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Local linear estimation for spatial random processes with 
stochastic trend and stationary noise

Jung Won Hyun1, Prabir Burman2, Debashis Paul2,*

1Department of Biostatistics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place 
Memphis, TN 38105

2Department of Statistics, University of California, Davis, CA 95616

Abstract

We consider the problem of estimating the trend for a spatial random process model expressed as 

Z(x) = μ(x) + ε(x) + δ(x), where the trend μ is a smooth random function, ε(x) is a mean zero, 

stationary random process, and {δ(x)} are assumed to be i.i.d. noise with zero mean. We propose a 

new model for stochastic trend in ℝd by generalizing the notion of a structural model for trend in 

time series. We estimate the stochastic trend nonparametrically using a local linear regression 

method and derive the asymptotic mean squared error of the trend estimate under the proposed 

model for trend. Our results show that the asymptotic mean squared error for the stochastic trend 

is of the same order of magnitude as that of a deterministic trend of comparable complexity. This 

result suggests from the point of view of estimation under stationary noise, it is immaterial 

whether the trend is treated as deterministic or stochastic. Moreover, we show that the rate of 

convergence of the estimator is determined by the degree of decay of the correlation function of 

the stationary process ε(x) and this rate can be different from the usual rate of convergence found 

in the literature on nonparametric function estimation. We also propose a data dependent selection 

procedure for the bandwidth parameter which is based on a generalization of Mallow’s Cp 

criterion. We illustrate the methodology by simulation studies and by analyzing a data on surface 

temperature anomalies.

Keywords

spatial process; stochastic trend; local polynomial smoothing; bandwidth selection; Mallows’ Cp

1 Introduction

We consider a random process {Z(x), x ∈ D}, where D is a subset of ℝd for d ≥ 1 observed 

at locations S1,…,Sn. We suppose that the observed random process is generated from a 

trend plus a short term stationary error and a measurement error. Thus, the model for the 

observations is of the form
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Z Si = μ Si + ε Si + δ Si , i = 1, …, n, (1)

where Si’s are the observation locations, {Z(Si)} is the observed random process, ε(x) is a 

mean zero, stationary process with Cov(ε(x + h),ε(x)) = γ(Nh), where γ(·) is a covariance 

function on ℝd and N is an unknown scalar parameter, and δ(Si)’s are i.i.d. observational 

noise with zero mean and variance τ2. Moreover, μ(x), ε(x) and δ(x) are assumed to be 

independent. Our goal is to estimate the trend μ(x), which is throughout assumed to be 

stochastic. We estimate the trend using a local linear regression method. The proposed 

methodology generalizes the formulation by Burman (1991) for the univariate setting.

When the trend is assumed to be a nonrandom function of the spatial location, one common 

approach is to model the trend as a known parametric function. Such a trend surface 

modeling approach assumes that the trend is represented in a given basis, such as a 

polynomial or a fixed-knot spline basis, in the spatial coordinates. However, often it is 

unrealistic to assume that the trend has a known parametric form, and it is reasonable to 

model the trend as an arbitrary smooth function of the spatial location. Under such settings, 

one can estimate the trend using a nonparametric smoothing method such as local 

polynomial regression (Schabenberger & Gotway 2004) or spline smoothing (Wood et al. 

2002). When a deterministic trend is assumed and a local polynomial method is employed to 

estimate the trend, the asymptotic properties of the estimator have been thoroughly 

investigated in the literature under the assumption of spatially uncorrelated noise. As a 

representative text, Ruppert & Wand (1994) study the asymptotic bias and variance of 

multivariate local regression estimators.

Stochastic trend models have been considered primarily in the time series literature (Box et 

al. 1994, Durbin & Koopman 2001, Harvey 1991, Shumway & Stoffer 2000), where it is 

often referred to as a structural model Burman & Shumway (2009) consider a time series 

model with a random trend and a stationary error and derive an expression for the 

asymptotic mean squared error of the trend estimate. A discussion on deterministic versus 

stochastic trend can be found in Chapter 4.1 of Box et al. (1994).

When modeling the random trend in the structural model, it is typically assumed that, for a 

given k > 0, the k-th order differences of the trend are i.i.d. mean zero random variables. We 

extend this idea to model the trend in (1). Specifically, we propose a model for μ by defining 

it locally through an integral with respect to a Gaussian process. However, the assumption of 

Gaussianity is not essential for the asymptotic properties of the proposed estimator of the 

trend.

In this paper we estimate the stochastic trend nonparametrically using a local linear 

regression method and derive an expression for its asymptotic mean squared error. 

Throughout we assume that the observation locations are randomly distributed over a fixed 

finite domain. The results of this paper show that the asymptotic mean squared error for the 

stochastic trend model is of the same order of magnitude as that for the deterministic trend 

model, which suggests that it does not matter whether μ is considered to be a nonrandom or 

a random function. We also show that the rate of convergence of the estimator of μ is 
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determined by N, the parameter controlling the degree of correlation in the stationary noise 

ε. Note that in our asymptotic analysis, we allow N → ∞ as n → ∞, and show that the rate 

of convergence for the local linear estimates is of order (min(n, N))−4/(4+d) Indeed, if N ≤ n, 

then the variance of the estimator is dominated by N, which plays the role of the effective 

number of measurements (see Theorem 1). Only if N > n, the rate of convergence is similar 

to the case of i.i.d. noise with n measurements. In practice, we need to select the smoothing 

parameter for estimating μ. Moreover, we propose a data-driven selection procedure for the 

bandwidth which is based on a generalization of Mallow’s Cp criterion and takes into 

account the spatial correlation of the residual process. The analysis techniques can be 

generalized to obtain qualitatively similar results for a local polynomial regression estimator 

of stochastic trend using a higher order polynomial.

