑elog

2
3 N/2

k=0

(n+k−1
k−1

)
≤ elog3 N. Therefore, the error for any event is at most

dTV

(
(αv, βv)1A(αv,βv)∩B, (X,YX)1A(X,YX)

)
= elog3 Ne−Ω

(
elog2/3 N

)
+ N−1+oN(1) = oN(1). (4.11)

�

The above two lemmas are crucial as we can now essentially treat the relevant pairs
(αx, βx) as independent Poisson random variables.

4.4 Tails of sums

Sums of squares of binomials

When approximating the largest eigenvalues of G
(
N, d

N

)
using local neighborhood

statistics of high degree vertices, we will need bound the sums of squares of the degrees
in neighborhoods of those high degree vertices. Therefore we require estimates for the
sum of distributions with heavy Weibull tails. Such a bound follows from (4.7) and the
tail results in [BMdlP23]. Justification for this generalization is given in the appendix in
Section A.2.

Lemma 4.10. For any n > 0 and d = o(n1/3), consider n independent i.i.d. samples
X1, . . .Xn ∼ Binom(N, d

N ). There is some constant c4.10 > 0 such that for any t > n2/3,

P


∣∣∣∣∣∣∣

n∑
i=1

X2
i − E

 n∑
i=1

X2
i


∣∣∣∣∣∣∣ > t

 ≤ 2n exp
(
−

c4.10

d3 + 1

√
t
)
.
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Moreover, if t > 2(d2 + 1)n2/3,

P


∣∣∣∣∣∣∣

n∑
i=1

X2
i − E

 n∑
i=1

X2
i


∣∣∣∣∣∣∣ > t

 ≤ 2n exp
(
−c4.10

√
t
)
.

Sums of random variables with Weibull shape

Similar bounds are also needed when considering the spectrum of weighted graphs.
In the light-tailed case the sum of squares of the weights appears because it corresponds to
the eigenvalue of a star. In the heavy-tailed case the sum of the αth power of the weights is
introduced through our results on the relationship between the α-(quasi)norm of a matrix
and its spectrum from section 2.1.

In this section, we state two key lemmas about the tail of a sum of i.i.d. Weibull
random variables and their conditioned version. Throughout this section, we assume that
{Yi}i=1,2,··· are i.i.d. random variables such that for t > 0,

C1

2
e−tα
≤ P

(
Yi ≥ t

)
≤

C2

2
e−tα and

C1

2
e−tα
≤ P

(
Yi ≤ −t

)
≤

C2

2
e−tα . (4.12)

This implies that

C1e−tα
≤ P(|Yi| ≥ t) ≤ C2e−tα .

Also, for our applications, as will appear several times in chapter 6 we define, for ε > 0, Ỹi

as the random variable Yi conditioned to be greater than (ε log log N)
1
α in absolute value.

Tails of sums of light-tailed random variables

First, we introduce a tail bound for the sum of squares of i.i.d. Weibull random
variables having a lighter tail than the Gaussian distribution, i.e. α > 2. Recall that λlight

α

denotes the typical value of the largest eigenvalue, defined in (6.3):

λlight
α =

(2
α

) 1
α
(
1 −

2
α

) 1
2−

1
α (log N)

1
2

(log log N) 1
2−

1
α

.

Lemma 4.11. Assume that α > 2. Then, for any t > k ≥ 2,

Ck
1e−t

α
2 k1− α2

≤ P
(
Y2

1 + · · · + Y2
k ≥ t

)
≤ Ck

2

(2et
k

)k

e−(t−k)
α
2 k1− α2 . (4.13)

In particular, assume that t = d2
(
λlight
α

)2
+ o

(
log N

(log log N)1− 2
α

)
and k = b log N

log log N + o
(

log N
log log N

)
for

some constants b, d > 0. Then,

lim
N→∞
−

logP
(
Y2

1 + · · · + Y2
k ≥ t

)
log N

= dα
2

α − 2

(
1 −

2
α

) α
2

b1− α2 (4.14)
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and

lim
N→∞
−

logP
(
Ỹ2

1 + · · · + Ỹ2
k ≥ t

)
log N

≥dα
2

α − 2

(
1 −

2
α

) α
2

b1− α2 − bε. (4.15)

(recall that Ỹi is a conditioned version of Yi).
Finally, in the case t = d2

(
λlight
α

)2
+ o

(
log N

log log N

)
and k = o(1) log N

log log N , we have

lim
N→∞
−

logP
(
Y2

1 + · · · + Y2
k ≥ t

)
log N

= lim
N→∞
−

logP
(
Ỹ2

1 + · · · + Ỹ2
k ≥ t

)
log N

= ∞. (4.16)

The particular choices of t and k considered in (4.14)-(4.16) appear in our applications
in Section 6.2.

Tails of sums of the αth-power of random variables

The next crucial result is about the tail estimate for the i.i.d. sum of αth-power of
conditioned Weibull random variables for any α > 0.

Lemma 4.12. Suppose that α, ε > 0. Then, there exists a constant C > 0 depending only
on C1,C2 such that the following holds: For any L > m,

P
(
|Ỹ1|

α + · · · + |Ỹm|
α
≥ L

)
≤ Cme−Lem

( L
m

)m

eεm log log N. (4.17)

In particular, assume that m ≤ b log N
log log N + c and L = a log N for some constants a, b, c > 0.

Then,

P
(
|Ỹ1|

α + · · · + |Ỹm|
α
≥ a log N

)
≤ N−a+εb+o(1). (4.18)

Remark 4.1. The above lemmas 4.11 and 4.12, with the same argument, hold as well for a
slightly more general class of Weibull random variables satisfying

C1t−c1e−ηtα
≤ P(|Yi| > t) ≤ C2t−c2e−ηtα

with some constants c1, c2 ≥ 0. This can be used to generalize our results as indicated in
Remark 6.2.
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Chapter 5

Description of the edge spectrum of
sparse Erdős-Rényi graphs

Given the preliminary results from the previous three chapters, we now focus on the
behavior of the eigenvalues of G

(
N, d

N

)
near the edge of the spectrum. This spectral edge

has received much attention, as it has its own specific applications. For example, the edge
governs the mixing rate of Markov chains, and graph partitioning, as shown in [HLW06],
albeit using the Laplacian rather than the adjacency matrix.

In this chapter we will focus on properties of the extreme eigenvalues and eigenvectors
that happen with high probability, and all results mentioned in this introduction, unless
otherwise specified, are also to be interpreted as such. The typical behavior of the extreme
eigenvalues and eigenvectors in the Erdős-Rényi model is known to go through various
phase transitions. When d� N1/3 these edge eigenvalues have Tracy-Widom fluctuations,
similar to the fluctuations of the eigenvalues of a GOE matrix [Sos99, EYY12, EKYY13,
LS18]. When Nε

≤ d� N1/3, for some fixed ε > 0, the top eigenvalues lose GOE behavior
and edge eigenvalues become Gaussian distributed [HLY20, HK21].

For sparser Erdős-Rényi graphs, Krivelevich and Sudakov showed using a graph
decomposition that eigenvalues are governed by the highest degree vertices [KS03]. More
precisely, with u denoting the largest degree we expect to occur in the graph, Krivelevich
and Sudakov showed that the largest eigenvalue of an Erdős-Rényi graph is typically
(1 + oN(1)) max{d,

√
u}. For log−1 N � d � log N, u = Θ

(
log N

log log N

)
. This shows that there is

a phase transition in the largest eigenvalue at d =
√

log N
log log N .

In fact, we begin to see the local affect of high degree vertices in the spectrum at
d � log N. This is well known to be the threshold for connectivity (as was shown in the
original work of Erdős and Rényi [ER60]), but is also the threshold for large fluctuations
in the degree sequence, as opposed to greater concentration seen for larger d. Specifically,
Benaych-Georges, Bordenave, and Knowles, as well as Latała, van Handel, and Youssef
showed that when d � log N, edge eigenvalues converge to the edge of the support of
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the asymptotic eigenvalue distribution [LvHY18, BGBK20]. However Benaych-Georges,
Bordenave, and Knowles also showed that when d � log N, roughly, edge eigenvalues
are “governed” by the largest degree vertices of the adjacency matrix [BGBK19], with the
specific threshold later given independently by Alt, Ducatez, and Knowles, as well as
Tikhomirov and Youssef [ADK21b, TY21].

Alt, Ducatez, and Knowles further studied this problem, and managed to obtain im-
pressively detailed results. Through the works of [ADK21a, ADK22, ADK23b, ADK23a],
the authors show a transition between the occurrence of delocalized eigenvectors in the
bulk of the spectrum, and localized eigenvectors near the edge for d . log N (the specific
bounds on d vary paper to paper, but all results are for this sparse regime).

We focus specifically on [ADK23b]. In this result, Alt, Ducatez, and Knowles show
that the largest eigenvalues of the graph are determined by two combinatorial statistics
around the high degree vertices. As was shown previously through [KS03] and [BGBK19],
the primary term is the degree of the high degree vertex, which we denote here by αx.
To gain the necessary levels of accuracy, they also track the secondary term βx, which is
the number of vertices of distance exactly 2 from a high degree vertex x in the graph.1

Note that this notation slightly differs from the one in [ADK23b], where αx and βx are
normalized by d. Reinterpreting their result, they show the following.

Theorem 5.1 ([ADK23b]). For ζ > 4 and sufficiently small constant ξ > 0, assume that
(log log N)ζ ≤ d ≤

(
1

log(4)−1 − (log N)−ξ
)

log N. For K := d1/2−2/ζ−16ξ there are some δ, ε > 0
such that the first K eigenvalues are of the form

αx√
αx −

βx

2αx

(
αx
d +

βx

αxd

)
+

βx

2αx

√(
αx
d +

βx

dαx

)2
− 4αx

d

+ O(d−εu−1) (5.1)

for K vertices of degree at least u − d−δ
log u .

This is done by, given αx and βx, making an educated guess for the structure of the
eigenvector. To use this approximate eigenvector it is crucial that the statistics of the local
neighborhoods of high degree vertices are concentrated, in particular that the degrees of
the vertices in the neighborhood is reasonably close to d, which is approximately their
expected value. According to (5.1), to be able to properly estimate eigenvalues past the
typical gap in the spectrum at the edge of Θ(u−1), it must be the case that d� 1.

5.1 Main results
Guionnet posed the question of deducing the behavior for d constant [Gui21]. The

difficulty in this regime is that important statistics, like the growth of the spheres around
1We have translated their parameters into the unnormalized versions we use in our proof.
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high-degree vertices and the maximum degrees in those spheres, are less concentrated.
We use new techniques to show that in fact, the same behavior holds in the constant
d regime, and continues until the average degree is subconstant. All the results in this
chapter are from the paper [HM23].

Theorem 5.2. Consider a G ∼ G(N, d
N ) graph with log−1/9 N ≤ d ≤ log1/40 N. With high

probability, for each of the elog1/8 N largest eigenvalues λ of the adjacency matrix, there is
some vertex x such that

λ =

√
αx +

βx

αx
+

d2 + d
αx

+ O
((

d3/2 + 1
)
u−11/6

)
.

Moreover, for k ≤ elog1/8 N, the vertex x corresponding to the kth largest eigenvalue is the
kth vertex in the lexicographic ordering (αx, βx).

As we will show, these high degree vertices are spaced throughout the graph, and have
almost independent local statistics. Therefore, similar to [ADK23b], the distribution of
the highest eigenvalues is described by a Poisson point process with density given by the
probability of existence of an (α, β) pair, where α is close to maximal among all vertices.

To this end, define the discrete intensity measure ρ : R→ R,

ρ
( s
u

)
:= N

2 log1/8 N∑
`=0

(
e−ddu−`

(u − `)!
e−d(u−`)(d(u − `))(s−u+`)(u−`)

((s − u + `)(u − `))!
1〈s(u−`)〉=01(s−u+`)(u−`)≤d(u−`)+u7/8

)
.

where 1〈x〉=0 is the indicator that x is a whole number. ρ induces a Poisson point process Ψ.
The meaning of ρ is that it is the intensity measure of α+

β
α if α ∼ Pois(d) and β ∼ Pois(dα),

restricted to α ∈
[
u − 2 log1/8 N, u

]
, β ∈

[
0, dα + u7/8

]
. As we will see, Theorem 5.2 implies

Ψ approximates the density of λ2
x at the edge of the spectrum.

Formally, we we will consider proximity in Lévy-Prokhorov distance, which is a
metrization of the weak topology. Namely we define, for two Borel measures ν1, ν2

on R,

D(ν1, ν2) = inf
{
ε > 0 : ∀A ∈ B, ν1(A) ≤ ν2(Aε) + ε and ν2(A) ≤ ν1(Aε) + ε

}
where B is the set of Borel measurable sets in R and Aε is the neighborhood of radius ε
around A.

Moreover, for K > 0, define κ(K) as

κ(K) = inf
{
s ∈ R : ρ([s,∞)) ≤ K

}
. (5.2)

Theorem 5.3. Set K = elog1/8 N, and recall the definition of κ(K) from (5.2). Consider the
density function

Φ :=
∑

λ∈spec(A)

δ
u

(
λ2− d2+d

u

).
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Then for d as defined in Theorem 5.2,

lim
N→∞

D
(
Φ1[κ(K),∞),Ψ1[κ(K),∞)

)
→ 0.

We multiplied both point processes by u to emphasize that the approximation of λ2 in
Theorem 5.2 is o(1/u). As shown in Theorem 5.2, the largest eigenvalues are approximately
the square root of a rational function on local statistics, therefore it is simpler to consider
the point process of λ2, as it leads to a nicer expression. Much of our analysis will be on
the squared eigenvalue λ2.

Theorem 5.3 implies the fluctuations of the top eigenvalue. Similar to if there is
increasing degree as in [ADK23b], fluctuations are determined at two scales. If the
expected number of vertices of degree u (that is µu) is constant, then the maximum degree
has nonzero variance and will dominate the fluctuation of the maximum eigenvalue.
Therefore, in this case the top eigenvalue will fluctuate at a large scale, as its first order
fluctuation is a shifted Bernoulli, based on whether there is a vertex of degree u or not.
If the expected number of vertices of degree u is subconstant or superconstant, then the
largest degree of the graph becomes deterministic, and the fluctuations are determined
by β. As β is then distributed as a Poisson, the fluctuations become much smaller and
become those of the maximum of Poissons.

The fact that these eigenvalues are almost completely determined by local neighbor-
hoods is intrinsically linked to the fact that they decay exponentially around a fixed vertex.
We show the following, which implies eigenvectors are close to as localized as possible.

Theorem 5.4. Define Br(x) to be the ball of radius r around x in G. For c ≤ 1/15, consider
log−c N ≤ d ≤ log1/40 N, and K2 = logoN(1) N. Moreover, we fix r′ ≥ 1, and if c > 0, we add
the requirement that r′ ≤ 1/(3c). With high probability, the eigenvectors v corresponding
to the K2 largest eigenvalues are exponentially localized in the sense that for each v there is
some vertex x such that

v|x =
1
√

2
+ O

((
1 + d−1/2

)
u−1/3

)
and for 1 ≤ i ≤ r′,

‖v|Si(x)‖ =

(
d
α

)(i−1)/2 1
√

2

(
1 + O

((
1 + d−1/2 + d−i+1

)
u−1/3

))
and

‖v|[N]\Bi(x)‖ =

(
d
α

)i/2 1
√

2

(
1 + O

((
1 + d−1/2 + d−r′+1

)
u−1/3

))
.

Our desire to keep our result as general as possible has resulted in this long expression
for our error. There are multiple error terms and for d � 1, the ratio of d, i, and u governs
which type of error will dominate.
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We consider a significantly smaller number of eigenvalues in this theorem than in
Theorem 5.2 as in order to show eigenvector localization, we must quantify the gaps of
the eigenvalues induced by Theorem 5.2 and Theorem 5.3, whereas the previous theorems
do not require such gaps. We do this only for the region given above, as our focus is the
spectral edge, but most likely further analysis could extend this to further eigenvalues.

Using the regimes as defined in Definition 3.1, we can prove a theorem about the
approximate diagonalization of the adjacency matrix A, that we will use to prove the
other main theorems above.We will decompose our matrix using a unitary transform U
made clear later. Here DW,DV\W,DU\V are diagonal operators associated with the balls
surrounding vertices in U. A summary of the results concerning this decomposition
is as follows. This can be compared to Proposition 3.1 in [ADK23a], and it also bears
resemblance to the more directly combinatorial decompositions of other sparse matrix
results [KS03, BBG21].

Theorem 5.5. With high probability, there is a unitary transformation U : RN
→ RN such

that we can write

A = U


DW 0 0 E∗

W

0 DV\W 0 E∗
V\W

0 0 DU\V + EU\V E∗
U\V

EW EV\W EU\V X

 U∗ (5.3)

where (5.3) satisfies the following:

1. The fine regime operator DW is diagonal, of dimension 2|W|, and has at least elog1/8 N

eigenvalues of value at least
√
u −O

(
u−3/8

)
.

2. The intermediate regime operator DV\W is diagonal, of dimension 2|V\W|, and
‖DV\W‖ ≤

√
u −Ω

(
u−1/4

)
.

3. The rough regime operator DU\V is diagonal and of dimension 2|U\V| and satisfies
‖DU\V‖ ≤

√
u − u1/6−oN(1).

4. The bulk operator X satisfies ‖X‖ =
(

1
√

2
+ oN(1)

) √
u.

5. The error terms satisfy ‖EW‖, ‖EV\W‖ = O
(
(dr + 1)u−r/2+1

)
, as well as

‖EU\V‖ + ‖EU\V‖ = O
(
(log log N)2).

These results, along with results concerning the structure of the eigenvectors associated
with the operator surrounding vertices of W, imply that the edge eigenvectors and
eigenvalues come from the operator associated with DW. This in turn will give the
theorems from Section 5.1. Thus the next few sections are dedicated to showing this
decomposition.
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Negative eigenvalues

The discussion above concerns the largest eigenvalues of the adjacency matrix, how-
ever, by the exact same analysis we can consider the most negative eigenvalues. Under
the high probability assumption that the neighborhood of every high degree vertex is a
tree, by the bipartite nature of a tree, every positive eigenvalue of a neighborhood of a
tree has a corresponding negative eigenvalue that is of the same magnitude and has the
same localization properties. Therefore, Theorems 5.2, 5.3, and 5.4 all apply to the most
negative eigenvalues as well.

Extension of results

We believe that by increasing the analysis from our given set of local statistics to
higher moments, our methods can be used to give even more accurate formulae for
the largest eigenvalues based on the degree sequence of the highest degree vertices.
Such an argument could show separation of the largest loga N eigenvalues for any fixed
a ≥ 0, giving a more specific (and more complicated) Poisson point process and showing
eigenvector localization for all these loga N eigenvectors. However, for simplicity of the
argument, in this work we only consider K = logoN(1) N.

Using this same argument, we may be able to improve the necessary lower bound
on d. Some estimates and concentration results required us to lower bound d by log−c N
for some c < 1, and error bounds simplify given our concrete assumption on d, but
there are also important structural consideration for smaller d. If d = log−c N for c > 0,
then the connected components surrounding high degree vertices can be of small radius,
which means that neighborhoods of high degree vertices could be identical, leading to the
eigenvalues of those neighborhoods being identical, and thus the eigenvectors would no
longer be localized around one high-degree vertex. This implies that we cannot remove
the dependence of d on r in Theorem 5.4.

On the other hand, including more terms in our expression for λx could improve the
lower bound on d for Theorem 5.2 and Theorem 5.3. However, in our opinion we will
need new methods to achieve the threshold of d = e−(log log N)2 appearing in [KS03] and
[BBG21]. Such a threshold is natural as for d ≤ e−(log log N)2 , all connected components are
of size (1 + o(1))u, making localization and independence trivial.

Similarly, by using slightly tighter bounds on the probabilities of some tail events,
we expect we can improve the upper bound on d in Theorem 5.2. However, there is a
natural barrier at log1/2 N, both in the exponential rate of decay of eigenvectors, and the
application of the method in [KS03]. We are not motivated to optimize our technique for
the upper bound considering results are already known for larger d from [ADK23b].
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Related Work

There are many results concerning the bulk of the spectrum of random matrices. Focus-
ing specifically on sparse Erdős-Rényi graphs, Khorunzhy, Shcherbina, and Vengerovsky,
then Zakharevich, analyzed the moments of the limiting distribution of Wigner matrices
of general models that include constant degree Erdős-Rényi graphs in order to study the
limiting measure of the spectral distribution [KSV04, Zak06]. Benaych-Georges, Guion-
net, and Male give a central limit theorem for linear statistics of a model that includes
constant degree Erdős-Renyi graphs [BGGM14].

These random matrices have been studied as a model for quantum physics, specifically
Hamiltonians of disordered systems. We see similar eigenvector localization in the edge of
the spectrum in the Anderson model (see [And58]), where vertices on an integer lattice are
given random potential, and we study the spectrum of the resulting Schrödinger operator.
Eigenvectors near the edge of the spectrum are known to be localized for various models
(e.g. [GMP77, FS83, AM93, DS20]) whereas there has been less progress on the structure
of eigenvectors in the bulk.

Lévy matrices, a model of Wigner matrices where entries are sampled from distribu-
tions with heavy tails, have also proved to be a useful model for studying eigenvector
localization. Similar to sparse Erdős-Rényi, there is a transition from delocalized eigenvec-
tors in the bulk to localized eigenvectors at the edge [BG13, BG17, ALM21, ALY21, ABL22].
Moreover, similar to the sparse Erdős-Rényi model, eigenvalues near the edge of the
spectrum in sparse Lévy models are known to converge to a Poisson point process
[Sos04, ABP09].

Idea of Proof

We follow the framework of the proof of [ADK23b]. Our first goal is to show that the
largest eigenvalues are determined by the local geometry of the highest degree vertices, i.e.
by truncated balls around them. Once we show this, the Poisson point process and eigen-
vector structure follow from the randomness of the graph. We show this determination
by classifying vertices by degree, and associating an eigenvector with each high degree
vertex. These are the eigenvectors with eigenvalues of largest magnitude. In order to
analyze these eigenvectors, they are approximated with the eigenvector of an infinite tree
with much symmetry in [ADK23b]. The main issue with generalizing this approximation
to gaphs with average constant degree is that in this regime, the fluctuations of statistics
of the balls surrounding individual entries become too large to estimate the eigenvector
based on the inputs αx and βx only.

The formula in [ADK23b] already is quite technical, so we avoid directly coming
up with a more involved equation that gives a more accurate explicit approximation.
Instead, we analyze the properties of the true eigenvector of a neighborhood directly. The
advantage of such a method is that the only error we generate in this analysis is from
truncating at level r. Therefore, if we can show the eigenvector is localized away from
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level r, then the error from this truncation can be drastically smaller. The disadvantage
is that, considering we have no symmetry in our tree, we initially have no information
about the eigenvector or eigenvalue, even whether it is localized or not.

The neighborhoods of the highest degree vertices are typically tree-like, and the central
vertex has much higher degree than all others. Therefore, by analyzing the eigenvector
equation at each vertex, we create a system of linear equations for the eigenvector and
eigenvalue. The knowledge that the neighborhood is a tree and that the central degree
is much larger than all other degrees is sufficient to show eigenvector localization (see
Lemma 5.2) and a formula for the eigenvalue generated from a recursive equation (see
(5.6) and Lemma 5.3). Moreover, because the central vertex has much higher degree, we
can show this equation can be truncated up to small error with a rational function of local
statistics, giving near exact dependence. Because of the general nature and simplicity of
these lemmas, we believe they could be applicable elsewhere.

When we fully write out the equation for the eigenvalue, the first two terms are αx

and βx

αx
, which are used in [ADK23b] to completely determine the eigenvector. We show,

explicitly giving the next few terms, that the equation for the eigenvalue beyond α, β
concentrates. Specifically, although the fluctuation of statistics increases as the average
degree decreases, the dependence on the fluctuating statistics decreases at a quicker rate
(see Lemma 5.4). In fact, in our regime, the eigenvalue decays quickly enough that it
implies the lexicographic ordering of Theorem 5.2 (see Lemma 5.5).

Given the dependence of the eigenvalue and eigenvectors on statistics of local neigh-
borhoods, we translate this into statements about the overall graph. By standard perturba-
tion theoretic arguments, this reduces to showing these local statistics are well separated
for vertices corresponding to the edge of the spectrum. The requisite statistics are bi-
nomially distributed, which are approximately Poisson. Therefore it becomes useful to
give precise tail bounds on the Poisson distribution. Tao recently gave such a tight, two-
sided bound on his blog [Tao22], which is sufficient to show that (αx, βx) that are close to
lexicographically maximizing are well separated (see Section 5.5).

Once we have proper control over these high degree vertices, we need to control
the contribution of the rest of the spectrum. To do this, for vertices of still somewhat
large degree, we proceed as per [ADK23b] and take a localized test vector supported on
a pruned graph, where edges are pruned in such a way that high degree vertices are
separated and neighborhoods are tree-like (see Section 5.3). For all other vertices, we use
the work of Krivelevich and Sudakov, who prove a convenient decomposition of edges
of the graph into different components [KS03]. The only one of these components that
can significantly contribute to large eigenvalues is a subgraph of disjoint stars, meaning
it is much simpler to bound the spectral radius of the operator away from the largest
eigenvectors of the highest degree vertices and avoids using the Ihara-Bass argument of
[ADK23b] (see Lemma 5.7).
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Overview of the chapter

The next two sections analyze the regimes defined in 3.2. In Section 5.2, we analyze the
eigenvector and eigenvalue of the largest eigenvalue of the ball of radius r surrounding
the highest degree vertices, and we show that it is localized and well approximated
by a formula involving only α, β, (see the beginning of Section 3.2 for the definition of
these parameters) and d. In Section 5.3, we use a test vector to show that eigenvectors
corresponding to vertices of high, but not too high degree, do not have large eigenvalues.
In Section 5.4, we analyze the bulk using the decomposition from [KS03], and we show the
given block decomposition is such that the highest degree vertices dominate. This gives
theorems 5.5 and 5.2. In Section 5.5, we use this formula to prove the Poisson process,
approximation and in Section 5.6 we show this implies Theorem 5.4, our result about the
eigenvector localization.

Parameters

Although our choice of parameters is mentioned for all the main results we state them
here a condensed form, for easier reference.

Definition 5.1 (Choice of parameters). We fix c > 0 and we take the average degree d(N)
as any function such that for Theorem 5.2 and Theorem 5.3, log−1/9 N ≤ d ≤ log1/40 N, and
for Theorem 5.4, log−c N ≤ d ≤ log1/40 N for c ≤ 1/15.

Our analysis will be based on considering balls of radius r around the highest degree
vertices. Most results are true for sufficiently large r, but in fact, it is enough to take
r = 5 in order to prove Theorems 5.2 and 5.3. For Theorem 5.4, we need a slightly larger
radius. So for the rest of this chapter it is sufficient to take r := max {5, 2r′}, where r′ is the
parameter from Theorem 5.4.

5.2 Fine and Intermediate Regime
In this section we start by using the structural results about the balls around vertices

in V from Section 3.3 to derive a recursion for the largest eigenvalue and eigenvector of
the balls around the vertices in that regime. We also derive a first approximation of the
largest eigenvalue for all vertices inV. In the second part we then use these ingredients
to prove the exponential decay of this eigenvector for all vertices inV. In the last part we
then derive a more precise expression for the eigenvalue of vertices inW.

Notation

We want to emphasize that in this chapter we depart from our previous notation of
denoting the largest eigenvalues of the graph by λ1 ≥ · · · ≥ λN. Instead we will generally
use λx to denote the maximum eigenvalue of the truncated ball around the vertex x ∈ [N].
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General Structure

In this section, we create a test vector and test eigenvalue for the neighborhoods of
vertices inV. In order to do this we assume that the structural properties from Definition
3.2 hold. We know that this happens with high probability from Lemma 3.5. We also
know from Lemma 3.1, that with high probability the maximum degree is bounded by u.
Therefore, we will consistently use these structural properties.

Assumption 5.1. For the rest of Section 5.2, we assume that Ω3.2 occurs. Moreover we
assume the high probability event that the maximum degree in G is in {u − 1, u}.

Under this event we know enough about the structure of the neighborhoods around
vertices in the intermediate regime, to analyze its top eigenvalue and eigenvector, which
we use as the test eigenvector and eigenvalue.

Definition 5.2. For x ∈ V, we define λx to be the top eigenvalue of ABr(x). Moreover, define
w+(x) to be the eigenvector corresponding to λx and w−(x) to be the eigenvector of the
most negative eigenvalue of ABr(x). We use the notation w±(x), when a statement is true
for both w+(x) and w−(x). Depending on the context, we will also use w±(x) to denote the
above eigenvector padded with 0’s to make it a vector in RN.

Under Ω3.2, Br(x) is a tree, therefore it is bipartite. Therefore the most negative eigenvalue
is −λx, and if y ∈ Br(x), then

w−(x)|y = (−1)d(x,y)w+(x)|y.

Moreover, as Br(x) is a tree, its eigenvectors and eigenvalues satisfy a nice recursion.
Consider an eigenvector w of ABr(x) with eigenvalue λ. We consider the eigenvector
equation at x:

λw|x =
∑
y∼x

w|y

which, if w|x , 0, can be rewritten as

λ =
∑
y∼x

w|y
w|x

. (5.4)

More generally, we have for v ∼ u, v ≥ u, i.e. for v a child of u in the tree rooted at x, if
w|v , 0,

λw|v = w|u +
∑

y1∼v,y1≥v

w|y1 ⇒ w|v =
1

λ −
∑

y1∼v,y1≥v
w|y1
w|v

w|u. (5.5)
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Plugging in (5.5) into (5.4) for every y1 ∼ x gives

λ =
∑
y1∼x

1

λ−
∑

y2∼y1 ,y2≥y
w|y2
w|y1

w|x

w|x
=

∑
y1∼x

1

λ −
∑

y2∼y1,y2≥y1

w|y2
w|y1

.

Repeating this process for all vertices gives that

λ =
∑
y1∼x

1
λ −

∑
y2∼y1,y2≥y1

1
λ−

∑
y3∼y2 ,y3≥y2

1
λ−

∑
y4∼y3 ,y4≥y3 ···

, (5.6)

where the right hand side is a continued fraction of at most r levels.
Since ABr(x) is a connected graph, its adjacency matrix is irreducible and this implies by

the Perron-Frobenius theorem, that the top eigenvector w|+(x) of Br(x) is the only positive
eigenvector, implying in particular that (5.6) does not contain any 0 denominators. This
means that we can use (5.6) for our definition of λx. To further examine this, we require an
initial two sided bound, based on Br(x) being close to a star graph. This will be enough to
bound the contribution of balls around vertices inV\W, and for vertices inW, we will
eventually bootstrap it into a tighter bound in Lemma 5.4.

Lemma 5.1. For any vertex x ∈ V,

αx ≤ λ
2
x ≤ αx + O(d).

Proof. As the spectral radius of a star is the square root of the degree of the central vertex,
λ2

x ≥ αx. For the upper bound, we apply Lemma 2.10. By the definition of Ω3.2, (3) we can
take s(n) = 2d, and by the definition of Ω3.2, (4) we can take t(n) = u3/4. Lemma 2.10 thus
implies that λx =

√
αx + O

(
d
√
αx

)
implying that λ2

x = αx + O(d).
�

Eigenvector structure

For easier readability, we will suppress x in the notation for the rest of the section,
so we write α := αx, λ := λx, w± = w±(x), and S1 = Si(x). Moreover we define Ny∗ =
maxy∈Br(x)\{x}Ny.

We now prove that the entries of the top eigenvector decay exponentially with the
distance from the root for any tree where the root is of much higher degree than all other
vertices.

Lemma 5.2. For any finite tree with a fixed root vertex x of degree α and all other vertices
of degree at most Ny∗ � α, for any vertex u such that u ∼ v, u ≤ v, it holds that for the
largest eigenvalue λ with eigenvector w,

w+|u =

(
1 + O

(
Ny∗

λ2

))
λw+|v. (5.7)
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Therefore by Lemma 5.1 and Lemma 3.2, we have the following. If x ∈ V, then for
u, v ∈ Br(x) such that u ∼ v and u ≤ v,

w+|u =
(
1 + O

(
u−1/4

))
λw+|v

and if x ∈ W, then for u ∈ Br(x),

w+|u =
(
1 + O

(
u−2/3

))
λw+|v.

Proof. By the eigenvector equation (5.5), we must have w+|u ≤ λw+|v. For a lower bound
on w+|u, we proceed by induction on the distance from x, starting from the leaves in Br(x)
(note that these are not necessarily leaves in G). Any leaf v only has one neighbor u,
making this base case trivial, as there is only one neighbor and w+|u = λw+|v.

Now, assume (5.7) is true for all z ≥ u. Then, applying (5.5) to v, we get

w+|u =

λ − ∑
y∼v,y≥v

w+|y

w+|v

 w+|v

≥

λ − Ny∗

λ −O
(Ny∗

λ

) w+|v

≥

(
1 −O

(
Ny∗

λ2

))
λw+|v, (5.8)

where we used the inductive hypothesis to get the first inequality and then used that by
Lemma 3.5 the rooted trees around λ satisfy Ny∗ � λ2. �

Such a tight bound implies exponential decay on various levels. We can now bound
the error from approximating these eigenvectors using the truncation.

Proposition 5.1. We define

Λ :=
∑
x∈V

(
λxw+(x)w+(x)∗ − λxw−(x)w−(x)∗

)
.

Then
max

x∈V,σ∈{±1}

∥∥∥(A −Λ)wσ(x)
∥∥∥ = O

((
dr/2 + 1

)
u−(r−1)/2

)
.

Proof. For any x ∈ V, σ ∈ {±1}, wσ(x) satisfies (A − Λ)wσ(x) = (A − ABr(x))wσ(x). The only
nonzero entries of this vector are supported on Sr+1(x). This holds because the only rows
of (A − ABr(x)) that have non-zero entries corresponding to Br(x) are vertices in Sr+1(x),
since Br+1(x) are disjoint trees by Ω3.2. By Lemma 5.1 and Lemma 5.2, each entry in wσ(x)
corresponding to vertices in Sr(x) has value at most (1 + oN(1))u−r/2. Moreover, under Ω3.2,
the number of vertices in the r + 1 level is drαx + O(dr−1/2 + 1)u

7
8 ≤ O((dr + 1)u). Therefore,

‖(A −Λ)wσ(x)‖ = O((dr/2 + 1)u−r/2+1/2). �
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This error term gives us sufficient information about V\W, and we can now focus
only on the fine regimeW. The following proposition gives bounds on the total mass the
eigenvector assigns to each sphere.

Proposition 5.2. For all x ∈ W, the eigenvector w+ satisfies

w+|x =
1
√

2
+ O

((
1 + d−1/2

)
u−1/3

)
. (5.9)

and for 1 ≤ i ≤ r,

‖w+|Si‖ =

(
d
α

)(i−1)/2 1
√

2

(
1 + O

((
1 + d−1/2 + d−i+1

)
u−1/3

))
(5.10)

and

‖w+|[N]\Bi‖ =

√
1

1 − d
α

(
d
α

)i/2 1
√

2

(
1 + O

((
1 + d−1/2 + d−r+1

)
u−1/3

))
. (5.11)

Proof. In this proof we repeatedly use the approximation of λ from Lemma 5.1 in order to
replace λ by α

1
2 or vice-versa up to some small multiplicative error.

First note that Lemma 5.2 implies that for each v ∈ Si,

w+|v =
(
1 + O

(
u−2/3

))
λ−i(w+|x).

Therefore, as we know by Lemma 3.5 that |Si| = di−1α + O
((

di−3/2 + 1
)
u2/3

)
,

‖w+|Si‖ = d(i−1)/2α1/2
(
1 + O

((
d−1/2 + d−i+1

)
u−1/3

))
λ−iw+|x. (5.12)

Note that for this approximation to hold and for the error term to go to 0, we require
d ≥ u−

1
3r The complicated error term is necessary as different terms could maximize for

different regimes of d.
Specifically, this means that for the normalized vector w+,

(w+|x)2 + ‖w+|S1‖
2
≥ 1 −O

(
d
u

(
1 +

(
d−1/2 + d−1

))
u−1/3)

)
≥ 1 −O

(
d
u

)
.

