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ABSTRACT OF THE DISSERTATION

Capacity Consideration of Wireless Ad Hoc Networks
by

Yusong Tan

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California, San Diego, 2008

Professor Anthony Acampora, Chair

The focus of this dissertation is on the fundamental capacity bounds of wireless

ad hoc networks. We establish upper and lower bounds on the capacity to shed light on

what is theoretically possible and what is currently achievable.

In the first part of the dissertation, we introduce and describe a method to find an

upper bound on the capacity of wireless networks with arbitrary topology, size and traffic

demands. The upper bound not only provides a yardstick against which the throughput

of an existing wireless ad hoc network scheme can be gauged, it also provides insight

into how to design better routing and medium access control protocols for wireless net-

works. Using the upper bound, we examine the behavior of networks of different size,

under different channel conditions, and with different traffic patterns. Numeric results

indicate that, when the channel conditions are known precisely, shadow and multipath

xii



fading increase capacity; and that the capacity increases with network size when full

traffic patterns are considered but decreases when directional traffic patterns are consid-

ered.

In the second part, we obtain the performance of an optimistic protocol based on

CSMA/CA and compare it against the upper bound. There is a significant gap between

the two results, especially when considering large networks operating in the high SNR

region.

In the third part, we describe a new time-division scheduling scheme derived

from the upper bound. In addition, we make an improvement to the schedules that in-

creases the capacity significantly, even for small to medium size networks. Our sched-

ules perform better than the protocol based on CSMA/CA, for medium to high SNR

regions. Moreover, they also perform well against the upper bound when there is a di-

rectional traffic pattern, but not as well when there is a full traffic pattern. Finally, we

examine the effects of time-varying fading and mobility on the schedules. We conclude

that our schedules perform well in an environment where the channel changes slowly

relative to the schedule update rate.
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C H A P T E R 1

Introduction

1.1 Wireless Ad Hoc Networks

A wireless ad hoc network is a collection of wireless mobile nodes that self-

configure to form a network without the aid of any established infrastructure (Fig. 1.1).

Without an inherent infrastructure, nodes are responsible for network control and man-

agement themselves. A node may communicate with any other node by establishing

peer-to-peer connections. Depending on the distance between two nodes, their connec-

tion may either be a direct connection that is consisted of a single hop or a multihop con-

nection, where data is relayed to the destination through a series of intermediate nodes;

thus, nodes must cooperate to store-and-forward data on behalf of other nodes. Wireless

ad hoc networks are very appealing for many reasons. Nodes may be distributed rapidly

and randomly without requiring the establishment of a central control, which can prove

expensive, such as the construction of a cellular tower, or infeasible, such as in a hos-

tile environment. In addition, node redundancy and the lack of single points of failure

provide the robustness that infrastructure-based networks lack. These properties are es-

pecially important for military applications, and the study of wireless ad hoc networks

became an intense research topic under the name of ”packet radio network” [1, 2, 3],

supported by the Defense Advanced Research Projects Agency (DARPA) through the

1970’s and 1980’s. By the early 1990’s, research on wireless ad hoc network has inten-

sified due to the proliferation of inexpensive and widely available wireless devices and

1
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Figure 1.1 An example of a wireless ad hoc network.

the network community’s interest in mobile computing [4, 5, 6, 7]. The robustness of a

wireless ad hoc network makes it flexible enough to be tailored towards many different

types of applications. They include data networks [8], home networks [9, 10], device

networks [11], sensor networks [12, 13, 14] and distributed control systems.

These different applications have a wide range of network requirements. In order

to meet the various application requirements, there have been extensive research directed

towards different levels of the network stack. More specifically, designs in wireless ad

hoc network protocols are largely based on a layered approach, such as according to the

Open Systems Interconnection (OSI) model. Each layer is reasonably self-contained so

the tasks assigned to each layer can be implemented independently. This enables the

solutions offered by one layer to be updated without adversely affecting the other lay-

ers. Examples of research and design for some of the layers include multiple antennas,

coding, power control and adaptive techniques at the physical layer, power control and

scheduling at the medium access control (MAC) layer, energy-constrained and delay-

constrained routing at the network layer, and application adaptation at the application

layer [15].

The focus of this dissertation is on the fundamental capacity limit of a wireless ad

hoc network, which itself cannot be categorized under any one layer in the OSI model;
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instead, the goal of finding the capacity limit is to shed light on good design principles

in the different layers, e.g., routing, scheduling. In the next section, we summarize some

of the current research on capacity of wireless ad hoc networks.

1.2 Current Research on Capacity of Wireless Ad Hoc Networks

Current research on the capacity of wireless ad hoc networks can be divided into

two main categories. In one category, one seeks the asymptotic bounds by allowing the

number of nodes in a network to grow to infinity, with the goal of obtaining insights

into the behavior of large networks. In the other category, one seeks numeric bounds of

networks of some fixed set of parameters, e.g., network size, traffic pattern, topology,

usually using computer simulation involving integer linear programming (ILP) or Monte

Carlo methods.

Asymptotic Approach

In the seminal work by Gupta and Kumar [16], the authors have shown that,

for the protocol model, the total throughput of a network of arbitrarily located nodes

scales as
√

n, and the total throughput of a random network scales as
√

n/ log n with

high probability. It is shown that similar results hold for the physical model. Other

works that produced similar results are [17, 18]. Moreover, in [18], the author described

schemes that achieved total throughput that scales as n
1
2 (log n)−

3
2 and n

d+1
2 (log n)−

5
2 ,

under a general model of fading without and with mobility, respectively, for 0 < d < 1.

In [19], the authors have shown, by using percolation theory, that the total throughput of

a random network scales as
√

n instead of
√

n/ log n.

It must be noted that the aforementioned works are decidedly non-information

theoretic. The open question is whether the results obtained there, more specifically the

upper bound, can be confirmed from a information theoretic point of view. A first con-



4

firmation was made by Xie and Kumar [20], but they assumed the signals are strongly

attenuated over distance, i.e., an attenuation function of 1
rα with α > 6. In [21], Lévêque

and Telatar provided another information theoretic proof, but with only minimal as-

sumption on the attenuation function (α > 2). An alternate proof of Lévêque and

Telatar’s results was given in [22].

The bounds by Gupta and Kumar showed that, for a network with immobile

nodes, the per-node throughput tends to zero as the number of nodes in the network

increases. These results are a pessimistic indication of the scalability of wireless ad hoc

networks. However, Grossglauser and Tse [23] have shown that mobility actually im-

proves network capacity, at the sacrifice of large delays, and that the per-node throughput

is Θ(1). This result holds true even when mobility is constrained to a randomly placed

line segment [24].

Numeric Approach

While asymptotic bounds for wireless ad hoc networks provide us the insight

into the behavior of large networks, it does not shed light on the behavior of small

to medium sized networks. In addition, given a set of network parameters, we may

wish to obtain numeric bounds on the network capacity, which would provide us with

a benchmark against which current performance is compared. The general approach to

obtain numeric bounds is to use either ILP or Monte Carlo methods.