The rest of the paper is organized as follows. We present the stochastic trend model in 

Section 2. In Section 3, we discuss the local linear estimation of the trend and derive an 

expression for its asymptotic bias and variance. In Section 4, we present the method for data 

dependent selection of the bandwidth for the smoother. In Section 5, we conduct a 

simulation study to demonstrate the performance of the bandwidth selector for the local 

linear estimator. In Section 6, we analyze the data on surface temperature anomalies in the 

northern America using the proposed estimator. Proofs of the asymptotic results are given in 

Section 7.

2 A model for stochastic trend

In this section, we describe the statistical model for the random trend μ. This is a spatial 

generalization of a stochastic trend model commonly used in time series through a state-

space formulation (Shumway & Stoffer 2000, Burman & Shumway 2009). Later, we use this 

random trend model for the true trend and establish expressions for asymptotic MSE of a 

local linear estimator of the trend.

The idea of the proposed stochastic trend is to generalize the notion from the state space 

model in time series that the k-th divided difference of the series is a white noise process, for 

a given integer k. In the setting of the continuum, this notion is implemented by defining the 

process through stochastic integration of a spline-type kernel with respect to the standard 

Brownian motion. This kernel is defined through iterated convolution of a boxcar function, 

and therefore the definition generalizes the notion that the divided difference of a certain 

order is a white noise process.

Specifically, we define a univariate kernel L1
(k)( ⋅ ) by

L1
(k)(t) = 1

Fk(R)
1
k! ∑

j = 0

[k /2]
( − 1) j k + 1

j
k + 1 − 2 j R − t +

k , t ∈ ℝ, (2)

where k is a positive integer which determines the smoothness of the kernel, [x] denotes the 

largest integer less than or equal to x ∈ ℝ, R > 0 is a parameter determining the support of 

the kernel, and Fk(R) is the normalizing constant given by

Hyun et al. Page 3

Sankhya Ser B. Author manuscript; available in PMC 2019 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fk(R) = ∫ 1
k! ∑

j = 0

[k /2]
( − 1) j k + 1

j
k + 1 − 2 j R − t +

k dt

= 2 k + 1 R k + 1
k + 1 ! ∑

j = 0

[k /2]
( − 1) j k + 1

j
1 − 2 j

k + 1
k + 1

= 2R k + 1 .

Notice that L1
(k) is actually a B-spline of degree k with knots at the points 

0 ∪ ± k + 1 − 2 j R j = 0
[k /2] . We plot the kernels L1

(k)(t) for k = 1,2,3, respectively, when R = 1 

in Figure 1.

Next, we define the d-dimensional product kernel based on (2) as

Ld
(k) x = ∏

i = 1

d
L1

(k) xi , x = x1, …, xd ∈ ℝd . (3)

Since the random trend is supposed to be a repeated local average of a spatial white noise, 

we define μ(x) on ℝ+
d  as

μ(x) = ∫ Ld
(k)(x − u)dB(u)

= ∫ ∏
i = 1

d 1
(2R)k + 1

1
k! ∑

j = 0

[k /2]
( − 1) j k + 1

j
k + 1 − 2 j R − xi − ui +

k dB(u),
(4)

where B(u) is the standard Brownian sheet process on ℝ+
d . Notice that μ is k − 1 times 

continuously differentiable on ℝ+
d . The complexity of μ is determined by the parameters R 

and k.

Figure 2 shows the realizations of μ(x) for d = 1 and k = 2 when R is fixed at 0.5 and 1, 

respectively. As expected, larger R results in smoother trend μ.

Remark 1. It should be pointed out that estimation of the underlying trend μ does not 
require the knowledge of the parameters R and k. Local linear or polynomial estimation of μ 
depends on a bandwidth (a tuning parameter) which can be estimated using a Mallows’ CP 

(Mallows 1973) type criterion discussed in Section 4.

3 Local linear regression

Before we begin this Section, we first briefly describe the main results presented below. The 

optimal rate of convergence for the local linear estimation of μ in the one-dimensional case 

(i.e., d = 1) is of order (min(n, N))−4/5, and is of order (min(n, N))−2/3 when d = 2. In the 

general case, this rate is of order (min(n, N))−4/(4+d).
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In the nonparametric literature the rate of convergence is n−4/(4+d). However, in our setup the 

rate is of order N−4/(4+d) if N ≤ n. As argued in Section 1, N is the effective sample size and 

this rate given here can be substantially lower that the usual rate n−4/(4+d) Even though we do 

not explicitly write down the local polynomial estimate of μ, it can be shown that, under 

appropriate technical assumptions, a local polynomial estimate achieves the rate of (min(n, 
N))−2k/(2k+d) where k is the degree of smoothness of the trend μ.