Using this together with (5.12) for w+|S1 and solving for w+|x gives

(w+|x)2 =
1
2

+ O
((

1 + d−1/2
)
u−1/3 + du−1

)
w+|x =

1
√

2
+ O

((
1 + d−1/2

)
u−1/3

)
.
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Combining (5.12) and (5.9),

‖w+|Si‖ = d(i−1)/2α1/2
(
1 + O

((
d−1/2 + d−i+1

)
u−1/3

))
λ−i

(
1
√

2
+ O

((
1 + d−1/2

)
u−1/3

))
= d(i−1)/2α−(i−1)/2 1

√
2

(
1 + O

((
1 + d−1/2 + d−i+1

)
u−1/3

))
.

Similarly, for (5.11), we have by (5.12),

∥∥∥w+|[N]\Bi

∥∥∥2
=

r∑
j=i+1

‖w+|S j‖
2

=
1

1 − d
α

diα−i 1
2

(
1 + O

((
1 + d−1/2 + d−r+1

)
u−1/3

))
.

�

Note that Proposition 5.2 implies that almost all mass of the vector w+ is on x and S1.

Eigenvalue structure

Along with the eigenvector, we further analyze the eigenvalue. To do this, we expand
(5.6) as an infinite sum which we get by repeatedly using the expansion 1

λ−q =
∑
∞

k=0
qk

λk+1 .
We will bound the eigenvalue λ through the moments of the degree sequence sur-

rounding x ∈ W. We recall the definitions of β(2) and β(1,1) from Definition 3.1. Note that
β(1,1) = |S3| and β(2) =

∑
y∼x N2

y.

Lemma 5.3. Under Ω3.2, for any x ∈ W,

λ2 = α + λ−2β + λ−4
(
β(2) + β(1,1)

)
+ O

((
d2 + d

)
u−5/3

)
. (5.13)

Proof. We can rewrite (5.6) as

λ2 =
∑
y1∼x

1
1 − 1

λ2

∑
y2∼y1,y2≥y1

1
1− 1

λ2
∑

y3∼y2 ,y3≥y2
1

1− 1
λ2

∑
y4∼y3 ,y4≥y3 ···

.

and expand this as

λ2 =
∑
y1∼x

∞∑
k1=0

 1
λ2

∑
y2∼y1,y2≥y1

1
1 − 1

λ2

∑
y3∼y2,y3≥y2

1
1− 1

λ2
∑

y4∼y3 ,y4≥y3
···


k1

.
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and once again as

λ2 =
∑
y1∼x

∞∑
k1=0

 1
λ2

∑
y2∼y1,y2≥y1

∞∑
k2=0

 1
λ2

∑
y3∼y2,y3≥y2

1
1 − 1

λ2

∑
y4∼y3,y4≥y3

· · ·


k2


k1

. (5.14)

Of course we could repeat this process, but this is sufficient accuracy for our purposes.
We do the same analysis as before, starting at the innermost level, corresponding to

the leaves, and then inducting our way back up the tree. For any vertex v, we can write a
recursive equation by defining

F(v) :=
1

1 − 1
λ2

∑
y∼v,y≥v F(y)

which gives that

λ2 =
∑
y1∼x

∞∑
k1=0

 1
λ2

∑
y2∼y1,y2≥y1

∞∑
k2=0

 1
λ2

∑
y3∼y2,y3≥y2

F(y3)


k2


k1

.

We now estimate Fv for v ∈ Br(x). For any leaf v, as there are no y ≥ v, F(v) = 1. For
the rest, we use induction. Recall that N∗y is the maximum degree in Br(x)\{x}, and that

Ny∗ � λ2 under the event Ω3.2. Assume that for all y ∼ v, y ≥ v, F(y) = 1 + O
(Ny∗

λ2

)
. Then

F(v) =
1

1 − 1
λ2

∑
y∼v,y≥v F(y)

≤
1

1 −
Ny∗

λ2

(
1 + O

(Ny∗

λ2

)) = 1 + O
(

Ny∗

λ2

)
.

Therefore (5.14) becomes

λ2 =
∑
y1∼x

∞∑
k1=0

 1
λ2

∑
y2∼y1,y2≥y1

∞∑
k2=0

 1
λ2

∑
y3∼y2,y3≥y2

1 + O
(

Ny∗

λ2

)
k2


k1

.

We want to show this expansion relies only on the terms in Definition 3.1. Therefore
we rewrite the first few terms as

α =
∑
y1∼x

1

λ−2β =
∑
y1∼x

 1
λ2

∑
y2∼y1,y2≥y1

 1
λ2

∑
y3∼y2,y3≥y2

1 + O
(

Ny∗

λ2

)
0

1

λ−4β(1,1) =
∑
y1∼x

 1
λ2

∞∑
y2∼y1,y2≥y1

 1
λ2

∑
y3∼y2,y3≥y2

1


1

1

.
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The contribution of β(2) is more complicated, but as β(2) =
∑

y1∼x N2
y, we can write

λ−4β(2) =
∑
y1∼x

 1
λ2

∑
y2∼y1,y2≥y1

 1
λ2

∑
y3∼y2,y3≥y2

1 + O
(

Ny∗

λ2

)
0

2

meaning we have

∑
y1∼x

 1
λ2

∑
y2∼y1,y2≥y1

∞∑
k2=0

 1
λ2

∑
y3∼y2,y3≥y2

1 + O
(

Ny∗

λ2

)
k2


2

− λ−4β(2)

=
∑
y1∼x

 1
λ2

∑
y2∼y1,y2≥y1

∞∑
k2=1

 1
λ2

∑
y3∼y2,y3≥y2

1 + O
(

Ny∗

λ2

)
k2


2

+ 2λ−4
∑
y1∼x

Ny

∑
y2∼y1,y2≥y1

∞∑
k2=1

 1
λ2

∑
y3∼y2,y3≥y2

1 + O
(

Ny∗

λ2

)
k2

.

Therefore subtracting these terms from (5.14) gives

λ2
− α − λ−2β − λ−4β(2)

− λ−4β(1,1)

=
∑
y1∼x

∞∑
k1=3

 1
λ2

∑
y2∼y1,y2≥y1

∞∑
k2=0

 1
λ2

∑
y3∼y2,y3≥y2

1 + O
(

Ny∗

λ2

)
k2


k1

+
∑
y1∼x

1
λ2

∑
y2∼y1,y2≥y1

∞∑
k2=2

 1
λ2

∑
y3∼y2,y3≥y2

1 + O
(

Ny∗

λ2

)
k2

+
∑
y1∼x

1
λ2

∑
y2∼y1,y2≥y1

1
λ2

∑
y3∼y2,y3≥y2

O
(

Ny∗

λ2

)

+
∑
y1∼x

 1
λ2

∑
y2∼y1,y2≥y1

∞∑
k2=1

 1
λ2

∑
y3∼y2,y3≥y2

1 + O
(

Ny∗

λ2

)
k2


2

+ 2λ−4
∑
y1∼x

Ny

∑
y2∼y1,y2≥y1

∞∑
k2=1

 1
λ2

∑
y3∼y2,y3≥y2

1 + O
(

Ny∗

λ2

)
k2

.

Each of our error terms now has coefficient λ−6 or smaller. Therefore, by the same
exponential decay and the fact that λ−6

≤ α−3 and Ny∗ � λ2, each of the five sums can be
written as

O
(
α−3Ny∗

(
β(1,1) + β(2)

))
. (5.15)
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By the assumptions of Ω3.2, namely the bound on the maximal degree and the approxi-
mations of β(1,1) and β(2), as well as our bounds for d, for x ∈ W

O
(
α−3Ny∗

(
β(1,1) + β(2)

))
= O

(
u−3u1/3

(
β(2) + β(1,1)

))
= O

(
u−8/3

((
d2 + d

)
u + u2/3 + d2u +

(
d3/2 + 1

)
u2/3

))
= O

((
d2 + d

)
u−5/3

)
.

�

We now solve for λ in this equation. Note that while λ2 = α(1 + o(1)) by Lemma 5.1,
this by itself does not give a precise enough approximation. Instead we bootstrap this
initial approximation using the structural properties from Ω3.2.

Lemma 5.4. For x ∈ W,

λ2 = α +
β

α
+
β(1,1) + β(2)

α2 −
(β)2

α3 + O
((

d2 + d
)
u−5/3

)
. (5.16)

Proof. We rewrite (5.13) as

λ2 = α +
1

α + (λ2 − α)
β +

1
(α + (λ2 − α))2β

(1,1) +
1

(α + (λ2 − α))2β
(2) + O

((
d2 + d

)
u−5/3

)
.

Moreover, by Lemma 5.1, λ2
− α = O(d), so we can approximate

1
α + (λ2 − α)

=
1
α

1

1 + (λ2−α)
α

=
1
α

(
1 + O

(
d
u

))
.

Therefore

λ2 = α +
1
α
β

(
1 + O

(
d
u

))
+

1
α2

(
β(1,1) + β(2)

) (
1 + O

(
d
u

))
+ O

((
d2 + d

)
u−5/3

)
= α +

β

α
+ O

(
d2 + d
u

)
.

This implies that 1
λ2 = 1

α+
β
α+

(
λ2−α+

β
α

) = 1
α−

β
α

(
1 + O

(
d2+d
u2

))
. Plugging this more precise approx-

imation for λ2 once again into (5.13) we get

λ2 = α +
1

α +
β
α

β

(
1 + O

(
d2 + d
u2

))
+

1

(α +
β
α )2

(β(1,1) + β(2))
(
1 + O

(
d2 + d
u2

))
+ O

((
d2 + d

)
u−5/3

)
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= α +
1

α +
β
α

β +
1(

α +
β
α

)2

(
β(1,1) + β(2)

)
+ O

((
d2 + d

)
u−5/3

)
.

Due to our bounds on d from 5.1, we can expand 1
α+

β
α

= 1
α −

β
α3 + O

(
d2

u3

)
, which gives us

λ2 = α +
β

α
+
β(1,1) + β(2)

α2 −
(β)2

α3 + O
((

d2 + d
)
u−5/3

)
as desired. �

Given this much tighter approximation of λx for x ∈ W, we can now show that the
order of the eigenvalues corresponding to Br(x) for x ∈ W is the same as the lexicographic
order of αx and βx.

Lemma 5.5. For two vertices u, v ∈ W, if αu ≥ αv, λ2
u − λ

2
v ≥ αu − αv + O

((
d1/2 + 1

)
u−1/3

)
.

Moreover, if αu = αv, and βu ≥ βv, then λ2
u − λ

2
v ≥

βu−βv

u
+ O

((
1 + d3/2

)
u−4/3

)
. Therefore, for

x ∈ W, λ2
x are ordered according to the lexicographic ordering of (αx, βx).

Proof. By (5.16),

λ2
u−λ

2
v ≥ αu−αv−

∣∣∣∣∣βu

αu
−
βv

αv

∣∣∣∣∣+
∣∣∣∣∣∣β(1,1)

u

α2
u
−
β(1,1)

v

α2
v

∣∣∣∣∣∣+
∣∣∣∣∣∣β(2)

u

α2
u
−
β(2)

v

α2
v

∣∣∣∣∣∣+
∣∣∣∣∣∣ (βu)2

α3
u
−

(βv)2

α3
v

∣∣∣∣∣∣+O
((

d2 + d
)
u−5/3

)
.

Using the definition of Ω3.2 (3-5), namely the concentration of β, β(1,1) and β(2), this implies

λ2
u − λ

2
v ≥ αu − αv + O

((
d1/2 + 1

)
u−1/3

)
.

Now, assume that αu = αv. Then by (5.16),

λ2
u − λ

2
v ≥

βu − βv

αu
−

∣∣∣∣∣∣β(1,1)
u

α2
u
−
β(1,1)

v

α2
v

∣∣∣∣∣∣ +

∣∣∣∣∣∣β(2)
u

α2
u
−
β(2)

v

α2
v

∣∣∣∣∣∣ +

∣∣∣∣∣∣ (βu)2

α3
u
−

(βv)2

α3
v

∣∣∣∣∣∣ + O
((

d2 + d
)
u−5/3

)
.

Once again, by the definition of Ω3.2 (3-5), this implies

λ2
u − λ

2
v ≥

βu − βv

u
+ O

((
d3/2 + 1

)
u−4/3

)
.

To see that this induces a lexicographic ordering, ifαu , αv, thenαu−αv ≥ 1� (d1/2+1)u−1/3.
Similarly, if αu = αv, but βu , βv, then βu−βv

u
≥

1
u
� (1 + d3/2)u−4/3, by our assumptions on d

from Definition 5.1. �
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5.3 Rough Regime
In this section we construct approximate eigenvectors corresponding to small balls

around vertices inU\V, and we derive a less precise approximation for the eigenvalues
corresponding to those balls. The approach used in this section is very similar to the
approach in Section 6.4 of [ADK23b]. Note a result like Lemma 5.1, which we will
eventually use to show that eigenvalues from vertices inV\W cannot compete with the
largest ones from vertices inW, cannot directly be derived for all vertices inU. The main
obstructions are that the growth of the spheres and the maximum degree in the balls
cannot be bounded as tightly as for vertices inV.

More precisely our goal for this section is to show the following.

Lemma 5.6. For x ∈ U, we can create a set of unit vectors wσ(x) with σ ∈ {±1} such that

1. For u, v ∈ U,u , v, and σ1, σ2 ∈ {±1}we have supp(wσ1(u)) ∩ supp(wσ2(v)) = ∅.

2. We have
∥∥∥Awσ(x) − σλxwσ(x)

∥∥∥ = O(log log N), where λx =
√
αx +

βx

αx
.

Proof. Define α̂x, β̂x to be the parameters of the pruned graph Ĝ. We use the same test
vector as [ADK23b], restated with our parameters this is the unit vector

wσ(x) :=
1
√

2


√
α̂x√

α̂x +
β̂x

α̂x

1x + σ
1
√
α̂x

1Ŝ1(x) +
1√

α̂x(α̂x +
β̂x

α̂x
)
1Ŝ2(x)

 . (5.17)

The first statement of the Lemma now follows by Lemma 3.8.
We now fix x and σ and drop them from our notation for better readability. To prove

the second statement we define λ̂ =

√
α̂ +

β̂
α̂ and Â = AĜ and use a triangle inequality to

bound
‖Aw − σλw‖ ≤

∥∥∥Aw − Âw
∥∥∥ +

∥∥∥Âw − σλ̂w
∥∥∥ +

∥∥∥λ̂w − λw
∥∥∥ .

The first term on the right hand side is at most constant, as by Lemma 3.8 the maximum
degree of G − Ĝ is bounded by a constant and since the maximum row sum is an upper
bound for the maximum eigenvalue of a positive symmetric matrix.

Similarly the last term is bounded since by Lemma 3.8, α̂ differs from α by at most a
constant, and β and ˆbeta can both be bounded by (d + log log N)u. This implies that

|λ − λ̂| =

√
α +

β

α
−

√
α̂ +

β̂

α̂
=
√
α

√
1 +

β

α2 −
√
α

√
1 +

α̂ − α
α

+
β̂

αα̂
� 1.

The second term can be computed as
√

2
(
Âw − σλ̂w

)
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=
(
σ
√

α̂ − σ
√

α̂
)

1x +
∑
y∈Ŝ1

 √α̂
λ̂

+
N̂y
√
α̂λ̂
−

λ̂
√
α̂

 1y +
∑
y∈Ŝ2

(
σ
√
α̂
−

σ
√
α̂

)
1y +

∑
y∈Ŝ3

1
√
α̂λ̂

1y.

Therefore, using Lemma 3.8 and the lower bound on αx for x ∈ U, we get

2
∥∥∥Âw − σλ̂w

∥∥∥2
≤

1

α̂
(
α̂ +

β̂
α̂

) ∑
y∈Ŝ1

(
N̂y −

β̂

α̂

)2

+
∣∣∣Ŝ3

∣∣∣ 1

α̂
(
α̂ +

β̂
α̂

)
≤ O

(
(log log N)2 +

(d + log log N)2

u

)
.

Putting these three bounds together and using our expression (3.2) for u and the bounds
in 5.1 for d, we get that,

‖Aw − σλw‖ = O(log log N).

�

5.4 Block Decomposition
This section is devoted to proving Theorem 5.5, for which we use results from Sections

5.2 and 5.3. For this we first bound the contribution of the remainder of the matrix, i.e.
from vectors that are orthogonal to the largest eigenvectors of small balls around the
high-degree vertices. We end this section by using the approximate diagonalization to
prove Theorem 5.2.

Bulk vectors

We now prove that there is no contribution from any other vector. To do this, we
use the decomposition of Krivelevich and Sudakov [KS03]. This lets us reduce to only
considering stars around high degree vertices. Here, we state a structure theorem that
combines elements of the proof of Theorem 1.1 and Lemma 2.2 in [KS03]. To do this, recall
that Γx are all vertices adjacent to x and consider the sets of vertices

Y1 :=
{
x ∈ [N] : αx ≥ u

3/4
}

Y2 :=
{
x ∈ [N] : Γx ∩Y1 , ∅

}
Proposition 5.3 ([KS03]). For G ∼ G(N, d

N ) graph, if d = o(log1/2 N), then with high proba-
bility, there is a subgraphH ⊂ G such that

1. H is contained in the bipartite subgraph induced byY1 andY2,

2. H is a union of stars on disjoint vertices,
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3. ‖AG\H‖ = O
(
d + u7/16

)
.

Note thatH is the graph G6−H in [KS03]. This is strong enough to show that no other
vector interferes in the largest eigenvalues.

Define UU to be the space spanned by w±(x) as defined in Definition 5.2 for x ∈ V, and
w±(x) as defined in Lemma 5.6 for x ∈ U\V.

Lemma 5.7. For any vector v ∈ RN that satisfies ‖v| = 1 and v ⊥ UU,

〈v,Av〉 ≤
(
1 + oN(1)

) 1
√

2

√
u. (5.18)

Proof. By Proposition 5.3, we have that

〈v,Av〉 ≤ max
x∈Y1

〈v,AB̃1(x)v〉 + O
(
d + u7/16

)
where B̃1(x) is the ball of radius 1 around x in H from Proposition 5.3 and AB̃1(x) is the
adjacency matrix of the graph on the vertices [N] induced by the ball B̃1(x).

Therefore we split into cases based on the degree of x. For x ∈ V, we know that
v ⊥ 1

√
2

(
w+(x) + w−(x)

)
. Therefore

〈v, 1x〉 = 〈v,
1
√

2

(
w+(x)+w−(x)

)
〉+〈v, 1x−

1
√

2

(
w+(x)+w−(x)

)
〉 ≤

∥∥∥∥∥∥1x −
1
√

2

(
w+(x) + w−(x)

)∥∥∥∥∥∥ .
By Proposition 5.2, ∥∥∥∥∥∥1x −

1
√

2

(
w+(x) + w−(x)

)∥∥∥∥∥∥ = O
(
u−1/3

)
.

We then have
〈v,AB̃1(x)v〉 ≤ 2

∣∣∣〈v, 1x〉
∣∣∣∑

y∼x

∣∣∣〈v, 1y〉
∣∣∣ = O

(
u−1/3

·
√
u
)
.

Similarly, for x ∈ U\V, we have 〈v, 1x〉 ≤
∥∥∥1x −

1
√

2
(w+(x) + w−(x))

∥∥∥. By the definition
of the eigenvector in (5.17), and using properties from Lemma 3.8, we have that

∥∥∥∥∥∥1x −
1
√

2
(w+(x) + w−(x))

∥∥∥∥∥∥ = O


√√√√√√√√√

√
α̂ +

β̂
α̂ −
√
α̂√

α̂ +
β̂
α̂


2

+ β̂
1

α̂
(
α̂ +

β̂
α̂

)


= O


√
β2

α3 +
β

α2

 = O
(

d + log log N
u

)
.
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Therefore, by the same argument as before

〈v,AB̃1(x)v〉 = O
(

d + log log N
√
u

)
= oN (1) .

For any vertex x ∈ Y1\U, the maximum degree is u/2 and the spectral norm is given
by the spectral radius of a star graph, namely for any vector v such that ‖v‖ = 1,

〈v,AB̃1(x)v〉 ≤

√
u

2
.

Combining these cases gives the result. �

Proof of the Structure Theorem

We now have all the ingredients to prove the structure theorem.

Proof of Theorem 5.5. We can now fully define the block decomposition from (5.3),

A = U


DW 0 0 E∗

W

0 DV\W 0 E∗
V\W

0 0 DU\V + EU\V E∗
U\V

EW EV\W EU\V X

 U∗

We first define the unitary matrix U. We set the first 2|W| columns of U to vectors
w±(x) for x ∈ W, and denote this part of the matrix by UW, then we set the next 2|V\W|
columns to w±(x) for x ∈ V\W and denote this part of the matrix by UV\W, for w±(x) as
defined in Definition 5.2. The next 2|U\V| columns are the vectors w±(x) for x ∈ U\V as
defined in Lemma 5.6, and we denote this part of the matrix by UU\V. We denote these
three parts of the matrix together by UU. We then complete U arbitrarily with a basis of
the rest of RN, namely UU⊥ ⊂ RN.

It is implied by the definition of U that the diagonal matrices DW and DV\W have
entries σλx on the diagonal, i.e. the eigenvalue of the truncated balls corresponding to
each wσ(x). The diagonal operator DU\V, is defined to have entries σλx, from Lemma 5.6.

0’s exist in the requisite places as we can assume by Ω3.2 that balls of vertices in V
are disjoint, and for each x ∈ V, the maximum degree of a vertex in Br+3(x)\x is u3/4,
implying that there are no intersections with balls of radius 3 around vertices in U\V.
By Lemma 3.4, with high probability, the elog1/8 N vertices of largest degree have degree at
least u − 2 log1/8 N. Therefore the eigenvalues corresponding to these vertices have value

at least
√
u − 2 log1/8 N =

√
u −O

(
log−3/8 N

)
by Lemma 5.1.

To get a bound on DV\W, we use the upper bound from Lemma 5.1. This gives that
for any vertex x ∈ V, and for the range of d defined in 5.1,

λx ≤

√
u − u

1
4 + O(d) =

√
u −
u−

1
2

2
+ O

(
d
√
u

)
≤
√
u −Θ

(
u−

1
2

)
.
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By Lemma 5.1, for any x ∈ V, σ ∈ {±1}, ‖(A −Λ)wσ(x)‖ = O
((

dr/2 + 1
)
u−(r−1)/2

)
. We will

now show that this implies a bound on ‖EW‖ : Using that U∗
W

is a surjective projection of
RN onto R2|W| and UU⊥ is an injective embedding of RN−2|U| onto RN, we can transform
EW, which maps R2|W| to RN−2|U|, into an operator from RN to RN, with the same spectral
properties. Therefore, using additionally that outside of the choice of σ ∈ {±1}, the
supports of wσ(x) are independent,∥∥∥EW

∥∥∥ =
∥∥∥UU⊥EWU∗

W

∥∥∥ = max
v∈span(UW),‖v‖=1

∥∥∥UU⊥EWU∗
W

v
∥∥∥

≤ max
x∈W,σ∈{±1}

2
∥∥∥UU⊥EWU∗

W
wσ(x)

∥∥∥ = max
x∈W,σ∈{±1}

2
∥∥∥ (

A −UWDWU∗
W

)
wσ(x)

∥∥∥
= max

x∈W,σ∈{±1}
2
∥∥∥ (A −Λ) wσ(x)

∥∥∥ = O
((

dr/2 + 1
)
u−(r−1)/2

)
.

Here we use the definition of Λ from Lemma 5.1. The same is true for ‖EV\W‖.
Instead of bounding the operator norms of EU\V and EU\V individually, we bound the

operator norm of their concatenation, which will be an upper bound for both. Similarly
to before we can write ∥∥∥∥∥∥

[
EU\V

EU\V

]∥∥∥∥∥∥ =

∥∥∥∥∥∥[UU\VUU⊥
] [EU\V

EU\V

]
U∗
U\V

∥∥∥∥∥∥ .
By subsequently proceeding in the same way as for the error coming from the fine regime,
Lemma 5.6, 2., gives the desired bound.

Finally for the bulk, ‖X‖ ≤
(

1
√

2
+ oN(1)

) √
u by Lemma 5.7. �

This immediately gives the following.

Corollary 5.1. ∥∥∥∥∥∥∥∥


DV\W 0 E∗
V\W

0 DU\V + EU\V E∗
U\V

EV\W EU\V X


∥∥∥∥∥∥∥∥ ≤ √u −Θ

(
u−1/4

)
.

Proof. This norm is at most

max
{∥∥∥DV\W

∥∥∥, ∥∥∥∥∥∥
(

DU\V + EU\V E∗
U\V

EU\V X

)∥∥∥∥∥∥
}

+
∥∥∥EV\W

∥∥∥
≤ max

{∥∥∥DV\W
∥∥∥,max

{∥∥∥DU\V + EU\V
∥∥∥, ∥∥∥X∥∥∥} +

∥∥∥EU\V
∥∥∥} +

∥∥∥EV\W
∥∥∥. (5.19)

The bound then follows from Theorem 5.5 and our bounds on d from 5.1. �

With this, we can show that the top eigenvalues correspond toW.
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Proposition 5.4. For every k ≤ elog1/8 N, the kth largest eigenvalue λ of A corresponds to the
kth largest lexicographic maximizer x ∈ W of (αx, βx) in that λ = λx + O

(
(dr + 1) u−r+1

)
.

Proof. We start with the matrix

U


DW 0 0 0

0 DV\W 0 E∗
V\W

0 0 DU\V + EU\V E∗
U\V

0 EV\W EU\V X

 U∗

We then make the transformation by performing the summation

U


DW 0 0 0

0 DV\W 0 E∗
V\W

0 0 DU\V + EU\V E∗
U\V

0 EV\W EU\V X

 U∗ + U


0 0 0 E∗

W

0 0 0 0
0 0 0 0

EW 0 0 0.

 U∗

By perturbation theory, e.g. [Bau85, 7.1.1], [Bam20, Equation 23], each eigenvalue has
changed by at most O

(
‖EW‖2

)
= O

(
(dr + 1)u−r+1

)
. Moreover, as r ≥ 5, by Theorem 5.5 and

Corollary 5.1, after the perturbation, nothing outside of DW can correspond to one of the
elog1/8 N largest eigenvalues. Moreover, by Lemma 5.5, the ordering of eigenvalues must
match the ordering in DW, inducing the lexicographic ordering. �

Proof of the main eigenvalue theorem

Proof of Theorem 5.2. Consider the vertex x corresponding to one of the elog1/8 N largest
eigenvalues. By Lemma 5.4 and the concentration results from the definition of Ω3.2, (3-5),
we have that

λ2
x = αx +

βx

αx
+

d2

αx
+

d2 + d
αx

−
d2

αx
+ O

(
d3/2 + 1
u4/3

)
.

Therefore by Proposition 5.4, the true eigenvalue λ satisfies

λ =

√
αx +

βx

αx
+

d2 + d
αx

+ O
(

d3/2 + 1
u4/3

)
+ O

(
(dr + 1) u−(r−1)

)
.

=

√
αx +

βx

αx
+

d2 + d
αx

+ O
((

d3/2 + 1
)
u−11/6 + (dr + 1)u−(r−1)

)
=

√
αx +

βx

αx
+

d2 + d
αx

+ O
((

d3/2 + 1
)
u−11/6

)
.

as we have assumed r ≥ 5. The lexicographic ordering follows immediately from Propo-
sition 5.4.

�
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5.5 Anticoncentration
In this section we prove that the distribution for λ2 is anticoncentrated at the edge of

the spectrum. For this we use the Poisson approximation for the largest degrees and their
neighborhoods recorded in Proposition 4.1 and the representation of the eigenvalues from
Theorem 5.2. We then proceed similarly to [ADK23b] to derive that this implies Theorem
5.3, which says that that the maximal eigenvalues are close to the maximal values of a
Poisson process. This result is then used to show Lemma 5.9, which gives a lower bound
on the distance between the size of the 2-spheres around vertices with maximal or almost
maximal degree. In the final lemma of this section we show that this implies spacing of
the largest eigenvalues.

Proof of Theorem 5.3. By Lemma 3.4, Theorem 5.2, and Lemma 5.5, with high probability,
only vertices of degree between u−2 log1/8 N and u contribute to the top elog1/8 N eigenvalues.
Similarly, for every relevant vertex v, β ≤ dαv + u7/8 for every relevant vertex v with high
probability by Lemma 3.5. In this region, Theorem 5.2 gives that λ2 = αv + βv/αv +(
d2 + d

)
/αv + O

((
d3/2 + 1

)
u−11/6

)
. Moreover, with high probability, neighborhoods of size r

around such vertices v are disjoint and treelike by Lemma 3.5. Therefore, defineA(x, y) to
be the event that for the ordered pair (x, y) ∈N2, u−2 log1/8 N ≤ x ≤ u and 0 ≤ y ≤ dx+u7/8,
and let B be the event that the neighborhoods around all vertices v ∈ [N] such that
A(αv, βv) = 1 are disjoint tree-like. If we define Λ(α, β) = α+β/α, then with high probability
Φ is contained in the intensity measure of

{
(Λ(αv, βv) + ε(d,N))1A(αv,βv)∩B : v ∈ [N]

}
, where

ε = O
(

d3/2+1
u11/6

)
. Moreover, Ψ has the same intensity measure as

{
Λ(Xi,Yi)1A(X,Yi) : i ∈ [N]

}
,

where the pairs (Xi,Yi) are independent and satisfy Xi ∼ Pois(d) and Yi|Xi = x ∼ Pois(dx).
It is then sufficient to show that,

dTV

({
(αv, βv)1A(αv,βv)∩B : v ∈ [N]

}
,
{
Λ(Xi,Yi)1A(X,Yi) : i ∈ [N]

})
= oN(1), (5.20)

which is exactly the statement of Proposition 4.1. �

Now we can simply work with independent Poissons, for which the distribution of
the maximum is easier to analyze. We start by determining an interval into which the
maximizers of the Yi, which approximate the βx, fall.

Lemma 5.8. Consider any function ζ(N) = ωN(1) and 1 ≤ K = ζoN(1). For fixed m > 0,

a = Θ(u), and i.i.d. Y1, . . . ,Yζ ∼ Pois(da), with probability 1 − ON

(
1√
log ζ

)
, the K largest

values Y(1), . . . ,Y(K) are such that for every 1 ≤ i ≤ K,

Y(i) ∈

da +
√

2da log ζ −
√

da
log K + 1

2 log 2 − log c4.2 + 3
2 log log ζ√

2 log ζ
, da +

√
2da log ζ


where c4.2 is the constant from Lemma 4.2.
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Proof. If Y(K) is less than some value T, then there are at least ζ − K + 1 Yi’s less than T.
Therefore,

P(Y(K) ≥ T) ≥ 1 −
(
ζ

K − 1

)
(1 − P(Y1 ≥ T))ζ−K+1

≥ 1 −
(
ζ

K − 1

)
e−(ζ−K+1)P(Y1≥T)

≥ 1 − e(K−1) log ζ−(ζ−K+1)P(Y1≥T).

To bound P(Y1 ≥ T) for T = da +
√

2da log ζ −
√

da(log K+ 1
2 log 2−log c4.2+

3
2 log log ζ)

√
2 log ζ

, we use the

tail bound from Corollary 4.2, with

δ :=
1
√

da

√2 log ζ −
log K + 1

2 log 2 − log c4.2 + 3
2 log log ζ√

2 log ζ

 .
As

daδ2/2 = log ζ − log K +
1
2

log 2 + log c4.2 −
3
2

log log ζ

+

(
log K + 1

2 log 2 − log c4.2 + 3
2 log log ζ

)2

4 log ζ
,

Corollary 4.2 gives that

P

Y1 ≥ da +
√

da

√2 log ζ −
log K + 1

2 log 2 − log c4.2 + 3
2 log log ζ√

2 log ζ


≥

c4.2

ζ
elog K+ 1

2 log 2−log c4.2+
3
2 log log ζ−

(log K+ 1
2 log 2−log c4.2+ 3

2 log log ζ)2

4 log ζ√
2 log ζ − log K+ 1

2 log 2−log c4.2+
3
2 log log ζ

√
2 log ζ

= (1 + oN(1))
K log ζ
ζ

.

Thus
1 − e(K−1) log ζ−(ζ−K+1)P(Y1≥T) = 1 − ζ−1+oN(1). (5.21)

To prove the upper bound we proceed similarly, using that by a union bound

P
(
Y(1) ≥ T

)
≤ ζ P

(
Y1 ≥ T

)
. (5.22)

Using once more the tail bound from Corollary 4.2 with δ =

√
2 log ζ

da , we obtain

P
(
Y1 ≥ T

)
≤

e− log ζ√
2 log ζ

,

which means that (5.22) can be upper bounded by 1√
2 log ζ

.

�
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The following lemma will imply spacing between eigenvalues.

Lemma 5.9. Fix a ∈ {u − 1, u}. For any K = logo(1) N, with high probability the maximum
K + 1 values of β(1)

x of vertices with degree a are separated by at least (du)1/2

log( ud )3
(K+1)3 log log log N

.

Proof. Denote by ζ the number of vertices of degree a. We will split into two cases, based
on whether ζ is small relative to K. As we will see, if ζ is small, then we can bound the
probability using the anticoncentration of the Poisson. If ζ is larger, we can shift our focus
to the regime of Lemma 5.8. It is sufficient to split our cases according to (K + 1)log log log(N).
Consider two vertices u, v such that αu = αv = a. If ζ ≤ (K + 1)log log log(N), then (4.11) in the
proof of Theorem 5.3 implies that the distribution of the βx’s approaches the distribution
of Poissons, so the probability that

∣∣∣β(1)
u − β

(1)
v

∣∣∣ ≤ η is at most 2η
√

da
+ Õ(N−1/2), considering the

mode of a Poisson is at its mean, with probability at most 1
√

da
. Therefore the probability

that any pair is within distance η is at most(
ζ
2

)
2η
√

da
≤
η(K + 1)2 log log log N

√
da

This converges to 0 for η = (du)1/2

(K+1)3 log log log N .
Otherwise, if ζ ≥ (K+1)log log log(N), referring once more to (4.11) in the proof of Theorem

5.3 and Lemma 5.8, with high probability the K maximizers x of β(1)
x satisfy

β(1)
x ∈

da +
√

2da log ζ −
√

da
log K + 1

2 log 2 − log c4.2 + 3
2 log log ζ√

2 log ζ
, da +

√
2(log ζ)da

 .
(5.23)

To show the improvement in density, we consider the probability that β(1)
x = da + t, for

|t| = (1 + o(N1))
√

2(log ζ)da. We then have by the Stirling approximation,

e−da(da)da+t

(da + t)!
= (1 + oN(1))

et

(1 + t
da )

da+t
√

2π(da + t)
.