In [25], the authors proposed a constructive method to obtain the capacity region

of a wireless ad hoc network by finding the convex hull of the basic rate matrices rep-

resenting the network. Using their approach, one can numerically find the capacity of

the network given the traffic and channel gain matrix. However, that method becomes

impractical for networks with more than 15 nodes because the number of basic rate

matrices increases very rapidly with n.

In [26], the authors addressed the inefficiency in resource utilization of Time
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Division Multiple Access (TDMA) by proposing a Spatial TDMA scheme in which

time slots are reused by nodes that are sufficiently far apart. The authors presented

set covering formulations to model the resource optimization problem for both node-

oriented and link-oriented allocation strategies. The method is able to simulate networks

of up to 40 nodes; however, it does not consider the traffic pattern.

In [27], a probabilistic approach to the calculation of capacity bounds is consid-

ered. The authors modeled the effective throughput of a random network as a random

variable and calculated its expected value using Monte Carlo methods. The approach is

more scalable than the methods based on ILP and can simulate networks of up to 200

nodes.

1.3 Contributions

In this dissertation, we study the capacity of wireless ad hoc networks. Given

a set of network parameters, the methods described herein will produce an upper and

lower bound on the capacity of the network. Our contributions per chapter are as fol-

lows:

• In Chapter 3, we introduce and describe the Flow Deviation (FD) method to cal-

culate an upper bound on the network capacity. The upper bound, however, is

unachievable with high probability as the number of nodes increases. We de-

scribe this limitation of the FD method and present a proof that at least 1/3 of

this upper bound is achievable, in the absence of interference. We conclude the

chapter with some results and present the computational complexity of the FD

algorithm, which allows for the simulation of networks consist of 100 nodes or

more, depending on the traffic pattern.

• In Chapter 4, we describe and simulate a protocol similar to Carrier Sense Mul-

tiple Access with Collision Avoidance (CSMA/CA), but under ideal conditions.



6

The goal of this chapter is to gauge the performance of a realistic protocol, albeit

very optimistic, in the presence of interference by comparing it against the FD

upper bound. We conclude by noting the difference between the FD upper bound

and the protocol performance, and shedding light on areas where improvements

can be made.

• In Chapter 5, we describe a new time-division (TD) scheduling scheme that is de-

rived from the FD results. We also describe an improvement to the TD schedules

that can increase the network capacity significantly. We follow by comparing the

performance of our TD schedules against the FD upper bound and the CSMA/CA

performance. Finally, we conclude by examining the impact of time-varying fad-

ing and mobility on the effectiveness of our TD schedules.



C H A P T E R 2

System Model

Consider n nodes denoted by N1, N2, . . . , Nn distributed over a square area of

[0,
√

n − 1] × [0,
√

n − 1]. Each node has a transmitter, receiver, and infinite buffer.

Each node may wish to transmit to some or all of the other nodes, either directly or via

multihop routing. We assume nodes cannot simultaneously transmit and receive; thus,

only half-duplex communication may be established. We assume all nodes transmit at

some maximum power level P and all transmissions occupy the full bandwidth W of the

channel. Let the traffic matrix be defined as T = {Tij}, where Tij specifies the relative

traffic between nodes Ni and Nj , i, j ∈ {1, 2, . . . , n}. The diagonal elements of T are

unimportant, so we can set them to zero. Let the channel gain matrix be defined as H =

{Hij}, where Hij specifies the channel gain between nodes Ni and Nj . The diagonal

elements of H are unimportant, so they are set to zero. We also assume symmetric

channels so Hij = Hji
1. When Ni transmits, Nj receives the signal at power level HijP .

The signal is corrupted by the presence of thermal noise, background interference and

interference from other users. We model the thermal noise and background interference

jointly as additive white Gaussian noise (AWGN) with one-sided power spectral density

N0.

Let’s define the set of concurrent transmitters at an instance in time as {Nt, t ∈
T }. When Nj is receiving a transmission from Ni, its signal to interference and noise

1In general, symmetry of the channel gain matrix is not required for the FD method

7
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ratio (SINR) is defined as

ζij =
HijP

WN0 +
∑

k∈T ,k 6=i HkjP
=

γij

1 +
∑

k∈T ,k 6=i γkj

, (2.1)

where

γij =
HijP

WN0

is the signal-to-noise ratio (SNR) at Nj .

The rate R at which Ni transmits to Nj is a function of SINR and, for our pur-

poses, we use the Shannon capacity function

f(ζij) = W log2 (1 + ζij). (2.2)

Under the Shannon assumption, bit error probability can be made arbitrarily small as

long as R is less than or equal to the capacity cij = f(ζij). We assume a receiver Nj

can always correctly decode a packet, regardless of its SINR, as long as the transmitter

Ni is transmitting at a rate equal to the capacity of the channel, i.e., R = cij . This

implies that the transmitter can continuously adapt its transmission rate to meet the

SINR requirement at the receiver.

In the following chapters, instead of explicitly specifying the transmit power

P , we specify the normalizing SNR γnorm. If we consider the area of distribution a

square grid and place the nodes unit distance from each other, then ignoring the effects

of shadowing and multipaths, the SNR between neighboring nodes is defined by γnorm.

We do this so that our results can be appropriately scaled to apply to a network with

an arbitrary number of nodes distributed over an arbitrary area. For example, results

for a network with 100 nodes distributed over an area of 81 square unit distance with

γnorm = 20dB can be applied to an actual network of 100 nodes distributed over, say,

8100 square-meters as long as the SNR between nodes 10 meters apart is 20dB. An

example of a 9-node constellation is shown in Fig. 2.1.
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Ni Nj
1

Figure 2.1 The square grid for a 9-node network on which the coverage area and γnorm

are defined. The area is equal to 4 = (
√

9 − 1) × (
√

9 − 1), and γnorm is the SNR
between any two nodes unit distance from each other. For example, γnorm

ij is the SNR
between Ni and Nj .



C H A P T E R 3

Upper Bound on the Capacity of Wireless Ad

Hoc Networks

3.1 Introduction

In this chapter we describe a method to find an upper bound on the capacity of

wireless networks with arbitrary topology, size and traffic demands. The upper bound

is of interest because it not only provides a yardstick against which the throughput of

an existing wireless ad hoc network scheme can be gauged, it also provides insight into

how to design better routing and medium access control protocols for wireless networks.

The chapter is organized as follows: In Section 3.2, we introduce the Flow Devi-

ation (FD) method, which we will use to find an upper bound on the capacity of wireless

ad hoc networks. In Section 3.3, we describe how to formulate the capacity problem into

a form that can be solved using the FD method. In Section 3.4, we describe a limita-

tion of the FD method, which causes the resulting upper bound to become increasingly

”loose” as the size of the network grows. We rectify this by providing a mathemati-

cal proof that an achievable upper bound is within a constant factor of the FD upper

bound. In Section 3.5, we present and analyze some simulation results. In Section 3.6,

we describe some computational issues. We conclude in Section 3.7.