We start with a brief description of the local linear estimation procedure. We use the same 

notation as in Ruppert & Wand (1994). Let H be a d × d symmetric positive definite matrix 

depending on n. Then H1/2 is called the bandwidth matrix. For simplicity, we take a diagonal 

bandwidth matrix so that H = diag h1
2, …, hd

2 , where hi > 0 for all i. Let K be a d-variate 

kernel such that ∫ K(u)du = 1. We also write KH(u) = |H|−1/2K(H−1/2u). We consider the 

optimization problem:

Minimize  ∑
i = 1

n
Z Si − β0 − β1

T Si − x
2
KH Si − x

with respect to β0 and β1. The local linear estimator of the trend at location x is

μ(x; H) = β0 . (5)

Equation (5) can be expressed in a matrix form. Let

Xx =

1 S1 − x T

⋮ ⋮

1 Sn − x T
.

Z = [Z1,…,Zn]T, and Wx = diag{KH(S1 − x),…, KH(Sn − x)}. Assuming that Xx
TWxXx is 

nonsingular, the local linear estimator (5) is

μ(x; H) = e1
T Xx

TWxXx
−1

Xx
TWxZ,

where e1 is the (d + 1) × 1 vector having 1 in the first entry and all other entries 0.

We now use the stochastic trend model introduced in Section 2 to study the asymptotic 

behavior of the MSE of the local linear estimator of the trend. Recall that, if k ≥ 2 in (4), all 

first-order derivatives of μ(x) are continuous. Hence, we choose k = 2 in (4). Then the 

statistical model, which we assume to be correct throughout, is
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Z(x) = μ(x) + ε(x) + δ(x),  where 

μ(x) = ∫ Ld
(2)(x − u)dB(u) = ∫ ∏

i = 1

d 1
16R3 3R − xi − ui +

2 − 3 R − xi − ui +
2

dB(u),

ε(x) is a mean zero, stationary process with Cov(ε(x + h), ε(x)) = γ(Nh) and γ(0)

= σ2,

δ(x) are i.i.d. with mean zero and variance τ2 and independent of ε(x) .

(6)

In order to present the theoretical results, we assume that the locations Si’s are randomly 

distributed, even though the results would hold if the Si’s follow a reasonably regular design.

We additionally make the following assumptions.

(A1) The kernel K is a compactly supported, bounded kernel such that, 

∫ uuTK(u)du = μ2(K)I, where μ2(K) is a nonzero scalar and I is the d × d identity 

matrix. Also all odd-order moments of K vanish, that is, ∫ u1
l1…ud

ldK(u)du = 0 for 

all nonnegative integers l1,…,ld adding up to an odd number. For simplicity, the 

multivariate kernel K is taken to be a product kernel based on symmetric 

univariate kernels.

(A2) Si are i.i.d. with a common density f having a bounded supp( f ) ⊆ ℝd. Without 

loss of generality, the support of f is taken to be a unit cube in ℝd. The point x is 

in supp(f) and f is continuously differentiable at x with f(x) > 0.

(A3) The sequence of bandwidth matrices H1/2 where H = diag h1
2, …, hd

2  is such that 

each entry of H tends to zero, and n−1|H|−1/2 and N−1|H|−1/2 → 0 as n, N → ∞. 

In addition, there is a fixed constant CH such that the condition number of H is 

at most CH for all n, N.

The main results are concerned with the mean squared error characteristics of μ(x; H) when x 
is an interior point. All the asymptotic results are conditional on the location {Si}, and to 

emphasize this, the mean and variances are denoted by 𝔼S and VarS, respectively.

Let μ(x) = 𝔼S μ(x; H) | μ . Then μ(x) − μ(x) is the model bias, and we can get the usual 

variance plus bias-square decomposition of the mean squared error of μ(x; H) as

𝔼S μ(x; H) − μ(x) 2 = 𝔼S Var μ(x; H) μ + 𝔼S μ(x) − μ(x) 2 . (7)
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In order to describe our asymptotic results, we define the kernel K* as

K* u; x = e1
T Xx

TWxXx
−1 1, u − x T TKH u − x . (8)

Then we can express the local linear estimator given in (5) as

μ x; H = ∑
i = 1

n
K* Si; x Zi . (9)

The kernel K* given in (8) has the well-known properties

∑
i = 1

n
K* Si; x = 1  and  ∑

i = 1

n
K* Si; x Si − x = 0. (10)

We use (10) to prove Theorems 1 and 2. Also let P(K) = ∫ K u 2du.

Theorem 1. Let x be a fixed point in the interior of supp(f). Assume that the model given in 
(6) holds for d = 1. Also assume that (A1)–(A3) hold. Then

𝔼S μ(x) − μ(x) 2 = 3
16R5 ∫0

1
K(t)t2dt

2
h4 1 + op(1) ,

and

𝔼S VarS μ(x; H) μ = n−1h−1P(K) σ2 + τ2 / f (x) 1 + op(1) + N−1h−1P(K)∫ γ(z)dz 1 + op(1) ,

where the op terms are with respect to the distribution of the Si’s.

Remark 2. Theorem 1 shows that the asymptotic mean squared error of the estimated μ is 

determined by N and n. In this result, as well as Theorem 2 below, the complexity parameter 

R for the stochastic trend μ is treated as fixed, even though its role in the expression for the 

leading term in the bias is explicit. Note that the mean squared error

D(h) = E μ(x; H) − μ(x) 2 = q1h4 + q2n−1h−1 + q3N−1h−1 1 + op(1) ,  where 

q1 = 3
16R5 ∫0

1
K(t)t2dt

2
, q2 = P(K) σ2 + τ2 / f (x)  and  q3 = P(K)∫ γ(z)dz,

is minimized at

h* =
q2

4q1n +
q3

4q1N

1/5
1 + op(1) ,

and the smallest asymptotic mean squared error is
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D h* = q1
1/5 1

4
4/5

+ 41/5 q2
n +

q3
N

4/5
1 + op(1) ≍ min(n, N) −4/5 .