To approximate this, we have(
1 +

t
da

)da+t

= elog(1+ t
da )(da+t) = e

(
t

da−
t2

2(da)2
+O

(
t3

(da)3

))
(da+t)

= et+ t2
2da+O

(
t3

(da)2

)

In our window, t ≥
√

2(log ζ)da −
√

da log K+ 1
2 log 2−log c4.2+

3
2 log log ζ

√
2 log ζ

, and we have

e−da(da)da+t

(da + t)!
=

1

e(1+oN(1))t2/(2da))
√

2π(da + t)
≤

elog K+ 1
2 log 2−log c4.2+

3
2 log log ζ

ζ
1−O

(√
log ζ

da

) √
2π(da + t)

.
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Here we must have
√

log ζ
du → 0, therefore, we use the assumption that d � (log log N)2

log N .
The probability that there are at least two vertices in a window of length 2η around some
da + t with t = (1 + oN(1))

√
2da log ζ is therefore

(
ζ
2

) 2ηelog K+ 1
2 log 2−log c4.2+

3
2 log log ζ

ζ
1−O

(√
log ζ

da

) √
2π(da + t)


2

≤ 4c−1
4.2

K2η2 log(
u

d
)3(du)−1 (5.24)

for sufficiently large N, considering that with high probability ζ ≤ (ud )3/2 by Lemma 3.4.
To translate this into distance between β(1)

u and β(1)
v , we cover the large interval cor-

responding to (5.23) with small intervals of length 2η, and centers spaced at distance η.
To cover this large interval, we need at most η−1

√
du small intervals. Therefore, union

bounding the probability (5.24) gives that

P
(
∃u, v ∈ [N] : αu = αv = a,

∣∣∣β(1)
u − β

(1)
v

∣∣∣ ≤ η)1 (
ζ ≥ (K + 1)log log log N

)
≤ 4c−1

4.2
K2η2 log

(
u

d

)3

(du)−1η−1
√

du

≤ 5c−1
4.2

K2η log
(
u

d

)3

(du)−1/2

This probability converges to 0 for η = (du)1/2

log( ud )3
(K+1)3 log log log N

. �

Lemma 5.10. With high probability, for u , v ∈ W corresponding to the largest K + 1 λ’s,
we have |λu − λv| ≥

d1/2

3u log( ud )3
(K+1)3 log log log N

.

Proof. By Lemma 5.5, this is immediately true if αu , αv. Therefore assume αu = αv.
By Lemma 5.9, with high probability the K + 1 maximizers of β(1)

u are spaced at distance
(du)1/2

log( ud )3
(K+1)3 log log log N

. Therefore, by Lemma 5.5, for u , v and sufficiently large N, and as

d� log−5/3 N,

|λu − λv| =
|λ2

u − λ
2
v|

|λu + λv|

≥


(du)1/2

log( ud )3
(K+1)3 log log log N

u
+ O

((
1 + d3/2

)
u−4/3

) 1

2
√
u + O

(
d
√
u

)
≥

d1/2

3u log
(
u

d

)3
(K + 1)3 log log log N

(5.25)

by the lower bound on d. �
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5.6 Eigenvector Structure

Proposition 5.5. For k ≤ K = logoN(1) N, define x to be the vertex corresponding to the kth
largest eigenvalue of A, as per Theorem 5.2. The eigenvector v of λ satisfies∥∥∥v −w+(x)

∥∥∥ = O
(
u−r/2+2

)
.

Proof. By Theorem 5.2, there is a correspondence between the top K + 1 eigenvalues and
eigenvectors of the matrix A and the top K+1 eigenvalues λx of the truncated balls around
vertices x ∈ W together with their eigenvectors. Moreover, by Lemma 5.10, the difference
between each pair of these K + 1 eigenvalues is at least d1/2

4u log( ud )3(K+1)3 log log log N . Standard
perturbation theory (see [GLO20] Theorem 2 and the remarks following it) gives that, if
we fix the index 1 ≤ i ≤ K,

∥∥∥v −w+(x)
∥∥∥ ≤ ∥∥∥EW

∥∥∥ · ( min
j,i

∣∣∣λ − λ j

∣∣∣ )−1

≤ O

u log
(
u

d

)3
(K + 1)3 log log log N

d1/2 (dr + 1)u−r/2+1/2


= O

(
u−r/2+2

)
.

by our assumptions on d from Definition 5.1 and K, and the bound on ‖EW‖ from Theorem
5.5. �

Proof of Theorem 5.4. By Proposition 5.2, Proposition 5.5, and the triangle inequality,

v|x =
1
√

2
+ O

((
1 + d−1/2

)
u−1/3 + u−r/2+2

)
=

1
√

2
+ O

((
1 + d−1/2

)
u−1/3

)
.

as r ≥ 5. Moreover, as r ≥ 2r′, for 1 ≤ i ≤ r′,∥∥∥v|Si(x)

∥∥∥ =

(
d
α

)(i−1)/2 1
√

2

(
1 + O

((
1 + d−1/2 + d−(i−1)

)
u−1/3

))
+ O

(
u−r/2+2

)
=

(
d
α

)(i−1)/2 1
√

2

(
1 + O

((
1 + d−1/2 + d−i+1

)
u−1/3

))
as desired.

Similarly, ∥∥∥w+|[N]\Bi(x)

∥∥∥ =

(
d
α

)i/2 (
1 + O

((
1 + d−1/2 + d−r+1

)
u−1/3

))
.

�
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Chapter 6

The largest eigenvalue of weighted
Erdős-Rényi graphs

Random graphs are used to model many real world phenomena, like electrical and
social networks. Often for more effective encoding of physical phenomena, edges in
a random network are equipped with random weights, which for instance could denote
resistances in an electrical network. This leads one to consider Erdős-Rényi random graph
G(N, p) with random weights assigned to the edges. Its adjacency matrix can be regarded
as sparse or diluted random matrices, where each entry of a Wigner matrix is multiplied by
an independent Bernoulli random variable with mean p.

Some important properties of the weighted random graph are captured by the spec-
trum of its adjacency matrix. For instance, the largest eigenvalue and the corresponding
eigenvector can be used to measure the spread of diseases on graphs. Regarding this
eigenvalue, a lot of research has been devoted towards studying its typical and atypical
behavior: the former is concerned with the value and fluctuations that the largest eigen-
value has with high probability, and the latter is about the probability that the eigenvalue
deviates significantly from its typical value. A particularly important question in this
direction is how the spectral behavior depends on the precise matrix entry distribution,
and we say that the universality phenomenon holds if there is no such dependency in some
asymptotical sense.

An important distinction of sparse matrices from denser ones is that the universality
of the spectral behavior breaks down in the sparse case and the spectrum depends rather
crucially on the entry distribution. While the study of the bulk spectral properties of
sparse random matrices has witnessed some activity, e.g., [BC15, BSV17], the precise edge
statistics has still been mostly out of reach of the known methods which are primarily
tailored to analyze denser graphs, see for instance [AGH21, CDG23].

The present chapter is based on the paper [GHN24] and is aimed at advancing our
understanding in this direction, focusing on the large deviation properties. Towards this,
we study the large deviation properties of the largest eigenvalue of the adjacency matrix
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of the Erdős-Rényi random graphGN, d
N

with general edge-weight distributions (Yi j)1≤i< j≤N.
The topic of large deviations of spectral observables of random matrices have attracted
much interest over the last few decades leading to a considerable literature, some of which
will be reviewed after the main results, in Section 6.1.

We will work in the particular setting where the edge-weights (Yi j)1≤i< j≤N have tails of
the form

P(|Yi j| > t) ≈ e−tα , t > 1

for some α > 0 (we will leave the notion of ≈ somewhat imprecise for now). It turns out
that α = 2 is critical in a sense which will become apparent once we state our main results
which will address both the α > 2 (light-tailed) and α < 2 (heavy-tailed) cases.1

At this point, before embarking on stating our main results precisely in the next section,
we choose to highlight some of their key features.

Perhaps the most interesting consequence of our main results is the surprising univer-
sality phenomenon for the large deviation of the largest eigenvalue in the light-tailed case
α > 2 where the deviation probabilities (ignoring smaller order terms) does not depend on
α and is also identical to the one for Erdős-Rényi graphs without edge-weights, which es-
sentially corresponds to “α = ∞”. Our results also yield new law of large numbers (LLN)
results about the largest eigenvalue, which seem to be rather challenging to obtain using
previous methods. Interestingly, it turns out that the LLN behavior exhibits a transition
as well at α = 2.

Let us now precisely define our model and state our main results. A short summary
of the history of this problem will be provided subsequently.

6.1 Main results
All results below refer to G

(
N, d

N

)
with d constant.

Let X = (Xi j)i, j∈[N] be the adjacency matrix of GN,p and Y = (Yi j)i, j∈[N] be a standard
(symmetric) Wigner matrix, that is we assume that Y ji = Yi j, Yii = 0 and {Yi j}1≤i< j≤N are
i.i.d random variables. The matrix of interest for us is Z = X � Y, i.e., Zi j = Xi jYi j. This
is a sparse random matrix which can be regarded as the adjacency matrix of a weighted
random graph, whose underlying random graph is GN, d

N
with i.i.d. edge-weights coming

from {Yi j}1≤i< j≤N. Throughout the chapter we interchangeably use the notation X both for
the Erdős-Rényi graph GN, d

N
as well as its adjacency matrix.

Throughout the chapter matrix entries will be random variables with Weibull shape,
which defined below essentially says that the tail probabilities are comparable to that of
the Weibull distribution.

1The special case of the Gaussian distribution, which can be thought to be corresponding to α = 2, up
to polynomial prefactors, was studied previously in [GN22] by Ganguly and Nam; see Remark 6.2 for a
further discussion in this direction.
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Definition 6.1. A random variable W has Weibull shape with shape parameter α > 0 if
there exist constants C1,C2 > 0 such that for all t > 1,

C1

2
e−tα
≤ P

(
W ≥ t

)
≤

C2

2
e−tα and

C1

2
e−tα
≤ P

(
W ≤ −t

)
≤

C2

2
e−tα . (6.1)

The definition ensures that

C1e−tα
≤ P

(
|W| ≥ t

)
≤ C2e−tα , (6.2)

which will be notationally convenient later.
The cause for assuming a symmetric tail behavior is that a much heavier lower tail

causes the spectral norm of the random matrix to be governed by not the largest but the
smallest eigenvalue which is a large negative number and hence the largest eigenvalue is
not an interesting object of study anymore.

For brevity, throughout the chapter, we call a random variable with Weibull shape as
a Weibull random variable.

We now state the main results of this chapter.

Light-tailed case, α > 2.

Let

λlight
α := 2

1
αα−

1
2 (α − 2)

1
2−

1
α

(log N)
1
2

(log log N) 1
2−

1
α

. (6.3)

We will shortly state (see Corollary 6.1) that the above is the typical value of λ1(Z) for
α > 2 .

Theorem 6.1. For any δ > 0,

lim
N→∞
−

logP
(
λ1(Z) ≥ (1 + δ)λlight

α

)
log N

= (1 + δ)2
− 1.

Next, we establish the lower tail large deviation.

Theorem 6.2. For any 0 < δ < 1,

lim
N→∞

1
log N

log log
1

P
(
λ1(Z) ≤ (1 − δ)λlight

α

) = 1 − (1 − δ)2.

A crucial observation is that the upper and lower tail large deviation results establish
a sense of universality with the rate function not depending on α.

Further, as a corollary we have the following law of large numbers.
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Corollary 6.1. We have

lim
N→∞

(log log N)
1
2−

1
α

(log N) 1
2

λ1(Z) = 2
1
αα−

1
2 (α − 2)

1
2−

1
α

in probability.

Note that the case of no edge-weights can be thought of as corresponding to “α = ∞”.
Now while this was treated in [BBG21, Theorem 1.1] (see Theorem 6.5 stated later), in
some sense the same can be deduced in a limiting sense from Theorem 6.1. In fact, noting
that

lim
α→∞

λlight
α = lim

α→∞

[
2

1
αα−

1
2 (α − 2)

1
2−

1
α

(log N)
1
2

(log log N) 1
2−

1
α

]
=

(log N)
1
2

(log log N) 1
2

,

one obtains [BBG21, Theorem 1.1] by taking α → ∞ in Theorem 6.1. Note that the large
deviation rate function turns out to be not only the same for all light-tailed distribution,
i.e. whenever α > 2, but also in the limit, when α = ∞.

Heavy-tailed case, α < 2

Counterpart to (6.3), we define

λheavy
α := (log N)

1
α . (6.4)

Stating the upper tail large deviation needs the following definition. For θ > 1, let
φθ : {2, 3, · · · } → R be defined by

φθ(k) := sup
v∈Rk,v=(v1,··· ,vk)‖v‖1=1

∑
i, j∈[k],i, j

|vi|
θ
|v j|

θ. (6.5)

The statement involves further considering two sub-cases.

Theorem 6.3. Let δ > 0.
1. In the case 1 < α < 2, let β > 2 be the conjugate of α (i.e. 1

α + 1
β = 1). For an integer

k ≥ 2, define

ψα,δ(k) :=
k(k − 3)

2
+

1
2

(1 + δ)αφβ/2(k)1−α. (6.6)

Then,

lim
N→∞
−

logP
(
λ1(Z) ≥ (1 + δ)λheavy

α

)
log N

= min
k=2,3,···

ψα,δ(k). (6.7)

2. In the case 0 < α ≤ 1,

lim
N→∞
−

logP
(
λ1(Z) ≥ (1 + δ)λheavy

α

)
log N

= (1 + δ)α − 1. (6.8)
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The above theorem shows that once heavy-tailed edge-weights are induced on the
sparse graph GN, d

N
, the large deviation rate function for the largest eigenvalue exhibits a

phase transition: the rate function is a piecewise smooth function whose behavior changes
as arg maxk ψα,δ(k) (i.e. size of the clique needed to have atypically large λ1) varies. This
is in a sharp contrast to the large deviation result for the standard (i.e. dense) Wigner
matrices with heavy-tailed entries (i.e. edge-weights are induced on the complete graph)
[Aug16], where it is proved that there exists a smooth function I(δ) such that for all δ > 0,

P(λ1 > 2 + δ) ≈ e−I(δ)Nα/2
.

Remark 6.1. We do not have a closed expression for the quantity φθ(k) defined in (6.5),
unless θ = 1 in which case we know φ1(k) = k−1

k (by the classical Motzkin-Straus theorem
[MS65]). While the definition of φθ(·),might seem somewhat unmotivated at this point, it
appears quite naturally once we bound λ1(Z) in terms of the ‘entrywise’ Lp-(quasi)norm
of Z. See Section 2.1 for details.

Next, we obtain the lower tail large deviation.

Theorem 6.4. For any 0 < δ < 1,

lim
N→∞

1
log N

log log
1

P
(
λ1(Z) ≤ (1 − δ)λheavy

α

) = 1 − (1 − δ)α.

Note that unlike for light-tail edge weights, in this case the large deviation rate function
does depend on α.

Finally, as a counterpart to Corollary 6.1, we have the following law of large numbers
result.

Corollary 6.2. We have

lim
N→∞

λ1(Z)

(log N) 1
α

= 1

in probability.

Remark 6.2. While for the sake of simplicity as well as brevity we have chosen to work
with distributions as in (6.1), certain generalizations are not hard to make. E.g., a simple
rescaling shows that similar large deviation results hold for random variables possessing
more general types of Weibull shape, where for t > 1,

C1

2
e−ηtα

≤ P
(
W ≥ t

)
≤

C2

2
e−ηtα and

C1

2
e−ηtα

≤ P
(
W ≤ −t

)
≤

C2

2
e−ηtα (6.9)

for some additional scale parameter η > 0. A piece of straightforward algebra shows that
the rate function for λ1(Z) does not change with η.
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Further, a little additional work also allows one to consider an even more general class
of distributions given by

C1

2
t−c1e−ηtα

≤ P
(
W ≥ t

)
≤

C2

2
t−c2e−ηtα and

C1

2
t−c1e−ηtα

≤ P
(
W ≤ −t

)
≤

C2

2
t−c2e−ηtα

for parameters c1, c2 ≥ 0. This allows one to include polynomial pre-factors, which for
α = 2 covers the Gaussian case considered in [GN22].

We next include a brief overview of the literature on large deviations of spectral
observables of random matrices.

Related results

Much effort has been devoted to proving whether spectral properties of random matrix
ensembles exhibit certain universality features i.e. do not depend on the precise entry
distribution as the matrix size goes to infinity. For instance, under some moment condi-
tions, the appropriately scaled empirical distribution of the eigenvalues converges to the
Wigner’s semi-circle law [Wig58, Arn67] and the largest eigenvalue lies near the edge of
the semi-circle distribution [Juh81, FK81, BY88]. On the other hand, large deviation behav-
ior is generally far from universal making this an intriguing research direction which has
also witnessed considerable activity. Large deviations for the empirical distribution and
the largest eigenvalue were first derived for the Gaussian ensembles [BAG97, BADG01].
Progress stalled for a while, until a surprising recent result by Guionnet and Husson
[GH20], where the large deviation universality was established for the largest eigenvalue
of ‘sharp’ sub-Gaussian matrices. Their proof relied on the method of spherical integrals.
Together with Augeri [AGH21], they also showed that for a more general class of sub-
Gaussian matrices, the rate function is universal for small large deviations, but beyond
that also depends on other properties of the moment generating function. Subsequently,
continuing this line of work, Cook, Ducatez and Guionnet, in [CDG23], strengthened the
result into a full large deviation principle for such sub-Gaussian Wigner matrices.

The behavior changes a lot when the entry distribution possesses tails heavier than
Gaussian. Bordenave and Caputo [BC14] proved a large deviation result for the empirical
distribution of Wigner matrices with stretch-exponential entries whose tails decay at the
rate e−tα with α ∈ (0, 2). The proof relies on the observation that the atypical behavior is
the result of a few atypically large entries. Building on the same idea, Augeri [Aug16]
subsequently obtained a large deviation principle for the largest eigenvalue. In both cases,
the large deviation speed as well as the rate function depend on α and thus on the precise
tail behavior of the entries.

We next move on to the results on the spectral properties of the adjacency matrix of
Erdős-Rényi random graphs GN,p. As mentioned in Chapter 5, the largest eigenvalue is
typically linked to the average degree in the dense case, and to the largest degrees in
the sparse case [KS03, ADK21b, TY21]. Beyond typical behavior, the study of the large
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deviation behavior for the spectrum of GN,p becomes much more delicate and requires
new methods. In the dense case (i.e. p fixed in N), Chatterjee and Varadhan [CV11, CV12]
established a large deviation principle using the powerful graph limit theory and charac-
terized the rate function in terms of a variational problem. This variational problem was
later analyzed by Lubetzky and Zhao [LZ15]. It is important to note that the eigenvalues
are normalized in a different way than in [BADG01, BAG97] here, and that the matrix
entries are not assumed to be centered. The quantity of interest here are eigenvalues of the
order of N, where N×N is the size of the matrix, of which there is typically just one when
the entries are not centered. In contrast, in [BAG97, BADG01], roughly speaking, eigen-
values and deviations of order

√
N were studied. In the sparse case p→ 0, the graph limit

theory no longer applies. In the breakthrough work by Chatterjee and Dembo [CD16], a
general framework of nonlinear large deviations was developed leading to a similar varia-
tional problem. This was later extended [CD20, Aug20] and analyzed in [BG20] to obtain
large deviations for the largest eigenvalue in the sparsity regime 1

√
N
� p � 1. Finally,

the sparsity we will consider in this chapter, namely p = d
N was covered in [BBG21]. It

was shown that the large deviation behavior of edge eigenvalues is a consequence of the
emergence of vertices of atypically large degree.

Finally, let us review the few existing results about the spectral behavior of the adja-
cency matrix of weighted Erdős-Rényi graphs, or in other words, sparse or diluted Wigner
matrices. The typical largest eigenvalue of dense graphs (i.e. p fixed in N) with general
edge-weights, under suitable moment conditions, belongs to the universality class of gen-
eral Wigner matrices. In the sparser regime p→ 0, Khorunzhy [Kho01] proved that once
log N

N � p � Nβ for some β > 0, the largest eigenvalue is asymptotically 2
√

Np with high
probability and does thus not depend on the precise distribution of the edge-weights.
Recently, [BGBK20, TY21] treated the typical behavior of diluted Wigner matrices, where
some of the above assumptions are relaxed. However all results mentioned before are in
the regime p� 1

N , which excludes the case p = d
N .

However, despite the above advances, significantly less is known about the spectral
large deviation behavior in the setting of diluted Wigner matrices. Large deviations for the
dense GN,p with Gaussian edge-weights can be deduced from the aforementioned result
for the sub-Gaussian Wigner matrices [AGH21]. This result together with [GH20] show
that even for the same weight distribution, the large deviation behavior for the cases p = 1
and p < 1 (p is fixed) are different. No other regime of p, in particular when p → 0, is
covered by previous results [AGH21, GH20]. In this direction, a large deviation result
for the largest eigenvalue, in the case p = d

N with Gaussian edge-weights, was recently
proved by Ganguly and Name in [GN22]. Finally, very recently, [Aug24] established a
large deviation principle for the empirical spectral distribution of diluted Wigner matrices
in the regime log N

N � p� 1.
Recall that Theorem 6.1 implies a universal spectral large deviations behavior when

α > 2. While the large deviation result for the ‘sharp’ sub-Gaussian Wigner matrices
[GH20] can be considered as a universality result for dense Wigner matrices, it seems
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Theorem 6.1 is the first universality result of its kind in the sparse regime.

Idea of the proof

The proofs rely on identifying the correct geometric mechanisms responsible for the
largest eigenvalue which we describe next.

Light-tailed weights

We start by considering the adjacency matrix X without edge-weights. In the influential
work [KS03] it was shown that the largest eigenvalue is determined essentially by the
star, incident on the vertex with the largest degree, which is typically log N

log log N . Since the

largest eigenvalue of a star of degree ` is equal to
√
`, we have λ1(X) ≈ (log N)

1
2

(log log N)
1
2
. It was

subsequently established in [BBG21] that in this case, even in the large deviations regime,
the largest eigenvalue is essentially determined by an atypically large degree vertex.

Now, let us consider the case when the edges are equipped with light-tailed edge-
weights. Owing to the lightness of the tail, one might naturally expect that vertices with
degree of order log N

log log N will continue to be the determining structure, but the existence of
weights does add another element of randomness that can increase the largest eigenvalue.
This calls for the need to balance the fact that there are more stars of lower degree,
while high degree stars are more likely to have a big largest eigenvalue necessitating the
estimation of the contributions from vertices of degree close to γ log N

log log N for 0 < γ < 1.
Using a binomial tail estimate, one can deduce that the probability that a vertex has

degree close to γ log N
log log N is roughly N−γ and hence there are approximately around N1−γ

vertices of that degree. BecauseGN, d
N

is sparse, it is likely that a constant proportion of these
vertices has distinct neighborhoods with no edges present within those neighborhoods
and hence these high-degree vertices and their neighborhoods induce vertex-disjoint stars.
The next step is to consider the contribution from the edge-weights. Here we need two
ingredients. First, the fact that the largest eigenvalue of a weighted star is the square root
of the sum of the squares of the weights. The second fact we use is that for light-tailed
weights, the probabilistically optimal way to obtain a large squared sum of the weights is
by all of them being uniformly large. This allows us to deduce that for any weighted star
S of degree k,

P(λ1(S) > t) ≈ e−tαk1− α2 . (6.10)

Using this, to find a typical value t of the largest eigenvalue of such collection of stars, the
probability in (6.10) with k = γ

log N
log log N should balance out the number of such stars which
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is roughly n1−γ. A further optimization over γ indeed indicates that typical value of the
largest eigenvalue is close to λlight

α (defined in (6.3)).
The proof of the upper bound in Theorem 6.1 now relies on establishing the above

heuristic even in the large deviations regime. A key subtle distinction arises from the fact
that the large deviation of λ1 may induce atypical behavior of both the degrees as well as
the edge weights which has to be taken into consideration as well.

The proof of the lower bound is much simpler and consists of ensuring that there is a
star of degree γδ

log N
log log N , for some δ dependent constant γδ, with large enough weights on

the edges.

Heavy-tailed weights

The results of [GN22] indicate that typically the largest eigenvalue of GN, d
N

with Gaus-
sian weights is determined by the maximal edge-weight in absolute value. Since the latter
increases as the tail of individual random variables becomes heavier, this suggests that
the same mechanism persists when the edge-weights have heavier tails (i.e. α < 2).

Note that there are on average dn
2 edges present in the graphGN, d

N
. Thus, the probability

that the largest entry is greater in absolute value than t is

1 − P
(

max
(i, j)∈E(X)

|Zi j| < t
)
≈ 1 − (1 − e−tα)

dN
2 ≈

dN
2

e−tα . (6.11)

This shows that the typical value of the maximum entry (in absolute value) is λheavy
α

defined in (6.4).
However, unlike typical behavior, it turns out that large deviations, i.e., {λ1(Z) ≥

(1 + δ)λheavy
α }, is achieved by the emergence of a clique with high edge-weights on it. One

can first estimate the probability thatGN, d
N

, contains a clique of size k for each integer k ≥ 2.
Next, one estimates the probability that the edge-weights on the clique are high. One of
our main results is that we identify how to induce these high edge-weights in the most
efficient way, which turns out to involve the variational problem (6.5).

The optimal clique size depends on both α and δ. In particular, it is 2 when α ≤ 1, i.e.,
large deviations is dictated by the existence of an atypically large edge-weight.

Again as before, while the proof of the upper bound involves several technical ingre-
dients making the above heuristics precise, the lower bound is obtained rather quickly by
planting a clique of an appropriate size with high edge weights.

We end this section with a brief overview of the variational problem described in (6.5)
which we believe is of independent interest.

α−norm generalization of the Motzkin-Straus theorem

When the edge-weights are given by heavy-tailed Weibull random variables (with
shape parameter 0 < α < 2), we study the spectral behavior by relying on a new result
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relating the largest eigenvalue and the entrywise Lα-(quasi)norm of any symmetric matrix
A, which we define by

‖A‖α :=
(∑

i, j

|ai j|
α
)1/α

.

In particular we show that for any 0 < α < 2 and any integer k ≥ 2, there exists an explicit
and sharp constant C(α, k) > 0 such that for any network G = (V,E,A) with maximum
clique size k,

λ1(A) ≤ C(α, k) ‖A‖α . (6.12)

The constant C(α, k) is expressed in terms of the function φα(k) defined in (6.5) (see Propo-
sition 2.1 for details). Moreover, it turns out that C(α, k) does not depend on k when
0 < α ≤ 1. The special case α = 2 had been studied earlier where the bound counterpart
to (6.12) reads as

λ1(A) ≤

√
k − 1

k
‖A‖2 , (6.13)

and can be obtained as a straightforward consequence of the Motzkin-Straus theorem (see
[GN22, Proposition 3.1]).

We finish this discussion with a brief comparison of the heavy tailed case to the
Gaussian case, which corresponds to the case of Weibull random variables with α = 2,
albeit with additional polynomial pre-factors as described in Remark 6.2. For the latter, it
is shown in [GN22] that if we set

ψ̄δ(k) :=
k(k − 3)

2
+

1 + δ
2

k
k − 1

(6.14)

for integers k ≥ 2, then

lim
N→∞
−

1
log N

logP
(
λ1(Z) ≥

√
2(1 + δ) log N

)
= min

k=2,3,···
ψ̄δ(k). (6.15)

While, limδ→∞ arg mink∈N≥2
ψ̄δ(k) = ∞, it turns out that when 1 < α < 2, the function

φβ/2(k) that appears in (6.6) becomes constant for large k (see (4) in Lemma 2.3), which
implies that arg mink∈N≥2

ψα,δ(k) stays bounded in δ. Further, our proof indicates that the
optimal way for the largest eigenvalue to be greater than (1 + δ)λα is to have a clique of
size arg mink∈N≥2

ψα,δ(k) (in particular, 2, which is just a single edge, when 0 < α ≤ 1) in
the random graph X = GN, d

N
, and then have high valued edge-weights on this clique. A

counterpart result in the Gaussian case was proven in [GN22], where it was shown that
the corresponding clique size is given by arg mink∈N≥2

ψ̄δ(k). Thus, by the above discussion,
the governing clique size for α < 2 stays bounded as the deviation increases in contrast to
the Gaussian case where the same goes to infinity.

In the two remaining sections of this chapter we prove the large deviation theorems
for the cases of light- and heavy-tailed edge-weights in Section 6.2 and 6.3 respectively.
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6.2 Light-tailed weights
We consider α > 2 in this section and prove Theorems 6.1 and 6.2. For the reader’s

benefit let us recall that

λlight
α = 2

1
αα−

1
2 (α − 2)

1
2−

1
α

(log N)
1
2

(log log N) 1
2−

1
α

. (6.16)

For notational brevity, in this section we will denote λlight
α simply by λα. To simplify the

notation further, we set

Bα := 2
1
αα−

1
2 (α − 2)

1
2−

1
α . (6.17)

The upper tail

Let us recall the theorem that we will prove in this section.

Theorem 6.1. For any δ > 0,

lim
N→∞
−

logP
(
λ1(Z) ≥ (1 + δ)λlight

α

)
log N

= (1 + δ)2
− 1.

The governing structure for the upper tail of λ1(Z) will turn out to be a star of degree
dγδ

log N
log log N ewith

γδ := (1 + δ)2
(
1 −

2
α

)
(6.18)

and high edge-weights on the edges. This stems from the following optimization problem.
The probability that the maximum of the largest eigenvalue among all the typically present
n1−γ stars of degree dγ log N

log log Ne (see e.g., Lemma 3.3 and Proposition 3.4) is greater than
(1 + δ)λα is maximized at γ = γδ.

Lower bound for the upper tail

The strategy will change depending on whether γδ is less or greater than 1.
Case 1: γδ < 1. For small enough ρ > 0, we condition on the event Aγδ,ρ measurable

with respect to X, defined in Proposition 3.2. Conditioned on that event, there exist
m :=

⌈
1
4N1−γδ−ρ

⌉
vertices with 1(γδ) =

⌈
γδ

log N
log log N

⌉
disjoint neighbors with no edges between

each neighbors. Denote by S1, · · · ,Sm the vertex-disjoint stars induced by these vertices
and their 1(γ) neighbors. Then, by Lemma 2.5,

λ1(Z) ≥ max
k=1,··· ,m

λ1(Sk).
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Thus, conditioned on the eventAγδ,ρ, by the characterization of the largest eigenvalue of
stars in Lemma 2.6,

P
(
λ1(Z) ≥ (1 + δ)λα | X

)
≥ P

 max
k=1,...,m

∑
(i, j)∈E(Sk)

Z2
i j ≥ (1 + δ)2λ2

α | X

 (6.19)

(recall that (i, j) denotes the undirected edge joining vertices i and j with i < j). In the
appendix, we derive a tail bound (4.14) for the sum of squares of Weibull random variables.
Plugging in the bound with d = 1+δ and b = γδ, under the eventAγδ,ρ, for each k = 1, · · · ,m,

P

 ∑
(i, j)∈E(Sk)

Z2
i j ≥ (1 + δ)2λ2

α | X

 ≥ N−(1+δ)α 2
α−2 (1− 2

α )
α
2 γ

1− α2
δ

+o(1) = N−(1+δ)2 2
α+o(1),

where we used γδ = (1 + δ)2
(
1 − 2

α

)
in the last equality. Using the independence of

edge-weights and recalling m =
⌈

1
4N1−γδ−ρ

⌉
, under the eventAγδ,ρ,

P

 max
k=1,...,m

∑
(i, j)∈E(Sk)

Z2
i j ≥ (1 + δ)2λ2

α | X

 ≥ 1 −
(
1 −N−(1+δ)2 2

α+o(1)
)m

≥ 1 − e−N1−γδ−ρ−(1+δ)2 2
α+o(1)
≥

1
2

N1−(1+δ)2
−ρ+o(1),

where we used the fact that 1 − e−x
≥

1
2x for small x > 0 in the last inequality.

Therefore, applying this to (6.19) and using that P(Aγδ,ρ) ≥
1
2 (see Proposition 3.2),

P
(
λ1(Z) ≥ (1 + δ)λα

)
≥ E

[
P
(
λ1(Z) ≥ (1 + δ)λα | X

)
1Aγδ,ρ

]
≥

1
4

N1−(1+δ)2
−ρ+o(1).

Due to the arbitrariness of ρ > 0,

lim sup
N→∞

−

logP
(
λ1(Z) ≥ (1 + δ)λα

)
log N

≤ (1 + δ)2
− 1.

Case 2: γδ ≥ 1. For any ρ > 0, we condition on the event A′(1+ρ)γδ
measurable with

respect to X, defined in Proposition 3.3. Under this event there exists a vertex v with⌈
(1 + ρ)γδ

log N
log log N

⌉
neighbors with no edges between them. Denote by S the star induced

by v and these neighbors. As before, using the tail bound (4.14) with d = 1 + δ and
b = (1 + ρ)γδ, under the eventA′(1+ρ)γδ

,

P
(
λ1(Z) ≥ (1 + δ)λα | X

)
≥ P

 ∑
(i, j)∈E(S)

Z2
i j ≥ (1 + δ)2λ2

α | X
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≥ N−(1+δ)α 2
α−2 (1− 2

α )
α
2 ((1+ρ)γδ)

1− α2 +o(1) = N−(1+δ)2 2
α (1+ρ)1− 2

α +o(1).

By Proposition 3.3,

P
(
A
′

(1+ρ)γδ

)
= N1−(1+ρ)γδ+o(1).

Thus, as above,

lim sup
N→∞

− logP
(
λ1(Z) ≥ (1 + δ)λα

)
log N

≤ −1 + (1 + ρ)γδ + (1 + δ)2 2
α

(1 + ρ)1− 2
α

= −1 + (1 + δ)2
[
(1 + ρ)

(
1 −

2
α

)
+

2
α

(1 + ρ)1− 2
α

]
.

Since ρ > 0 is arbitrary, this implies the desired bound.
�

Remark 6.3. If γδ = 1, then the precise behavior of the number of vertices of degree close to
γδ

log N
log log N =

log N
log log N or the probability of the existence of such a vertex is somewhat delicate

to track. Hence, we considered vertices with a slightly larger degree instead to exploit the
large deviation bound for atypically large degrees from (3.3). This shortens the proof by
not dealing with the case γδ = 1 separately.

Upper bound of the upper tail

We proceed in a sequence of steps:

1. We first truncate the weights Y and then accordingly decompose Z into Z(1) + Z(2):

Z(1)
i j = Xi jY

(1)
i j and Z(2)

i j = Xi jY
(2)
i j , (6.20)

where

Y(1)
i j = Yi j1

|Yi j|>(ε log log N)
1
α

and Y(2)
i j = Yi j1

|Yi j|≤(ε log log N)
1
α
. (6.21)

Similarly, write X = X(1) + X(2) with

X(1)
i j = Xi j1

|Yi j|>(ε log log N)
1
α

and X(2)
i j = Xi j1

|Yi j|≤(ε log log N)
1
α
. (6.22)

This particular threshold is chosen so that, as we will soon see, Z(2) is spectrally
negligible.

By the tail decay of Weibull random variables, X(1) is distributed as GN,q with

q ≤
d′

N(log N)ε
(6.23)

for some constant d′ > 0. Also, given X(1), the edge-weights on the network Z(1)

can be regarded as i.i.d. Weibull random variables conditioned to be greater than
(ε log log N)

1
α in absolute value.
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2. We analyze the component structure of X(1), the underlying graph of the network Z(1).
The sparsity of X(1) allows the results in Section 3.5 to be applicable. In particular,
connected components of X(1) are tree-like (i.e. the number of tree-excess edges are
small) and their sizes are relatively small with high probability.

3. We further decompose the network Z(1) into Z(1)
1 , consisting of vertex-disjoint

weighted stars, and Z(1)
2 , whose degrees are well-controlled.

4. Using the results in Step (2) and the fact that the maximal degree in Z(1)
2 is relatively

small, we prove that Z(1)
2 is spectrally negligible as well.

5. We analyze the spectral contribution of Z(1)
1 by grouping stars according to their

degrees. Since we have a complete characterization of the largest eigenvalue of a
(weighted) star graph (see Lemma 2.6), one can explicitly compute the contribution
from the collections of stars of a given degree. It turns out that the main contribution,
which leads to the large deviation probability, comes from the stars of degree close
to γδ

log N
log log N (see (6.18)).

Given the truncation in Step (1) above, we first estimate λ1(Z(2)).

Lemma 6.1. For any δ, ε > 0,

lim inf
N→∞

− logP
(
λ1

(
Z(2)

)
≥ ε

1
α (1 + δ)λαBα

)
log N

≥ (1 + δ)2
− 1. (6.24)

We start by stating the following theorem from [BBG21]. While the latter covers a
varied range of values for p, we state it only in the sparsity regime considered in our
results. Recall that we set tn =

log N
log log N .