10
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3.2 The Flow Deviation Method

Suppose we have a network of n nodes, (N1, N2, . . . , Nn), that needs to route

a quantity rij of type (i, j) commodity from Ni to Nj . The multicommodity (m.c.)

flow problem consists of finding routes for all such commodities, which minimizes (or

maximizes) a well-defined performance function (e.g., total cost, delay or capacity),

while satisfying a set of constraints (e.g., channel capacity constraint). The most general

m.c. flow problem can be expressed in the following way:

Given: A network of n nodes and b arcs

An n× n matrix R = {rij}, called the requirement matrix,

whose entries are non-negative

Minimize: (or maximize) P (Φ)

where Φ is the flow configuration

and P is a well-defined performance function

Constraints: 1. Conservation of flow must hold for each node:

n∑

k=1

f
(ij)
kl −

n∑
m=1

f
(ij)
lm =





−rij, if l = i

+rij, if l = j

0, else

(3.1)

2. Non-negativity of flow:

f
(ij)
kl ≥ 0, ∀i, j, k, l. (3.2)

where f
(ij)
kl is the amount of commodity (i, j)

flowing on arc (k, l).

3. Additional constraints on Φ (3.3)
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We call any flow configuration F that satisfies Equations (3.1)-(3.3) a feasible m.c. flow

for the requirement R.

The FD method was introduced in 1973 by Fratta, Gerla, and Kleinrock [28] to

solve the flow problem where the goal is to minimize (or maximize) some well-defined

performance function for a given topology and external flow requirements. It is used

to find minima (or maxima) of unconstrained 1, non-linear, differentiable m.c. flow

problems. We present an overview of the FD method next.

The (i, j) commodity flow f (ij) is defined as:

f (ij) ,
(
f

(ij)
1 , f

(ij)
2 , . . . , f

(ij)
b

)

where f
(ij)
k is the portion of (i, j) commodity flowing in arc k, and the global flow f is

defined as:

f =
n∑

i=1

n∑
j=1

f (ij)

The performance function P (Φ) can be any generally well-defined function, but for our

purpose it is sufficient for us to define it as a function of the global flow only. Thus, we

have P (Φ) = P (f).

A flow f is defined as stationary if, for any infinitesimal perturbation δf (such

that f + δf is also an m.c. flow), we have

P (f + δf) ≥ P (f).

The most general perturbation around f can be obtained as a convex combination of f

with any m.c. flow v. The result is expressed as:

f ′ = (1− λ)f + λv = f + λ(v − f)

1This means that there are no additional constraints in Equation (3.3)
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where

v ∈ F, 0 ≤ λ ≤ 1

For λ = δλ ¿ 1, we have

δP (f) , P (f ′)− P (f) ∼= δλ

b∑

k=1

lk(vk − fk) (3.4)

where

lk =
∂P

∂fk

From Equation (3.4) and from the definition of stationarity, f is stationary if

b∑

k=1

lk(vk − fk) ≥ 0, ∀v ∈ F (3.5)

Let’s denote the perturbation around f with an operator, FD(v, λ)¯. It maps an

m.c. flow f into another m.c. flow f ′ and is defined as:

FD(v, λ)¯ f , (1− λ)f + λv = f ′

where v is a properly chosen feasible m.c. flow and 0 ≤ λ ≤ 1 is the step size.

Finally, assuming a feasible initial flow f 0 ∈ F can be found, the following

general algorithm for the FD method will allow us to find a pair (v, λ) in such a way

that the repeated application of FD(v, λ)¯ produces a sequence {fn} which converges

to a stationary flow.

1. Find a feasible starting flow f 0

2. Let m = 0

3. fm+1 = FD(vm, λm)¯ fm
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4. If {P (fm)− P (fm+1)} < ε, (or if
b∑

k=1

lk(f
m
k − vm

k ) < ε′)

where ε and ε′ are acceptable positive tolerances, stop.

Otherwise, let m = m + 1 and go to 3.

The algorithm converges to stationary points; however, the only stationary points of

stable equilibrium are the local minima, so we can assume that the algorithm converges

to local minima.

3.3 Capacity Problem Formulation

In the previous section we presented an overview of the FD algorithm, which

can be used to find local minima of unconstrained, non-linear, differentiable m.c. flow

problems. We now show that we can formulate the capacity problem into the form that

the FD method requires.

We want to minimize a performance function that captures the most basic notion

of the capacity of a wireless ad hoc network; that is, a network is at full capacity if at

least one of its nodes is fully utilized (i.e., the sum of the fractions of time a node is in

transmission and reception is 1). Let us defined the utilization function for Ni as

gi(f) =
n∑

j=1

fij

cij

+
n∑

k=1

fki

cki

(3.6)

where fij is the amount of flow on link (i, j) in bits/sec. Note that the first sum corre-

sponds to the fraction of time that Ni is transmitting and that the second sum corresponds

to the fraction of time that Ni is receiving. Thus, gi(f) is the fraction of time Ni is ac-

tively transmitting or receiving. If gi(F ) = 1, we say Ni is critical. If gi(f) > 1, we

say it is overly-critical. Otherwise, we say it is not critical.
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One way to express the capacity problem is as follows:

Given: T and H

Objective: maximize k

Constraint: be able to deliver traffic kT without any nodes

becoming overly-critical.

Thus, we seek to find the maximum factor by which T may be scaled. If we define

ψ(f) = max
i∈n

gi(f) (3.7)

where n = {1, 2, . . . , n}, then the above objective is equivalent to first minimizing

ψ(f) and then scaling T so that ψ(f) = 1. Mathematically, we want to solve the

unconstrained optimization problem

min
feasible f

ψ(f) (3.8)

and assign k = 1/ψ(f̂), where f̂ is the global flow that minimizes ψ(·). Thus, we seek

to find the flow, for a given T , for which the utilization of the maximally utilized node

is minimized. We can then scale T by a factor k such that this utilization equals 100%.

If we were to scale T by a larger factor, then at least one of the nodes would be utilized

more than 100% of the time, regardless of the flow.

In order to find a local minimum to the problem in Equation (3.8), we must find

a stationary flow such that Equation (3.5) is satisfied. To achieve that goal, we must

first determine what lk = ∂P
∂fk

and vk are for our problem. Since a max(·) function

operates on a subset of functions within its arguments, we substitute the definition of

partial derivatives with the definition of directional derivatives. We call the following

theorems and corollary from [29]:
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Theorem 1. Consider the function ψ(x) = maxj∈m f j(x), with f j : Rn → R contin-

uously differentiable. Then the directional derivative dψ(x; h) exists for all x, h ∈ Rn

and is given by

dψ(x; h) = max
j∈I(x)

〈∇f j(x), h〉. (3.9)

where I(x) , {j ∈ m|ψ(x) = f j(x)} is the maximizing set,∇ is the gradient operator,

and 〈〉 is the dot product operator .