Thus the optimal rate of convergence of the estimator of μ, as well as the optimal choice of 

bandwidth, depend on both sample size n and N, the parameter controlling the degree of 

correlation in the stationary noise. Moreover, these choices, at the level of rates as a function 

of N and n, are the same as that when μ is a deterministic function with continuous second 

derivative.

Theorem 2. Let x be a fixed point in the interior of supp(f). Assume that the model given in 
(6) holds for d = 2. Also assume that (A1)-(A3) hold. Then

𝔼S μ(x) − μ(x) 2 = 33
160R6h1

4 ∫0
1∫0

1
K(t)t1

2dt1dt2
2

+ 33
160R6h2

4 ∫0
1∫0

1
K(t)t2

2dt1dt2
2

+ 1
8R6h1

2h2
2 ∫0

1∫0
1

K(t)t1
2dt1dt2 ∫0

1∫0
1

K(t)t2
2dt1dt2 1 + op(1) ,

𝔼S VarS μ(x; H) μ = n−1 h1h2
−1P K σ2 + τ2 / f x 1 + op(1) + N−1 h1h2

−1P K ∫ γ z dz 1 + op(1) .

Remark 3. Theorem 2 shows that the asymptotic mean squared error of the estimated μ is 

determined by both N and n. In particular, the optimal bandwidth is of the order of (1/n
+1/N)1/6 and the optimal mean squared error is of the order of (min(n, N))−2/3 as shown 

below. The mean squared error is

D h1, h2 = 𝔼S μ(x; H) − μ(x) 2

= q11h1
4 + q12h2

4 + q13h1
2h2

2 + q21n−1 h1h2
−1 + q22N−1 h1h2

−1 1 + op(1) ,  where

q11 = 33
160R6 ∫0

1∫0
1

K(t)t1
2dt1dt2

2
, q12 = 33

160R6 ∫0
1∫0

1
K(t)t2

2dt1dt2
2
,

q13 = 1
8R6 ∫0

1∫0
1

K(t)t1
2dt1dt2 ∫0

1∫0
1

K(t)t2
2dt1dt2 ,

q21 = P(K) σ2 + τ2 / f (x),  and  q22 = P(K)∫ γ(z)dz .

It is minimized at the bandwidth

h1* =
q12
1/8

q11
4 q11q12

1/2 + 2q13
1/6 q21

n +
q22
N

1/6
1 + op(1)  and h2* =

q111/4
q12

1/4
h1*,

and the smallest mean squared error is
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D h1*, h2* = 2−2/3 + 21/3 2 q11q12
1/2 + q13

1/3 q21
n +

q22
N

2/3
1 + op(1) ≍ min(n, N) −2/3 .

4 Data-driven selection of bandwidth

In this section, we propose a method for selecting the bandwidth matrix H1/2. Ideally we 

would like to select the bandwidth matrix which minimizes

L(H) = ∑
i = 1

n
E μ Si; H − μ Si

2 . (11)

Since L(H) involves unknown parameters, we cannot use (11) directly. Hence we first obtain 

a good (meaning, nearly unbiased) estimator of (11) and then minimize the estimate with 

respect to the bandwidth matrix H1/2.

We begin by examining the residual sum of squares, 

E SSE(H) : = E ∑i = 1
n Z Si − μ Si; H 2 . It is straightforward to show that E{SSE(H)} 

equals 

E ∑i = 1
n ε2 Si + δ2 Si + 2ε Si δ Si + L(H) − 2E ∑i = 1

n ε Si + δ Si μ Si; H − μ Si .

Lemma 1. Assume that the second and third conditions given in (6) hold. Then 

𝔼S ∑i = 1
n ε Si + δ Si μ Si; H − μ Si = ∑i = 1

n ∑ j = 1
n γ N Si − S j K* S j; Si

+ τ2∑i = 1
n K* Si; Si

 where the 

kernel K* is given by (8) in case of local linear regression.

Assuming that we have preliminary estimates γ  and τ2, and using Lemma 1, L(H) can be 

estimated by

SSE(H) + 2∑i = 1
n ∑ j = 1

n γi jK* S j; Si + 2τ2∑i = 1
n K* Si; Si − E ∑i = 1

n ε2 Si + δ2 Si + 2ε Si δ Si .

Since the last term in the above expression does not involve H, we can ignore it and then 

obtain the following criterion function

ϕ(H) = SSE(H) + 2 ∑
i = 1

n
∑
j = 1

n
γ i jK* S j; Si + 2τ2 ∑

i = 1

n
K* Si; Si . (12)

We minimize the criterion function ϕ(H) over H. If the minimum of ϕ(H) is attained at H, 

then we take μ(x; H) to be our estimate of the trend.

We briefly discuss how to estimate γ(·) and τ2. Assume that the error component can be 

modeled using a known parametric form. We first obtain a preliminary estimate of μ(x) by 

using a k-nearest neighbor regression where the integer k is not too large, so that the 

estimate has low bias. In our examples, we used k ≈ n2/3. If μ is the preliminary estimate, 
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then we use Z Si − μ Si  as an estimate of the spatially correlated error ε(Si) + δ(Si). Then 

we can fit a covariogram model to these residuals, and estimate the corresponding 

parameters for the covariance function by one of the well-known methods, such as a 

likelihood-based method or a least squares method.