Theorem 6.5 ([BBG21, Thm. 1.1]). For any δ > 0,

lim
N→∞

− logP(λ1(X) ≥ (1 + δ)t
1
2
N)

log N
= (1 + δ)2

− 1. (6.25)

Proof of Lemma 6.1. Since
∣∣∣Y(2)

i j

∣∣∣ ≤ (ε log log N)
1
α for all i, j,

λ1(Z(2)) ≤ (ε log log N)
1
αλ1(X). (6.26)

By Theorem 6.5 and recalling λα
Bα

=
(log N)

1
2

(log log N)
1
2−

1
α

(see (6.16) and (6.17)), this immediately

concludes the proof.
�
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Now we analyze Z(1), the main spectral part for λ1(Z). Since the edge density of its
underlying graph X(1) d

∼ GN,q satisfies (6.23), the results in Section 3.5 hold for X(1) as
indicated in Step (2).

We now implement Step (3), i.e. we decompose X(1) into two parts, one of which con-
sists of a vertex-disjoint union of stars while the other one has a relatively small maximum
degree. This remainder graph and the union of stars are not necessarily vertex-disjoint.
The latter part will be spectrally negligible and the dominating factor will be the former
part. For this we rely on a result from [BBG21, Lemma 3.5], that we simplified slightly for
our setting. We moreover state an explicit bound on the maximum degree, which can be
deduced easily from the proof.

Lemma 6.2 ([BBG21, Lemma 3.5]). There exists an eventWmeasurable with respect to X(1)

that happens with probability at least 21 − e−ω(log N) under which X(1) can be decomposed
into a graph X(1)

1 which is a vertex-disjoint union of stars, and a graph X(1)
2 whose maximum

degree is bounded by 2
(
log N

) 7
16 for large enough N.

The decomposition in [BBG21, Lemma 3.5] is stated for GN,p with p = O( 1
N ) which is

applicable for X(1) by (6.23).
From now on, we condition on the high probability eventW. Let Z(1)

1 and Z(1)
2 be the

corresponding networks of X(1)
1 and X(1)

2 respectively. We will first focus on the spectral
behavior of Z(1)

2 by analyzing its underlying graph X(1)
2 . Then by Lemmas 3.11, 3.12 and

6.2, each connected component C` of X(1)
2 satisfies the following properties with high

probability for any δ1, δ2 > 0:

1. d1(C`)≤ 2
(
log N

) 7
16 ,

2. |V(C`)| ≤ (1 + δ1) 1
ε

log N
log log N ,

3. |E(C`)| ≤ |V(C`)| + δ2

(recall that for any graph G, d1(G) denotes the maximum degree of G).
We now state the following key general proposition, which claims that it is costly that

any connected network satisfying the above three properties has the largest eigenvalue
of order λα (recall that λα denotes the quantity which turns out to be the typical largest
eigenvalue, as defined in (6.16)).

Proposition 6.1. Assume that α > 2 and {uN}N≥1 be a sequence such that uN = o
(

log N
log log N

)
.

For any N ∈ N and ε, δ1, δ2 > 0, let G := GN,ε,δ1,δ2 be the set of connected networks
G = (V,E,A) (A = (ai j)i, j∈V denotes the weight matrix) such that

1. d1(G)≤ uN,
2Here, the quantity x = ω(log N) means that limn→∞

x
log N = ∞.
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2. |V| ≤ (1 + δ1)1
ε

log N
log log N ,

3. |E| ≤ |V| + δ2.

Assume that the edge-weights are i.i.d. Weibull random variables with a shape parameter
α > 2 conditioned to be greater than (ε log log N)

1
α in absolute value. Then, for any

constant c > 0,

lim
N→∞

− log supG∈GP (λ1(A) ≥ cλα)

log N
= ∞.

Proof. The general strategy is to boundλ1(A) by expressing it in terms of the corresponding
(random) top eigenvector and then analyzing the contributions from the high and low
values of the entries separately. To make this precise, suppose that V = [m], and let
f = ( fi)i∈[m] with || f ||2 = 1 be any (random) eigenvector of A such that

λ1(A) = f TA f =

m∑
i, j=1

ai j fi f j = 2
∑

(i, j)∈E

ai j fi f j (6.27)

(recall that (i, j) denotes the undirected edge joining two vertices i < j).
For a constant ξ ∈

(
0, 1

2

)
which will be chosen sufficiently small later, define

VS := {i ∈ [m] : | fi| < |ξ|}, VL := {i ∈ [m] : | fi| ≥ |ξ|}, (6.28)

where the indices stand for small and large respectively. Since
∑m

i=1 f 2
i = 1, we have

|VL| ≤

⌊ 1
ξ2

⌋
. (6.29)

We also partition the set of edges into two parts, those that are incident on a vertex in
VL and the rest:

ES :=
{
(i, j) ∈ E : i < j, i, j ∈ VS

}
, EL :=

{
(i, j) ∈ E : i < j, i ∈ VL or j ∈ VL

}
. (6.30)

We now decompose the summation in (6.27) into two parts λS and λL:

λ1(A) = 2
∑

(i, j)∈E

ai j fi f j = 2
∑

(i, j)∈ES

ai j fi f j + 2
∑

(i, j)∈EL

ai j fi f j =: 2λS + 2λL. (6.31)

The above is expressed in a way such that both λS and λL can be bounded by sums of i.i.d.
random variables which will be convenient.

Thus, for any constant 0 ≤ τ ≤ 1 which will be chosen later,

P(λ1(A) ≥ cλα) ≤ P(2λS ≥ τcλα) + P(2λL ≥ (1 − τ)cλα). (6.32)
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We now analyze these two probabilities separately.
Bounding λS. We apply the Cauchy-Schwarz inequality to

∑
(i, j)∈ES

ai j fi f j, and then use
a bound on

∑
(i, j)∈ES

f 2
i f 2

j which we now derive. Let T be a spanning tree of G (recall that
G is connected) and E(T) be the collection of edges in T. Since |E(T)| = |V| − 1, by our
assumption on the number of tree-excess edges, |ES\E(T)| ≤ |E| − |E(T)| ≤ δ2 + 1. Hence,∑

(i, j)∈ES

f 2
i f 2

j =
∑

(i, j)∈ES∩E(T)

f 2
i f 2

j +
∑

(i, j)∈ES\E(T)

f 2
i f 2

j ≤ ξ
2 + (δ2 + 1)ξ4

≤ (2 + δ2)ξ2, (6.33)

where we used (2.18) with θ = 1 to bound the first term (note that | fi| ≤ ξ < 1
2 ). Thus,

setting

τ := (2 + δ2)
1
4ξ

1
2 , (6.34)

by the Cauchy-Schwarz inequality together with the bound (6.33),

λS ≤

( ∑
(i, j)∈ES

f 2
i f 2

j

) 1
2 ( ∑

(i, j)∈ES

a2
i j

) 1
2

≤ τ2

( ∑
(i, j)∈ES

a2
i j

) 1
2

≤ τ2

( ∑
(i, j)∈E

a2
i j

) 1
2

.

By assumptions on the network size and the number of tree-excess edges,
∑

(i, j)∈E a2
i j is the

sum of at most
⌊
(1 + δ1)1

ε
log N

log log N + δ2

⌋
many squares of Weibull random variables condi-

tioned to be greater than
(
ε log log N

) 1
α in absolute value. Hence, by the tail estimate for

such sum of squares (the bound (4.15) with d = c
2τ = c

2(2+δ2)
1
4 ξ

1
2

and b = 1+δ1
ε ),

lim inf
N→∞

− logP(2λS ≥ τcλα)
log N

≥ lim inf
N→∞

− logP
(∑

(i, j)∈E a2
i j ≥

c2

4τ2λ2
α

)
log N

≥
cα

2α(2 + δ2) α4 ξ α
2

2
α − 2

(
1 −

2
α

) α
2
(1 + δ1

ε

)1− α2
− (1 + δ1). (6.35)

Bounding λL. By the Cauchy-Schwarz inequality and the fact that

∑
(i, j)∈EL

f 2
i f 2

j ≤

∑
i∈V

f 2
i


∑

j∈V

f 2
j

 = 1,

we have

λL ≤

( ∑
(i, j)∈EL

f 2
i f 2

j

) 1
2 ( ∑

(i, j)∈EL

a2
i j

) 1
2

≤

( ∑
(i, j)∈EL

a2
i j

) 1
2

.
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Since |VL| ≤
⌊

1
ξ2

⌋
by (6.29), the event {2λL ≥ (1 − τ)cλα} implies the existence of a random

subset J ⊆ V with |J| ≤
⌊

1
ξ2

⌋
such that

∑
(i, j)∈EJ

a2
i j ≥

(1 − τ)2c2

4
λ2
α,

where EJ :=
{
(i, j) ∈ E : i < j, i ∈ J or j ∈ J

}
. For any deterministic subset J′with |J′| ≤

⌊
1
ξ2

⌋
, by

our assumption on the maximum degree, |EJ′ | = o
(

1
ξ2

log N
log log N

)
. Thus, by the tail probability

estimate for the sum of squares of Weibull random variables (the bound (4.16) with
d = (1−τ)c

2 ),

lim
N→∞

− logP
(∑

(i, j)∈EJ′
a2

i j ≥
(1−τ)2c2

4 λ2
α

)
log N

= ∞.

By the assumption on the component size, the cardinality of different values that a random

subset J with |J| ≤
⌊

1
ξ2

⌋
can take is bounded by

(
(1 + δ1) 1

ε
log N

log log N

) 1
ξ2

= no(1). Thus, by a union
bound,

lim
N→∞

− logP(2λL ≥ (1 − τ)cλα)
log N

= ∞. (6.36)

Therefore, applying (6.35) and (6.36) to (6.32),

lim inf
N→∞

− logP(λ1(A) ≥ cλα)
log N

≥
cα

2α(2 + δ2) α4 ξ α
2

2
α − 2

(
1 −

2
α

) α
2
(1 + δ1

ε

)1− α2
− (1 + δ1).

Since ξ > 0 is arbitrary, the RHS above can be made arbitrarily large, concluding the
proof. �

Since each connected component of X(1)
2 satisfies the conditions in Proposition 6.1 by

the discussion following Lemma 6.2 with high probability, and the number of components
is bounded by n, a union bound completes Step (4). Therefore, it remains to analyze the
spectral behavior of Z(1)

1 , a collection of disjoint stars. We will group these stars according
to their sizes and then show that the main contribution comes from the group of stars with
degrees close to γδ

log N
log log N .

As a preparation, we now introduce some notations and a few lemmas. The first
lemma concerns the spectral behaviour of a single weighted star. Recall from (3.4) that
we set 1(γ) =

⌈
γ

log N
log log N

⌉
and let us define, for a star graph S, d(S) to be the degree of the

root vertex of S.
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Lemma 6.3. Suppose that S is a weighted star graph such that d(S) ≤ 1(γ) for some γ > 0,
with i.i.d. weights given by Weibull random variables with a shape parameter α > 2
conditioned to be greater than (ε log log N)

1
α in absolute value. Then, for any ρ > 0,

lim inf
N→∞

− logP(λ1(S) ≥ (1 + ρ)λα)
log N

≥ (1 + ρ)α
2

α − 2

(
1 −

2
α

) α
2

γ1− α2 − εγ.

Proof. Let
{
Ỹi

}
i=1,2,···

be i.i.d. Weibull random variables with a shape parameter α > 2

conditioned to be greater than (ε log log N)
1
α in absolute value. Since the largest eigenvalue

of a weighted star is nothing other than the square root of the sum of squares of edge-
weights (see Lemma 2.6),

P
(
λ1(S) ≥ (1 + ρ)λα

)
≤ P

(
Ỹ2

1 + · · · + Ỹ2
1(γ) ≥ (1 + ρ)2λ2

α

)
.

By the tail bound (4.15) with d = 1 + ρ and b = γ, we are done.
�

Next, we estimate the spectral contribution from the group of stars with degree close
to 1(γ). For this we first introduce some additional notations. Let d

(
X(1), v

)
be the degree

of v in the graph X(1), and for γ ≥ 0, define

D(1)
γ =

{
v ∈ V : d

(
X(1), v

)
≥ 1(γ)

}
. (6.37)

For small enough constant κ > 0 which will be chosen later, define m to be an integer such
that mκ < 1 ≤ (m + 1)κ. Then, define the event measurable with respect to X(1):

Pκ :=
{∣∣∣D(1)

iκ

∣∣∣ ≤ N1−iκ+κ for all i = 0, 1, · · · ,m
}
, (6.38)

which guarantees that for the discretization {κ, 2κ, . . . ,mκ} of the interval (0, 1), there are
not unusually many vertices whose degrees fall into any bin of degree range given by the
discretization.

Additionally we define the event measurable with respect to X(1):

Lδ,κ :=
{∣∣∣D(1)

1+κ

∣∣∣ ≤ (1 + δ)2

κ

}
, (6.39)

which guarantees that there are uniformly bounded number of vertices of unusually large
degree.

Using the estimate for the contribution of a single star (Lemma 6.3), we now prove
a lemma that captures the contribution from the group of stars of degree close to 1(γ).
Recall from Lemma 6.2 that X(1)

1 is a vertex-disjoint union of stars, and κ > 0 is a given
constant.
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Lemma 6.4. Let S be the collection of stars in X(1)
1 . Moreover, define, for any h > 0 and

γ = iκ < 1 (i is a non-negative integer) or γ ≥ 1 + κ,

λmax(γ, h) := max
S∈S,d(S)∈(1(γ),1(γ+h)]

{λ1(S)} (6.40)

if there is a star S ∈ S satisfying d(S) ∈ (1(γ), 1(γ + h)], and set λmax(γ, h) := 0 otherwise.
Then, for any ρ > 0,

lim inf
N→∞

− logE
[
P
(
λmax(γ, h) ≥ (1 + ρ)λα | X(1)

)
1Pκ∩Lδ,κ

]
log N

≥ − fα,ρ(γ + h) − h − κ − ε(γ + h), (6.41)

where the function fα,ρ : (0,∞)→ R is defined by

fα,ρ(x) := 1 − x − (1 + ρ)α
2

α − 2

(
1 −

2
α

) α
2

x1− α2 . (6.42)

In (6.41), the quantity fα,ρ(γ + h) should be thought of as the dominant term with the
rest being error terms.

Proof. The proof depends on whether γ < 1 or γ ≥ 1 + κ. In the case γ = iκ < 1, the
number of stars in X(1)

1 of degree at least 1(γ) is bounded by N1−γ+κ under the event Pκ.
Hence, by union bound and Lemma 6.3 with γ + h in place of γ,

lim inf
N→∞

− logE
[
P
(
λmax(γ, h) ≥ (1 + ρ)λα | X(1)

)
1Pκ

]
log N

≥ −(1 − γ + κ) + (1 + ρ)α
2

α − 2

(
1 −

2
α

) α
2

(γ + h)1− α2 − ε(γ + h)

= − fα,ρ(γ + h) − h − κ − ε(γ + h).

Let us now consider the second case γ ≥ 1 + κ. Note that by Lemma 6.3, for any star S
with d(S) ≤ 1(γ + h),

P(λ1(S) ≥ (1 + ρ)λα) ≤ N−(1+ρ)α 2
α−2 (1− 2

α )
α
2 (γ+h)1− α2 +ε(γ+h)+o(1).

Thus, since λmax(γ, h) = 0 if there is no star S in S satisfying d(S) > 1(γ), we have

E
[
P
(
λmax(γ, h) ≥ (1 + ρ)λα | X(1)

)
1Lδ,κ

]
= E

[
P
(
λmax(γ, h) ≥ (1 + ρ)λα | X(1)

)
1Lδ,κ1{∃S∈S:d(S)>1(γ)}

]
≤

(1 + δ)2

κ
·N−(1+ρ)α 2

α−2 (1− 2
α )

α
2 (γ+h)1− α2 +ε(γ+h)+o(1)P(d1(X(1)) ≥ 1(γ)),
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where the last inequality follows from the union bound (under the eventLδ,κ, the number
of stars in X(1)

1 of degree at least 1(γ) ≥ 1(1 + κ) is bounded by (1+δ)2

κ ). Also, since γ > 1, by
(3.3) and the fact that X(1) is distributed as GN,q with q ≤ p = d

N ,

P(d1(X(1)) ≥ 1(γ)) ≤ N1−γ+o(1).

Therefore,

lim inf
N→∞

− logE
[
P
(
λmax(γ, h) ≥ (1 + ρ)λα | X(1)

)
1Lδ,κ

]
log N

≥ −(1 − γ) + (1 + ρ)α
2

α − 2

(
1 −

2
α

) α
2

(γ + h)1− α2 − ε(γ + h)

= − fα,ρ(γ + h) − h − ε(γ + h).

�

Having the expression for the contribution of any group of stars under the assumption
that the underlying graph is reasonably nice, we now identify the group of stars for
which this contribution is maximized. This is done in the following technical lemma by
optimizing the value of the function fα,ρ. Note that fα,ρ was originally defined for ρ > 0,
but below we consider the wider range ρ > −1 for a later application.

Lemma 6.5. For α > 2 and ρ > −1, recall the function fα,ρ : (0,∞)→ R in (6.42):

fα,ρ(γ) = 1 − γ − (1 + ρ)α
2

α − 2

(
1 −

2
α

) α
2

γ1− α2 .

Then,

max
γ>0

fα,ρ(γ) = 1 − (1 + ρ)2 and γρ := arg max
γ>0

fα,ρ(γ) = (1 + ρ)2
(
1 −

2
α

)
. (6.43)

Proof. For the sake of readability, we will drop the subscripts of fα,ρ in the proof. Note that

d
dγ

f (γ) = −1 + (1 + ρ)α
(
1 −

2
α

) α
2

γ−
α
2 ,

and thus f is maximized at γ = (1 + ρ)2
(
1 − 2

α

)
. Plugging this back into f (γ), we get

maxγ>0 f (γ) = 1 − (1 + ρ)2.
�

We are now ready to put all of this together to prove the upper bound of the upper tail.
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Proof of the upper bound of the upper tail. By using the decomposition (6.20)-(6.22), we write
Z = Z(1) + Z(2). Since λ1(Z) ≤ λ1

(
Z(1)

)
+ λ1

(
Z(2)

)
by Lemma 2.5, we have

P(λ1(Z) ≥ (1 + δ)λα) ≤ P
(
λ1(Z(1)) ≥ (1 + δ)

(
1 −

ε
1
α

Bα

)
λα

)
+ P

(
λ1(Z(2)) ≥ ε

1
α (1 + δ)

λα
Bα

)
. (6.44)

By Lemma 6.1, the second term above can be bounded by

P
(
λ1

(
Z(2)

)
≥ ε

1
α (1 + δ)

λα
Bα

)
≤ N1−(1+δ)2+o(1). (6.45)

Hence, it suffices to bound the probability

P
(
λ1(Z(1)) ≥ (1 + δ)

(
1 −

ε
1
α

Bα

)
λα

)
. (6.46)

Step 1. Given the previous results, we will work on the event ensuring:

1. Existence of the decomposition of X(1) into X(1)
1 (vertex-disjoint union of stars) and

X(1)
2 (relatively small maximum degree).

2. All connected components of X(1)
2 are relatively small and tree-like.

3. X(1)
1 has a controlled number of stars of each given degree.

The first condition is achieved by the eventW in Lemma 6.2, and the second one is fulfilled
by the series of events in Section 3.5 (applied to X(1) d

∼ GN,q). For the last condition, we
consider the events Pκ and Lδ,κ in (6.38) and (6.39) respectively.
The events above make up the eventK0 measurable with respect to X(1):

K0 :=W∩D(1+δ)2−1 ∩ Cε,(1+δ)2−1 ∩ E(1+δ)2−1 ∩ Pκ ∩ Lδ,κ. (6.47)

Using the previously proven or cited results, we have

P(Wc) ≤ e−ω(log N) by Lemma 6.2,

P(Dc
(1+δ)2−1) ≤ N1−(1+δ)2+o(1) by Lemma 3.10,

P(Cc
ε,(1+δ)2−1) ≤ N1−(1+δ)2+o(1) by Lemma 3.11,

P(Ec
(1+δ)2−1) ≤ N1−(1+δ)2+o(1) by Lemma 3.12, (6.48)

P(Pc
κ) ≤ N−(1+δ)2

by Proposition 3.4 with µ =
(1 + δ)2

κ
,

P(Lc
δ,κ) ≤ N−(1+δ)2+o(1) by (3.3).
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Note that Proposition 3.4 and (3.3) were proven for the random graph GN, d
N

, whereas the

events Pκ and Lδ,κ are defined in terms of the sparser graph X(1) d
∼ GN,q. However, since

these events are decreasing, the same bounds hold by monotonicity. Combining these
implies

P(K c
0) ≤ N1−(1+δ)2+o(1). (6.49)

Since λ1(Z(1)) ≤ λ1(Z(1)
1 ) +λ1(Z(1)

2 ), defining δ′, for sufficiently small ε (depending on α and
δ), as

(1 + δ)
(
1 −

ε
1
α

Bα

)
= (1 + δ′) + ε(1 + δ), (6.50)

we have

P

(
λ1

(
Z(1)

)
≥ (1 + δ)

(
1 −

ε
1
α

Bα

)
λα

)
≤ E

[
P

(
λ1

(
Z(1)

1

)
≥ (1 + δ′)λα | X(1)

)
1K0

]
+ E

[
P

(
λ1

(
Z(1)

2

)
≥ ε(1 + δ)λα | X(1)

)
1K0

]
+ P(K c

0). (6.51)

From now on, we estimate the quantities in the RHS above.
Step 2. Contribution from Z(1)

2 . Under the event Cε,(1+δ)2−1 ∩E(1+δ)2−1, and hence under
the eventK0, each connected component of X(1), and thus of its subgraph X(1)

2 , satisfies the
conditions in Proposition 6.1 with δ1 = δ2 = (1+δ)2

−1 (recall that the largest degree of X(1)
2

is o( log N
log log N )). Since the number of connected components is bounded by N, by Proposition

6.1 combined with a union bound, whenever the eventK0 holds,

lim
N→∞

− logP(λ1(Z(1)
2 ) ≥ ε(1 + δ)λα | X(1))

log N
= ∞. (6.52)

Step 3. Contribution from Z(1)
1 . Let M be the smallest integer such that (1 + δ)2 < Mκ.

Note that this in particular implies that

M ≤
(1 + δ)2

κ
+ 1. (6.53)

Note that under the eventD(1+δ)2−1, d1(X(1)
1 ) ≤ d1(X(1)) ≤ (1 + δ)2 log N

log log N . Thus, the degree of

any star S in X(1)
1 falls into in one of the following (not necessarily disjoint) categories:

1. d(S) ≤ 1(κ).

2. d(S) ∈ (1(iκ), 1((i + 2)κ)] for i = 1, · · · ,M − 1 and i , m + 1 (recall that m is a unique
integer such that mκ < 1 ≤ (m + 1)κ),
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Reiterating Remark 6.3, the reason why we exclude i = m + 1 is essentially because we do
not have a precise understanding on the number of vertices of degree close to log N

log log N .
To bound the contribution of the first category, by Lemma 6.3 (with γ = κ and ρ = δ′)

combined with a union bound, for sufficiently small κ, ε > 0,

lim inf
N→∞

− logE
[
P
(

max S∈S
d(S)≤1(κ)

{λ1(S)} ≥ (1 + δ′)λα | X(1)
)
1K0

]
log N

≥ −1 + (1 + δ′)α
2

α − 2

(
1 −

2
α

) α
2

κ1− α2 − εκ > (1 + δ)2
− 1. (6.54)

Note that the additional ‘−1’ term in the middle quantity comes from a union bound (the
number of stars is bounded by N), and the last inequality holds once κ > 0 is sufficiently
small (recall that α > 2).

For the group of stars in the second category, by Lemma 6.4 (with γ = iκ, h = 2κ and
ρ = δ′), for each i = 1, · · · ,M − 1 with i , m + 1,

lim inf
N→∞

− logE
[
P
(

max S∈S
d(S)∈(1(iκ),1((i+2)κ)]

{λ1(S)} ≥ (1 + δ′)λα | X(1)
)
1K0

]
log N

≥ − fα,δ′((i + 2)κ) − 2κ − κ − ε(i + 2)κ

≥ (1 + δ′)2
− 1 − 3κ − ε(M + 1)κ

(6.53)
≥ (1 + δ′)2

− 1 − 3κ − ε
( (1 + δ)2

κ
+ 2

)
κ =: L, (6.55)

where we used Lemma 6.5 to bound fα,δ′((i + 2)κ) in the second inequality.
Since the categories considered in (6.54) and (6.55) make up the total contribution of

the stars in the network Z(1), by a union bound,

lim inf
N→∞

− logE[P(λ1(Z(1)
1 ) ≥ (1 + δ′)λα) | X(1))1K0]

log N
≥ min{(1 + δ)2

− 1,L}. (6.56)

Applying the bounds (6.49), (6.52) and (6.56) to (6.51),

lim inf
N→∞

− logP
(
λ1(Z(1)) ≥ (1 + δ)

(
1 − ε

1
α

Bα

)
λα

)
log N

≥ min{(1 + δ)2
− 1,L}.

Applying this with (6.45) to (6.44), we obtain

lim inf
N→∞

− logP(λ1(Z) ≥ (1 + δ)λα)
log N

≥ min{(1 + δ)2
− 1,L}.

Since limε→0 δ′ = δ (see (6.50) for the definition of δ′), the quantity L defined in (6.55)
becomes sufficiently close to (1 + δ)2

− 1 for small enough ε, κ > 0, which completes the
proof.

�
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Remark 6.4. The above proof indicates that the following structural result holds: Con-
ditioned on the upper tail event {λ1(Z) ≥ (1 + δ)λα}, with high probability, X contains a
star of size roughly γδ

log N
log log N with edge-weights greater than ( 2

α−2 log log N)
1
α in absolute

value. Indeed, since fα,ρ(γ) at γ = γρ is a strict maximum, by Lemma 6.4, the contribution
from the stars of degree 1(γ) with γ < (γδ − χ, γδ + χ) for χ > 0 is negligible compared to
that from the stars of degree 1(γδ).

This, combined with Remark A.1 in the Appendix, which says that if the sum of squares
of light-tailed random variables is large then these random variables tend to be uniformly
large, implies that with high probability conditionally on the upper tail event, there exists
a star of degree close to γδ

log N
log log N with edge-weights close to

 (1 + δ)2λ2
α

γδ
log N

log log N


1
2

=
( 2
α − 2

log log N
) 1
α

in absolute value. In other words, the optimal size of the star increases in δ, whereas the
edge-weights on the star, while atypically large, do not depend on the amount of deviation
δ.

The lower tail

We now move on to prove a large deviation result for the lower tail, that we restate
here for the reader’s convenience.

Theorem 6.2. For any 0 < δ < 1,

lim
N→∞

1
log N

log log
1

P
(
λ1(Z) ≤ (1 − δ)λlight

α

) = 1 − (1 − δ)2.

Analogous to the upper tail case, the governing structure in this case will turn out to
be the collection of N1−γ′δ vertex-disjoint stars of degree close to γ′δ

log N
log log N with

γ′δ := (1 − δ)2
(
1 −

2
α

)
. (6.57)

Note that γ′δ is nothing but γ−δ from (6.18).

Lower bound for the lower tail

Before embarking on the proof, we establish a lemma about the lower tail behavior of
the maximum among the largest eigenvalue of N1−γ+o(1) weighted stars of degree close to
1(γ) =

⌈
γ

log N
log log N

⌉
.
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Lemma 6.6. Suppose that γ > 0, h ≥ 0 and κ ≥ γ−1. LetS be a collection of at most N1−γ+κ

vertex-disjoint weighted stars of size less than 1(γ + h). Assume that edge-weights are
i.i.d. Weibull random variables with a shape parameter α > 2 conditioned to be greater
than (ε log log N)

1
α in absolute value. Then, for any 0 < ρ < 1,

lim sup
N→∞

1
log N

(
log log

1
P

(
maxS∈S{λ1(S)} ≤ (1 − ρ)λα

)) ≤ fα,−ρ(γ+h)+κ+h+ε(γ+h), (6.58)

where the function fα,−ρ is as defined in (6.42):

fα,−ρ(x) = 1 − x − (1 − ρ)α
2

α − 2

(
1 −

2
α

) α
2

x1− α2 .

Again, as before, above κ + h + ε(γ + h) should be thought of as an error term.

Proof. We use the notation
{
Ỹi

}
i=1,2,···

from the proof of Lemma 6.3. By Lemma 2.6,

P
(
λ1(S) ≥ (1 − ρ)λα

)
≤ P

(
Ỹ2

1 + · · · + Ỹ2
1(γ+h) ≥ (1 − ρ)2λ2

α

)
.

By the tail estimate (4.15) with d = 1 − ρ and b = γ + h, this probability is upper bounded
by

Nε(γ+h)−(1−ρ)α 2
α−2 (1− 2

α )
α
2 (γ+h)1− α2 +o(1),

Thus, using that the number of stars in S is bounded by N1−γ+κ, by the independence of
edge-weights,

P
(
max

S∈S
{λ1(S)} ≤ (1 − ρ)λα

)
≥

(
1 −Nε(γ+h)−(1−ρ)α 2

α−2 (1− 2
α )

α
2 (γ+h)1− α2 +o(1)

)N1−γ+κ

≥ exp
(
−N1−γ+κ+ε(γ+h)−(1−ρ)α 2

α−2 (1− 2
α )

α
2 (γ+h)1− α2 +o(1)

)
= exp

(
−N fα,−ρ(γ+h)+κ+h+ε(γ+h)+o(1)

)
,

where the second inequality follows since 1− x > e−2x for small x > 0 and the constant can
be absorbed into No(1). �

Proof of the lower bound of the lower tail.
Step 1. Using the decomposition (6.20)-(6.22), we write Z = Z(1) + Z(2). First, we define

the event measurable with respect to X:

Bδ :=
{
λ1 (X) ≤ (1 + δ)

(log N)
1
2

(log log N) 1
2

}
. (6.59)
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As before, conditioning on the eventW defined in Lemma 6.2, allows us to decompose
Z(1) into Z(1)

1 (vertex-disjoint union of stars) and Z(1)
2 (relatively small maximum degree).

Let

Rκ := {Maximum degree in X(1) is less than 1(1 + κ)}.

We now define an event similar to (6.47) by additionally excluding the existence of an
atypically large degree vertex using the above event, by defining the event K1 which is
measurable with respect to {X,X(1)

}:

K1 := Bδ ∩W∩Cε,(1+δ)2−1 ∩ E(1+δ)2−1 ∩ Pκ ∩ Rκ. (6.60)

By Theorem 6.5, limN→∞P(Bδ) = 1. Also, by (3.3), limN→∞P(Rκ) = 1 (note that although
(3.3) is stated for the random graph GN, d

N
, since Rκ is a decreasing event and X(1) is sparser

than GN, d
N

, we still have this estimate). Together with the analysis in (6.48), we have

lim
N→∞
P(K1) = 1. (6.61)

Since λ1(Z) ≤ λ1

(
Z(1)

1

)
+ λ1

(
Z(1)

2

)
+ λ1

(
Z(2)

)
, setting δ′ via

1 − δ = (1 − δ′) + (1 + δ)
(
ε +

ε
1
α

Bα

)
, (6.62)

we have

P
(
λ1(Z) ≤ (1 − δ)λα

)
≥ E

[
P
(
λ1

(
Z(1)

1

)
≤ (1 − δ′)λα, λ1

(
Z(1)

2

)
≤ (1 + δ)ελα,

λ1

(
Z(2)

)
≤ (1 + δ)

ε
1
α

Bα
λα

∣∣∣∣ X,X(1)
)

1K1

]
. (6.63)

First of all, under the event Bδ, and hence under the event K1, by the same argument
as in (6.26),

λ1

(
Z(2)

)
≤ (1 + δ)

ε
1
α

Bα
λα. (6.64)

Furthermore, note that Z(1)
1 ,Z

(1)
2 and X are conditionally independent given X(1). Thus

by (6.64), under the event K1, the conditional probability inside the expectation in (6.63)
is written as

P
(
λ1

(
Z(1)

1

)
≤ (1 − δ′)λα, λ1

(
Z(1)

2

)
≤ (1 + δ)ελα | X,X(1)

)
= P

(
λ1

(
Z(1)

1

)
≤ (1 − δ′)λα, λ1

(
Z(1)

2

)
≤ (1 + δ)ελα | X(1)

)
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= P
(
λ1

(
Z(1)

1

)
≤ (1 − δ′)λα | X(1)

)
P

(
λ1

(
Z(1)

2

)
≤ (1 + δ)ελα | X(1)

)
. (6.65)

Therefore, by (6.63)-(6.65),

P
(
λ1(Z) ≤ (1 − δ)λα

)
≥ E

[
P

(
λ1

(
Z(1)

1

)
≤ (1 − δ′)λα | X(1)

)
P

(
λ1

(
Z(1)

2

)
≤ (1 + δ)ελα | X(1)

)
1K1

]
.

(6.66)

We now estimate the two conditional probabilities above.
Step 2. Contribution from Z(1)

2 . Note that, by definition, under the event K1, all
components of X(1)

2 as well as of X(1) satisfy the properties described in the events Cε,(1+δ)2−1

and E(1+δ)2−1. Hence by Proposition 6.1 together with a union bound (the number of
connected components is bounded by N), for large enough n, under the event Cε,(1+δ)2−1 ∩

E(1+δ)2−1, and hence under the eventK1,

P
(
λ1

(
Z(1)

2

)
≤ (1 + δ)ελα | X(1)

)
≥

1
2
. (6.67)

Step 3. Contribution from Z(1)
1 . We proceed by considering groups of stars of similar

degrees. Let S be the collection of stars in its underlying graph X(1)
1 given the latter,

by construction, is a vertex-disjoint union of stars. We define the events capturing the
contributions of the small and large stars, by

J0 :=
{

max
S∈S

d(S)≤1(κ)

{λ1(S)} ≤ (1 − δ′)λα

}
,

Jm :=
{

max
S∈S

d(S)∈(1(mκ),1((m+2)κ)]

{λ1 (S)} ≤ (1 − δ′)λα

}
,

and the events capturing the contribution of the stars with intermediate degree, i.e. for
i = 1, · · · ,m − 1 (recall that m is an integer such that mκ < 1 ≤ (m + 1)κ), by

Ji :=
{

max
S∈S

d(S)∈(1(iκ),1((i+1)κ)]

{λ1 (S)} ≤ (1 − δ′)λα

}
.

Since (m + 2)κ > 1 + κ, under the event Rκ and thus under K1, there are no stars in
X(1)

1 of degree at least 1((m + 2)κ). Thus, conditioned on K1, the event
⋂m

i=0Ji implies
λ1

(
Z(1)

1

)
≤ (1 − δ′)λα.

We will now lower bound the probabilities of the events Ji, conditioned on K1. By
Lemma 6.6 with ρ = δ′, γ = κ and h = 0 (the number of stars in X(1)

1 is bounded by n),
under the eventK1,

P
(
J0

∣∣∣X(1)
)
≥ exp

(
−n fα,−δ′ (κ)+κ+εκ+o(1)

)
.
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We will lower bound the probability of the remaining events. Recall that under the event
Pκ, and thus under the event K1, for γ = iκ with i = 1, · · · ,m, the number of stars in X(1)

1
of degree at least 1(γ) is bounded by N1−γ+κ. Thus, by Lemma 6.6 with ρ = δ′, γ = iκ and
h = κ or 2κ, under the eventK1,

P
(
Ji

∣∣∣X(1)
)
≥ exp

(
−N fα,−δ′ ((i+1)κ)+2κ+ε((i+1)κ)+o(1)

)
and

P
(
Jm

∣∣∣X(1)
)
≥ exp

(
−N fα,−δ′ ((m+2)κ)+3κ+ε((m+2)κ)+o(1)

)
.

Now note that the events Ji are conditionally independent given X(1). Since mκ < 1 and
fα,−δ′(γ) ≤ 1 − (1 − δ′)2 for any γ > 0 by Lemma 6.5, all exponents of N in the above lower
bounds for P

(
Ji

∣∣∣X(1)
)

with i = 0, · · · ,m are less than

1 − (1 − δ′)2 + 3κ + ε(1 + 2κ) + o(1).