Theorem 2 (Danskin). Suppose that the functions f j : Rn → R in ψ(x) = maxj∈m f j(x)

are continuously differentiable and that x̂ is a local minimizer of ψ(·). Then

dψ(x̂; h) ≥ 0, ∀h ∈ Rn (3.10)

Corollary 1. Suppose that the functions f j : Rn → R in ψ(x) = maxj∈m f j(x) are

convex and continuously differentiable. Then x̂ is a global minimizer of ψ(·) if and only

if Equation (3.10) holds.

It is easy to see that the functions gj(f) in Equation (3.7) is convex and continuously

differentiable since it is a linear function of f .

We define our general search direction ĥ as follows:

1. For each link (i, j), where i, j ∈ n, set its cost to 1/cij.

2. For each element Tij of the traffic matrix,

if i, j /∈ I(f), then go to Step 2a.

If i ∈ I(f), j /∈ I(f), then go to Step 2b.

If j ∈ I(f), i /∈ I(f), then go to Step 2c.

Else if i, j ∈ I(f), then go to Step 2d.

2a. Delete all Nk, k ∈ I(f), and route Tij using shortest-

route.
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2b. Delete all Nk, k ∈ I(f), except Ni.

Delete all Ni’s non-smallest cost egress links.

Route Tij using shortest-route.

2c. Delete all Nk, k ∈ I(f), except Nj.

Delete all Nj’s non-smallest cost ingress links.

Route Tij using shortest-route.

2d. Delete all Nk, k ∈ I(f), except Ni and Nj.

Delete all Ni and Nj’s non-smallest cost ingress

and egress links.

Route Tij using shortest-route.

3. Let f̃ be the resulting new flow after Step 2,

and let f̄ be the old flow resulted from the previous

search.

Then ĥ = f̃ − f̄ .

In Step 1, we set the link costs equal to the elements of ∇gi(f). In Step 2a, we dis-

allow traffic to be routed through any maximally utilized nodes. In Steps 2b, the only

maximally utilized node active is Ni because it is generating the traffic. In Step 2c, the

only maximally utilized node active is Nj because it is receiving the traffic. In Step 2d,

the only maximally utilized nodes active are Ni and Nj because the traffic is transported

between them. We delete non-smallest cost links and route using shortest-route to min-

imize 〈∇gi(f), ĥ〉 in Equation (3.9). Note that Equations (3.1) and (3.2) hold for any

flow obtained by a shortest-route algorithm such as Dijkstra’s algorithm [30]. Therefore,

f̃ is a feasible flow.

If we find a global flow f̂ such that dψ(f̂ ; ĥ) ≥ 0, then we can conclude that

dψ(f̂ ; h) ≥ 0,∀h ∈ Rn2 . This is easy to see because the only time Ni, i ∈ I(f̂), is
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active is when it is transmitting traffic generated by itself or receiving traffic intended

for itself. Also, when Ni is active, it is only using the links with the highest capacity.

Therefore, if the utilization of Ni is not lowered in the flow direction ĥ, then it cannot

be lowered in any flow direction h. We can now present our FD algorithm to solve the

new objective given in Equation (3.8):

1. Find a feasible starting flow f 0 by routing all traffic

using shortest-route

2. Let m = 0

3. Determine I(fm) using utilization functions gi(fm)

4. Find f̃
m

and ĥ
m

5. If dψ(fm; ĥm) > ε′

where ε′ is an acceptable negative tolerance, stop.

Else, go to Step 6.

6. fm+1 = FD(f̃
m

, λm)¯ fm

7. Let m = m + 1 and go to Step 3.

Finally, if f̂ is the resulting global minimum flow, then we can obtain k with equation

k = 1/ψ(f̂). The capacity of the network would be given as:

C = k

n∑
i=1

n∑
j=1

Tij (3.11)

3.4 Flow Deviation Limitation

Wireless ad hoc networks are ”packet radio networks,” where flows are gathered

in packets before being sent across the network. However, from Section 3.2 we see

that the FD algorithm produces continuous flows instead of packetized flows. As a
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consequence, in order to achieve the flow satisfying Equation (3.8), some nodes may

be required to communicate with multiple nodes at any given time. For example, in a

simple single-hop network with only three nodes where the traffic matrix and capacity

matrix are respectively given as

T =




0 2 0

0 0 2

2 0 0


 , C =




0 2 0

0 0 2

2 0 0




the resulting flow from the FD algorithm would look like

f̂ =




0 2 0

0 0 2

2 0 0




This corresponds to each node having a utilization of 2, meaning that all of the traffic

given in T can be delivered in 2 seconds, giving an upper bound on capacity of 3 bits/sec.

However, if each node can only transmit or receive (but not both) from one other node,

then the network actually requires 3 seconds to deliver the same traffic, giving an upper

bound of only 2 bits/sec. Therefore, the flow provided by the FD algorithm gives a loose

upper bound on the capacity of a network.

Definition 1. A matrix R is called a rate matrix2 if the following holds:

Rii = 0; Rij ≥ 0, i 6= j. If Rij is non-zero, then

Rik = 0, ∀k 6= j; Rlj = 0, ∀l 6= i; Rmi = Rjm = 0, ∀m

Each rate matrix specifies a valid TD schedule in the absence of interference.

The non-zero elements in R are the corresponding link capacities (e.g., if R12 is non-

2From this point forward, R denotes rate matrix and not the requirement matrix of m.c. flow.
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zero, then R12 = c12).

Definition 2. An achievable capacity Ca is one that satisfies:

Ca =
∑

i

αiRi,
∑

i

αi ≤ 1

where αi is the fraction of time Ri is used.

Let us define Cu as the highest achievable capacity that can be obtained, possibly

by using exhaustive search. We now make the following claim:

Claim 1. The highest achievable capacity Cu cannot be less than 2/3 of the FD upper

bound in special cases or less than 1/3 of the FD upper bound in the worst case.

Proof. First, we introduce the normalized flow matrix B whose elements are defined as

Bij = f̂ij/cij , where f̂ij is the element of the global minimum flow f̂ that corresponds

to the flow on link (i, j). Next, we rewrite B as B = βB̃, where β is the largest row or

column sum of B. B̃ has the property that there exists some ĵ such that either the ĵth

column sum or ĵth row sum or both equal to one. Now we pad the elements of B̃ so that

all of its column and row sums equal to one and call this matrix B̃
pad

. This is always

possible because the padding problem can be constructed into a transportation problem

where the total supply equals the total demand [31]. B̃
pad

is a doubly stochastic matrix

and can be decomposed according to the following theorem [32]:

Theorem 3 (Birkhoff-von Neumann). An n × n matrix over R is doubly stochastic if

and only if it is a convex combination of permutation matrices.

Let us digress for a second and present the following claim:

Claim 2. A permutation matrix P with m > 0 off-diagonal and non-zero elements is

the sum of at most three maximum size rate matrices.
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Proof. Ignoring the diagonal elements, P can be divided into l ≤ bm
2
c disjoint rings.