5 Simulation

We perform a brief simulation study primarily to assess the effectiveness of the bandwidth 

selection criterion proposed in Section 4. Additionally, we demonstrate the effect of 

stochastic variation on the accuracy of the trend estimation by local linear regression.

Fifty realizations, each consisting of 200 observations, were generated from model (1) with 

a deterministic trend μ(x) = Asin(πx1)sin(πx2), and ε(x) is a mean zero Gaussian process 

with Cov(ε(x+h),ε(x)) = exp(−θh) and δ(x) are i.i.d. N(0, τ2) independent of ε(x). For each 

realization, we obtained an estimator μ(x; H) and calculated the mean squared error given by

MSE(μ) = 1
n ∑

i = 1

n
μ Si; H − μ Si

2 .

The bandwidth was selected by the method described in Section 4, where we assumed that 

the stationary error follows the exponential covairogram model (same as that used in the 

simulation), and estimated the corresponding parameters by the estimation procedure 

developed in Hyun et al. (2012). The mean and standard deviation of MSE for various 

combinations of the model parameters are listed in Table 1. The results show that as the 

value of θ increases, implying smaller degree of correlation among the observations, the 

accuracy of the estimated trend increases. This is an indication that the bandwidth selection 

scheme is effective in choosing a suitable estimator of the trend.

We also report the result from a stochastic trend model with μ modeled through μ(x) = 

Asin(πγ1x1)sin(πγ2x2) where the amplitude A and the phase γ1, γ2 of the trend follow 

Chi-Square distributions. We choose A χ40
2 /20 and γ1, γ2

i . i . d .χ20
2 /20 so that the expectations 

of A, γ1 and γ2 are 2, 1 and 1, respectively. The mean and standard deviation of MSE for 

the stochastic trend model are shown in Table 2. We observe that both the mean and standard 

deviation pf MSE for a stochastic trend model tend to be greater than those for the 

corresponding deterministic trend model (compare with the first column of Table 1), 

reflecting the additional variability in the estimates accrued due to randomness. The 

behavior of the MSE, with respect to the change in the parameter θ (determining spatial 

correlation among residuals), is qualitatively similar to that in the deterministic trend setting.

6 Analysis of surface temperature anomalies data

As an application of our method to a real problem, we analyzed the data on monthly surface 

temperature anomalies collected in the region corresponding to the latitude range of 52.5 

degrees south to 22.5 degrees north. The data is from the National Oceanic and Atmospheric 
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Administration (Smith et al. 2008) and can be downloaded from the website http://

www.esrl.noaa.gov/psd/data/gridded/data.mlost.html

The data set consists of merged land air and sea surface temperature anomalies on a 5 × 5 

grid-box basis spanning 1880 to the present at monthly resolution. We considered the 

monthly data in March, June, September, and December in 1983, 1993, and 2003. For each 

monthly data set, roughly 1,150 observations were available. We applied a local linear 

method to each spatial data set and compared the results. We used the criterion given by (12) 

to select the bandwidths. We first obtained an estimate of the error using the method 

described in Section 4. Then we used the residuals after subtracting the trend to fit a Matérn 

covariance model (Diggle & Ribeiro 2007, Schabenberger & Gotway 2004), with a nugget 

effect, to account for the observational noise. We set the smoothness parameter of the 

Matérn covariance to be at ν = 1.5, so that the covariance function is given by γ(u) = 

σ2(2/π)0.5(‖u‖/ϕ)1.5K1.5(‖u‖/ϕ), where ϕ > 0 is the range parameter, and Kν(·) denotes a 

modified Bessel function of the second kind of order ν. We estimated the parameters σ2 and 

ϕ of the covariance model, together with the nugget effect τ2, by maximizing the likelihood 

(assuming Gaussianity of the residuals) through a grid search.

Table 3 shows the estimation results along with the mean squared error (MSE) calculated 

from the estimated trend. The key observations are summarized here, (a) Estimates of ϕ are 

stable across years and months, indicating the overall pattern of spatial correlation in the 

small scale variability of the temperature anomalies remains fairly static across time, (b) 

Estimates of σ2 are more variable, with higher values in the year 1983, reflecting significant 

changes in the variability of the temperature anomalies across years, (c) Small values of 

estimated τ2 indicate the near absence of observational errors, which is understandable given 

the precise measuring devices typically used in collecting the observations.

We also display the observed monthly surface temperature anomalies along with the 

difference between the observed temperature anomalies and the estimated trend in Figure 3. 

These plots show that the proposed estimation and bandwidth selection method is able to 

capture the large scale component of the temperature anomalies quite effectively. The only 

portion showing significant residual effect corresponds to a patch around longitude 300° and 

latitude between 0° and 40° south, which corresponds to the west coast of South America. 

Here, the changes in the temperature profile are rather sharp and the selected bandwidth 

appears to oversmooth the estimated trend in this region.

7 Proofs

Proof of Theorem 1: Let Dg(x) denotes the d × 1 vector of first-order partial derivatives of a 

sufficiently smooth d-variate function g at x. Also 1 denotes a generic matrix with each entry 

equal to 1, the dimensions of which will be determined in the context. For a random matrix 

Un, Op(Un) and op(Un) are to be taken componentwise.