Thus, whenever the eventK1 holds,

P
(
λ1

(
Z(1)

1

)
≤ (1 − δ′)λα

∣∣∣X(1)
)
≥ P

 m⋂
i=0

Ji

∣∣∣X(1)

 =

m∏
i=0

P
(
Ji

∣∣∣X(1)
)

≥

(
exp

(
−N1−(1−δ′)2+3κ+ε(1+2κ)+o(1)

))m+2
≥ exp

(
−

(1
κ

+ 2
)
N1−(1−δ′)2+3κ+ε(1+2κ)+o(1)

)
, (6.68)

where we used m ≤ 1
κ in the last inequality.

Therefore, applying (6.67) and (6.68) to (6.66),

P (λ1(Z) ≤ (1 − δ)λα) ≥
1
2

exp
(
−

(1
κ

+ 2
)
N1−(1−δ′)2+3κ+ε(1+2κ)+o(1)

)
P(K1).

SinceP(K1) ≥ 1
2 for large enough n (see (6.61)) and limε→0 δ′ = δ (see (6.62) for the definition

of δ′), by taking κ, ε > 0 small enough, we establish the desired bound. �

We now move on to the final part of our analysis of light-tailed weights.

Upper bound for the lower tail

We show it is unlikely that all stars induced by vertices of degree close to 1(γ′δ) =

dγ′δ
log N

log log N e, where γ′δ = (1− δ)2
(
1 − 2

α

)
was defined in (6.57), have a largest eigenvalue less

than (1 − δ)λα.
To prove this, we condition, for small enough ρ > 0, on the event Aγ′

δ
,ρ defined in

Proposition 3.2, i.e. there exist m :=
⌈

1
4N1−γ′δ−ρ

⌉
vertices having 1(γ′δ) disjoint neighbors

with no edges between each neighbors. Let S1, · · · ,Sm be the vertex-disjoint stars induced
by these vertices and their 1(γ′δ) neighbors. By Proposition 3.2,

P
(
A

c
γ′
δ
,ρ

)
≤ e−N1−γ′

δ
−ρ+o(1)

. (6.69)
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Since by Lemma 2.5

λ2
1(Z) ≥ max

k=1,··· ,m
λ2

1(Sk) = max
k=1,··· ,m

∑
(i, j)∈E(Sk)

Z2
i j,

we have

P
(
λ1(Z) ≤ (1 − δ)λα

)
≤ E

[
P
(

max
k=1,··· ,m

∑
(i, j)∈E(Sk)

Z2
i j ≤ (1 − δ)2λ2

α | X
)
1Aγ′

δ
,ρ

]
+ P(Ac

γ′
δ
,ρ). (6.70)

Using the tail estimate (4.14) with d = 1 − δ and b = γ′δ, under the eventAγ′
δ
,ρ,

P
(

max
k=1,··· ,m

∑
(i, j)∈E(Sk)

Z2
i j ≤ (1 − δ)2λ2

α | X
)

≤

(
1 −N−(1−δ)α 2

α−2 (1− 2
α )

α
2 (γ′δ)

1− α2 +o(1)
)m

≤ exp(−N1−γ′δ−ρ−(1−δ)α 2
α−2 (1− 2

α )
α
2 (γ′δ)

1− α2 +o(1)) ≤ exp(−N1−(1−δ)2
−ρ+o(1)), (6.71)

where we used γ′δ = (1 − δ)2
(
1 − 2

α

)
to simplify the exponent. Since γ′δ = (1 − δ)2

(
1 − 2

α

)
<

(1 − δ)2, (6.69) and (6.71) show that the dominant term in (6.70) is e−N1−(1−δ)2−ρ+o(1) . By taking
ρ > 0 sufficiently small enough, we obtain the matching upper bound.

�

6.3 Heavy-tailed weights
In this section, we prove Theorems 6.3 and 6.4. As before, for notational brevity, we

define λα := λheavy
α = (log N)

1
α .

The upper tail

Let us first recall the theorem that we will prove in this section. Recall that for θ > 1
and the integer k ≥ 2, we defined the following function

φθ(k) = sup
f=( f1,··· , fk):‖ f‖1=1

∑
i, j∈[k],i, j

| fi|
θ
| f j|

θ.

Theorem 6.3. Let δ > 0.
1. In the case 1 < α < 2, let β > 2 be the conjugate of α (i.e. 1

α + 1
β = 1). For an integer

k ≥ 2, define

ψα,δ(k) :=
k(k − 3)

2
+

1
2

(1 + δ)αφβ/2(k)1−α. (6.6)
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Then,

lim
N→∞
−

logP
(
λ1(Z) ≥ (1 + δ)λheavy

α

)
log N

= min
k=2,3,···

ψα,δ(k). (6.7)

2. In the case 0 < α ≤ 1,

lim
N→∞
−

logP
(
λ1(Z) ≥ (1 + δ)λheavy

α

)
log N

= (1 + δ)α − 1. (6.8)

Lower bound for the upper tail

As mentioned in the idea of proof section, we lower bound the large deviation prob-
ability by having high edge-weights on a suitable size of clique. In the case when α < 1,
it turns out to suffice to only consider a clique of size 2 (i.e. an edge). When 1 < α < 2 on
the other hand, we also need to consider the possibility of larger cliques appearing in X.
The lower bound then follows by optimizing over the clique size.

We first note that using φβ/2(2) = 21−β (see (2.9) in Lemma 2.3),

ψα,δ(2) = −1 +
1
2

(1 + δ)αφβ/2(2)1−α = −1 +
1
2

(1 + δ)α
( 1
2β−1

)1−α
= (1 + δ)α − 1, (6.72)

where we used the conjugacy relation 1
α + 1

β = 1 in the last identity.
We establish the lower bound by separately proving

lim sup
N→∞

−
logP(λ1(Z) ≥ (1 + δ)λα)

log N
≤ ψα,δ(2) = (1 + δ)α − 1 (6.73)

and for any k ≥ 3,

lim sup
N→∞

−
logP(λ1(Z) ≥ (1 + δ)λα)

log N
≤ ψα,δ(k). (6.74)

Single large edge-weight. We consider the scenario that there is a large edge-weight,
which provides the bound (6.73). Let us define the event that the number edges in the
random graph X is not unusually small:

M :=
{
|E(X)| ≥

d(N − 1)
4

}
. (6.75)

Then,

P
(
λ1(Z) ≥ (1 + δ)λα

)
≥ E

[
P
(
λ1(Z) ≥ (1 + δ)λα | X

)
1M

]
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Since the number of missing edges
(N

2

)
− E(X) has a distribution Binom

((N
2

)
, 1 − d

N

)
, by

lemmas 4.3 and 4.5 about the relative entropy and binomial tail estimates respectively,
there is a constant c > 0 such that

P
(
M

c
)

= P

((
N
2

)
− |E(X)| >

(
N
2

)
−

d(N − 1)
4

)
≤ e
−(N

2)I
1− d

N
(1− d

2N )
≤ e−cN. (6.76)

Also, under the eventM, by the independence of edge-weights,

P

(
max

(i, j)∈E(X)
|Zi j| ≥ (1 + δ)λα | X

)
≥ 1 −

(
1 − C1N−(1+δ)α

) d(N−1)
4
≥ N1−(1+δ)α+o(1).

Combining these two bounds, we obtain (6.73). This already concludes the proof in the
case 0 < α ≤ 1.

Large edge-weights on a bigger clique. Next, we establish the lower bound (6.74) in
the case 1 < α < 2. For any k ≥ 3, using the result and notation from Lemma 2.1, take
k1, k2 ≥ 0 with k1 + k2 ≤ k, x, y ≥ 0 and the k × k matrix A = (ai j)i, j∈[k] given by

ai j =


x2 i , j, i, j ∈ {1, · · · , k1} =: V1,

y2 i , j, i, j ∈ {k1 + 1, · · · , k1 + k2} =: V2,

xy i ∈ V1, j ∈ V2 or i ∈ V2, j ∈ V1,

0 otherwise,

(6.77)

which achieves the equality in (2.2), i.e.

λ1(A) = φ α
2(α−1)

(k)
α−1
α ‖A‖α = φ β

2
(k)

α−1
α ‖A‖α . (6.78)

Conditioned on the event that X contains a clique of size k denoted by H, let V(H) :=
{v1, · · · , vk}. Now consider the event that

Yviv j ≥


1

λ1(A) (1 + δ)λαx2 i , j, i, j ∈ V1,
1

λ1(A) (1 + δ)λαy2 i , j, i, j ∈ V2,
1

λ1(A) (1 + δ)λαxy i ∈ V1, j ∈ V2 or i ∈ V2, j ∈ V1,

0 otherwise.

(6.79)

By the distribution of the edge-weights as defined in (6.1), the conditional probability of
this event is lower bounded by

N−(1+δ)α 1
λ1(A)α

(
(k1

2 )x2α+(k2
2 )y2α+k1k2xαyα

)
+o(1)

= N−(1+δ)α
||A||αα

2λ1(A)α +o(1)

(6.78)
= N−

1
2 (1+δ)αφβ/2(k)1−α+o(1). (6.80)
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Also, under this event, we have λ1(Z) ≥ λ1(Z|H) ≥ (1 + δ)λα, since Z|H is entrywise greater
than or equal to the matrix (1+δ)λα

λ1(A) A, having non-negative entries, whose largest eigenvalue
is (1 + δ)λα. By Lemma 3.9 the probability that X contains a clique of size k ≥ 3 is lower
bounded by CN−(

k
2)+k. Therefore, combining this with (6.80), for any k ≥ 3,

lim sup
N→∞

−
logP(λ1(Z) ≥ (1 + δ)λα)

log N
≤

(
k
2

)
− k +

1
2

(1 + δ)αφβ/2(k)1−α = ψα,δ(k). (6.81)

�

Upper bound for the upper tail

As in the light-tailed case, we decompose Z = Z(1) + Z(2) with a negligible part Z(2).
However, the analysis of Z(1) will be significantly different since the governing structures
will be distinct.

We first present a counterpart of Lemma 6.1. Noting that t
1
α

N ≥ t
1
2
N for α < 2, the proof

is almost identical, so we omit it.

Lemma 6.7. For δ > 0,

lim inf
N→∞

− logP(λ1(Z(2)) ≥ ε
1
α (1 + δ)λα)

log N
≥ (1 + δ)2

− 1. (6.82)

The results in Section 3.5 provide the structural properties of Z(1). The following key
proposition, a counterpart of Proposition 6.1, states a bound on the largest eigenvalue of
such networks. Recall that λα = (log N)

1
α .

A key distinction between Proposition 6.1 and this proposition is that the former claims
the smallness ofλ1(A) under the condition that the maximum degree is o( log N

log log N ) and edge-
weights are light. Whereas the latter provides the bound onλ1(A) for heavy-tailed weights
under the weaker condition on the maximum degree, O( log N

log log N ).

Proposition 6.2. For any k,N ∈ N and constants ε, c1, c2, c3 > 0, let G = (V,E,A) be a
connected network (A = (ai j)i, j∈V is a weight matrix) whose maximum clique size is k and
which satisfies

1. d1(G) ≤ c1
log N

log log N ,

2. |V| ≤ c2
ε

log N
log log N ,

3. |E| ≤ |V| + c3.

Suppose that the edge-weights are given by i.i.d. Weibull random variables with a shape
parameter 0 < α < 2 conditioned to be greater than (ε log log N)

1
α in absolute value. Let

ρ > 0 and 0 < ξ < 1
2 be constants, then:
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1. In the case 1 < α < 2, let β be the conjugate of α and set τ := (c3 + 2)
1

2βξ
1
2 . Then,

P
(
λ1(A) ≥ ρ

1
αλα

)
≤ N−2−ατ−αρ+c2+o(1) + N−2−1φβ/2(k)1−α(1−τ)αρ+c1ξ−2ε+o(1), (6.83)

where φβ/2 is defined in (2.5).

2. In the case 0 < α ≤ 1,

P
(
λ1(A) ≥ ρ

1
αλα

)
≤ N−2−αξ−αρ+c2+o(1) + N−ρ(1−ξ)α+c1ξ−2ε+o(1). (6.84)

The expression on the right hand side is technical but the constants ε, ξwill be suitably
chosen so that the dominant behaviors in the case 1 < α ≤ 2 and 0 < α ≤ 1 are N−2−1φβ/2(k)1−αρ

and N−ρ respectively. Note that in the case 1 < α < 2, since φβ/2(k) is non-decreasing in
k (see (4) in Lemma 2.3), the upper bound (6.83) gets worse as k increases. Whereas, the
upper bound (6.84) in the case 0 < α ≤ 1 does not depend on k.

Proof of Proposition 6.2. Let f be a (random) top eigenvector. For a constant ξ ∈ (0, 1
2 ),

define the subsets VS,VL,ES,EL as (6.28) and (6.30) in Proposition 6.1. Since |VL| ≤
1
ξ2 , by

the condition (1),

|EL| ≤
c1

ξ2

log N
log log N

. (6.85)

As in (6.31), we write λ1(A) = 2λS + 2λL. Then, for any 0 < τ < 1,

P
(
λ1(A) ≥ ρ

1
αλα

)
≤ P

(
2λS ≥ τρ

1
αλα

)
+ P

(
2λL ≥ (1 − τ)ρ

1
αλα

)
. (6.86)

How we proceed from here depends on the value of α, but in both cases the parameter
τ will be chosen in such way that it is costly for λS to be large. In the case 1 < α < 2 we
apply Hölder’s inequality to bound λS and λL, while in the case 0 < α ≤ 1 we use the
monotonicity of `p norms.

Case 1. 1 < α < 2. We first estimate λS. As in (6.33),∑
(i, j)∈ES

| fi|
β
| f j|

β
≤ ξβ + (c3 + 1)ξ2β

≤ (c3 + 2)ξβ,

where the first term ξβ is obtained as an application of (2.18) with θ =
β
2 > 1.

Note that by assumptions, |E| ≤ |V|+ c3 ≤
c2
ε

log N
log log N + c3. Hence, setting τ := (c3 + 2)

1
2βξ

1
2 ,

by Hölder’s inequality,

λS ≤

( ∑
(i, j)∈ES

| fi|
β
| f j|

β
) 1
β
( ∑

(i, j)∈ES

|ai j|
α
) 1
α

≤ τ2
( ∑

(i, j)∈ES

|ai j|
α
) 1
α

≤ τ2
( ∑

(i, j)∈E

|ai j|
α
) 1
α

.
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By a tail estimate for the sum of Weibull random variables (the bound (4.18) with a =
ρ

2ατα , b = c2
ε , c = c3),

P
(
2λS ≥ τρ

1
αλα

)
≤ P

( ∑
(i, j)∈E

|ai j|
α
≥

ρ

2ατα
log N

)
≤ N−2−ατ−αρ+c2+o(1). (6.87)

Next, we estimate λL. By the definition of φ̂β/2 in (2.5) (where sup is taken over
∥∥∥ f

∥∥∥
1

= 1

whereas our vector f satisfies
∥∥∥ f

∥∥∥
2

= 1) and since φ̂β/2 = φβ/2 (see Lemma 2.2),∑
(i, j)∈EL

| fi|
β
| f j|

β
≤

∑
(i, j)∈E

| fi|
β
| f j|

β
≤

1
2
φ̂β/2(k) =

1
2
φβ/2(k).

Hence, by Hölder’s inequality,

λL ≤

( ∑
(i, j)∈EL

| fi|
β
| f j|

β
) 1
β
( ∑

(i, j)∈EL

|ai j|
α
) 1
α

≤

(1
2
φβ/2(k)

) 1
β
( ∑

(i, j)∈EL

|ai j|
α
) 1
α

. (6.88)

Since the number of possible subsets that a random subset EL can take is bounded by

|V|
⌊

1
ξ2

⌋
= no(1), by a union bound and the tail estimate (4.18) with

a = 2
α
βφβ/2(k)−

α
β (1 − τ)α

ρ

2α
, b =

c1

ξ2 , c = 0

(recall the bound of |EL| in (6.85)), we have

P
(
2λL ≥ (1 − τ)ρ

1
αλα

)
≤ P

( ∑
(i, j)∈EL

|ai j|
α
≥ 2

α
βφβ/2(k)−

α
β (1 − τ)α

ρ

2α
log N

)
≤ N−2−1φβ/2(k)1−α(1−τ)αρ+c1ξ−2ε+o(1), (6.89)

where we used 2
α
β · 2−α = 2−1 and −αβ = 1 − α by a conjugacy relation 1

α + 1
β = 1.

Plugging the bounds (6.87) and (6.89) into (6.86) gives the desired bound.
Case 2. 0 < α ≤ 1. In this case we use (6.86) with τ = ξ. We first estimate λS. Since

| fi f j| ≤ ξ2 when | fi|, | f j| < ξ, by the monotonicity of `p norms (note that 0 < α ≤ 1),∑
(i, j)∈ES

ai j fi f j ≤ ξ
2

∑
(i, j)∈ES

|ai j| ≤ ξ
2
∑

(i, j)∈E

|ai j| ≤ ξ
2
( ∑

(i, j)∈E

|ai j|
α
) 1
α
.

Thus, recalling |E| ≤ c2
ε

log N
log log N + c3, by a tail estimate (4.18) with a =

ρ
(2ξ)α , b = c2

ε , c = c3,

P(2λS ≥ ξρ
1
αλα) ≤ P

( ∑
i< j,(i, j)∈E

|ai j|
α
≥

ρ

(2ξ)α
log N

)
≤ N−2−αξ−αρ+c2+o(1). (6.90)
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Next, we estimate λL. Since | fi f j| ≤
1
2 when

∥∥∥ f
∥∥∥

2
= 1, again by the monotonicity of `p

norms, ∑
(i, j)∈EL

ai j fi f j ≤
1
2

∑
(i, j)∈EL

|ai j| ≤
1
2

( ∑
(i, j)∈EL

|ai j|
α
) 1
α

.

Thus, as in (6.89),

P
(
2λL ≥ (1 − ξ)ρ

1
αλα

)
≤ P

( ∑
(i, j)∈EL

|ai j|
α
≥ (1 − ξ)αρ log N

)
≤ N−ρ(1−ξ)α+c1ξ−2ε+o(1). (6.91)

Therefore, by plugging the bounds (6.90) and (6.91) into (6.86), the proof of (6.84) is
concluded.

�

With all this preparation, we are now ready to prove the upper bound for the upper
tail.

Proof of the upper bound of the upper tail. By a decomposition Z = Z(1) + Z(2), setting δ′ as

1 + δ = (1 + δ′) + ε
1
α (1 + δ), (6.92)

we have

P
(
λ1(Z) ≥ (1 + δ)λα

)
≤ P

(
λ1

(
Z(1)

)
≥ (1 + δ′)λα

)
+ P

(
λ1

(
Z(2)

)
≥ ε

1
α (1 + δ)λα

)
. (6.93)

By Lemma 6.7,

P
(
λ1

(
Z(2)

)
≥ ε

1
α (1 + δ)λα

)
≤ N1−(1+δ)2+o(1), (6.94)

which implies that Z(2) is spectrally negligible. Thus, it suffices to focus on the spectral
behavior of Z(1). Let C1, · · · ,Cm be the connected components of X(1) and letH be the event
defined by

H :=
{
|{` = 1, · · · ,m : C` not tree}| < log N

}
. (6.95)

To bound the probability of H c, we use the fact that a graph with at least k connected
components that are not trees, has at least k vertex-disjoint cycles, implying in particular
the existence of k edge-disjoint cycles. Thus denoting byT c the event of existence of a cycle
and letting � to be the disjoint occurrence of events (see [Rei00] for a precise definition),

H
c
⊂ T

c � . . . � T c︸            ︷︷            ︸
dlog Ne times

.
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Then, by (3.24) in Lemma 3.12 and the Van-den Berg-Kesten (BK) inequality [Rei00], for
large enough n,

P(H c) ≤ Clog N(log N)−2ε log N
≤ (log N)−ε log N.

Setting δ0 := (1 + δ)α − 1, define the event F0 measurable with respect to X(1) which
guarantees that all components C1, · · · ,Cm satisfy the conditions of Proposition 6.2 and
that there are only few components which are not trees:

F0 := D2δ0 ∩ Cε,2δ0 ∩ E2δ0 ∩H ,

whereD2δ0 ,Cε,2δ0 andE2δ0 are the events defined in lemmas 3.10, 3.11 and 3.12 respectively
(applied to the graph X(1)). By the discussion above as well as the results in these lemmas,
for large enough n,

P(F c
0 ) ≤ N−2δ0+o(1). (6.96)

Conditioned on X(1), let Z(1)
` be the network Z(1) restricted to C` and denote by k` the

size of the maximal clique in C`. We consider the case 1 < α < 2 and 0 < α ≤ 1 separately,
since the maximum clique size turns out to be only relevant in the former case.

Case 1: 1 < α < 2. Let β > 2 be the conjugate of α. Under the event F0, in order to
control λ1(Z(1)

` ) for each ` = 1, · · · ,m, we apply Proposition 6.2 with

c1 = c2 = 1 + 2δ0, c3 = 2δ0, ξ := ε
1
4 , τ = (2δ0 + 2)

1
2βε

1
8 , ρ = (1 + δ′)α (6.97)

(recall that δ0 = (1 + δ)α − 1). Observing that for small enough ε > 0, the first term in the
bound (6.83) is negligible compared to the second term,

P
(
λ1

(
Z(1)
`

)
≥ (1 + δ′)λα | X(1)

)
1F0 ≤ N−2−1φβ/2(k`)1−α(1−τ)α(1+δ′)α+(1+2δ0)ε1/2+o(1). (6.98)

The argument for a component now depends on the size of its maximal clique, i.e.
whether k` ≥ 3 or k` = 2. For this define

I := {` = 1, · · · ,m : k` ≥ 3}, J := {` = 1, · · · ,m : k` = 2},

and let k̄ := max{k1, · · · , km}. Since the maximum size of clique in any tree is equal to 2,
under the eventH defined in (6.95),

|I| ≤ log N. (6.99)

Then, by (6.98) and using the fact that φβ/2(k`) ≤ φβ/2(k̄) (recall that φβ/2 is non-decreasing,
see (4) in Lemma 2.3), for ` ∈ I,

P
(
λ1

(
Z(1)
`

)
≥ (1 + δ′)λα | X(1)

)
1F0 ≤ N−2−1φβ/2(k̄)1−α(1−τ)α(1+δ′)α+(1+2δ0)ε1/2+o(1)
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≤ N−2−1φβ/2(k̄)1−α(1+δ)α+ζ1+o(1) (6.100)

for some ζ1 = ζ1(ε) with limε→0 ζ1 = 0. Note that the last inequality follows from the fact
that limε→0 δ′ = δ, limε→0 τ = 0 (recall the definition of δ′ and τ in (6.92) and (6.97) respec-
tively) and the uniform boundedness of the quantity φβ/2(k̄)1−α (recall the monotonicity
property of φβ/2 by Lemma 2.3 (4) and the fact α > 1).

Similarly, for ` ∈ J, by (6.98) again,

P
(
λ1

(
Z(1)
`

)
≥ (1 + δ′)λα | X(1)

)
1F0 ≤ N−2−1φβ/2(2)1−α(1+δ)α+ζ2+o(1) (6.101)

for some ζ2 = ζ2(ε) with limε→0 ζ2 = 0.
Note that since X(1) is distributed as GN,q with q ≤ p = d

N , Lemma 3.9 implies that for
any k ≥ 3, the probability that X(1) contains a clique of size k is bounded by d(k

2)N−(
k
2)+k.

Thus, by (6.96), (6.100) and (6.101) combined with a union bound,

P
(
λ1

(
Z(1)

)
≥ (1 + δ′)λα

)
≤ C log N ·

N∑
k=3

d(k
2)N−(

k
2)+k
·N−2−1φβ/2(k)1−α(1+δ)α+ζ1+o(1)

+ CN ·N−2−1φβ/2(2)1−α(1+δ)α+ζ2+o(1) + CN−2δ0+o(1), (6.102)

where the multiplicative factors log N and N arise from (6.99) and the fact |J| ≤ N respec-
tively. We analyze each term above.

Recalling the definition of ψα,δ(k) in (6.6), the exponent of N in each summation is less
than−mink≥3ψα,δ(k)+ζ1+o(1). By a straightforward argument, one can deduce that the first
term is bounded by N−mink≥3 ψα,δ(k)+ζ1+o(1). In addition, by the first identity in (6.72), the second

term is nothing other than N−ψα,δ(2)+ζ2+o(1). Furthermore, since ψα,δ(2)
(6.72)
= (1 + δ)α − 1 = δ0,

the last term is bounded by N−2ψα,δ(2)+o(1).
Therefore, by combining the above bounds together, there exists ζ = ζ(ε) > 0 with

limε→0 ζ = 0 such that the RHS in (6.102) is bounded by N−mink≥2 ψα,δ(k)+ζ+o(1). By taking ε > 0
sufficiently small, we conclude the proof.

Case 2: 0 < α ≤ 1. We apply Proposition 6.2 as before. The dominating term in the
bound (6.84) is the second term for small enough ε > 0. For each ` = 1, · · · ,m,

P
(
λ1

(
Z(1)
`

)
≥ (1 + δ′)λα | X(1)

)
1F0 ≤ N−(1+δ′)α(1−ε1/4)α+(1+2δ0)ε1/2+o(1)

≤ N−(1+δ)α+ζ′+o(1) (6.103)

for some ζ′ = ζ′(ε) > 0 with limε→0 ζ′ = 0. One can then conclude the proof by applying a
union bound over at most n many connected components C1, · · · ,Cm. �

Remark 6.5. Although we do not pursue proving this formally, with some additional
work, one may be able to prove the following structure theorem: Let

k̄ := arg mink∈N≥2
ψα,δ(k).
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Then, conditioned on the upper tail event {λ1(Z) ≥ (1 + δ)λα}, with high probability, there
exists a clique of size close to k̄ in X with high edge-weights on it.

Also recall from the paragraph at the end of the idea og proof in Section 6.1 that the
conditional structure given atypically large λ1(Z) is different in the Gaussian and heavy-
tailed edge-weight cases. In the former case, the optimal size of the clique tends to infinity
as the amount of deviation δ goes to infinity. whereas, in the latter case, it stays bounded.

The lower tail

We start by recalling the theorem we prove in this section.

Theorem 6.4. For any 0 < δ < 1,

lim
N→∞

1
log N

log log
1

P
(
λ1(Z) ≤ (1 − δ)λheavy

α

) = 1 − (1 − δ)α.

Lower bound of the lower tail

We start by defining the X-measurable event B1 as

B1 :=

λ1 (X) ≤ 2
(log N)

1
2

(log log N) 1
2

 .
Recalling the eventH introduced in (6.95), we define the eventF1 measurable with respect
to

{
X,X(1)

}
:

F1 := Dδ ∩ Cε,δ ∩ Eδ ∩H ∩B1.

By Theorem 6.5, limN→∞P(B1) = 1. Combining this with a previous argument to derive
(6.96), for large enough n,

P
(
F1

)
≥

1
2
. (6.104)

Since λ1(Z) ≤ λ1(Z(1)) + λ1(Z(2)), setting

δ′′ := δ + ε
1
α , (6.105)

we have

P
(
λ1(Z) ≤ (1 − δ)λα

)
≥ E

[
P

(
λ1

(
Z(1)

)
≤ (1 − δ′′)λα, λ1

(
Z(2)

)
≤ ε

1
αλα | X,X(1)

)
1F1

]
. (6.106)
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Since |Y(2)
i j | ≤ (ε log log N)

1
α , under the eventB1, hence under the eventF1, for large enough

n,

λ1

(
Z(2)

)
≤ 2

(log N)
1
2

(log log N) 1
2

· (ε log log N)
1
α ≤ ε

1
αλα

(recall that λα = (log N)
1
α and α < 2). Thus, using the conditional independence of X and

Z(1) given X(1), under the event F1,

P
(
λ1

(
Z(1)

)
≤ (1 − δ′′)λα, λ1

(
Z(2)

)
≤ ε

1
αλα | X,X(1)

)
= P

(
λ1

(
Z(1)

)
≤ (1 − δ′′)λα | X,X(1)

)
= P

(
λ1

(
Z(1)

)
≤ (1 − δ′′)λα | X(1)

)
. (6.107)

Therefore, applying this to (6.106),

P
(
λ1(Z) ≤ (1 − δ)λα

)
≥ E

[
P

(
λ1

(
Z(1)

)
≤ (1 − δ′′)λα | X(1)

)
1F1

]
. (6.108)

Let C1, · · · ,Cm be the connected components of X(1) and Z(1)
` be the restriction of Z(1) to C`

for ` = 1, · · · ,m. Let k` be the size of the maximal clique in C`.
By a similar reasoning as in the upper tail case, we separately consider 1 < α < 2 and

0 < α ≤ 1.
Case 1: 1 < α < 2. Let β > 2 be the conjugate of α. Under the event F1, in order to

control λ1(Z(1)
` ) for each ` = 1, · · · ,m, we apply Proposition 6.2 with

c1 = c2 = 1 + δ, c3 = δ, ξ := ε
1
4 , τ = (δ + 2)

1
2βε

1
8 , ρ = (1 − δ′′)α. (6.109)

The dominating term in the bound (6.83) is the second term for small enough ε > 0. Thus,

P
(
λ1

(
Z(1)
`

)
≥ (1 − δ′′)λα | X(1)

)
1F1 ≤ N−2−1φβ/2(k`)1−α(1−τ)α(1−δ′′)α+(1+δ)ε1/2+o(1). (6.110)

As in the proof of upper bound for upper tails, we proceed differently for the components
depending on the size of maximal cliques:

I := {` = 1, · · · ,m : k` ≥ 3}, J := {` = 1, · · · ,m : k` = 2},

and let k̄ := max{k1, · · · , km}. To bound (6.110), we use the fact that there is a constant
c = c(β) > 0 such that φβ/2(k) ≤ c for all k ≥ 2 (see (4) in Lemma 2.3). Thus, for ` ∈ I,

P
(
λ1

(
Z(1)
`

)
≥ (1 − δ′′)λα | X(1)

)
1F1 ≤ N−2−1c1−α(1−τ)α(1−δ′′)α+(1+δ)ε1/2+o(1)

≤ N−2−1c1−α(1−δ)α+ζ1+o(1) (6.111)

for some ζ1 = ζ1(ε) with limε→0 ζ1 = 0. The last inequality follows from the fact that
limε→0 δ′′ = δ and limε→0 τ = 0 (see the definition of δ′′ and τ in (6.105) and (6.109)
respectively).
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In addition, for ` ∈ J, using the fact φβ/2(2) = 21−β (see (2.9) in Lemma 2.3), by (6.110)
again,

P
(
λ1

(
Z(1)
`

)
≥ (1 − δ′′)λα | X(1)

)
1F1 ≤ N−(1−τ)α(1−δ′′)α+(1+δ)ε1/2+o(1)

≤ N−(1−δ)α+ζ2+o(1) (6.112)

for some ζ2 = ζ2(ε) with limε→0 ζ2 = 0, where we used 2−1
· (21−β)1−α = 1 in the first

inequality.
Thus, by (6.111) and (6.112) together with the independence of edge-weights across

different components, under the event F1,

P
(
λ1

(
Z(1)

)
≤ (1 − δ′′)λα | X(1)

)
≥

(
1 −N−2−1c1−α(1−δ)α+ζ1+o(1)

)log N (
1 −N−(1−δ)α+ζ2+o(1)

)N

≥ e−N1−(1−δ)α+ζ2+o(1)
,

where the powers log N and N come from the fact that |I| ≤ log N and |J| ≤ N respectively.
Therefore, applying this and (6.104) to (6.108),

P
(
λ1(Z) ≤ (1 − δ)λα

)
≥

1
2

e−N1−(1−δ)α+ζ2+o(1)
.

By taking sufficiently small ε > 0, we conclude the proof.
Case 2: 0 < α ≤ 1. We apply Proposition 6.2 as in the case 1 < α < 2. As mentioned

after Proposition 6.2, the dominating term in the bound (6.84) is the second term. Hence,
for each ` = 1, · · · ,m,

P
(
λ1(Z(1)

` ) ≥ (1 − δ′′)λα | X(1)
)

1F1 < N−(1−δ′′)α(1−ε1/4)α+(1+δ)ε1/2+o(1)
≤ N−(1−δ)α+ζ3+o(1)

for some ζ3 = ζ3(ε) with limε→0 ζ3 = 0. Thus, under the event F1,

P
(
λ1

(
Z(1)

)
≤ (1 − δ′′)λα | X(1)

)
≥

(
1 −N−(1−δ)α+ζ3+o(1)

)n
≥ e−N1−(1−δ)α+ζ3+o(1)

.

By the similar reasoning as before, we conclude the proof. �

Upper bound for the lower tail

Recall the eventM =
{
|E(X)| ≥ d(N−1)

4

}
defined in (6.75). Since λ1(Z) ≥ max(i, j)∈E(X) |Zi j| =

max(i, j)∈E(X) |Yi j| (see Lemma 2.8),

P
(
λ1(Z) ≤ (1 − δ)λα

)
≤ E

[
P

(
max

(i, j)∈E(X)
|Yi j| ≤ (1 − δ)λα | X

)
1M

]
+ P (Mc) .

Since P(|Yi j| > (1 − δ)λα) ≥ C1N−(1−δ)α for any i , j, we have

P

(
max

(i, j)∈E(X)
|Yi j| ≤ (1 − δ)λα | X

)
1M ≤

(
1 − C1N−(1−δ)α

) d(N−1)
4
≤ e−N1−(1−δ)α+o(1)

.

Combining this with the bound P(Mc) ≤ e−cN obtained in (6.76), we conclude the proof.
�
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Chapter 7

Mean field interacting multi-type
birth-death processes

7.1 Introduction

The multi-type birth-death process

The multi-type birth-death process (MTBDP) is a continuous-time Markov chain gener-
alizing the classical birth-death process [Fel68, Ken48] to a finite number of types. The
state of the MTBDP counts the number of individuals (or particles) of each type while they
undergo birth, death, and type transition events according to specified rates, which may
be arbitrary functions of the current state and of time. If these rates are linear in the state,
the MTBDP can be formulated as a branching process [Gri73]. If additionally, the rates for
each type are proportional to the count of only that type, the MTBDP is said to be simple,
and the rates can be specified particle-wise because particles do not interact. The general
case of nonlinear rates has also been called a multivariate competition process [Reu61, Igl64],
which, as noted by [HXC+18], is more restrictive than a multi-type branching process in
that the latter allows for increments other than unity, and more general in that the latter
is manifestly linear via its defining independence property.

Phylogenetic birth-death models

The MTBDP has facilitated the inference of diversification processes in biological sys-
tems, with applications ranging across scales of evolutionary time and biological organi-
zation. Phylogenetic birth-death models assume that a phylogenetic tree is generated by an
MTBDP combined with a sampling process that censors subtrees that are not ancestral to
any sampled leaves, so that histories are only partially observed. The diverse flavors of
these models are reviewed and introduced with unified notation in [MLM+21]. Given a
phylogeny, the inferential targets are the birth and death rates, as well as the type tran-
sition rates. Birth and death are variously interpreted as extinction and speciation rates
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in the context of macroevolutionary studies, or as transmission and recovery rates in the
context of epidemiological or viral phylodynamic studies. The literature contains many
variants of this modeling approach. Depending on the application, the birth and death
rates may be assumed to be time-dependent, depend on particle type, or both.

To facilitate tractable likelihoods, phylogenetic birth-death models typically assume
the restrictive non-interacting simple MTBDP, with particle-wise birth and death rates that
depend only on particle type, and possibly on time. In this case, given a time-calibrated
tree, the likelihood—defined via the conditional density of the tree assuming it has at least
one sampled descendant—can be evaluated via tree message-passing computations. This
message-passing structure can be seen to follow from elementary properties of branch-
ing processes, adapted to partial tree observation. The message functions [in work by
NRS14, these are called branch propagators] are given by the solutions to master equations
that marginalize over all possible unobserved subtrees subtending the branch, and are
computed recursively via post-order traversal (from tree tips to root).