For each ring i, number the links consecutively. If ring i has an even number of links,

then it can written as a sum of two rate matrices, Ri
1 and Ri

2. Ri
1 contains all the odd

links, and Ri
2 contains all the even links. However, if ring i has an odd number of links,

then it can be written as a sum of three rate matrices, Ri
1, Ri

2 and Ri
3. Ri

1 contains all

the odd links, except the last link, Ri
2 contains all the even links and Ri

3 contains the

last link. Because all the rings are disjoint, the three maximum size rate matrices can be

written as:

R1 =
l∑

i=1

Ri
1; R2 =

l∑
i=1

Ri
2; R3 =

l∑
i=1

Ri
3

From the Birkhoff-von Neumann theorem we know that B̃
pad

=
∑

i

αiP i,

where
∑

i

αi = 1. If we can create valid TD schedules according to P i, then we

can remove all the flows given in B̃
pad

in one second. However, this is impossible. In

fact, from the previous claim we know that each P i can be decomposed into at most

three maximum size rate matrices, each of which is a valid TD schedule. Therefore,

the amount of time, tlb, it takes to remove all the flows in B̃
pad

is at most three sec-

onds. On the other hand, the amount of time, tub, to remove the flows in B̃, according

to the FD upper bound, is equal to ĵth column sum plus ĵth row sum, and it is be-

tween one and two seconds3. Therefore, we have 1/3 ≤ tub/tlb ≤ 2/3, which implies

1/3 ≤ klb/kub ≤ 2/3.

3From this point forward, unless specified otherwise, whenever we mention the time it takes to remove
a set of flows, we are always referring to the flow B̃
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3.5 Simulation Results and Analysis

We simulated our network in MATLAB, and the parameters we used are n, T , H

and γnorm. The channel gains Hij depend on the channel model we use. The propagation

losses for a radio link are usually divided into three categories: path-loss, shadowing,

and multipath fading [33, 34, 35]. When considering path-loss only, Hij is given by

Hij =
1

|Xi −Xj|α , (3.12)

where α is the path-loss coefficient and is set to α = 4. When considering path-loss and

shadowing, Hij is given by

Hij = Sij
1

|Xi −Xj|α , (3.13)

where Sij is a lognormal random variable with mean 0 and standard deviation σ =

6 dB. So Sij = 10ηij/10, where ηij has Gaussian distribution with mean 0 and standard

deviation σN = 6. Finally, when considering path-loss, shadowing and multipath fading,

Hij is given by

Hij = MijSij
1

|Xi −Xj|α , (3.14)

where Mij is an exponential random variable with mean 1.

We simulated networks of various sizes and different traffic patterns, with γnorm =

5, 10, or 20dB. For each scenario, we repeated the simulation 100 times, each time with

node locations randomly chosen. An average FD upper bound on the network capacity is

obtained, where the capacity is defined as the sum of all the elements of kT . An average

TD lower bound on the average highest achievable capacity Cu is obtained according to

the proof of Claim 1. The lower bounds are calculated according to the formula tub/tlb,

where tub is the amount of time it takes to remove the traffic T according to the FD

algorithm, and tlb is the amount of time it takes to remove the same traffic using valid

TD schedules. Equivalently, klb/kub = tub/tlb, where klbT is the maximum amount of
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traffic the network can deliver in one second using valid TD schedules, and kubT is the

maximum amount of traffic the network can deliver in one second according to the FD

algorithm.

3.5.1 Full Traffic Pattern

In this subsection, we evaluate networks of various sizes under heavy traffic;

that is, we consider full traffic matrices, where each element, except for those on the

diagonal, is Poisson distributed with mean 1. This type of traffic matrix characterize a

general peer-to-peer network where any two nodes can communicate. Results are shown

in Fig. 3.1. It can be seen from the figure that when there are few nodes, the FD upper

bound and TD lower bound are tight, meaning that the highest achievable capacity is

close to the upper bound. However, as the number of nodes increases, the TD lower

bound approaches close to 2/3 the FD upper bound. This is a direct result of Claim

1. We have approximately 2 in the numerator because the traffic matrix we used is

approximately symmetrical around the diagonal; therefore, the fraction of time a node

is transmitting and the fraction of time it is receiving are approximately equal. We have

3 in the denominator because the larger the network the more likely that most of the

permutation matrices must be decomposed into 3 maximum size rate matrices.

In Fig. 3.2, the FD upper bounds for all three channel models (Equations (3.12),

(3.13) and (3.14)) are shown. It can be seen that, overall, shadowing and multipaths

improves the capacity of the system, which agrees with a similar conclusion drawn in

[36]. This is expected because the FD algorithm favors channels with high capacity and

disfavors those in deep fade. When there are only a few nodes, the benefit of shadowing

is small (∼ 10% gain), and the presence of multipaths actually negates any benefit from

shadowing. When there are a large number of nodes, the benefit of shadowing and

multipath becomes more significant (∼ 78% gain at 81 nodes). Also, at even moderate

number of nodes, benefits from shadowing dominates the benefits from multipath. The
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Figure 3.1 Full traffic matrix with elements Poisson distributed with mean 1. γnorm =
20dB. Channel model considers path-loss and shadowing. (a) Average FD upper bound
and its standard deviation. (b) Average TD lower bound.

TD lower bounds are not shown because similar trends shown in Fig. 3.1 can be assumed

for each upper bound curve.

A plot of capacity versus normalizing SNR γnorm for different network sizes is

shown in Fig. 3.3. We can see from the figure that small networks (n ≤ 9) have a

fairly linear increase in capacity as a function of SNR in dB. The slope of a straight line

approximating curve (a) is about 1bits/sec/Hz per 1dB of SNR. If we want to increase the

capacity by 10bits/sec/Hz, we will have to increase the SNR by ten-fold. On the other

hand, a moderate to large network (n ≥ 36) display a polynomial curve, which means

that as the number of nodes and SNR increase, less relative SNR change is required

to produce a large capacity gain. Consequentially, this leads to the observation that as
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Figure 3.2 Full traffic matrix with elements Poisson distributed with mean 1. γnorm =
20dB. (a) Average FD upper bound and standard deviation with channel model consid-
ering path-loss only. (b) Average FD upper bound and standard deviation with channel
model considering path-loss and shadowing. (c) Average FD upper bound and standard
deviation with channel model considering path-loss, shadowing and multipaths.

a network becomes very large, at high SNR, even a small relative node increase can

produce a large capacity gain. As an example, in Fig. 3.3, at SNR = 5dB, we have

to increase the network size from 9 nodes to 81 nodes in order to double the capacity.

However, at SNR = 20dB, we only have to increase the network size from 9 nodes to 36

nodes in order to double the capacity.
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Figure 3.3 Full traffic matrix with elements Poisson distributed with mean 1. Channel
model considers path-loss and shadowing. SNR is the normalizing SNR γnorm. (a)
Average FD upper bound and standard deviation for n = 9. (b) Average FD upper
bound and standard deviation for n = 36. (c) Average FD upper bound and standard
deviation for n = 81.