Using (9) and (10), we can get
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𝔼S[μ x; H μ] = ∑
i = 1

n
K* Si; x μ Si

= ∑
i = 1

n
K* Si; x μ x + μ̇ x T Si − x + μ Si − μ x − μ̇ x T Si − x

= μ x + ∑
i = 1

n
K* Si; x μ Si − μ x − μ̇ x T Si − x .

Recall from (6) that μ(x) = ∫ Ld
(2)(x − u)dB(u). For simplicity we write L(2)(x−u) to denote 

Ld
(2)(x − u). Hence

𝔼S μ x; H μ − μ x = ∑
i = 1

n
K* Si; x ∫ L(2) Si − u dB u − ∫ L(2) x − u dB u −

∫ L̇(2) x − u T Si − x dB u

= ∑
i = 1

n
K* Si; x ∫ L(2) Si − u − L(2) x − u − L̇(2) x − u T Si − x dB u .

Let R(x) be the n × 1 vector given by

R(x)

= ∫ L(2) S1 − u − L(2) x − u − L̇(2) x − u T S1 − x dB u , …,∫ L(2) Sn − u − L(2) x − u − L̇(2) x − u T Sn − x dB u
T

.

Then

𝔼S μ x; H μ − μ x = e1
T Xx

TWxXx
−1

Xx
TWxR x ,

where Xx and Wx are given in Section 3.

Ruppert and Wand (1994) showed that

n−1Xx
TWxXx

−1 =
f x −1 + op(1) −D f (x)T f (x)−2 + op(1)

−D f (x) f (x)−2 + op(1) μ2(K) f (x)H −1 + op H−1 . (13)

It is also easily seen that
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n−1Xx
TWxR(x) =

n−1∑i = 1
n KH Si − x ∫ L(2) Si − u − L(2) x − u − L̇(2) x − u T Si − x dB(u)

n−1∑i = 1
n KH Si − x ∫ L(2) Si − u − L(2) x − u − L̇(2) x − u T Si − x dB(u) Si − x

(14)

and

n−1 ∑
i = 1

n
KH Si − x ∫ L(2) Si − u − L(2) x − u − L̇(2) x − u T Si − x dB(u) Si − x = ∫ K(t)

∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t dB(u) × H1/2t f x + H1/2t dt 1 + op(1) .

It follows from (13) and (14) that

𝔼S μ(x; H) μ − μ(x) = f x −1n−1 ∑
i = 1

n
KH Si − x

∫ L(2) Si − u − L(2) x − u − L̇(2) x − u T Si − x dB u × 1 + op(1)

= f x −1∫ K(t)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t dB u

× f x + H1/2t dt 1 + op(1)

= ∫ K(t)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t dB u dt

1 + op(1) .

(15)

Recall from (6) that, for d = 1,

L(2) x − u = 1
16R3 3R − x − u +

2 − 3 R − x − u +
2 . (16)

It follows from (15) and (16) that

∫ K(t)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t dB u dt (17)
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is a sum of integrals of K(t) and component of the kernel L(2)(x − u) over various rectangular 

regions corresponding to the points of non-differentiability of L̇(2). The dominant term in 

(17) is given by

1
16R3∫x − 3R + h

x − R ∫
0

1
K(t)h2t2dtdB(u) + 1

16R3∫x − R + h

x
K(t) −2h2t2 dtdB(u)

1
16R3∫x + h

x + R∫
0

1
K(t) −2h2t2 dtdB(u) + 1

16R3∫x + R + h

x + 3R ∫
0

1
K(t)h2t2dtdB(u)

1
16R3∫x − 3R

x − R − h∫
−1

0
K(t)h2t2dtdB(u) + 1

16R3∫−1

0
K(t) −2h2t2 dtdB(u)

1
16R3∫x

x + R − h∫
−1

0
K(t) −2h2t2 dtdB(u) + 1

16R3∫x + R

x + 3R − h∫
−1

0
K(t)h2t2dtdB

(u) .

(18)

One important component in obtaining the leading order terms in the expression for the 

squared bias 𝔼S 𝔼S[μ(x; H) | μ] − μ(x) 2  is to use the following “identities”

𝔼 dB(u) 2 = du  and  𝔼 dB(u)dB(v) = 0  for  u ≠ v . (19)

Then we can show that the squared bias is given by

𝔼S 𝔼S μ(x; H) μ − μ(x) 2 = 3
16R5 ∫0

1
K(t)t2dt

2
h4 1 + op(1) .

For the variance, we first calculate 𝔼S Var[μ(x; H) | μ]  for x ∈ ℝ. Let V be the n × n variance-

covariance matrix given by

V =

σ2 + τ2 γ N S1 − S2 … γ N S1 − Sn

γ N S2 − S1 σ2 + τ2 … γ N S2 − Sn
⋮ ⋮ ⋱ ⋮

γ N Sn − S1 γ N Sn − S2 … σ2 + τ2

.

Then

𝔼S VarS μ(x; H) μ = e1
T Xx

TWxXx
−1

Xx
TWxVWxXx Xx

TWxXx
−1

e1 .