Biology involves interactions

Despite the robust computational development and wide usage of phylogenetic birth-
death models for phylodynamic inference, their biological expressiveness is limited by the
assumption that particles do not interact. Interactions may be essential to evolutionary
dynamics. For example, environmental carrying capacity is a fundamental constraint on
the long-term dynamics of any evolving population, and models of experimental microbial
evolution generally allow for a transition from exponential growth to stationary phase as
the population approaches capacity [BGPW19]. As another example, although the simple
MTBDP facilitates modeling phenotypic selection via type-dependent birth and death
rates, this does not capture frequency-dependent selection, where the fitness of a given type
depends on the distribution of types in the population. In both of these examples, birth
and death rates depend on the state of the population process, and this breaks the tree
message-passing structure that phylogenetic birth-death models rely on.

As a motivating biological setting for the ideas to follow, we consider the somatic evo-
lutionary process of affinity maturation of antibodies in micro-anatomical structures called
germinal centers (GCs), which transiently form in lymph nodes during an adaptive immune
response [reviewed in VM14, MEV16, SLW19, VN22, LLQ23]. In a GC, B cells—the cells
that make antibodies—diversify and compete based on the ability of the antibodies they
express to recognize a foreign antigen molecule. As GC B cells proliferate, they undergo
targeted mutations in the genomic locus encoding the antibody protein that can modify
its antigen binding affinity (they undergo type transitions). Via signaling from other GC
cell types, the GC is able to monitor the binding phenotype of the B-cell population it
contains, and provide survival signals to B cells with the highest-affinity antibodies (i.e.,
birth and death rates depend on type).

GCs have been studied extensively in mouse models that allow for experimental
lineage tracing and manipulation of the B-cell population process. In particular, B cells
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can be fate mapped by genetically engineering them to express a fluorescent protein that
marks them with a randomized color at the beginning of the GC evolutionary process
[TMP+16, MSE+20, PJV21]. These initially random colors are non-randomly inherited by
descendant cells, so a sample of the GC B-cell population at a future time can be partitioned
into lineages of cells that share distinct common ancestors at the time of the initial color
marking. Phylogenetic inference can then be used to reconstruct the evolutionary history
of a GC B-cell lineage using the DNA sequences of the sampled B cells [DMV+18].

GC B cells compete for limited proliferative signaling based on the antigen binding
affinity of their B-cell receptors, and the population distribution of binding affinities
generally improves as affinity maturation unfolds, so a given binding phenotype may be
high-fitness early in the process, but low-fitness later when the population distribution
of affinity has improved. This invokes frequency-dependent selection, where the birth
and death rates should depend on the population distribution of types. GCs are observed
to reach a steady-state carrying capacity of several thousand cells, based on limited cell-
mediated proliferative signaling, so carrying capacity is likely also important, meaning
that birth and death rates should depend on the total population size.

Phylodynamic models have the potential to reveal how evolutionary dynamics is or-
chestrated in GCs to shape antibody repertoires and immune memories. However, phy-
logenetic birth-death models cannot accommodate key features of this system. [AMV+17]
presented a simulation study using a birth-death model with competition to investigate
features of the GC population process, but such agent-based simulations are not amenable
to likelihood-based inference for partially observed histories. This motivates us to inves-
tigate a class of interacting MTBDPs that preserve tree-message passing for tractable
likelihoods, and could thus be used in phylogenetic birth-death models.

Mean-field interactions between replica birth-death processes

Mean-field theories are a fundamental conceptual tool in the study of interacting
particle systems. The ideas originated in statistical physics and quantum mechanics as a
technique to reduce many-body problems—in fluids, condensed matter, and disordered
systems—to effective one-body problems [see Par07, Kad09]. The theory was extensively
developed in the context of general classes of stochastic processes, and has since been
widely applied across many scientific domains [see CD22a, CD22b, for a review of theory
and applications].

Motivated by the setting of GC evolutionary dynamics described above, with
population-level interaction among many fate-mapped lineages, we set out to develop a
mean-field model that couples the birth and death rates in a focal MTBDP (with D types)
to the empirical distribution of states—i.e., the mean-field—over an exchangeable system
of N replica MTBDPs. More concretely, this empirical distribution process is a stochastic
process taking values in the space of probability measures onND

0 , whereN0 denotes the
non-negative integers: the mass assigned by this measure-valued process at time t ≥ 0
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to a vector y = (y1, y2, . . . , yD) ∈ ND
0 is the proportion of replica processes (including the

focal process) that have yk individuals of type k for 1 ≤ k ≤ D.
We prove that the empirical distribution process of the N replicas converges to a

deterministic probability measure-valued flow as N → ∞. Using the propagation of chaos
theory [see CD22a, CD22b, Szn91, for surveys of this vast area and references to its many
applications] we moreover show that in this limit, the replicas effectively decouple, and
the focal process can instead be said to couple to a deterministic external field. This
external field is self-consistent in the sense that, at any time t ≥ 0, it is given by the very
distribution of the state of the focal process. We calculate self-consistent fields by solving
limiting nonlinear forward equations for the focal process. A key feature of this limit is
that it restores message-passing likelihoods in the phylogenetic birth-death model setting,
allowing for tractable phylodynamic models with interactions.

We note that there has been some work on mean-field models in the area of superpro-
cesses (continuum analogs of branching processes) – see [Ove95, Ove96]. Finally, [Tha15]
is tangentially related to our work in that it treats a particular question concerning mean-
field interacting single-type birth-death processes. As the author of this paper observes
regarding the literature about mean-field models and propagation of chaos, “. . . there are
few results in discrete space.”

Due to the difficulty of incorporating interactions in birth-death processes for inference
applications, few results have been published so far, but we summarize some develop-
ments. [CMS14] developed techniques based on continued fraction representations of
Laplace convolutions to calculate transition probabilities for general single-type birth-
death processes, without state space truncation. [HXC+18] calculate transition probabili-
ties for the birth/birth-death process—a restricted bivariate case where the death rate of one
type vanishes, but rates may be otherwise nonlinear. [XGKMM15] use branching process
approximations of birth-death processes and generating-function machinery [Wil05] for
moment estimation. [GCPP21] study single-type branching processes with strong inter-
actions, restricted to a regime in which duality methods can be used to characterize the
stationary distribution.

Instead of the strong interactions considered in the above work, we introduce an
MTBDP with mean-field interactions. This mean-field system restores (in the limit) the
computational tractability of the non-interacting case. We establish the fairly general
conditions under which this process is well-defined, demonstrate how to perform mean-
field calculations in the context of a phylogenetic birth-death model, and provide an
efficient software implementation. While we were motivated by evolutionary dynamics
of antibodies in germinal centers, we also foresee applications to other somatic evolution
settings, such as tumor evolution and developmental lineage tracing, and to experimental
microbial evolution. While we have outline how to evaluate likelihoods for phylogenetic
birth-death models with mean-field interaction, we leave inference on biological data for
future work.

We finish with a note regarding possible extensions of this work. We suppress ex-
plicit time dependence in the particle-wise birth and death rates λ and µ for notational
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compactness, but all the results of §7.2 and §7.4 extend to the inhomogeneous case λ(t)
and µ(t) with suitable continuity assumptions in the time domain. We note, however,
that our mean-field approach involves effective time-dependence in the rates even if the
intrinsic rates are not explicitly time-dependent. This effective time-dependence arises
from specifying a finite number of dynamical parameters (i.e., the rates and the interaction
matrix W) that uniquely determine an effective field via the condition of self-consistency,
Theorem 7.1.

Finally, we notice that our mean-field system of N interacting replica trees has a self-
similarity property: if we consider a subset of N particles from one of the replicas at time
t > 0, this looks like the starting configuration of a new N-system. This suggests that our
mean-field model could also be used as an approximation for strong interactions within
a single MTBDP. However, the appropriate notions of convergence and exchangeability
are less clear in this case. The validity of a mean-field approximation for a single self-
interacting MTBDP would seem to involve a delicate balance of quenched disorder from
early times when the process is small, on the one hand, with the limiting mean-field
interaction when the process is large, on the other hand. We save these questions for
future work.

Structure of the chapter

The rest of this chapter, which corresponds to the paper [DEHH24], is structured as
follows. In Section 7.2 we construct a system of MTBDPs that can model the properties and
interactions between particles we have discussed so far. Moreover, this section contains
our main theoretical results. Section 7.3 is dedicated to their proofs. In Section 7.4 we
analyze a special case of an MTBDP system numerically.

7.2 Theoretical results: a mean-field interacting multi-type
birth-death process with general rates

We start by describing a finite system of fairly general symmetrically interacting MTB-
DPs for which the interaction may be locally strong but is globally weak in the sense that
different MTBDPs interact only via the empirical distribution of their states. Ultimately,
we are interested in the joint law of a finite number of focal processes within an infinite
system of such mean-field interacting MTBDPs. To this end, we establish that the process
of the empirical distribution of families converges to a deterministic probability measure-
valued flow. Any finite number of MTBDPs become asymptotically independent and
identically distributed. In the limit, the law of any given focal process can be described
by a time-inhomogeneous MTBDP. The time inhomogeneity comes from the determinis-
tic probability measure-valued background flow that also describes the one-dimensional
marginal distributions of the focal process.
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One main contribution of our analysis compared to previous studies is that we allow
for a quite general transition rate structure. The rate of a single MTBDP is only restricted
to be of at most linear growth and Lipschitz continuous. To deal with the technical
challenges that come with these general assumptions, we employ a localization technique
and approximate the general system by one that has bounded transition rates. A key
feature is that the system with bounded rates is in a certain sense close to the one with
unbounded rates, uniformly in the system size.

Consider a finite set of types {1, . . . ,D} C [D]. The application we have in mind is
that each type represents a certain affinity of B-cell receptors. We equivalently refer to the
cells as particles, in line with the terminology used in the branching process literature.
At the outset, let’s envision a germinal center that initially contains a finite collection of
N ∈ N such B-cells. The progeny process of each of the N founding cells in this GC can
be modeled as an MTBDP. During the process of antibody affinity maturation, cells can
divide into two daughters of the same type, mutate to one of the other (D−1) affinity types,
or die, according to specified rates. The interaction within lineages is (possibly) strong,
whereas the interaction between the N lineages is weak. This means that the rates for the
jth lineage depend on its state (locally-strong) and on the empirical distribution of MTBDP
states over the N lineages (globally-weak). Note that this includes the special case of rates
that depend on the global empirical type distribution aggregated over all N families in the
GC. Initially, there are N ∈ N founding particles within the GC. A state of this system is
then given by z = (z1, . . . , zN) ∈ (ND

0 )N, where for j ∈ [N] and i ∈ [D], z j,i counts the number
of type-i particles in the jth MTBDP. LetM1(ND

0 ) denote the probability measures onND
0 .

This space is embedded into the Banach space of finite signed measures onND
0 equipped

with the total variation norm. For ν ∈ M1(ND
0 ) and y ∈ ND

0 , let ν{y} B ν({y}). Then the
total variation distance between ν, ν′ ∈ M1(ND

0 ) is ‖ν − ν′‖TV B
1
2

∑
y∈ND

0
|ν{y} − ν′{y}|.

The empirical distribution of MTBDP states of z ∈ (ND
0 )N is

πz B
1
N

N∑
j=1

δz j .

For example, for y = (y1, . . . , yD) ∈ND
0 and z ∈ (ND

0 )N, πz({y}) counts the relative frequency
of lineages with composition y, i.e. with yi particles of type i, i ∈ [D]. Let M1,N(ND

0 ) B
{

1
N

∑N
j=1 δz j ∈ M1(ND

0 ) : z ∈ (ND
0 )N
}, i.e. the probability measures that can arise as an

empirical distribution of an MTBDP system with N initial particles.
Every successive change in the system affects only one particle at a time with a rate

depending on the local state of its lineage, and the empirical distribution over the popu-
lation of N lineages. That is, for i , k ∈ [D], we have the following per lineage rates of
various events

bi :ND
0 ×M1(ND

0 )→ R+ (birth-rate of type-i particles),

di :ND
0 ×M1(ND

0 )→ R+ (death-rate of type-i particles),
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mi,k :ND
0 ×M1(ND

0 )→ R+ (mutation-rate from type-i to type-k particles).

Throughout we assume that if z j,i = 0, then bi(z j, πz) = di(z j, πz) = mi,k(z j, πz) = 0 for all
k ∈ [D]. We stress that the rates do not depend on N.

We will assume that the rates per lineage grow at most linearly with the number of
particles in the lineage and that the rates are Lipschitz continuous in the following sense.
For y ∈ND

0 , set y• :=
∑

i∈[D] yi ∈N0.

Assumption 7.1. (A.1) There exists a constant L such that for all i, k ∈ [D], i , k, y ∈ ND
0

and ν ∈ M1(ND
0 ),

bi(y, ν) ≤ L(y• + 1), di(y, ν) ≤ L(y• + 1), mi,k(y, ν) ≤ L(y• + 1).

(A.2) There exists a constant L such that for all i, k ∈ [D], i , k, y,y′ ∈ ND
0 and ν, ν′ ∈

M1(ND
0 ),

|bi(y, ν) − bi(y′, ν′)| ≤ L(|y − y′|
•

+ ‖ν − ν′‖TV),

|di(y, ν) − di(y′, ν′)| ≤ L(|y − y′|
•

+ ‖ν − ν′‖TV),

|mi,k(y, ν) −mi,k(y′, ν′)| ≤ L(|y − y′|
•

+ ‖ν − ν′‖TV).

Remark 7.1. To fully model features like carrying capacity constraints, an alternative
would be to allow the rates to grow linearly with the mean of the measure, rather than
bounding the contribution of the measure by a constant. In this case, the Lipschitz
bounds would also depend on something like the Wasserstein-1 distances between the
two measures involved. Proving similar results as ours under such assumptions is an
open problem that we hope to return to in future work.

The system of MTBDPs is formally described through its infinitesimal generator, which
requires some notation. To add and remove particles of type i in the jth MTBDP, we
use e j,i ∈ (ND

0 )N, where (e j,i)k,` = 1k(i)1`( j). The domain of the generator is described
using specific function spaces. We write C̄((ND

0 )N) for the space of (continuous) bounded
functions on (ND

0 )N and Ĉ((ND
0 )N) for the space of (continuous) bounded functions on

(ND
0 )N that vanish at infinity. Moreover, we write Cc((ND

0 )N) for the space of compactly
supported (finitely supported) (continuous) functions on (ND

0 )N. For z ∈ (ND
0 )N, set

z•• B
∑

j∈[N] (z j)• =
∑

j∈[N]
∑

i∈[D] z j,i ∈N0.
The generator AN of the finite system of interacting MTBDPs acts on f ∈ Ĉ((ND

0 )N) via
AN f (z) :=

∑N
j=1(AN, j

b + AN, j
d + AN, j

m ) f (z) with

AN, j
b f (z) :=

D∑
i=1

bi(z j, πz)[ f (z + e j,i) − f (z)]

AN, j
d f (z) :=

D∑
i=1

di(z j, πz)[ f (z − e j,i) − f (z)]
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AN, j
m f (z) :=

∑
i,k∈[D], i,k

mi,k(z j, πz)[ f (z + e j,k − e j,i) − f (z)].

Define

∆N B { f ∈ Ĉ((ND
0 )N) : z 7→ z•• f (z) ∈ C̄((ND

0 )N), AN f ∈ Ĉ((ND
0 )N)}.

Proposition 7.1 (Feller property for finite system). The closure of {( f ,AN f ) : f ∈ ∆N} is
single-valued and generates a Feller semigroup on Ĉ((ND

0 )N). Moreover, Cc((ND
0 )N) is a

core for this generator.

The proof of the proposition is in § 7.3. Write

ZN(t) B (ZN
1 (t), . . . ,ZN

N(t))

for a process with the semigroup guaranteed by Proposition 7.1 and set ZN B (ZN(t))t≥0.
The system exhibits exchangeability among the MTBDPs due to the symmetries of the

rates, provided that their initial distribution is also exchangeable. To formally establish
this property, we utilize the Markov mapping theorem. As a result of this analysis, we also
derive the Markovian nature of the system’s empirical distribution process, subject to
suitable initial conditions.

The empirical distribution of states in the system at time t ≥ 0 is

ΠN(t) B
1
N

N∑
j=1

δZN
j (t).

TheM1,N(ND
0 )-valued empirical measure process is ΠN = (ΠN(t))t≥0.

Its infinitesimal generator BN acts on a subset of C̄(M1,N(ND
0 )), the bounded continuous

functions onM1,N(ND
0 ). More specifically, BN acts on functions of the form

h(ν) =
1

N!

∏
y∈ND

0 :
y∈supp(ν)

(Nν({y}))!
∑

z∈(ND
0 )N :πz=ν

f (z),

with f ∈ ∆N, via BNh(ν) := (BN
b + BN

d + BN
m)h(ν), where

BN
b h(ν) :=

∑
y∈ND

0

D∑
i=1

Nν{y}bi(y, ν)
[
h
(
ν +

δy+ei − δy

N

)
− h(ν)

]
,

BN
d h(ν) :=

∑
y∈ND

0

D∑
i=1

Nν{y}di(y, ν)
[
h
(
ν +

δy−ei − δy

N

)
− h(ν)

]
,

BN
mh(ν) :=

∑
y∈ND

0

∑
i,k∈[D], i,k

Nν{y}mi,k(y, ν)
[
h
(
ν +

δy+ek−ei − δy

N

)
− h(ν)

]
,
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with ei the ith unit vector inND
0 .

To formally state the exchangeability of the system and the Markovian nature of ΠN,
we require some notation. Let αN(ν,dz) be a kernel fromM1,N(ND

0 ) to (ND
0 )N defined via

αN(ν,dz) B
1

N!

∏
y∈ND

0 :
y∈supp(ν)

(Nν({y}))!
∑

x∈(ND
0 )N :πx=ν

δx(z),

i.e. αN(ν, ·) puts mass uniformly among all the system states x ∈ (ND
0 )N that are compatible

with an empirical distribution ν. For f ∈ C̄((ND
0 )N), we writeαN f (·) =

∑
z∈(ND

0 )N f (z)αN(·,dz).
(In particular, αN f ∈ C̄(M1,N(ND

0 )).)

Proposition 7.2 (Exchangeability). Let νN
∈ M1,N(ND

0 ) and assume ZN(0) has distribution
αN(νN, ·). For all t ≥ 0, ZN(t) = (ZN

1 (t), . . . ,ZN
N(t)) is exchangeable and ΠN is a Markov

process with generator BN.

In what follows, we consider the limit of large systems. For the germinal center
application, this means that we assume the initial number of B-cells to be large. Any
dependence of the rates on the total mass therefore is meant to be relative to the initial
mass.

Our first main result describes the behavior of ΠN in the limit of large systems. We
adopt the usual notation that if I is a closed subinterval ofR+ and E is a metric space, then
D(I,E) is the Skorohod space of right-continuous, left-limited functions from I to E.

Theorem 7.1 (Convergence of empirical measure process). Assume ZN(0) has distribution
αN(νN, ·) for νN

∈ M1,N(ND
0 ) satisfying νN N→∞

−−−−→ ν ∈ M1(ND
0 ). Then there exists a unique

solution to the initial value problem: v(0) = ν and for all y ∈ND
0 ,

v′
{y}(t) = − v{y}(t)

D∑
i=1

(
bi(y, v(t)) + di(y, v(t)) +

D∑
k=1, k,i

mi,k(y, v(t))
)

+

D∑
i=1

(
v{y−ei}(t)b

i(y − ei, v(t)) + v{y+ei}(t)d
i(y + ei, v(t))

+

D∑
k=1, k,i

v{y−ek+ei}(t) mi,k(y − ek + ei, v(t))
)
.

(7.1)

(with the convention that for y < ND
0 , v{y}(t) = bi(y, v(t)) = di(y, v(t)) = mi,k(y, v(t)) = 0).

Moreover,
ΠN N→∞

====⇒ v (7.2)

(that is, the sequence of D(R+,M1,N(ND
0 ))-valued random elements (ΠN)N∈N converges in

distribution to the deterministic (continuous) function v).
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Remark 7.2. From Theorem 7.1, the continuity of v, and the continuous mapping theorem,
it follows that, under the conditions of Theorem 7.1,

ΠN(t) N→∞
====⇒ v(t)

for every t ≥ 0 (cf. Theorem 23.9 of [Kal21]). Hence, under the assumptions of Theorem 7.1,
it follows from the theory of propagation of chaos, see Proposition 2.2 of [Szn91], that for
every k ∈ N and t ≥ 0 the (ND

0 )k-valued random vector (ZN
1 (t), . . . ,ZN

k (t)) converges in
distribution and that the limiting distribution is v(t)⊗k. We can do better than this, as the
following second major result shows.

Corollary 7.1 (Convergence of focal processes). Under the conditions of Theorem 7.1,
for each k ∈ N there is convergence in distribution of the D(R+, (ND

0 )k)-valued sequence
of random elements {(ZN

1 , . . . ,Z
N
k )}N∈N to (Z∞1 , . . . ,Z

∞

k ), where Z∞1 , . . . ,Z
∞

k are i.i.d. time-
inhomogeneous MTBDPs with common initial distribution ν and the birth, death, and
mutation rates of Z∞j , 1 ≤ j ≤ k, at time t ≥ 0 are given by bi(Z j(t), v(t)), di(Z j(t), v(t)), and
mi,`(Z j(t), v(t)) for i, ` ∈ [D], i , `.

Idea of the proof

We begin by proving the properties of the finite system and its empirical measure
process in Section 7.3. Instead of analyzing the limit of the finite system directly, we rely
on a localized system, where we freeze processes once they reach a certain size. In Section
7.3 we show that the convergence of the localized system to the original system implies
Theorem 7.1.

Since the localized system has a finite state space, we can rely on classical results to
derive the limit of its empirical distribution. This is done in Section 7.3. To establish
these properties, we define a finite system of independently evolving Yule-type processes
that dominates and is coupled to the localized and standard version of the interacting
MTBDP system 7.3. The simplicity of this pure birth process allows for easier estimates
of its growth and fluctuations, which we can then relate back to the finite interacting
systems. Moreover classical results imply the convergence of the empirical measure of
this process, which is of use when proving tightness of the empirical measures of the
interacting systems. We end the proof section by establishing Corollary 7.1 using the
martingale property of the system and the fact that we can take the limit of the empirical
distribution in the rates of the focal processes.

7.3 Proofs of the main results

Properties of the finite system

We initiate our analysis by proving the result concerning the generator of the finite
system of MTBDPs.
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Proof of Proposition 7.1. The proof consists of checking the conditions of Theorem 3.1 in
Chapter 8 of [EK86]. The kernel that plays the role of the kernel x 7→ λ(x)µ(x,dy) in [EK86]
is here

z 7→
N∑

j=1

D∑
i=1

[
bi(z j, πz)δz+e j,i + di(z j, πz)δz−e j,i +

∑
k∈[D], k,i

mi,k(z j, πz)δz+e j,k−e j,i

]
(7.3)

We will take the functions γ and η that appear in the statement of that result to both be
z 7→ χ(z) B (z•• ∨ 1).

First note that z 7→ 1/χ(z) ∈ Ĉ((ND
0 )N), as required in [EK86]. Secondly,

sup
z∈(ND

0 )N

N∑
j=1

D∑
i=1

[
bi(z j, πz) + di(z j, πz) +

∑
k∈[D], k,i

mi,k(z j, πz)
]/
χ(z) < ∞ (7.4)

by (A.1), and so hypothesis (3.2) of [EK86] is satisfied.
If z′ is a point in the support of the measure on the right-hand size of (7.3), then

|z•• − z′••| ≤ 1 and hence hypothesis (3.3) of [EK86] is satisfied.
Combining the bound (7.4) with the observation of the previous paragraph shows that

hypotheses (3.4) and (3.5) of [EK86] hold, and this completes the proof. �

Next, we establish the exchangeability of the finite system and demonstrate the Marko-
vianity of the empirical measure process.

Proof of Proposition 7.2. We first want to apply [Kur98, Corollary 3.5]. Note that for any
h ∈ C̄(M1,N(ND

0 )) and πz ∈ M1,N(ND
0 ), we have

∫
h(πy)αN(πz,dy) = h(πz). Define

CN =
{(∑

y∈(ND
0 )N f (y)αN(·,dy),

∑
y∈(ND

0 )N AN f (y)αN(·,dy)
)

: f ∈ ∆N

}
. (7.5)

We have to verify (the somewhat technical condition) that each solution of the extended
forward equation of AN corresponds to a solution of the martingale problem. Assume for
now this is true. We show in Lemma 7.1 below that for f (z) =

∏N
j=1 1 j(z j) with 1 j ∈ Ĉ(ND

0 ),
αN(AN f )(πz) = BN(αN f )(πz). In particular, ΠN solves the CN martingale problem. Thus,
by Corollary 3.5 of [Kur98] (with γ(z) = πz ), ΠN is a Markov process. Moreover, by
Theorem 4.1 of [Kur98], ZN(t) is then exchangeable.

It remains to verify that each solution of an extended forward equation of AN corre-
sponds to a solution of the martingale problem. By Lemma 3.1 of [Kur98], it is enough
to verify that AN satisfies the conditions of Theorem 2.6 of [Kur98], that is, that AN is a
pre-generator and Hypothesis 2.4 of [Kur98] is satisfied. Because (ND

0 )N is locally compact,
the latter is satisfied by Remark 2.5 of [Kur98]. Another consequence of local compactness
is that for AN to be a pre-generator, it is enough to verify that AN satisfies the positive
maximum principle [Kur98, p.4], which is easily seen to be the case. �

The following lemma is a technical result used in the proof of Proposition 7.2.
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Lemma 7.1. For j ∈ [N], let 1 j ∈ Ĉ(ND
0 ) and set f (z) =

∏N
j=1 1 j(zN

j ). Then, for z ∈ (ND
0 )N and

πz ∈ M1,N(ND
0 ), we have

αN(AN f )(πz) = BN(αN f )(πz).

Proof. We will only show αN(AN
b f )(πz) = BN

b (αN f )(πz). That αNAN
d f (πz) = BN

d (αN f )(πz) and
αNAN

m f (πz) = BN
m(αN f )(πz) can be proven in a similar vein. The result then follows from

the linearity of AN and BN. We have

αNAN
b f (πz)

=
1

N!

∏
y′∈ND

0 :
y∈supp(πz)

(Nπz({y′}))!
∑

x∈(ND
0 )N :

πx=πz

N∑
j=1

D∑
i=1

bi(x j, πz)[ f (x + e j,i) − f (x)]

=
1

N!

∏
y′∈ND

0 :
y∈supp(πz)

(Nπz({y′}))!
∑

y∈ND
0

D∑
i=1

N∑
j=1

∑
x∈(ND

0 )N :
πx=πz

1y(x j)bi(x j, πz)[ f (x + e j,i) − f (x)]

=
∑

y∈ND
0

D∑
i=1

Nπz(y)bi(y, πz)
[
(αN f )

(
πz + (δy+ei − δy)/N

)
− (αN f )(πz)

]
= BN

b (αN f )(πz).

�

For the remainder of this section we will assume that the conditions of Theorem 7.1
hold; that is, (A.1) and (A.2) hold, and the sequence νN

∈ M1,N(ND
0 ), N ∈ N, satisfies

νN N→∞
−−−−→ ν ∈ M1(ND

0 ).

A dominating system of Yule-type processes

It will be useful to compare ZN to a system of asymptotically independent multi-
type pure-birth-like processes that will have simultaneous births of different types. Even
though these Markov processes are ND

0 -valued, they inherit several useful properties
from the classic Yule process. Let RN = (RN

1 , . . . ,R
N
N) be the (ND

0 )N-valued Markov process
transitioning from (ND

0 )N
3 (r1, . . . , rN)→ (r1, . . . , rN) + (0, . . . , 0, 1, 0, . . . , 0) at rate 6LD2(r j)•,

where 0 ∈ND
0 is the vector of all 0s and 1 ∈ND

0 is the vector of all 1s. Define ρ :ND
0 →N

D
0

by ρ(r) := r•1 (that is, if we think of r as a collection of particles of different types, then
ρ(r) replaces each particle by D particles where there is one particle of every one of the
D types. Suppose that RN(0) has distribution αN(νN, ·) ◦ (ρ, . . . , ρ)−1. It follows that each
(RN

j )
•

is an autonomous Markov process on DN0 that transitions from Dr to Dr + D at rate
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6LD3r. Consequently, D−1(RN
j )
•

is a Yule process that transitions from state x at rate 6LD3x
(that is, the split rate per particle is 6LD3).

For t ≥ 0 define ΠN
R(t) := 1

N

∑N
j=1 δRN

j (t) and set ΠN
R := (ΠN

R(t))t≥0.

Lemma 7.2. i) For each k ∈ N, there exist R∞j , j ∈ [k], such that the sequence
{(RN

1 , . . . ,R
N
k )}N∈N converges in distribution to (R∞1 , . . . ,R

∞

k ). The R∞j , j ∈ [k] are
i.i.d. Markov processes. Each one has initial distribution ν ◦ ρ−1 and the same
transition dynamics as the RN

` , ` ∈ [N], N ∈N, have in common.

ii) There is a unique solution r B (r(t))t≥0 to the initial value problem: r(0) = ν ◦ρ−1 and
for all y ∈ND

0 ,

r′
{y}(t) = − 6LD2y•r{y}(t) + 6LD2(y − 1)

•
r{y−1}(t), (7.6)

where r{y}(t) = 0 for y <ND
0 .

iii) We may build (RN)N∈N on a suitable probability space so that

ΠN
R

N→∞
−−−−→ r, a.s.

Proof. i) Recall that the distribution of RN(0) is αN(νN
0 , ·) ◦ (ρ, . . . , ρ)−1. It suffices to show

that the projection of this exchangeable probability measure onto the first k coordinates
of (ND

0 )N converges weakly to the product probability measure (ν ◦ ρ−1)⊗k as N → ∞.
Moreover, from Proposition 2.2 of [Szn91] it suffices to check that the sequence of prob-
ability measures on M1(ND

0 ) given by (αN(νN, ·) ◦ (ρ, . . . , ρ)−1) ◦ π−1, N ∈ N, converges
weakly to the unit point mass at the probability measure ν ◦ ρ−1 (recall that z 7→ πz is the
map that takes z ∈ (ND

0 )N to 1
N

∑N
j=1 δz j ∈ M1,N(ND

0 )). However, it is clear by construction
that (αN(νN, ·) ◦ (ρ, . . . , ρ)−1) ◦ π−1 is simply the unit point mass at the probability measure
νN
◦ ρ−1.

ii) Note that (7.6) is just the Kolmogorov forward equations for a Markov process with
transition dynamics the common transition dynamics of RN

j , j ∈ [N], N ∈ N, and initial
distribution ν ◦ ρ−1; that is, for a Markov process with the common distribution of R∞j ,
N ∈ N. As we have remarked, such a Markov process is essentially a Yule process, and
hence the Kolmogorov forward equations have a unique solution.

iii) From (i) and Proposition 2.2 of [Szn91] we have that the empirical measures on the path
space D(R+,M1(ND

0 )) given by ΣN := 1
N

∑N
j=1 δRN

j
converge in distribution to the point mass

at the common distribution of the R∞j , j ∈ N. By Skorohod’s coupling, see Theorem 5.31
in [Kal21], it is possible to build random variables with the distributions of the ΣN, N ∈N,
on a suitable probability space so that ΣN converges almost surely to the point mass at the
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common distribution of the R∞j , j ∈N. We may, of course, also assume that R∞j , j ∈N, are
built on this probability space.

Fix T > 0. Let D be a countable dense set in [0,T] containing {0,T}. By the continuous
mapping theorem, with probability one we have that for all m ∈ND

0

ΠN
R(t)({y : yi ≥ mi, i ∈ [D]}) N→∞

−−−−→ r(t)({y : yi ≥ mi, i ∈ [D]}) (7.7)

for all t ∈ D. By well-known results in real analysis, the monotonicity of the functions
involved in the convergence in (7.7), plus the continuity of the right-hand side give firstly
that the convergence holds for all t ∈ [0,T] and secondly that the convergence is uniform.
Consequently, almost surely ΠN

R(t)({y}) converges uniformly to r{y}(t) on [0,T] for every
y ∈ND

0 .
Given any ε > 0 we can choose K such that ΠN

R(T)({y : y• > K}) ≤ ε for all N and
r(T)({y : y• > K}) ≤ ε. Therefore, using the monotonicity of ΠN

R(t)({y : y• > K}) and
r(t)({y : y• > K}) we have

lim sup
N→∞

sup
t∈[0,T]

‖ΠN
R(t) − r(t)‖TV ≤ 2ε.

Since T and ε are arbitrary, this completes the proof. �

For z, z′ ∈ (ND
0 )N, we write z ≤ z′ if z j,i ≤ z′j,i for all j, i.

Lemma 7.3 (Dominating pure-birth process coupling). For each N ∈ N we can couple
ZN and RN together so that almost surely ZN(0) ≤ RN(0) and almost surely for all t ≥ 0,
j ∈ [N], and i ∈ [D], |ZN

j,i(t) − ZN
j,i(t−)| ≤ RN

j,i(t) − RN
j,i(t−). In particular, almost surely

for all t ≥ 0, ZN(t) ≤ RN(t) and almost surely for all 0 ≤ s < t, j ∈ [N], and i ∈ [D],
|ZN

j,i(t) − ZN
j,i(s)| ≤ RN

j,i(t) − RN
j,i(s).

Proof. First note that, because (RN
1 (0), . . . ,RN

N(0)) has the same distribution as
(ρ(ZN

1 (0)), . . . , ρ(ZN
N(0))), it is certainly possible to couple ZN(0) and RN(0) together in the

prescribed manner.
Next observe that the rate at which a given ZN

j transitions to another state if ZN
j is in

state z j , 0 can be upper bounded using (A.1):

D∑
i=1

(
bi(z j, πz) + di(z j, πz) +

∑
k∈[D],k,i

mi,k(z j, πz)
)

≤ 3LD2
(
1 + (z j)•

)
≤ 6LD2(z j)•.

The same inequality holds trivially when z j = 0 by our assumption that in this case
bi(z j, πz) = di(z j, πz) = mi,k(z j, πz) = 0 for i, k ∈ [D], i , k.
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Thus, we can couple ZN to RN by restricting the possible jump times of ZN to the jump
times of RN and for τ a jump time of RN such that the jump occurs in RN

j for some j ∈ [D],
setting

ZN(τ) =



ZN(τ−) + e j,i, w.p.
bi(ZN

j (τ−),ΠN(τ−))

6LD2(RN
j (τ−))

•

, i ∈ [D]

ZN(τ−) − e j,i, w.p.
di(ZN

j (τ−),ΠN(τ−))

6LD2(RN
j (τ−))

•

, i ∈ [D]

ZN(τ−) + e j,k − e j,i, w.p.
mi,k(ZN

j (τ−),ΠN(τ−))

6LD2(RN
j (τ−))

•

, i, k ∈ [D], i , k,

ZN(τ−), otherwise.

It is straightforward to check that then ZN has the correct distribution and the other
properties we want. �

From now on we assume ZN is constructed on the basis of the coupling in Lemma 7.3.

For two probability measures ν, ν′ ∈ M1(ND
0 ), we say that ν′ stochastically dominates ν if

for every m ∈ND
0 , ν({y : yi ≥ mi, i ∈ [D]}) ≤ ν′({y : yi ≥ mi, i ∈ [D]}); we then write ν � ν′.

Remark 7.3. The upper bound of ZN in terms of RN can be translated to a bound for their
respective empirical measure processes. To this end, define ΠN

R(t) := 1
N

∑N
j=1 δR j(t) and set

ΠN
R := (ΠN

R(t))t≥0. Because of Lemma 7.3, we have ΠN(t) � ΠN
R(t) for every t ≥ 0. Moreover,

ΠN
R is non-decreasing, i.e. for all 0 ≤ s < t, ΠN

R(s) � ΠN
R(t).