3.5.2 Ring Traffic Pattern

In this subsection, we evaluate networks of various sizes and traffic matrices

with a ring structure, where all the non-zero elements are 1. This means that each node

transmits to only one node and receives from only one node, but not the same node. A
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Figure 3.4 Ring traffic matrix. γnorm = 20dB. Channel model considers path-loss and
shadowing. (a) Average FD upper bound and standard deviation. (b) Average TD lower
bound.

ring traffic pattern for a 4-node network may look like:

T =




0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0




This type of traffic pattern characterizes a network with very light traffic load where

each node only communicates with few other nodes. In Fig. 3.4, we show the FD upper

bound and TD lower bound for γnorm = 20dB and different network sizes. The FD
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upper bound is very close to the FD upper bound of Fig. 3.1, which is not surprising

because in each case the respective traffic matrix is scaled so at least one node in the

network is at 100% utilization. However, the FD upper bound in Fig. 3.4 is slightly

lower than its counterpart in Fig. 3.1. This is because a full traffic matrix makes more

efficient use of the network resources than a sparse matrix would. In other words, on

average, there are more fully utilized nodes under heavy traffic than light traffic. Another

thing we can see is that, for a large network, the TD lower bound in Fig. 3.4 is about

1/2 of the FD upper bound, as opposed to 2/3 shown in Fig. 3.1. This is the result of

the shape of the ring traffic pattern. Since the traffic matrix is clearly not symmetric

about its diagonal, we would not expect a node to spend the same amount of time in

transmission and reception; therefore, the amount of time the FD algorithm predicts

will take to remove the traffic B̃ is somewhere between 1 to 2 seconds, whereas it will

very likely take 3 seconds for TD to remove the same traffic.

In Fig. 3.5, we show the resulting FD upper bounds for different channel models,

which exhibit similar behaviors as those shown in Fig. 3.2. That is, shadowing improves

the capacity, although not as much as in the case with full traffic matrix, but it is still

significant (∼ 64% gain); and the presence of multipaths does not significantly impact

the capacity of the network when shadowing is present.

Finally, we look at how different normalizing SNR affect the capacity for a se-

lect few network sizes. The results are shown in Fig. 3.6. Similar to the results for

a full traffic matrix, we can see from the figure that small networks (n ≤ 9) have a

fairly linear increase in capacity as a function of SNR in dB, with a slope of approxi-

mately 1bits/sec/Hz per 1dB of SNR. On the other hand, a moderate to large network

(n ≥ 36) display a polynomial curve, which means that as the number of nodes and

SNR increases, less relative SNR change is required to produce a large capacity gain.

Consequentially, this leads to the observation that as a network becomes very large, at

high SNR, even a small relative node increase can produce a large capacity gain.
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Figure 3.5 Ring traffic matrix. γnorm = 20dB. (a) Average FD upper bound and its stan-
dard deviation with channel model considering path-loss only. (b) Average FD upper
bound and its standard deviation with channel model considering path-loss and shad-
owing. (c) Average FD upper bound and its standard deviation with channel model
considering path-loss, shadowing and multipaths.

3.5.3 Skewed Traffic Pattern

In this subsection, we evaluate the capacity of networks with traffic matrix in a

skewed pattern. A skewed traffic matrix is one where all the traffic originate from and

destine to only a select few nodes. It can be pictured in a tree form where there are

only a few root nodes, and all traffic flow from the root nodes to the leaf nodes and vice

versa. Let’s call the root nodes the base-stations and all the remaining nodes the mobiles.

An example of a network with 9 nodes composed of 3 base-stations and 6 mobiles is

shown in Fig. 3.7. The base-stations are represented by solid circles, and the mobiles
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Figure 3.6 Ring traffic matrix. Channel considers path-loss and shadowing. SNR is the
normalizing SNR γnorm. (a) Average FD upper bound and standard deviation for n = 9.
(b) Average FD upper bound and standard deviation for n = 36. (c) Average FD upper
bound and standard deviation for n = 81.

and represented by white circles. Solid lines represent wired links, which we assume

to have infinite capacity, and the dotted lines represent wireless links, which have finite

capacity. The corresponding traffic matrix would have only 3 rows and columns with

non-zero elements. We assume base-stations do not have traffic for each other, so, in

general, a skewed traffic matrix would have T (i, j) = 1 if one of the indices is a base-

station and the other is a mobile; otherwise, T (i, j) = 0.

A skewed traffic matrix can represent many different types of networks that are

composed of different types of nodes. In one scenario, this type of traffic matrix can

characterize a wireless metropolitan area network (WMAN) [37], where there are 3
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N1

N2

N3

Figure 3.7 A 9-node network composed of 3 base-stations (solid circles) and 6 mobiles
(white circles). Solid lines represent wired links, which are assumed to have infinite
capacity. Dotted lines represent wireless links, which have finite capacity. Traffic matrix
are skewed, meaning the demands are only between base-stations and mobiles.

base-stations and various number of access nodes and mobiles. If we assume that the

communication channels between mobiles and access nodes and the communication

channels between access nodes and base-stations are separate and non-interfering, then

the skewed traffic matrix specifies the traffic between access nodes and base-stations.

In another scenario, this type of traffic matrix can represent a multihop cellular network

[38, 39], where mobiles that are far from a base-station can use mobiles that are closer

to relay their traffic. The node distribution shown in Fig. 3.7 more realistically portrait

one quadrant of a cellular network that is divided into four sectors, where all sector im-

plements frequency reuse, so a node from one sector can only route traffic from another

node in the same sector.

In our simulation, we assigned the 3 nodes closest to an arbitrary corner of the

distribution area as the base-stations, and the rest as mobiles. The performance of net-

works with skewed traffic matrices are shown in Fig. 3.8. First of all, it can be seen from

the figure that the capacity of the network decreases as a function of the total number of

nodes. This is because, for small number of nodes, the bottlenecks of the network are
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Figure 3.8 Skewed traffic matrix. γnorm = 20dB. Channel model considers path-loss
and shadowing. (a) Average FD upper bound and standard deviation. (b) Average TD
lower bound.

often the base-stations. However, as the network grows, nodes close to the base-stations

usually also become bottlenecks, and the average distances between the base-stations

and the mobiles who are bottlenecks also increase. This factor along with a high path-

loss attenuation factor of α = 4 caused the total capacity to decrease with n. Secondly,

the TD lower bound is around 80% of the FD upper bound, which is higher than the

respective results for a full or ring traffic matrix. This is largely a result of the highly

directional flows to and from one corner of the network caused by the skewed traffic

pattern.

We also plotted the capacity versus the normalizing SNR, for a selective few
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Figure 3.9 Skewed traffic matrix. Channel model considers path-loss and shadowing.
SNR is the normalizing SNR γnorm. (a) Average FD upper bound and standard deviation
for n = 9. (b) Average FD upper bound and standard deviation for n = 36. (c) Average
FD upper bound and standard deviation for n = 81.

network sizes. The results are shown in Fig. 3.9. As opposed to the results (Fig. 3.3 and

Fig. 3.6) shown for the other traffic patterns, where the capacity increases more quickly

for larger n, the results for the skewed traffic matrix show the complete opposite. Fig.