The upper-left entry of n−2Xx
TWxVWxXx is
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σ2 + τ2

n2 ∑
i = 1

n
KH Si − x 2 + 1

n2 ∑
j = 1

n
∑
i = 1
i ≠ j

n
KH Si − x KH S j − x γ N Si − S j

= σ2 + τ2

n H −1/2∫ K2(u) f x + H1/2u du 1 + op(1) + ∬ K(u)K(v

)γ NH1/2(u − v) f x + H1/2u f x + H1/2v dudv 1 + op(1)

= n−1 H −1/2P(K) σ2 + τ2 f (x) 1 + op(1) + N−1 H −1/2P(K)∫ γ(z)dz f 2(x

) 1 + op(1) ,

(20)

the upper-right block is

σ2 + τ2

n2 ∑
i = 1

n
Si − x TKH Si − x 2 + 1

n2 ∑
j = 1

n
∑
i = 1
i ≠ j

n
Si − x TKH Si − x KH S j − x γ

N Si − S j = σ2 + τ2

n H −1/2∫ uTH1/2K2(u) f x + H1/2u du 1 + op(1)

+ ∬ uTH1/2K(u)K(v)γ NH1/2(u − v) f x + H1/2u f x + H1/2v dudv

× 1 + op(1)

= σ2 + τ2

n H −1/2∫ uTH1/2K2(u)D f x TH1/2udu 1 + op(1) + N−2 H −1/2∫ K

(v)vTH1/2Dk v TH−1/2dv∫ zγ(z)dz f 2(x) 1 + op(1) + N−2 H −1/2P(K)∫ zTγ(z

)dz f 2(x) 1 + op(1)

= Op n−1 H −1/21H + Op N−2 H −1/21 ,

(21)

and the lower-right block is
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σ2 + τ2

n2 ∑
i = 1

n
Si − x Si − x TKH Si − x 2

+ 1
n2 ∑

j = 1

n
∑
i = 1
i ≠ j

n
S j − x KH S j − x Si − x TKH Si − x γ N Si − S j

= σ2 + τ2

n H −1/2∫ H1/2uuTH1/2K2(u) f x + H1/2u du 1 + op(1)

+ ∬ H1/2vK(v)K(u)uTH1/2γ NH1/2(u − v) f x + H1/2u f x + H1/2v dudv

× 1 + op(1)

= σ2 + τ2

n H −1/2H1/2∫ K2(u)uuTduH1/2 f (x) 1 + op(1) + N−1 H −1/2∫ γ(z

)dzH1/2∫ K2(v)vvTdvH1/2 f 2(x) 1 + op(1) .

(22)

So, using (13) and (20)–(22), we obtain

𝔼S Var μ(x; H) μ = n−1 H −1/2P(K) σ2 + τ2 / f (x) 1 + op(1) + N−1 H −1/2P

(K)∫ γ(z)dz 1 + op(1) .
(23)

Now, let d = 1. Then |H| = h2. Hence,

𝔼S Var μ(x; H) μ = n−1h−1R(K) σ2 + τ2 / f (x) 1 + op(1) + N−1h−1R(K)∫ γ(z)dz 1 + op(1) .

□

Proof of Theorem 2: It follows from (15) that, for d = 2,
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𝔼S μ(x; H) μ − μ(x) = ∫ K(t)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t dB(u)dt 1 + op(1)

= ∫0
1∫0

1
K(t)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t dB(u)dt1dt2 + ∫0

1∫−1
0

K(t

)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t dB(u)dt1dt2 + ∫−1
0 ∫0

1
K(t

)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t dB(u)dt1dt2 + ∫−1
0 ∫−1

0
K(t

)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t dB(u)dt1dt2 × 1 + op(1) .

Hence,

𝔼S 𝔼S μ(x; H) μ − μ(x) 2 = 𝔼S

∫
0

1∫
0

1
K(t)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t dB(u)dt1dt2

2
(24)

+𝔼S

∫
0

1∫
−1

0
K(t)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t dB(u)dt1dt2

2
(25)

+𝔼S

∫
−1

0∫
0

1
K(t)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t dB(u)dt1dt2

2
(26)

+𝔼S

∫
−1

0∫
−1

0
K(t)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t dB(u)dt1dt2

2
(27)
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+2𝔼S ∫
0

1∫
0

1
K(t)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t

dB(u)dt1dt2 × ∫
0

1∫
−1

0
K(t)∫ L(2) x + H1/2t − u − L(2) x − u

− L̇(2) x − u TH1/2t dB(u)dt1dt2

(28)

+2𝔼S ∫
0

1∫
0

1
K(t)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t

dB(u)dt1dt2 × ∫
−1

0∫
0

1
K(t)∫ L(2) x + H1/2t − u − L(2) x − u

− L̇(2) x − u TH1/2t dB(u)dt1dt2

(29)

+2𝔼S ∫
0

1∫
0

1
K(t)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t

dB(u)dt1dt2 × ∫
−1

0∫
−1

0
K(t)∫ L(2) x + H1/2t − u − L(2) x − u

− L̇(2) x − u TH1/2t dB(u)dt1dt2

(30)

+2𝔼S ∫
0

1∫
−1

0
K(t)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t

dB(u)dt1dt2 × ∫
−1

0∫
0

1
K(t)∫ L(2) x + H1/2t − u − L(2) x − u

− L̇(2) x − u TH1/2t dB(u)dt1dt2

(31)

+2𝔼S ∫
0

1∫
−1

0
K(t)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t

dB(u)dt1dt2 × ∫
−1

0∫
−1

0
K(t)∫ L(2) x + H1/2t − u − L(2) x − u

− L̇(2) x − u TH1/2t dB(u)dt1dt2

(32)