Proving convergence via localization

We employ a localization argument to establish Theorem 7.1. The core concept involves
freezing families that reach a certain size κ ∈N. By utilizing classic methods, we can prove
the convergence of the empirical distribution for a system undergoing such freezing.

Let ZN,κ := (ZN,κ
1 , . . . ,ZN,κ

N ) be the system of interacting MTBDPs that is coupled to ZN by
freezing lineages once they reach a state y where y• = κ. Notably, the construction of ZN,κ

can therefore also be based on the system RN in the manner of Lemma 7.3. Importantly,
ZN,κ(t) ≤ RN(t) holds for all t ≥ 0.

Let bi,κ, di,κ, and mi,k,κ be the birth, death, and mutation rates of ZN,κ. For example,
bi,κ(z, ν) = bi(z, ν)1(z• < κ) We may think of ZN,κ as a Markov process on the finite state
space (Īκ)N where Īκ := {y ∈ND

0 : y• ≤ κ}.
The generator AN,κ of ZN,κ is then AN,κ f (z) :=

∑N
j=1(AN, j,κ

b + AN, j,κ
d + AN, j,κ

m ) f (z) for f ∈
Ĉ((ND

0 )N) with

AN, j,κ
b f (z) :=

D∑
i=1

bi,κ(z j, πz)[ f (z + e j,i) − f (z)]
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AN, j,κ
d f (z) :=

D∑
i=1

di,κ(z j, πz)[ f (z − e j,i) − f (z)]

AN, j,κ
m f (z) :=

∑
i,k∈[D], i,k

mi,k,κ(z j, πz)[ f (z + e j,k − e j,i) − f (z)].

Due to the state space of ZN,κ being (essentially) finite, rendering it compact, we can
now state the following proposition (see [EK86, Ch. 8.3.1]).

Proposition 7.3 (Feller property for the system of frozen processes). The closure of
{( f ,AN,κ f ) : f ∈ C((ND

0 )N)} is single-valued and generates a Feller semigroup on C((ND
0 )N).

Also, in the system with frozen dynamics, the empirical distribution process is Markov.
To be precise, define for t ≥ 0, ΠN,κ(t) := 1

N

∑N
j=1 δZN,κ

j (t) ∈ M1,N(ND
0 ) and set ΠN,κ :=

(ΠN,κ(t))t≥0. Its infinitesimal generator BN,κ is defined in the same way as BN, but with the
κ-frozen transition rates and modified domain (because the domain of AN,κ is different).
The following holds via Proposition 7.2, since the rate functions of the frozen process
satisfy (7.1).

Remark 7.4 (Exchangeability). Let νN
∈ M1,N(ND

0 ) and assume ZN,κ(0) has distribution
αN(νN, ·). For all t ≥ 0, ZN,κ(t) = (ZN,κ

1 (t), . . . ,ZN,κ
N (t)) is exchangeable and ΠN,κ is a Markov

process with generator BN,κ.

The proof of Theorem 7.1 revolves around three key propositions, all of which will be
proved in § 7.3.

Proposition 7.4 (Approximation is uniform in system size). For all T > 0 and for all κ > 0,
there is ε(κ,T) such that

E

 sup
t∈[0,T]
‖ΠN,κ(t) −ΠN(t)‖TV

 ≤ ε(κ,T)

and ε(κ,T) κ→∞
−−−→ 0.

Proposition 7.5 (Convergence of empirical measure process in systems with freezing). We
have ΠN,κ N→∞

====⇒ vκ, where vκ = (vκ(t))t≥0 is the unique solution to the initial value problem:
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vκ(0) = ν ∈ M1(ND
0 ), for y ∈ND

0 \Īκ: vκ
{y}(t) = ν{y}(0); and for y ∈ Īκ:

(vκ
{y})
′(t) = − vκ

{y}(t)
D∑

i=1

(
bi,κ(y, vκ(t)) + di,κ(y, vκ(t)) +

D∑
k=1, k,i

mi,k,κ(y, vκ(t))
)

+

D∑
i=1

(
vκ
{y−ei}

(t)bi,κ(y − ei, vκ(t)) + vκ
{y+ei}

(t)di,κ(y + ei, vκ(t))

+

D∑
k=1, k,i

vκ
{y−ek+ei}

(t) mi,k,κ(y − ek + ei, vκ(t))
)
.

(7.8)

Proposition 7.6 (Tightness of the empirical measure process). The sequence {ΠN
}N∈N is

tight.

We now prove Theorem 7.1.

Proof of Theorem 7.1. Fix T > 0. By Proposition 7.6, (ΠN)N∈N is tight. Consider (ΠNn)n∈N for
a strictly increasing sequence (Nn)n∈N inN. There exists a weakly convergent subsequence

(ΠNn` )`∈N and a càdlàgM1(ND
0 )-valued process Π? with ΠNn`

`→∞
===⇒ Π?.

On the one hand, by Proposition 7.4,

E[ sup
t∈[0,T]
‖ΠNn` ,κ(t) −ΠNn` (t)‖TV] ≤ ε(κ,T).

On the other hand, by Proposition 7.5, ΠNn` ,κ
`→∞
===⇒ vκ.

Let ρ be the following standard metric giving the Skorohod topology on the space
D([0,T],M1(ND

0 )) of càdlàg paths from [0,T] toM1(ND
0 ),

ρ(µ, ν) := inf
λ∈Λ

 sup
t∈[0,T]

|t − λ(t)| ∨ sup
t∈[0,T]

‖µ(t) − ν ◦ λ(t)‖TV

 ,
where the infimum is over all continuous, increasing, bijections λ : [0,T] → [0,T]. (cf.
equation (12.13) of [Bil99]. Let W1 be the Wasserstein–1 metric on the space of probability
measures on D([0,T],M1(ND

0 )) corresponding to ρ; that is,

W1(P,Q) := inf
R

∫
ρ(µ, ν) R(dµ, dν),

where the infimum is over all probability measures R on the space
D([0,T],M1(ND

0 ))×D([0,T],M1(ND
0 )) that have respective marginals P and Q. Recall that

W1 metrizes weak convergence on the space of probability measures on D([0,T],M1(ND
0 ))

(see, for example, Theorem 6.9 of [V+09]). If Φ and Ψ are random elements of
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D([0,T],M1(ND
0 )), write W1(Φ,Ψ) for the Wasserstein–1 distance between their respec-

tive distributions.
Observe that by setting Λ(t) = t, we get that ρ(µ, ν) ≤ supt∈[0,T] ‖µ(t) − ν(t)‖TV, which

implies that

W1(Φ,Ψ) ≤ inf
R

∫
sup

t∈[0,T]
‖µ(t) − ν(t)‖TVR(dµ, dν).

If Φ and Ψ happen to be defined on the same probability space, we can choose as R the
joint distribution of Φ and Ψ on that space to get

W1(Φ,Ψ) ≤ E

 sup
t∈[0,T]
‖Φ(t) −Ψ(t)‖TV

 .
Now,

W1
(
Π?, vκ

)
≤W1

(
Π?,ΠNn`

)
+ E

 sup
t∈[0,T]
‖ΠNn` (t) −ΠNn` ,κ(t)‖TV


+ W1

(
ΠNn` ,κ, vκ

)
.

Taking `→∞ leads to the bound

W1(Π?, vκ) ≤ ε(κ,T)

independent of the chosen subsequence (Nn`). Since ε(κ,T) → 0 as κ → ∞, we obtain
vκ κ→∞

====⇒ Π? and ΠN N→∞
====⇒ Π? upon taking κ→∞. In particular, Π? = v of (7.1). �

Convergence of the dynamics under freezing

To establish the convergence of the system of MTBDPs that are frozen once they reach
the set of frozen states parameterized by κ, we employ standard methods. In this regard,
we rely on the following result, which is elaborated upon in [EK86, Ch. 4] concerning the
notation used.

Theorem 7.2. [EK86, Corollary 4.8.16] Let (E, r) be complete and separable and EN ⊂ E.
LetA ⊂ C̄(E) × C̄(E) and v ∈ M1(E). Assume

1. the D(R+,E) martingale problem for (A, v) has at most one solution, and the closure
of the linear span of D(A), the domain of A, contains an algebra that separates
points,

2. for each N ∈N, XN is a progressively measurable process with measurable contrac-
tion semigroup {TN(t)}, full generator ÂN, and sample paths in D(R+,EN),
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3. {XN} satisfies the compact containment condition; that is, for every η > 0 and T > 0
there is a compact set Γη,T ⊂ E such that infN P(XN(t) ∈ Γη,T for 0 ≤ t ≤ T) ≥ 1 − η,

4. for each ( f , 1) ∈ A and T > 0, there exists ( fN, 1N) ∈ ÂN and GN ⊂ EN such that
limN→∞P(XN(t) ∈ GN, 0 ≤ t ≤ T) = 1, supN‖ fN‖ < ∞, and limN→∞ supx∈GN

‖ f (x) −
fN(x)‖ = limN→∞ supx∈GN

‖1(x) − 1N(x)‖ = 0,

5. XN(0) N→∞
====⇒ v.

Then, there exists a solution X of the D(R+,E) martingale problem for (A, v) and XN
N→∞
====⇒

X.

To apply Theorem 7.2, one of the things to check is that the sequence {ΠN,κ
}N∈N satisfies

the compact containment condition. We will prove the following stronger result.

Lemma 7.4 (Compact containment). The sequences (ΠN)N∈N and (ΠN,κ)N∈N both satisfy
the compact containment condition.

Proof. Fix η,T > 0. By how we have coupled together the construction of the processes
involved, we have for any t ∈ [0,T],

ΠN(t) � ΠN
R(t) � ΠN

R(T)

ΠN,κ(t) � ΠN
R(t) � ΠN

R(T).
(7.9)

Recall that r is the solution to the Kolmogorov forward equation of a non-explosive
Markov process that is essentially a Yule process.

Since ΠN
R(T) N→∞

−−−−→ r(T), by Lemma 7.2, we have that the collection of distributions of
the sequence {ΠN

R(T)}N∈N is tight. Therefore, there exists a compact set Kη,T ⊆ M1(ND
0 )

such that P(ΠN
R(T) ∈ Kη,T) ≥ 1 − η for all N.

It only remains to note that if K is a compact subset of M1(ND
0 ), then so is the set⋃

ν∈K{µ ∈ M1(ND
0 ) : µ � ν} and then apply (7.9). �

We are now prepared to prove the convergence of the empirical measure process in a
system with freezing.

Proof of Proposition 7.5. First, we note that the initial value problem can be reduced to a
finite system of ODEs. Its right-hand side is Lipschitz continuous because the rates can
be bounded using Assumption 7.1 and because y ∈ Īκ. The existence and uniqueness of a
solution to this system follow from classic theory (e.g. [Dei77, Chapter 1]). Note that vκ also
solves (uniquely) the (BN,κ, νκ) martingale problem, because the martingale problem and
the ODE in this frozen (thus finite-dimensional) setting are equivalent [Kur11, Corollary
1.3].
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We verify that the conditions of Theorem 7.2 are satisfied. To this end, take EN =
M1,N(Īκ) and E = M1(Īκ) in Theorem 7.2. The corresponding generators that we are
interested in are BN,κ, as defined before Remark 7.4, and Bκ B Bκb + Bκd + Bκm, where

Bκb h(ν) =
∑
y∈Īκ

D∑
i=1

ν{y}bi,κ(y, ν)
[
∂h(ν)
∂ν{y+ei}

−
∂h(ν)
∂ν{y}

]
,

and Bκd and Bκm are obtained similarly by modifying the definitions of BN
d and BN

m before
Proposition 7.2.

That there is at most one solution to the (BN,κ, νκ) martingale problem follows from the
discussion at the beginning of this proof. Moreover, we have that f (v) =

∏
y∈Y

1y(vy) with 1y ∈ Ĉ1(R) and Y ⊂ND
0 , |Y| < ∞

 ⊂ C̄1 (
M1(Īκ)

)
is an algebra that separates points. Thus, (1) holds. ΠN,κ is anM1,N(Īκ)-valued adapted,
càdlàg Markov process and thus progressively measurable. Hence, (2) holds. Lemma 7.4
yields that (3) holds. For (4), fix h ∈ C̄1(M1(Īκ)). Without loss of generality, we can assume
that

h(ν) = h̃(ν{y(1)}, . . . , ν{y(k)})

for some h̃ ∈ C̄1([0, 1]k) with k ∈ N, where y(1), . . . ,y(k)
∈ Īκ. We have to find a sequence

{hN
} of functions in the domain of the generator of ΠN,κ that approximates h (recall its form

from (7.5); but with f ∈ C((Īκ)N) because the frozen system state space is compact). To this
end, set

f̃ N(z) = h̃(πz({y(1)
}), . . . , πz({y(k)

}))

and

hN(ν) =
1

N!

∏
x∈ND

0 :
x∈supp(πz)

(Nπz({x}))!
∑

z∈(ND
0 )N :

πz=ν

f̃ N(z)

= h̃(ν{y(1)}, . . . , ν{y(k)}).

hN is in the domain of BN,κ. The only difference between h and hN is that hN is only defined
onM1,N(Īκ),while the domain of h isM1(Īκ), and the two functions agree onM1,N(Īκ). This
implies that

sup
ν∈M1,N(Īκ)

|h(ν) − hN(ν)| = 0,

so in particular, the limit as N→∞ is 0. Since h̃ is bounded, also supN‖h
N
‖ < ∞. Next, we

show
sup

ν∈M1,N(ND
0 )

|BN,κhN(ν) − Bκh(ν)| N→∞
−−−−→ 0. (7.10)
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To this end, we start showing supν∈M1,N(Īκ)|(B
N,κ
b hN(ν) − Bκb h(ν))| N→∞

−−−−→ 0. Note that by
Taylor’s formula and (A.1),∣∣∣BN,κ

b hN(ν) − Bκb h(ν)
∣∣∣

=
∑
y∈Īκ

D∑
i=1

ν{y}bi,κ(y, ν)
[
N
(
h
(
ν +

δy+ei − δy

N

)
− h(ν)

)
−
∂h(ν)
∂ν{y+ei}

+
∂h(ν)
∂ν{y}

]
≤

∑
y∈{ỹ(1),...,y(k)}

LD(y• + 1) ·O(N−1).

Since the right-hand side is independent of ν,

sup
ν∈M1,N(Īκ)

|BN,κ
b hN(ν) − Bκb h(v)| N→∞

−−−−→ 0.

Analogously, it can be shown that supν∈M1,N(Īκ)|B
N,κ
d hN

− Bκdh(ν)| N→∞
−−−−→ 0 and

supν∈M1,N(Īκ)|B
N,κ
m hN

− Bκmh(ν)| N→∞
−−−−→ 0. Then (4) follows by the triangle inequality. By

assumption, (5) holds. In particular, we have checked (1)–(5) of Theorem 7.2 and thus the
result follows. �

Next, we prove the bound on E[supt∈[0,T]‖Π
N,κ(t) −ΠN(t)‖TV] that is uniform in N.

Proof of Proposition 7.4. Fix T > 0. For u ≤ inf{s ≥ 0 : ZN
j (s)

•
= κ}, we have ZN

j (u) = ZN,κ
j (u),

j ∈ [N]. Thus, for 0 ≤ t ≤ T, |{ j ∈ N : ZN
j (t) , ZN,κ

j (t)}| ≤ |{ j ∈ [N] : RN
j (t) < Īκ)}| ≤ |{ j ∈

[N] : RN
j (T) < Īκ)}|. In words: the count of families that have different compositions under

the original and frozen dynamics is bounded from above by the count of families in the
dominating pure-birth-type process that exited Īκ. Thus,

E[ sup
t∈[0,T]
‖ΠN,κ(t) −ΠN(t)‖TV]

≤ E

 sup
t∈[0,T]

1
N
|{ j ∈ N : ZN

j (t) , ZN,κ
j (t)}|


≤ E

[ 1
N
|{ j ∈ [N] : RN

j (T) < Īκ)}
]

= P(RN
1 (T) < Īκ).

We know, however, from Lemma 7.2(i) that the sequence {RN
1 (T)}N∈N is weakly conver-

gent and hence tight, so ε(κ,T) := supN∈NP(RN
1 (T) < Īκ) has the desired properties.

�

We now address the tightness of the sequence {ΠN
}N∈N.
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Proof of Proposition 7.6. From Theorems 23.8 and 23.11 of [Kal21], it suffices to check the
following.

1. For every η > 0 and T > 0 there is a compact set Γη,T ⊂ M1(ND
0 ) such that

infN P(ΠN(t) ∈ Γη,T for 0 ≤ t ≤ T) ≥ 1 − η.

2. For all T > 0,
lim
θ↘0

sup
N∈N

sup
S∈SN

T

sup
0≤u≤θ

E[‖ΠN(S + u) −ΠN(S)‖TV] = 0,

where SN
T is the set of all discrete σ(ΠN)-stopping times that are bounded by T.

Part 1 has been verified in Lemma 7.4.
For Part 2, note that a.s.

‖ΠN(S + u) −ΠN(S)‖TV

=
1
2

1
N

∑
y∈ND

0

||{ j ∈ [N] : ZN
j (S + u) = y}| − |{ j ∈ [N] : ZN

j (S) = y}||

≤
1
2

1
N

∑
y∈ND

0

N∑
j=1

|1{ZN
j (S+u)=y} − 1{ZN

j (S)=y}|

≤
1
N

N∑
j=1

1{ZN
j (S+u),ZN

j (S)}.

In particular, using exchangeability, for u ∈ [0, θ] and S ∈ SN
T

E[‖ΠN(S + u) −ΠN(S)‖TV] ≤ P(ZN
1 (S + u) , ZN

1 (S))

≤ P(‖ZN
1 (S + u) − ZN

1 (S)‖1 ≥ ε)

≤ P(RN
1 (S + u)

•
− RN

1 (S)
•
≥ ε)

≤ P(RN
1 (S + θ)

•
− RN

1 (S)
•
≥ ε)

≤ P(RN
1 (T + θ)

•
− RN

1 (T)
•
≥ ε)

for any ε > 0. For all N ∈ N, limθ↘0(RN
1 (T + θ)

•
− RN

1 (T)
•
) = 0 almost surely. Also, by

Lemma 7.2(i), RN
1 (T + θ)

•
− RN

1 (T)
•

converges in distribution to R∞1 (T + θ)
•
− R∞1 (T)

•
and

limθ↘0(R∞1 (T + θ)
•
− R∞1 (T)

•
) = 0 almost surely. Combining these observations gives Part

2. �

Finally, we address the convergence of the sequence (ZN
1 , . . . ,Z

N
k )N∈N for each fixed

k ∈N.

Lemma 7.5. For each k ∈N, the sequence {(ZN
1 , . . . ,Z

N
k )}N∈N is tight.
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Proof. From Lemma 7.3 we know that almost surely for all 0 ≤ s < t, all N ∈ N, j ∈ [N],
and i ∈ [D], that ZN

j,i(t) ≤ RN
j,i(t) and |ZN

j,i(t) − ZN
j,i(s)| ≤ |RN

j,i(t) − RN
j,i(s)|. It follows from these

comparisons, the necessary and sufficient conditions for tightness in Theorem 7.2 in Chap-
ter 4 of [EK86], and the convergence (hence tightness) of the sequence {(RN

1 , . . . ,R
N
k )}N∈N

established in Lemma 7.2, that the sequence {(ZN
1 , . . . ,Z

N
k )}N∈N is tight. �

Proof of Corollary 7.1. For ease of notation, set ZN
[k] := (ZN

1 , . . . ,Z
N
k ), N ∈ N. We know

from Remark 7.2 that (ZN
[k](0))N∈N converges in distribution to a random element with

distribution ν⊗k.
By Lemma 7.5, the sequence (ZN

[k])N∈N is tight.
Note for any function f ∈ Cc((ND

0 )k) that

f (ZN
[k](t))

−

∫ t

0

∑
j∈[k]

[∑
i∈[D]

bi(ZN
j (s),ΠN(s))( f (ZN

[k](s) + e j,i) − f (ZN
[k](s)))

+
∑
i∈[D]

di(ZN
j (s),ΠN(s))( f (ZN

[k](s) − e j,i) − f (ZN
[k](s)))

+
∑

i,`∈[D],`,i

mi,`(ZN
j (s),ΠN(s))( f (ZN

[k](s) + e j,` − e j,i) − f (ZN
[k](s)))

]
ds

is a martingale.
From Theorem 7.1, we have that (ΠN)N∈N converges in probability to v, so any subse-

quential limit Z[k] := (Z∞1 , . . . ,Z
∞

k ) is such that for any function f ∈ Cc((ND
0 )k),

f (Z∞[k](t))

−

∫ t

0

∑
j∈[k]

[∑
i∈[D]

bi(Z∞j (s), v(s))( f (Z∞[k](s) + e j,i) − f (Z∞[k](s)))

+
∑
i∈[D]

di(Z∞j (s), v(s))( f (Z∞[k](s) − e j,i) − f (Z∞[k](s)))

+
∑

i,`∈[D],`,i

mi,`(Z∞j (s), v(s))( f (Z∞[k](s) + e j,` − e j,i) − f (Z∞[k](s)))
]

ds

is a martingale (comparisons with (RN) establish the necessary uniform integrability).
This completes the proof. �
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7.4 A computationally tractable special case: locally
simple with moment-mediated interactions

In this section, we study a special case of the mean-field interacting MTBDP defined
in §7.2 that is amenable to calculations in the context of a phylogenetic birth-death model.
We specialize to a case with no local interactions, and with global interactions mediated by
moments of the limiting transition probability v(t) defined by (7.1). This class of processes
is rich enough to model both carrying capacity and frequency-dependent selection, and
does not add undue computational complexity.

Example 7.1 (Simple MTBDP with moment-mediated mean-field interactive death rates).
Consider the MTBDP with transition rates

bi(y, ν) = yiλi, di(y, ν) = yiµ̃i

(∑
y∈ND

0
yν{y}

)
, mi, j(y, ν) = yiΓi, j,

i, j ∈ [D], j , i, where λ ∈ RD
≥0, Γ ∈ RD×D (with Γ1 = 0, and non-negative off-diagonal

entries), and µ̃ ∈ C(RD
+ ,R

D
+ ). Set r(t) B

∑
y∈ND

0
y v{y}(t), where (v(t))t≥0, the solution to (7.1),

is the limit of the empirical distribution processes (ΠN(t))t≥0. Then r = (r(t))t≥0 is the
first-moment process and it solves the finite, closed system,

ri(t)′ = (λi − µ̃i(r(t))) ri(t) +

D∑
j=1

Γ jir j(t), i = 1, . . . ,D

r(0) = r0,

(7.11)

where r0 is the expected initial state. Note that a solution of (7.1) has finite expectation,
via Lemma 7.3.

Example 7.1 specializes the general mean-field interactions considered in Section 7.2
to a mean-field interaction mediated by the expected state vector (the first moment of the
state distribution). In that case, the interaction field is the solution of the finite-dimensional
nonlinear moment equation (7.11), so we can bypass solving the full infinite-dimensional
nonlinear forward equation (7.1).

Example 7.2 (Linear moment interaction). As a simple and biologically interpretable
example of the special case of Example 7.1, we take µ̃(r(t)) = µ + Wr(t), where µ ∈ RD

≥0
is constant and the matrix W ∈ RD×D

≥0 parameterizes the interaction. If W is the matrix of
1s, then each element of the D-vector Wr(t) is the expected total population size of the
focal process at time t, and death rates increase with this total size, enforcing a carrying
capacity. Otherwise, the death rates are also sensitive to the expected relative frequency
of each type. For example, if W is diagonally dominant, then the model includes negative
frequency-dependent selection. Technically, to satisfy Assumption 7.1, we require that
this linear term is truncated above some value of the expected total size. In practice, we
take this cut-off to be very large, such that the numerical results below are not impacted.
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Steady states induced by mean-field interaction

While the simple MTBDP displays only trivial steady states (or constant ones, if it
is critical), the MTBDP with mean-field interaction admits more interesting behavior.
Steady-state behavior can be examined by imposing a criticality condition on the self-
consistent field. For Example 7.2, steady states r∗ ∈ RD

≥0 satisfy(
diag(λ − µ −Wr∗) + Γ

)
r∗ = 0. (7.12)

Nontrivial solutions of this system of nonlinear algebraic equations for the critical field can
be found numerically with standard root-finding methods, and are indeed steady states
as long as the process is supercritical when the field vanishes. For results on steady-state
solutions in strongly interacting MTBDPs, see [DDC18].

Numerical examples

For Example 7.2, the nonlinear moment equation (7.11) is of Ricatti type, with only
quadratic nonlinearities. Figure 7.1 shows numerical results for the self-consistent field r
of Example 7.2 with D = 5 types. The field in this case represents the vector of expected
particle counts over the 5 types. These three examples model carrying capacity, negative
frequency-dependent selection, and positive frequency-dependent selection, and all use
the same rate parameters λ,µ,Γ (Figure 7.1A-C) but different W matrices. Without mean-
field interaction (W = 0), this MTBDP is supercritical, and the expected particle counts
grow exponentially (Figure 7.1D). One particle type has a higher birth rate than the others,
so it grows faster. With a carrying capacity interaction (Figure 7.1E), the population reaches
a stationary phase due to a mean-field interaction that increases death rates linearly
with the expected population size. With negative frequency-dependent selection (via a
diagonally dominant W), the types are more balanced (Figure 7.1F) because the death
rate of a given type is suppressed only by growth of that type. With positive frequency-
dependent selection (via a diagonally non-dominant W), the death rate of a given type is
less suppressed by growth of that type than the others, leading to an enhancing effect on
the type with the birth rate advantage (Figure 7.1G).

A Python implementation producing the results above is available at https://github.
com/WSDeWitt/mfbd. This code is written in JAX [BFH+18] and relies on the Diffrax
package [Kid21] for numerical ODE solutions. Specifically, to solve Riccati-type ODEs
we use the Dormand-Prince 8/7 method [PD81]—a high-accuracy explicit Runge-Kutta
solver—with Hermite interpolation for dense evaluation in the time domain. To adapt step
sizes we use an I-controller [see HNW08, §II.4]. To solve the nonlinear algebraic equations
for the critical field, we use root finding with automatic differentiation in JAXopt [BBC+21].

Regarding our approach for finding the solution in this specific example, we want
to note that the moment-mediated interactions we study allow for direct solution of
self-consistent fields via a nonlinear moment equation, which is amenable to standard
numerical ODE techniques. Mean-field calculations in physical applications (typically on

https://github.com/WSDeWitt/mfbd
https://github.com/WSDeWitt/mfbd
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A

B

C D

E F G

Figure 7.1: Numerical solutions of the self-consistent field r for the MTBDP with moment-
mediated mean-field interaction (Example 7.2). In these examples, D = 5. (A.) Birth rates
λ, with type 1 elevated above the others. (B.) Death rate component µ, the same for all
types. (C.) Type transition rate matrix Γ, of Toeplitz form, so that mutations between
neighboring states are more likely. (D.) Expected particle count of each of the 5 types
(colors) in the absence of any mean-field interaction, showing supercritical growth. E-F
show stacked expected particle count of each of the 5 types, with various mean-field
interactions of the form Example 7.2, with ‖W‖F = 0.01 in all cases. The dashed lines
indicate the critical fields r∗ computed by solving (7.12). (E.) Carrying capacity: W ∝ J
(with J denoting the D × D matrix of 1s). (F.) Negative frequency-dependent selection:
W ∝ I. (G.) Positive frequency-dependent selection: W ∝ J − 3

5 I.

continuous spaces with nonlinear PDEs) often rely on the self-consistent field method, which
solves a sequence of linear systems with an external field that converges to a fixed point
(for example, the Hartree-Fock, and density-functional theories for quantum many-body
systems) [YS21, GKKR96]. Such methods tacitly assume a contractive mapping holds
for this procedure, so that, by the Banach Fixed-Point Theorem, the field converges to a
unique point. In practice, the method can suffer from slow convergence, non-convergence,
or even divergence of the iterates, although there are several regularization techniques for
controlling these issues. Our direct solution for the moment-mediated case avoids these
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issues.

Integrating mean-field interactions in phylogenetic birth-death models

Phylogenetic birth-death models augment the simple MTBDP with a sampling process
that results in partially observed histories, and are considered as generative models for
phylogenetic trees. They add two additional parameters: the sampling probability ρ gives
the probability that any given particle at a specified final sampling time (the present) is
sampled, and the fossilization probability σ gives the probability that a death event before
the present is observed. The tree is then partially observed by pruning out all subtrees
that are not ancestral to a sampled tip or fossil.

Computing likelihoods for rate parameters on phylogenetic trees requires marginal-
izing out all possible unobserved sub-histories, conditioned on the partially observed
history. We briefly outline this calculation, augmented with mean-field interactions. We
use notation like that of [KSVD16] and [BSVS18]. Given the parameters for the system
in Example 7.1, and measuring time backward from the present sampling time, the prob-
ability density requires solving three coupled initial value problems (the standard case
without mean-field interactions solves two systems).

First, the self-consistent fields r(t) are calculated as in Example 7.2 by solving a D-
dimensional initial value problems (we reverse time such that the process starts at the
tree root time τ > 0, and ends at t = 0). Next, we need as an auxiliary calculation the
probability pi(t) that a particle of type i at time t (before the present) will not be observed
in the tree—that is, it will not be sampled and will not fossilize. These are given by the
system of backward equations (of Riccati type)

p′i(t) = λipi(t)2
−

λi + µi +

D∑
j=1

Wi jr j(t)

 pi(t)

+

D∑
j=1

Γi jp j(t) + (1 − σ)

µi +

D∑
j=1

Wi jr j(t)


pi(0) = 1 − ρ,

(7.13)

where r is given as in Example 7.1. These are solved on the interval [0, τ] where τ is the
age of the root of the tree.

Finally, we compute the likelihood contribution for each of B tree branches b =
1, . . . ,B ∈ N. Fixing some branch b with type i spanning the half-open interval (t1, t2],
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let qi(t) denote its branch propagator, defined as the solution of the backward equation

q′i(t) =

2λipi(t) + Γii − λi − µi −

D∑
j=1

Wi jr j(t)

 qi(t)

qi(t1) =


ρ, if branch b leads to a sample at t1 = 0
σµi, if branch b leads to a fossil at t1 > 0
λiqleft(t1)qright(t1), if branch b splits at time t1 > 0
Γi jq j(t1), if branch b transitions to type j at time t1 > 0

(7.14)

where qleft and qright denote the propagators of the left and right children of branch b.
This system is coupled via the boundary conditions for each branch, and can be solved
recursively by post-order tree traversal, yielding the tree likelihood accumulated at the
root.

Standard phylogenetic birth-death models are recovered by setting W = 0, and only
solving the p and q systems. By solving p, q, and r systems in the case W , 0, it is
possible to compute tree likelihoods under phylogenetic birth-death processes that model
interactions, while maintaining the efficient post-order calculation of likelihoods.
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Appendix A

Proofs

A.1 Structure surrounding vertices
Proof of Lemma 3.5, 1. We essentially follow the proof of Lemma 7.3 in [ADK21b]. If the
balls of radius r around vertices ofV are not disjoint there must be two vertices x and y
inV, connected by a simple path of length at least 1 (if the two vertices are connected by
an edge) and at most 2r. Let us denote the vertices on this path by z1, . . . , zs, where s can
range from 0 to 2r − 1. If we define z0 = x and zs+1 = y, then we must have an edge from
zi to zi+1 for i = 0, . . . , s. Eventually we will take a union bound over all x, y and paths
between them, but let us first compute the probability of a single such event.

For convenience of notation let τ = u−u2/3, the degree lower bound for the intermediate
regime. For a given s as well as distinct vertices x, y, z1, . . . , zs in [N],

P
(
x, y ∈ V, (zi, zi+1) ∈ E(G) for i ∈ {0, . . . , s}

)
≤ P

(∣∣∣Γx\{y, z1}
∣∣∣ ≥ τ − 2,

∣∣∣Γy\{x, zs}
∣∣∣ ≥ τ − 2, (zi, zi+1) ∈ E(G) for i ∈ {0, . . . , s}

)
= P

(∣∣∣Γx\{y, z1}
∣∣∣ ≥ τ − 2

)
P

(∣∣∣Γy\{x, zs}
∣∣∣ ≥ τ − 2

) ( d
N

)s+1

as now all events are independent and the path contains s + 1 edges.
As |Γx\{y, z1}| and |Γy\{x, zs}| are distributed as Bin(N − 2, d/N), we can use Lemma 4.6

to get

P
(
|Γx\{y, z1}| ≥ τ − 2

)
≤ (1 + oN(1))e−τ log τ+cτmax{log d,1}

≤ eO(u2/3)−log N

by Lemma 3.4.
Thus by using a union bound, we can bound the probability that two balls of radius

r around two vertices in V intersect, by considering that we can choose x, y in
(N

2

)
ways

and then we need to choose the path between x and y, i.e. for some s between 0 and 2r,
we need s ordered vertices, for which there are (N − 2)s ways. Combining this with the
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above bounds gives that the probability of two vertices in V being connected by such a
path is bounded by(

N
2

) 2r∑
s=0

(N − 2)s

(
d
N

)s+1

e−(2+oN(1)) log N
≤ N2

2r∑
s=0

Ns

(
d
N

)s+1

e−(1+oN(1))2 log N

≤ f (d, r)e−(1+oN(1)) log N

where we bounded
∑2r

s=0 ds+1 by f (d, r) := dd2r+1
−1

d−1 when d , 1 and f (d, r) = 2r + 1 when
d = 1. Thus for any constant r the event holds with high probability. �

In order to prove that the balls around vertices in the fine regime are with high
probability trees, we start by bounding the probability that the ball around a fixed vertex
contains m excess edges, this result and its proof are almost identical to Lemma 5.5 in
[ADK21b] but we chose to include them for sake of completeness.

Lemma A.1. For a vertex x ∈ [N], any integer C1 ≥ 1 and any constant s it holds that

P
(
E(Bs(x)) ≥ V(Bs(x)) − 1 + C1

∣∣∣ S1(x)
)
≤ Cd3C1

(
|S1|

N

)C1

,

where C is a constant that depends on the constants s and C1.

Proof. We use the argument from Lemma 5.5 in [ADK21b], but obtain a slightly different
bound that is better suited for our regime of d.

Let T be a spanning tree of Bs(x). If Bs(x) contains at least C1 excess edges, there are C1

edges in Bs(x) not contained in T, denote those by EE. Let VE denote the vertices incident
to those edges and EP the edges on the unique paths in T from x to the vertices of VE.
Finally let VP denote the vertices incident to edges in EP. (See Figure 4 in [ADK21b] for
an illustration.) We define H to be the graph with vertices VE ∪ VP and edges EE ∪ EP.

Let SF
r (x) denote that sphere of radius r around x in the graph F. Then the graph H is a

graph on the vertices [N] that satisfies the following properties:

1. x ∈ F,

2. SF
1(x) ⊆ SG

1 (x),

3. |SF
1(x)| ≥ 1

4. E(F) = V(F) − 1 + C1 and

5. V(F) ≤ 2C1r + 1.

The last property holds since the edges EE incident to at most 2C1 distinct vertices and the
paths in T from x to those vertices are of length at most r, which implies that VP contains
at most 2C1r additional distinct vertices besides x.
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Thus we can bound the probability that E(Bs(x)) ≥ V(Bs(x)) − 1 + C1 by the probability
that Bs(x) contains a subgraph F satisfying properties 1.-5. above. For a given x ∈ V, we
start by conditioning on S1(x). Then let F(x) denote the subgraphs satisfying properties
1.-5. Recalling that G denotes our Erdős-Rényi graph G

(
N, d

N

)
, we can bound

P (E (Bs(x)) ≥ V (Bs(x)) − 1 + C1|S1(x)) ≤ P
(
∪F∈F(x)F ⊆ G

∣∣∣S1(x)
)

≤

∑
F∈F(x)

P
(
F ⊆ G

∣∣∣S1(x)
)
.