3.9 shows that not only is the capacity a decreasing function of n, the capacity function

maintains approximately the same shape regardless of the size of the network. In other

words, the major difference between the capacity curve for a 9-node network and a

81-node network is some constant offset. This means that once we have a full curve

for a particular network size up to some normalizing SNR, we can approximate the

performance of any other network size up to the same SNR, as long as we know the
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Table 3.1 Average simulation time (sec) of FD algorithm for γnorm = 20dB
n = 9 16 25 36 49 64 81

Full traffic 0.12 0.88 4.4 18 65 214 650
Ring traffic 0.06 0.40 1.5 5 11 26 48
Skewed traffic 0.06 0.26 0.8 2 3 10 17

offset value at any particular SNR.

3.6 Computational Issues

The simulations were performed on a computer with Intel CoreTM2 Duo proces-

sors at 2.00 GHz and 2 gigabyte of RAM. The software we used was MATLAB. For

evaluation of simulation speed, two sets of run times are saved. One is the run time in

the calculation of the FD upper bound, and the other is the run time in the decomposi-

tion of the flow into TD schedules. Recall that when we set up the FD algorithm for our

problem in Section 3.3 that the number of iterations to be run is dependent on ε′, which

controls the threshold of directional derivatives above which the algorithm terminates.

In our simulations, ε′ = −0.1. The average run times for the FD upper bounds is shown

in Tables 3.1 for γnorm = 20dB and various traffic patterns.

We can see that the run time for the FD algorithm under a full traffic matrix

increases very fast as the size of the network grows. This is due to the fact that the num-

ber of shortest-path calculations grow as n2. On the other hand, the run times for both

ring traffic and skewed traffic increase much more slowly as a function of the network

size. This is because the number of shortest-path calculations only grows linearly with

n. The run times in skewed traffic is smaller than that for a ring traffic is because the

FD algorithm converges much faster for a skewed traffic due to the directionality of the

flows, in which case certain nodes, either the base-stations themselves or some mobiles

close to the base-stations, unavoidably become congested quickly.



35

Table 3.2 Average simulation time (sec) of TD decomposition
n = 9 16 25 36 49 64 81

Avg. time = 0.01 0.05 0.15 0.4 1 2 5

The run time of the FD algorithm can be decreased in many ways. The simplest

way is to increase the processing power of the computers. Another is to streamline the

algorithm to take advantage of certain aspects of computer processing (e.g., parallel pro-

cessing, using C++/MATLAB mixture of code). Also, there are a few ways to increase

the convergence rate of the FD algorithm if one is only interested in the ball-park value

of the upper bound. One way is to decrease the directional derivative threshold ε′, which

will decrease the number of iterations of the FD algorithm before converging. Another

is to delete certain links of the network that fall below some capacity threshold, thus

reducing the total number of alternate paths to route the traffic.

The run times to calculate the TD lower bound from the flows of an n-node

network is shown in Table 3.2. In obtaining the values for Table 3.2, We did not specify

the type of traffic patterns or the value of the normalizing SNR used because the TD

decomposition depends primarily on the size of the flow matrix. During each iteration

of the TD decomposition, at least one of the elements of the flow matrix is removed;

therefore, there are a maximum of n(n − 1) iterations of the TD decomposition of an

n-node network. The run times for TD decompositions may increase as n2, but it is

much less compared to the run times of the FD algorithm for all three types of traffic

patterns.

3.7 Conclusions

In this chapter, we introduced and described the FD method. Using this method,

we found an upper bound on the capacity of wireless ad hoc networks when there is

no interference. The FD upper bound is not necessarily the tightest upper bound, but
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it does provide a yardstick against which the throughput of a conventional hop-by-hop

ad hoc network may be gauged. In fact, the FD upper bound is unachievable with high

probability as the number of nodes in the network increases, but we proved that, under

special cases, 2/3 of it is achievable, and under the worst case, 1/3 of it is achievable.

The FD method also allowed us to examine the behaviors of networks under differ-

ent channel conditions and with different traffic patterns. We saw that if the channel

conditions are known, then shadow and multipath fading actually improves the overall

throughput because the network can take advantage of the links that are bolstered by

the fading, while avoiding those that are degraded. For networks with full or ring traffic

patterns, it is not surprising to find the network capacity to increase as a function of n.

Under the same traffic patterns, we also observed that, for small networks (n = 9), the

capacity increases approximately linearly with γnorm, and for medium to large networks

(n > 36), the capacity increases polynomially with γnorm. One surprising observation is

that, under skewed traffic pattern, the total capacity actually decreases with n, and that

the capacity-γnorm curves for different network sizes only differ by some constant off-

sets. These phenomena are results of the way base-stations are distributed in one corner

of the coverage area and bottlenecks being created along the path between sources and

destinations as the network size grows. Finally, we examined the computational com-

plexity of the FD algorithm and found that it scales better than the methods in [25, 26].

Chapter 3, in part, is a reprint of the material in the following papers: M.Y. Tan

and A. Acampora, ”Capacity Estimation of Peer-to-Peer Networks Based on a Flow De-

viation Approach,” IEEE International Symposium on Personal, Indoor, Mobile Radio

Communications (PIMRC), Athens, Sept. 2007; paper to be submitted to IEEE Transac-

tions on Wireless Communications. The dissertation author was the primary investigator

and author of this paper, and the co-author listed in these publications directed and su-

pervised the research which forms the basis of this dissertation.



C H A P T E R 4

Carrier Sense Multiple Access with Collision

Avoidance

4.1 Introduction

In Chapter 3, we found an upper bound on the capacity of wireless ad hoc net-

works in the absence of co-channel interference. In this chapter, we consider an existing

MAC protocol and compare its performance, in the presence of interference, against the

upper bound. The MAC protocol we will evaluate is based on CSMA/CA.

The chapter is organized as follows: In Section 4.2, we give an overview of the

CSMA/CA protocol. In Section 4.3, we describe the model that is used to simulate

the protocol. In Section 4.4, we show how different queueing disciplines affect the

performance of CSMA/CA. In Section 4.5, we present and analyze some simulation

results. We conclude in Section 4.6.

4.2 Background

Under CSMA/CA [40, 41, 42, 43], a source node that wish to transmit data first

sense the channel. If the channel is busy, then the node defers transmission. If the

channel is free, then it sends a short Request To Send (RTS) packet. After receiving

the RTS packet and upon determining the channel is free, the destination node will

37
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Figure 4.1 The hidden and exposed node problems. (i) A wishes to transmit to B, and
C, hidden from A’s communication, is notified of this intention upon hearing the CTS
packet so it will defer until after B receives the DATA packet. (ii) B wishes to transmit
to A, and C, exposed to B’s communication, is notified of this intention by hearing the
RTS packet but it will only have defer until after B receives the CTS packet. If B and
C coordinate their control packets, C can also transmit to D, thus resulting in higher
utilization of the channel.

respond with a short Clear To Send (CTS) packet, giving the source node permission

to send data. The CTS packet also acts as a mechanism to silence the hidden nodes,

which are nodes that are within the destination node’s communication range but outside

the source node’s communication range. A node hearing the CTS packet will refrain

from transmitting for the entire duration of the data packet so it will not cause packet

collision at the destination node. On the other hand, a node hearing only the RTS packet

will simply defer long enough for the source node to receive the CTS, after which it may

begin its own transmission, as long as its receiver is out of the range of the source node,

thus effectively solving the exposed terminal problem (Fig. 4.1).