+2𝔼S ∫
−1

0∫
0

1
K(t)∫ L(2) x + H1/2t − u − L(2) x − u − L̇(2) x − u TH1/2t

dB(u)dt1dt2 × ∫
−1

0∫
−1

0
K(t)∫ L(2) x + H1/2t − u − L(2) x − u

− L̇(2) x − u TH1/2t dB(u)dt1dt2

(33)
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By expanding (24)–(33), repeatedly using the identities (19) and then collecting only the 

terms that involve the leading order, we can show that the squared bias is given by

𝔼S 𝔼S[μ(x; H) μ] − μ(x) 2 = 33
160R6h1

4 ∫0
1∫0

1
K(t)t1

2dt1dt2
2

+ 33
160R6h2

4 ∫0
1∫0

1
K(t)t2

2dt1dt2
2

+ 1
8R6h1

2h2
2 ∫0

1∫0
1

K(t)t1
2dt1dt2 ∫0

1∫0
1

K(t)t2
2dt1dt2 1 + op(1) .

For the variance, (23) shows that, for x ∈ ℝ,

𝔼S VarS μ(x; H) μ = n−1 H −1/2R(K) σ2 + τ2 / f (x) 1 + op(1) + N−1 H −1/2R(K)∫ γ(z)dz 1 + op(1) .

Now take d = 2. Then H = h1
2h2

2. Thus it follows that

𝔼S VarS μ(x; H) μ = n−1 h1h2
−1R(K) σ2 + τ2 / f (x) 1 + op(1) + N−1 h1h2

−1R(K)∫ γ(z)dz 1 + op(1) .

□

Proof of Lemma 1: Using (9), we get

μ(x) = 𝔼S μ(x; H) μ = ∑
i = 1

n
K* Si; x μ Si .

Thus

𝔼S ∑
i = 1

n
ε Si + δ Si μ Si; H − μ Si = 𝔼S ∑

i = 1

n
ε Si + δ Si μ Si; H − μ Si

= 𝔼S ∑
i = 1

n
ε Si + δ Si ∑

j = 1

n
K* S j; Si Z S j − μ S j

= 𝔼S ∑
i = 1

n
∑

j = 1

n
ε Si + δ Si ε S j + δ S j K* S j; Si

= ∑
i = 1

n
∑

j = 1

n
CovS ε Si , ε S j K* S j; Si + τ2 ∑

i = 1

n
K* Si; Si

= ∑
i = 1

n
∑

j = 1

n
γ N Si − S j K* S j; Si + τ2 ∑

i = 1

n
K* Si; Si .

□
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Figure 1: 

Univariate kernels L1
(k)(t) for R = 1. Solid line corresponds to L1

(1)(t) = 0.25 2 − t +, dashed 

line L1
(2)(t) = 3 − t +

2 − 3 1 − t +
2 /16, and dotted line L1

(3)(t) = 4 − t +
3 − 4 2 − t +

3 /96.
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Figure 2: 
Realizations of the random trend μ for d = 1 and k = 2 when R = 0.1 (solid line) and R = 

0.05 (dashed line).

Hyun et al. Page 22

Sankhya Ser B. Author manuscript; available in PMC 2019 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
The observed temperature anomalies (upper panel) and the difference between the observed 

temperature anomalies and the estimated trend (bottom panel) for (a) March in 1983, (b) 

March in 1993, (c) March in 2003, (d) June in 1983, (e) June in 1993, (f) June in 2003, (g) 

September in 1983, (h) September in 1993, (i) September in 2003, (j) December in 1983, (k) 

December in 1993, and (l) December in 2003.
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Table 1:

MSE for the deterministic trend model

A=2 A=8

Mean (SD) Mean (SD)

θ = 8 τ2 = 0.1 0.4886 (0.1796) 0.5840 (0.2033)

τ2 = 0.4 0.5008(0.1891) 0.6208 (0.2156)

θ = 32 τ2 = 0.1 0.1705 (0.0596) 0.2760 (0.0718)

τ2 = 0.4 0.1991 (0.0692) 0.3173 (0.0800)
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Table 2:

MSE for the stochastic trend model

Mean (SD)

θ = 8 τ2 = 0.1 0.8933 (0.2398)

θ = 32 τ2 = 0.1 0.6293 (0.1014)
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Table 3:

Estimation results for temperature anomalies data. The selected bandwidths h1 and h2 correspond to longitude 

and latitude, respectively.

Year Month ϕ σ2 τ2 h1 h2 MSE

1983 March 3.95 0.15 0.01 14.30 3.08 0.0884

June 4.48 0.14 0.02 8.71 4.62 0.0796

September 4.17 0.07 0.01 12.14 2.77 0.0360

December 3.61 0.09 0 14.23 3.01 0.0569

1993 March 4.17 0.06 0.01 11.12 3.70 0.0333

June 4.04 0.05 0 12.48 3.04 0.0276

September 3.85 0.05 0 12.34 3.50 0.0274

December 3.86 0.07 0 13.35 3.46 0.0385

2003 March 3.88 0.08 0.01 14.02 3.18 0.0433

June 4.04 0.09 0.01 10.72 5.32 0.0569

September 4.18 0.07 0.01 13.94 5.25 0.0449

December 4.15 0.07 0.01 11.44 3.26 0.0365
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