Now note that conditioned on S1 we can construct any graph F ∈ F(x) by first choosing
1 ≤ s ≤ C1 vertices from S1(x), then choosing 0 ≤ t ≤ 2C1r − s (we lose the +1 since x is
always part of F) vertices from [N]\B1(x), and then building a tree with these s + t + 1
vertices such that the first s are neighbors of x and the remaining t vertices connect to that
graph (but not to x), and then adding C1 additional edges. We can bound the number of
such graphs by the number of labeled trees on s+t+1 vertices (for which Cayley’s formula
gives that there are (s + t + 1)s+t−1) times the number of ways of choosing C1 edges, which
can be bounded by (s + t + 1)2C1 . The probability that such a graph is contained in G is then

equal to
(

d
N

)t+C1
since the number of edges in F without those between x and vertices in

S1(x) is equal to t + C1. So continuing from above, we get

≤

C1∑
s=1

2C1r−s∑
t=0

(
|S1|

s

)(
N − |S1(x)| − 1

t

)
(s + t + 1)s+t−1+2C1

(
d
N

)t+C1

≤

C1∑
s=1

2C1r−s∑
t=0

|S1|
s

s!
Nt

t!
(s + t + 1)s+t+2C1−1

(
d
N

)t+C1

≤
1

NC1

(
d(2C1r + 1)2

)C1
C1∑
s=1

|S1|
s

s!
(2C1r + 1)s

2C1r−s∑
t=0

1
t!

(d(2C1r + 1))t

≤
1

NC1

(
d(2C1r + 1)2

)C1
C1 (|S1|(2C1r + 1))C1 2C1r

(
(d(2C1r + 1))2

)2C1r

≤
1

NC1
2rC2

1d3C1(2C1r + 1)5C1 |S1|
C1

≤ Cd3C1

(
|S1|

N

)C1

,

where C is a constant that depends on the constants r and C1. �

Proof of Lemma 3.5, 2. Note that by a union bound over all vertices, we get

P (∃x ∈ V : Br(x) is not a tree)

≤

∑
x∈[N]

P

(
Br(x) is not a tree, x ∈ V, u − u

2
3 ≤ αx < 2

log N
log log N

)
+ P

(
αx ≥ 2

log N
log log N

)
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≤

∑
x∈[N]

E

[
P (Br(x) is not a tree|S1(x)) 1

(
u − u

2
3 ≤ αx < 2

log N
log log N

)]
+ P

(
dx ≥ 2

log N
log log N

)
≤

∑
x∈[N]

E

[
Cd3C1

|S1|

N
1
(
u − u

2
3 ≤ αx < 2

log N
log log N

)]
+ P

(
dx ≥ 2

log N
log log N

)

≤NCd3C1
2 log N

N
ed+u

2
3 log u

N
+ N−

1
2 ,

where we apply the bound from Lemma A.1 with C1 = 1, as well as the bound on |V| from
3.4 and then used Lemma 4.6 for the second term. �

Proof of Lemma 3.5, 3. We show this for V. The proof forW is identical. For a vertex x,
and constants Ci that will be set later, let us define the events

Gi(x) :=
{∣∣∣|Si(x)| − di−1αx

∣∣∣ ≤ Ci

(
di− 3

2 + 1
)
u

7
8

}
and Fi(x) :=

⋂i
j=1Gi(x). We will write Gi and Fi whenever it is clear from context which

vertex they refer to. First note that under Fi(x), |Bi(x)| ≤
√

N.
Now fix a vertex x. G1 holds trivially by the definition of αx.
For i ≥ 2 we now first show that conditional on S1 the probability that Si is large given

that Si−1 is small is small. More precisely we show that

P
(
G

c
i ∩ Fi−1|S1

)
≤ 2 exp

{
−u

3
4

}
(A.1)

To show the above equation first observe that conditioned on Bi−1, Si consists of all
the neighbors of vertices in Si−1 that are not in Bi−1. Thus, conditionally on Bi−1, |Si| is
distributed as Binom(|Si−1|(N − |Bi−1|), d/N).

Note that this implies that

E
[
|Si|

∣∣∣ Bi−1

]
= d|Si−1| − d

|Si−1||Bi−1|

N
. (A.2)

Thus under the event Fi, by Lemma 4.7, because |Bi| ≤
√

N,

P
(∣∣∣∣|Si| − E

[
|Si|

∣∣∣ Bi−1

]∣∣∣∣ ≥ √
d|Si−1|u

3
8 + u

7
8

∣∣∣∣Bi−1

)
≤ 2 exp

−
(√

d|Si−1|u
3
8 + u

7
8

)2

2
(
d|Si−1| − d |Si−1||Bi−1|

N

)
+ 2

3

(√
d|Si−1|u

3
8 + u

7
8

)


≤ 2 exp

−
(√

d|Si−1|u
3
8 + u

7
8

)2

2 (d|Si−1| − d) + 2
3

(√
d|Si−1|u

3
8 + u

7
8

)
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≤ 2 exp
{
−Cu

3
4

}
for some constant C that does not depend on i.

Now we need to transform the above inequality into the one that we are actually trying
to prove. For this we need to estimate some quantities: Let us define δi−1 = |Si−1| − di−2αx,
note that under Fi−1

dδi−1 ≤ 2Ci−1(di− 3
2 + 1)u

7
8

and generally d ≤
(
di− 3

2 + 1
)
u

7
8 .

For easier readability set εi = Ci

(
di− 3

2 + 1
)
u

7
8 . Then∣∣∣|Si| − di−1αx

∣∣∣ ≥ εi ⇒
∣∣∣|Si| − d|Si−1|

∣∣∣ ≥ εi − dδi−1

⇒

∣∣∣∣|Si| − E
[
|Si|

∣∣∣ Bi−1

]∣∣∣∣ ≥ εi − dδi−1 − d

⇒

∣∣∣∣|Si| − E
[
|Si|

∣∣∣ Bi−1

]∣∣∣∣ ≥ (Ci − 2Ci−1 − 1)
(
di− 3

2 + 1
)
u

7
8

When Fi−1 holds and αx ≤ 2u,√
d|Si−1|u

3
8 + u

7
8 ≤

√
d
(
di−2αx + Ci−1

(
di− 5

2 + 1
)
u

7
8

)
u

3
8 + u

7
8

≤

(√
2(Ci−1 + 1) + 1

) (
di− 3

2 + 1
)

u
7
8 .

If we set Ci such that Ci − 2Ci−1 − 1 ≥
(√

2(Ci−1 + 1) + 1
)
, then whenever cFi−1 holds and

αx ≤ 2u,

P
(∣∣∣|Si| − di−1αx

∣∣∣ ≥ Ci(di− 3
2 + 1)u

7
8

∣∣∣Bi−1

)
≤ P

(∣∣∣|Si| − E[|Si||Bi−1]
∣∣∣ ≥ √

d|Si−1|u
3
8 + u

7
8

∣∣∣Bi−1

)
.

Finally we put all of this together in a union bound

P
(
∃x ∈ V : ∪r+3

i=1G
c
i (x)

)
≤ NE

[
P

(
∪

r+3
i=1G

c
i (x)

∣∣∣S1(x)
)

1(x ∈ V)
]

≤ NE

 r+3∑
i=1

P
(
G

c
i (x) ∩ Fi−1(x)

∣∣∣S1(x)
)

1
(
u − u

2
3 ≤ αx ≤ 2u

) + NP (αx > 2u)

≤ NE

 r+3∑
i=1

E
[
P

(∣∣∣|Si| − di−1αx

∣∣∣ ≥ εi

∣∣∣∣∣Bi−1

)
1 (Fi−1)

∣∣∣∣S1

]
1
(
u − u

2
3 ≤ αx ≤ 2u

) + NP (αx > 2u)

≤ NE

 r+3∑
i=2

2 exp
{
−Cu

3
4

}
1
(
u − u

2
3 ≤ αx ≤ 2u

) + NP (αx > 2u)

≤ N(r + 3)e−Cu
3
4P

(
u − u

2
3 ≤ αx

)
+ NP (αx > 2u)
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≤ N(r + 3)e−Cu
3
4 1

N
3
2

ed+u
2
3 log u

√
u

d
+ N

1

N 3
2

where we used that u = Θ
(

log N
log log N

)
by (3.2) and then applied Lemma 4.6 for the second

term and the bound on |V| from Lemma 3.4 for the first term.
�

Proof of Lemma 3.5, 4. We will prove this for V, the proof withW is identical. First note

that by Lemma 4.7, for X ∼ Binom(N, d/N), P
(
X ≥ u

3
4

)
≤ e−Ω(u

3
4 ), since d ≤ (log N)

1
5 by 5.1.

The basic idea now is that by Lemma 3.5 3, there are O
(
(r + 3)dr+2u

)
vertices in Br+3(x) and

by Lemma 3.4 there are eO
(
u

2
3 log u

)
vertices inV, so union bounding over all those vertices

implies the result. Let us now make this precise.
We show this level by level. For all y ∈ Si(x), conditioned on Bi, the Ny are inde-

pendent and distributed as Binom(N − |Bi|, d/N), which is stochastically dominated by

Binom(N, d/N). Thus the probability that any Ny ≥ u
3
4 is bounded by e−Ω

(
u

3
4
)
.

Putting everything together and using the notationFi as defined in the previous proof,
we first get

P
(
∃x ∈ V : ∃y ∈ Br+3(x) : Ny > u

3
4

)
≤ P

(
∃x ∈ V : ∃y ∈ Br+3(x) : Ny > u

3
4 , αx ≤ 2u

)
+ P

(
∃x : αx > 2u

)
and we know by 3.5, 3. that the latter event happens with low probability. The first term
on the other hand we can bound by∑
x∈[N]

P
(
x ∈ V,∪r+3

i=1

{
∃y ∈ Si(x) : Ny > u

3
4

}
, αx ≤ 2u

)
≤

∑
x∈[N]

r+3∑
i=1

P
(
∃y ∈ Si(x) : Ny > u

3
4 ,Fi(x), x ∈ V, αx ≤ 2u

)
+

∑
x∈[N]

r+3∑
i=1

P
(
F

c
i (x), x ∈ V, αx ≤ 2u

)

Now the latter term is small by the previous proof (note that we used a union bound there
as well.) For the former term we proceed as follows:

≤

∑
x∈[N]

r+3∑
i=1

E
[
E

[
1
(
∃y ∈ Si(x) : Ny > u

3
4

) ∣∣∣Bi

]
1Fi1x∈V1αx≤2u

]
≤

∑
x∈[N]

r+3∑
i=1

e−Ω(u
3
4 )E

[
|Si|1Fi(x)1x∈V1αx≤2u

]
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≤

∑
x∈[N]

e−Ω(u
3
4 )

r+3∑
i=1

E
[(

di−1α + O
(
di− 3

2u
7
8 + u

7
8

))
1αx≤2u1x∈V

]
≤ e−Ω(u

3
4 )O

(
(r + 3)

(
1 + dr+2

)
u
) 3

2
ed+u

2
3 log u

√
u

d
,

which is small as N→∞.
�

Proof of Lemma 3.5, 5. We prove this for W, the proof for V is equivalent. Here we use
Lemma 4.10 with t = 2u2/3. The probability bound we obtain is

exp
(
−Ω

(
u−1/3/(d3 + 1)

))
.

Therefore, for our range of d, it is possible to union bound over all vertices in |W|, as this
gives us

exp
(
u1/4

)
exp

(
−Ω

(
u−1/3/

(
d3 + 1

)))
= exp

(
−Ω

(
u−1/3/

(
d3 + 1

)))
by the bound in Lemma 3.4.

�

Proof of Lemma 3.6. We show that with high probability, for all vertices inU,∣∣∣Si

∣∣∣ ≤ 4i−1
(
d + log log N − log d

)i−1
u (A.3)

which implies the statement by our bounds on d from Definition 5.1.
The strategy is similar as in the proof of Lemma 3.5, 3: First note that by Lemma 4.7,

under the event Fi−1,

E
[
|Si|

∣∣∣ Bi−1

]
= d|Si−1| − |Bi−1||Si−1|

d
N
≤ d|Si−1| − d

using this bound and the fact that d ≤ d + log log N − log d, we get that

P
(∣∣∣|Si| − E

[
|Si|

∣∣∣ Bi−1

] ∣∣∣ ≥ (
(d + log log N − log d)

√
2|Si−1|u + (d + log log N − log d)u

) ∣∣∣Bi−1

)
≤ 2 exp

−
(
(d + log log N − log d)

√
2|Si−1|u + (d + log log N − log d)u

)2

2E [|Si||Bi−1] + 2
3

(
(d + log log N − log d)

√
|Si−1|u + (d + log log N − log d)u

)


≤ 2e−(d+log log N−log d)u

≤ 2N−1+o(1)

by considering which term in the denominator is smaller and then using the approximation
from (3.2) for u.
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Now note that under the event Fi−1,

E
[
|Si|

∣∣∣ Bi−1

]
≤ d4i−2(d + log log N − log d)i−2u ≤ 4i−2(d + log log N − log d)i−1u

such that

|Si| ≥ 4i−1(d + log log N − log d)i−1u

⇒|Si| − E
[
|Si|

∣∣∣Bi−1

]
≥ 3 · 4i−2(d + log log N − log d)i−1u

⇒|Si| − E
[
|Si|

∣∣∣Bi−1

]
≥ (d + log log N − d)

√
2|Si−1|u + (d + log log N − log d)u.

This implies that

P
(
|Si| ≥ 4i−2(d + log log N − log d)i−1u|Bi−1

)
≤ 2N−1+o(1).

We now proceed as in the end of the proof of Lemma 3.5, 3, by using the bound on U
from Lemma 3.4.

For the second statement of the Lemma, note that it is sufficient to bound
∑

y∼x N2
y. We

once more use Lemma 4.10 as in the proof of Lemma 3.5, 5, setting t = c−2
4.10

log2 N and using
the bound on |U| from Corollary 3.1. �

Proof of Lemma 3.7. We use the arguments from the proofs of Lemma 5.5 and Lemma 7.3
in [ADK21b], but choose to include them here for sake of completeness.

For any x ∈ [N] let Ex denote the event that there are at least C1 excess edges in Bs(x).
Then by a union bound

P
(
∃x ∈ U : Ex

)
≤

∑
x∈[N]

P
(
Ex, x ∈ U, αx < 2u

)
+ P

(
αx ≥ 2u

)
,

where the second summand can be bounded by N−
3
2 according to Lemma 4.6.

In order to bound the first term, we want to condition on S1(x), and then apply Lemma
A.1 for this we write

P
(
Ex, x ∈ U, αx < 2u

)
= E

[
P(Ex|S1(x))1({x ∈ U, αx < 2u})

]
≤ E

[
Cd3C1

(
|S1|

N

)C1

1
(
ηu ≤ αx ≤ 2u

)]
≤ C

(
2d3

)C1

(
log N

N

)C1 1

N
η
2

Thus by taking C1 ≥ 2 and then doing a union bound over all x we get the desired
result.



APPENDIX A. PROOFS 160

For the second statement of the Lemma, we proceed as in the proof of Lemma 7.3 in
[ADK21b] and write Ix, the event that there are at least C2 disjoint paths in Bs(x) ending
at vertices inUη, as a union over the specific paths:

Ix =
⋃
y,z

Γ(C2)
y,z ,

where the union is taken over all vectors y = (y1, . . . , yC2) with distinct entries in [N]\{x}
and the C2-tuples z of disjoint vectors (z(1), . . . , z(C2)) of length r j ∈ {0, . . . , s} for j ∈ [C2], and

Γy,z =
{
y j ∈ Uη,

{
x, z( j)

1

}
,
{
z( j)

i , z
( j)
i+1

}
,
{
z( j)

r j
, y j

}
∈ E(G)∀i ∈ [r j − 1], j ∈ [k]

}
.

For some fixed y and z, and thus fixed set of (r1, . . . , rC2), since all paths are disjoint,
when we denote by Nx the neighborhood of a vertex x, and use the independence of the
edges, we get that

P
(
Γy,z

)
≤P

(∣∣∣Nx ∩
(
[N]\y

)∣∣∣∣ ≥ ηu − C2

)
C2∏
j=1

P
(∣∣∣Ny ∩

(
[N]\{x} ∪ y

)∣∣∣ ≥ ηu − C2 − 1
)

(
d
N

)∑C2
j=1 r j+1

.

We now apply Lemma 4.2 and Corollary 4.1 to bound the remaining probabilities:
since C2 is constant all these probabilities will be bounded by

e−ηu log u+cηu = e−(1+o(1))η log N.

This implies that the above probability is bounded by

d
∑C2

j=1 r j+1

N
(∑C2

j=1 r j+1
)
+ηC2(1+o(1))

.

To complete the union bound we need to count the number of terms, i.e. possible paths,
for each sequence of r js. To do this we note that given that x is fixed, there are

(N−1
C2

)
ways

of picking y and for the z( j)
i on each path there are

(N−k−
∑ j−1

i=1 ri
r j

)
ways of picking them. Thus

P (Ix)

≤

(
N − 1

C2

) s∑
r1=0

· · ·

s∑
rC2 =0

(
N − C2 − 1

r1

)
· · ·

(
N − C2 −

∑C2−1ri
i=1

rC2

)
d
∑C2

j=1 r j+1

N
(∑C2

j=1 r j+1
)
+ηC2(1+o(1))
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≤ C
dC2(s+1)

NηC2(1+o(1))

where C is a constant that depends on the constants s and C2.
By taking C2 > 2

η , and then taking a union bound over all x, this implies that all Bs(x)
only contain a constant number of disjoint paths ending at other vertices from U with
high probability.

�

Proof of Lemma 3.8. To construct the pruned graph Ĝ we delete edges in the same manner
as in Lemma 7.2 in [ADK21b]: For every vertex x ∈ U, and its neighbor y, consider the
set of vertices Ty that are connected to y by a path of length at most 3, without traversing
the edge (x, y). If x is in this set, or the graph induced by Ty on G is not a tree, then we
prune the edge (x, y). Denote the set of edges that are pruned in this way Px. According
to Lemma 3.7, with high probability, each vertex x ∈ U has less than C1 “excess” edges
that create cycles in B3(x). Thus by the above procedure we prune at most C1 − 1 edges
that are adjacent to x.

In the second step, we work with the graph on [N] with edges E(G)\Px, in which B3(x)
is a tree. In that graph we consider for each neighbor y of x, the vertices Vy in B3(x) that
are connected to y by a path that does not use the edge (x, y). If any of the vertices in Vy

is inU, we prune the edge (x, y) and add it to Px. By Lemma 3.7 we prune at most C2 − 1
edges adjacent to x by doing this procedure.

We then apply these steps, by choosing an arbitrary order of vertices inU, then pruning
edges surrounding these vertices sequentially. Let H be the graph on [N] that only consists
of the edges ∪x∈cUPx that we pruned. We then define our pruned graph Ĝ to be the graph
G with edges E(G)\ ∪x∈cU Px. By construction Ĝ satisfies 1. and 2.

Note that only vertices x ∈ U and vertices y ∈ ∪x∈US1(x) are not isolated in H. It is
clear that at each step of this procedure we prune at most C2 + C1 − 2 edges adjacent to
some x. Moreover, note that that any subsequent step cannot affect the degree of x in H:
otherwise, if we have already pruned for x ∈ U, if in a subsequent pruning for x′ ∈ U we
were to delete an edge adjacent to x, this would mean that (x′, x) is an edge in G, in which
case we would already have pruned it when doing the pruning for x.

Now let y ∈ ∪x∈US1(x)\U, i.e. let y be a vertex that is not in U and is a neighbor of
some vertex x ∈ U. By Lemma 3.7, y can be adjacent to at most C2 − 1 additional vertices
fromU, since otherwise B2(x) contains more than C2 − 1 vertices fromU. Thus we prune
at most C2−1 edges adjacent to y. Hence the maximal degree of the graph H is C1 + C2−2,
implying 3.

Recall the assumption that the maximum degree is at most u. Thus for each edge (x, y)
that we prune, βx is reduced by at most u. Additionally for each vertex y ∈ S1(x), we delete
at most C2 − 1 edges by doing the pruning procedure for other x′ ∈ U. This implies that
0 ≤ βx − β̂x ≤ αx(C2 − 1) + (C1 + C2 − 2)u = O(u), which implies 4.

Lemma 3.6 gives a bound on the growth of the spheres in the original graph and since
αx and α̂x are of the same order, 5. follows immediately.
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For the last statement we rewrite

∑
y∈Ŝ1(x)

(
N̂y −

β̂

α̂

)2

≤ 3

 ∑
y∈Ŝ1(x)

(
N̂y −Ny

)2
+

∑
y∈Ŝ1(x)

(
Ny − d

)2
+

∑
y∈Ŝ1(x)

(
d −

β̂

α̂

)2
 .

The first term can be bounded by O(α̂) since G − Ĝ has a bounded degree by Lemma 3.8,

3, for the second term we use Lemma 3.6 and the last term can be bounded by α̂
(
d − β̂

α̂

)2

and then be bounded using Lemma 3.8, 3.
�

A.2 Proofs of distributional identities

Binomial estimates

Proof of Lemma 4.3. Using the inequality log(1 + x) ≥ x
x+1 for x ≥ 0 1 ,

Ip

(p
2

)
= −

p
2

log 2 +
2 − p

2
log

(
1 +

p
2(1 − p)

)
≥ −

p
2

log 2 +
2 − p

2

p
2(1−p)

1 +
p

2(1−p)

=
p
2

(1 − log 2).

The second inequality is a direct consequence of Ip

(
p
2

)
= I1−p

(
1 − p

2

)
and the last statement

uses the fact that Ip(x) is decreasing on x ∈ (0, p) 2. �

Proof of Lemma 4.6. By Lemma 4.5,

P (X ≥ τ) ≤ e−mIp( τm ). (A.4)

Using that log(1 + x) ≥ x
1+x for x > −1, we get that

Ip

(
τ
m

)
=
τ
m

log
(
τ
d

n
m

)
+

(
1 −

τ
m

)
log

(m − τ
m

n
n − d

)
≥
τ
m

[
log(τ) − log(d) +

n −m
m

]
+

(
1 −

τ
m

) [
−

τ
m − τ

+
d
n

]
After multiplication with m this can be lower bounded by

τ
[
log(τ) − log(d) +

n −m
m
− 1

]
,

where all but the first term are O
(
τmax{log d, 1}

)
, which implies the bound. �

1 d
dx (log(1 + x) − x

x+1 ) = x
(x+1)2 ≥ 0 for x ≥ 0.

2I′p(x) = log( x
p ·

1−p
1−x ) < 0 for x ∈ (0, p).
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Poisson Approximation

Proof of Lemma 4.1. We simplify using Stirling’s approximation and the fact that ec

(1+ c
n )n =

1 + O( c2

n ) for |c| < n:

P(X = k) =

(
n
k

)
pk(1 − p)n−k

=
(
1 + O

(1
n

)) 1
k!

nn

(n − k)n−kek

√
1

1 − k
n

pk(1 − p)n−k

=

(
1 + O

(
k2 + (np)2 + 1

n

))
e−np(np)k

k!

=

(
1 + O

(
k2 + (np)2 + 1

n

))
P(Y = k)

�

Proof of Lemma 4.1. We have

P
(
X ≥ k

)
=

(
1 + O

(
k2 + (np)2 + 1

n

))
P
(
Y ≥ k

)
+ O

(
P

(
X ≥

√
n
)

+ P
(
Y ≥

√
n
))

and the latter term satisfies

O
(
P

(
X ≥

√
n
)

+ P
(
Y ≥

√
n
))

= O

( n
√

n

)
p
√

n +
(np)

√
n

√
n!

 = O
((

ep
√

n
)√n

)
.

�

Proof of Lemma 4.2. Upper bound: We start with

P
(
X ≥ λ(1 + δ)

)
=

∞∑
k=λ(1+δ)

P(X = k)

= e−λ
∞∑

k=λ(1+δ)

λk

k!
.

Note that for k in our range, λ/k ≤ 1/(1 + δ). Therefore, we can upper bound this with a
geometric series.

e−λ
∞∑

k=0

λk

k!
≤ e−λ

λλ(1+δ)

(λ(1 + δ))!

∞∑
k=0

1
(1 + δ)k
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≤ e−λ
λλ(1+δ)

(λ(1 + δ))!
(
1 + δ
δ

).

Using a Stirling approximation, we obtain

e−λ
λλ(1+δ)

(λ(1 + δ))!

(1 + δ
δ

)
= (1 + oλ(1))e−λ

eλ(1+δ)√
2πλ(1 + δ)

λλ(1+δ)

(λ(1 + δ))λ(1+δ)

(1 + δ
δ

)
= (1 + oλ(1))

exp(−λ(1 + δ) log(1 + δ) + λ(1 + δ) − λ)√
2πλ(1 + δ) δ

1+δ

≤
exp(−λ(1 + δ) log(1 + δ) + λδ)

√
λmin{

√
δ, δ}

for sufficiently large λ.
Lower bound: We once again have that

P
(
X ≥ λ(1 + δ)

)
=

∞∑
k=λ(1+δ)

P(X = k)

= e−λ
∞∑

k=λ(1+δ)

λk

k!

=
(1 + oλ(1))e−λ
√

2π

∑
k≥λ(1+δ)

λkek

kk+1/2

by a Stirling approximation. We write

c := λ(1 + δ), f (x) := −(x + 1/2) log x + x logλ + x.

Therefore, we have

f ′(x) = − log x + logλ +
1

2x
, f ′′(x) = −

1
x

+
1

2x2

We then approximate our probability by an integral, which serves as a lower bound as
our function is decreasing. We then perform a Laplace method type bound.

c+c1/3∑
k=λ(1+δ)

λkek

kk+1/2
≥

∫ c+c1/3

c

λxex

(x)x+1/2 dx

=

∫ c+c1/3

c
exp

(
f (x)

)
dx

= e f (c)
∫ c+c1/3

c
exp

(
f (x) − f (c)

)
dx
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= e f (c)
∫ c+c1/3

c
exp

(
f ′(c)(x − c) + Oλ

(
f ′′(c)(x − c)2

))
dx

where the last statement follows from Taylor expanding and the formula of f ′′(x). By the
choice of our window, f ′′(c)(x − c)2 = O(λ−1/3). Therefore, this is

e f (c)
∫ c+c1/3

c
exp

(
f ′(c)(x − c) + Oλ

(
f ′′(c)(x − c)2

))
dx

=(1 + oλ(1))e f (c)−c f ′(c)
∫ c+c1/3

c
exp( f ′(c)x)dx

= − (1 + oλ(1))
e f (c)−c f ′(c)+c f ′(c)

f ′(c)
(1 − ec1/3 f ′(c))

= − (1 + oλ(1))
e f (c)

f ′(c)
.

By our choice of c, and under the assumption that δ > 1
√
λ

, we have

−
1

f ′(c)
= (1 + oλ(1))

1
log(1 + δ)

.

Putting this together with the fact that P
(
X ≥ λ(1 + δ)

)
≥ P

(
X = λ(1 + δ)

)
, we have that

P
(
X ≥ λ(1 + δ)

)
≥ (1 + oλ(1))e−λ

λλ(1+δ)eλ(1+δ)

(λ(1 + δ))λ(1+δ)+1/2
·max

{
1

log(1 + δ)
, 1

}
= (1 + oλ(1))c4.2

exp(−λh(δ))
√
λmin{

√
δ, δ}

for some constant c4.2. �

Proof of Corollary 4.2. For the upper bound,

P
(
X ≥ λ(1 + δ)

)
≤

e−λh(δ)

√
λmin{δ, δ2}

≤

(
1 + oλ(1)

) e−
λδ2

2

δ
√
λ

by the Taylor expansion of h(δ).
For the lower bound, define δ′ = δ + 1

λ . Then λ(1 + δ) + 1 = λ(1 + δ′). We have

P
(
X ≥ λ(1 + δ)

)
= P

(
X ≥ dλ(1 + δ)e

)
≥ c4.2

e−λh(δ′)√
λmin{δ′, δ′2}

≥

(
1 − oλ(1)

)
c4.2

e−
λδ2

2

δ
√
λ
.

�
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Tails of sums

Proof of 4.10. We will only work with the upper tail as the lower tail is similar. The bound
we get from Lemma 4.7 is

Pr
(
X > t + E[X]

)
≤ exp

− t2

2d + 2
3 t

 .
Therefore,

Pr
(
X2
≥ t2 + 2tE[X] + E[X]2

)
≤ exp

− t2

2d + 2
3 t

 .
which we rewrite as

Pr
(
X2
− (d2 + d) ≥ t2 + (2t − 1)E[X]

)
≤ exp

− t2

2d + 2
3 t

 .
By using the substitution t =

√
y + d2 + d − d, we can rewrite this as

Pr
(
X2
− (d2 + d) ≥ y

)
≤ exp

−y + 2d2 + d − 2d
√

y + d2 + d
2
3

√
y + d2 + d + 4

3d

 .
As mentioned, this will follow from [BMdlP23], Theorem 1. First, we wish to show

that, using the notation in the paper, v(L, β)→ Var(X2) for large L. We first show that the
strategy of proof of Lemma 4 extends to our scenario. The probability that X2

− (d2 +d) ≥ y
is at most e−

√
y

12 for y ≥ 4(d2 + d). Therefore, we choose our Y to be

Y =
(
X2
− E

[
X2

])2
exp(X/12)1X2>E(X2).

Y is integrable as the moment generating function E(ecX) is finite for all c. Therefore,
for sufficiently large mt, v(L, β) ≈ Var(X2).

This makes the formulation of Theorem 1 in [BMdlP23] much simpler, and tmax is such
that

tmax = Var(X2)
mtmax + 2d2 + d − 2d

√
mtmax + d2 + d

2
3mtmax

√
mtmax + d2 + d + 4

3d
.

Therefore tmax = (1 + om(1))(3
2 Var(X2))2/3m−1/3. Using this on the four terms in Theorem

1 from [BMdlP23], as well as the bound that I(t) ≥
√

t/12 if t ≥ 4(d2 + d), gives the result.
�

To verify Lemma 4.11 we need the following easy lemma regarding the discretization
of a tail.
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Lemma A.2. Suppose that k ∈N and t > k. Then,{
x1 + · · · + xk ≥ t, x1, · · · , xk ≥ 0

}
⊆

⋃
(t1,...,tk)∈Nk

≥0
t1+···+tk=btc−k+1

{
x1 ≥ t1, . . . , xk ≥ tk

}
. (A.5)

Here,N≥0 denotes the set of non-negative integers.

Proof. Since 0 ≤ x − bxc < 1, we have x1 − bx1c + · · · + xk − bxkc < k. Using this fact, for any
non-negative x1, · · · , xk,{

x1 + · · · + xk ≥ t
}
⊆

{
bx1c + · · · + bxkc > btc − k

}
=

{
bx1c + · · · + bxkc ≥ btc − k + 1

}
=

⋃
(t1,...,tk)∈Nk

≥0
t1+···+tk=btc−k+1

{
bx1c ≥ t1, . . . , bxkc ≥ tk

}
.

Since tis are integers, bxic ≥ ti is equivalent to xi ≥ ti. Thus, we are done. �

Proof of Lemma 4.11. For the lower bound, note that

P
(
Y2

1 + · · · + Y2
k ≥ t

)
≥ P

(
Y2

1 ≥
t
k
, . . . ,Y2

k ≥
t
k

)
= P

(
Y2

1 ≥
t
k

)k

≥ Ck
1e−t

α
2 k1− α2 .

The upper bound is obtained as an application of the discretization from Lemma A.2.
In fact,

P
(
Y2

1 + · · · + Y2
k ≥ t

)
≤

∑
P

(
Y2

1 ≥ t1, . . . ,Y2
k ≥ tk

)
≤ Ck

2

∑
e−

∑k
i=1 t

α
2
i ,

where the summation is taken over (t1, . . . , tk) ∈ Nk
≥0 with t1 + · · · + tk = btc − k + 1. Since

the function f (x) = x
α
2 with α > 2 is convex, by Jensen’s inequality,

1
k

k∑
i=1

t
α
2
i ≥

1
k

k∑
i=1

ti


α
2

.

Hence,

P
(
Y2

1 + · · · + Y2
k ≥ t

)
≤ Ck

2

∑
e−(btc−k+1)

α
2 k1− α2 < Ck

2

∑
e−(t−k)

α
2 k1− α2 . (A.6)

We now bound the number of summands, i.e. the number of tuples (t1, . . . , tk) ∈Nk
≥0 such

that t1 + · · ·+ tk = btc−k+1. This is known as the number of weak compositions of btc−k+1
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into k terms, and is given by
(
btc−k+1+k−1

k−1

)
=

(
btc

k−1

)
. Using the fact that

(n
k

)
≤

(
en
k

)k
and the

condition t > k, the number of summands is thus bounded by(
btc

k − 1

)
≤

( ebtc
k − 1

)k−1

≤

(2et
k

)k

.

The upper bound is established by applying this to (A.6).
To obtain (4.14), we simply plug the given values into (4.13) and then use that (2et

k )k =
No(1) and

(t − k)
α
2 k1− α2 = (1 + o(1))dα

2
α − 2

(
1 −

2
α

) α
2
b1− α2 log N.

Noting in addition that

P
(
Ỹ2

1 + · · · + Ỹ2
k ≥ t

)
=
P

(
Y2

1 + · · · + Y2
k ≥ t and Yi ≥ (ε log log N)

1
α for all i = 1, · · · , k

)
P

(
|Y1| ≥ (ε log log N

) 1
α )k

≤

P
(
Y2

1 + · · · + Y2
k ≥ t

)
P

(
|Y1| ≥ (ε log log N

) 1
α )k
,

and recalling the tail probabilities of Yi in (4.12), we establish (4.15).
The final statement (4.16) follows by similar calculations. Note that formally sending

b→ 0 in (4.14) and (4.15) gives (4.16) (recall that α > 2). �

Remark A.1. The proof of Lemma 4.11 shows that the lower bound for the probability
P(Y2

1 + · · · + Y2
k ≥ t), obtained by forcing Y2

i ≥
t
k for all i = 1, · · · , k, is of the same order (at

the exponential scale) as the upper bound.

Proof of Lemma 4.12. By the exponential Chebyshev bound, for any s > 0,

P
(
|Ỹ1|

α + · · · + |Ỹm|
α
≥ L

)
≤ e−sLE

[
es|Ỹ1|

α
]m
. (A.7)

Recalling that Ỹ1 is a random variable Y1 conditioned to have an absolute value greater
than (ε log log N)

1
α , using a tail bound (4.12), there exists a constant C ≥ 1 such that for

x > (ε log log N)
1
α ,

P
(
|Ỹ1| > x

)
≤ Ceε log log Ne−xα ,

and for 0 ≤ x ≤ (ε log log N)
1
α , P(|Ỹ1| > x) = 1. Hence, for any 0 < s < 1, using the tail

bounds (4.12)

E
[
es|Ỹ1|

α
]

= 1 +

∫
∞

0
esxαsαxα−1P

(
|Ỹ1| > x

)
dx
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≤1 +

∫ (ε log log N)
1
α

0
esxαsαxα−1dx + C

∫
∞

(ε log log N)
1
α

esxαsαxα−1eε log log Ne−xαdx

≤ eεs log log N + Ceε log log N s
1 − s

e−ε(1−s) log log N
≤

(
1 +

Cs
1 − s

)
eεs log log N.

Note that the tail bound (4.12) implies that the moment generating function is infinity for
s ≥ 1.

Applying this to (A.7), by Chernoff’s bound, for any 0 < s < 1,

P
(
|Ỹ1|

α + · · · + |Ỹm|
α
≥ L

)
≤ e−sL

(
1 +

Cs
1 − s

)m
eεsm log log N.

Now recall that L > m and set s := 1 − m
L ∈ (0, 1) in order to balance the two terms e−sL and

(1 + Cs
1−s )m. Then,

P
(
|Ỹ1|

α + · · · + |Ỹm|
α
≥ L

)
≤ e−Lem

(
1 +

C(L −m)
m

)m

eεm log log N

≤ Cme−Lem
( L
m

)m

eεm log log N,

which concludes the proof of (4.17). Since the function x 7→ (L
x )x is increasing on (0, L

e ), by
taking m = b log N

log log N + c and L = a log N in the RHS of (4.17), we establish (4.18).
�
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