CSMA/CA is an improvement over CSMA, but it does not completely eliminate

the hidden node problem. First of all, CTS packets may still suffer collision. Secondly,
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Figure 4.2 The RTS-CTS-DATA-ACK handshake. C wishes to transmit to B, and both
A and D must defer until after the ACK packets is received. D cannot transmit early
because it will interfere with the reception of ACK at C.

interference range is different from communication range, meaning a node that does

not hear the CTS packet can still potentially cause interference at the receiver. For

example, in Fig. 4.1(ii), if the channel matrix is asymmetric, then C may be outside B’s

communication range but B is inside C’s communication range, and C can still cause

collision at B. However, this fact is usually overlooked in evaluating protocols based on

CSMA/CA as it leads to simpler graph models [44, 45].

The RTS/CTS handshake is also coupled with a back-off mechanism that ensures

nodes do not transmit immediately after the channel becomes available, but rather wait a

random back-off time, in order to reduce the probability of collision. In some variations

[40, 43], an Acknowledgment (ACK) packet is returned by the destination node upon

successful reception of the data packet. Under these settings, all nodes hearing the RTS

and/or CTS will refrain from transmitting until the complete data packet and ACK packet

have been received. An example of the RTS-CTS-DATA-ACK handshake is shown in

Fig. 4.2.

4.3 Simulation Model

The throughput of the CSMA/CA medium access control mechanism in IEEE

802.11 has been studied extensively [46, 47, 48, 49]. We consider the optimistic perfor-
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mance of a simple protocol based on CSMA/CA by assuming that RTS and CTS packets

use negligible time to transmit, and no ACK is sent so the channel will be better uti-

lized. We also assume that concurrent transmissions are possible because not all nodes

will hear the RTS-CTS exchange, and that each transmitter knows the total amount of

interference so it can adjust its transmission rate accordingly to meet its receiver’s SINR

requirement.

We first define the following terms. t and r are vectors containing the set of

active transmitters and receivers, respectively. t̄ and r̄ are vectors containing the set of

nodes that cannot be transmitters and receivers, respectively, as a result of overhearing

the RTS-CTS exchange.

A node Nt not in the sets t, t̄ and r looks at its queue for the next packet it must

transmit. If FIFO (first-in first-out) queueing is required, then the node will attempt to

transmit the first packet in its queue; but if SIRO (served in random order) queueing is

used, then the node can transmit a packet in any queue position. After determining which

packet to transmit and its final destination, the node will look up its next hop receiving

node Nr in the routing table, which is calculated using a shortest-path algorithm with

inverse capacity as link cost. For example, if a packet is to be transmitted from source

N1 to destination N2 along shortest-path N1 −→ N3 −→ N2, then while the packet is

in N1’s queue, N1 will attempt to transmit it to N3. If the next hop receiving node is

not in the sets r, r̄ and t, then both Nt and Nr are added to t and r, respectively, which

is an indication that Nt did not overhear a CTS while Nr did not overhear a RTS; and

all nodes whose SNRs from Nt are above some SNR threshold γt are added to r̄, and

all nodes whose SNRs at Nr are above γt are added to t̄ (i.e., nodes that only overhear

RTS can still transmit but not receive, those that only overhear CTS can still receive

but not transmit, and those that overhear both must remain silent). Otherwise, Nt is

added to t̄ 1 because it has no available receiver to which to transmit. This process is

1In the case of SIRO queueing, all buffered packets are searched until one, if any, whose Nr not in the
sets r, r̄, and t, is found
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Figure 4.3 CSMA/CA simulation process.

repeated until all nodes are searched. At this point, we have a set of transmitters and its

corresponding receivers that will communicate concurrently, and we can calculate the

precise SINR between each transmitter and receiver. Because the capacities will differ

among the transmitter-receiver pairs, one node will complete transmitting its packet

before others. Once that node finishes transmitting its packet, the packet is removed

from the transmitter’s queue and inserted into the receiver’s queue. The transmitter-

receiver pair is also removed from t and r, and the process begins anew at the search

of possible additional transmitter-receiver pairs for t and r, and the SINRs are updated

accordingly.

An example of this process for a 6-node network is shown in Fig. 4.3. In this

network, A and B have packets for each other, C and D have packets for each other, E

and F have packets for each other, and F and A have packets for each other. Initially
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(first step), the network is idle. Next (second step), A captures the channel first and

begins transmitting to B. C overhears B’s CTS, so it must refrain from transmitting, and

F overhears A’s RTS, so it cannot receive. The only options left are for D to transmit to

C and for F to transmit to E. In the third step, D captures the channel as well and begins

transmitting to C. E overhears the RTS and CTS between C and D, so it must remain

silent until their transmissions are finished. F must also remain silent as well because

all of its receivers are unavailable. In the fourth step, A completes its transmission to B,

and F captures the channel and begins transmitting to A.

The SNR threshold γt is the threshold below which control packets can no longer

be decoded correctly, causing neighboring nodes to fail to defer communication. It con-

trols the communication range of a transmitter and indirectly affects the number of con-

current transmissions in a network of fixed size. A very small γt indicates a very large

communication range, so more nodes will overhear an RTS-CTS exchange, resulting in

very few concurrent transmissions. On the other hand, a very large γt indicates a very

small communication range, resulting in many concurrent transmissions. It is ideal to

operate at some γt such that spatial reuse is optimal [50, 51]. Fig. 4.4 shows effects of

different values of γt.

4.4 Queueing Discipline

According to [52], queuing discipline represents the way the queue is organized;

that is, it dictates how packets are inserted and removed from the queue. The commonly

used queue disciplines are FIFO, LIFO (last-in first-out), SIRO, and priority queues,

where packets are served in order of importance on the basis of their performance re-

quirements. FIFO queueing are the most commonly considered discipline, but we will

see next that SIRO queueing is more suitable for wireless ad hoc network, as it leads to

better spatial reuse.
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Figure 4.4 The effect of various values of γt on spatial reuse. In all scenarios, A wishes
to transmit to B, C wishes to transmit to D, and E wishes to transmit to F. (i) Very small γt

translates to large communication range, resulting in transmission A −→ B only. There
are no interference at B but also no spatial reuse. (ii) Very large γt translates to small
communication range, resulting in concurrent transmissions A −→ B, C −→ D, and E
−→ F. Each receiver experiences interference from two transmitters, but spatial reuse is
maximized. (ii) A value of γt that optimizes spatial reuse, where only two concurrent
transmissions are possible.

Consider a four node network shown in Fig. 4.5, where nodes can only commu-

nicate with their closest neighbors. Suppose B wishes to transmit to A, and C wishes to

transmit to B and D. In Fig. 4.5(i), B captures the channel first and begins transmission

to A. C, which uses FIFO queueing, must remain silent until B finishes transmitting. On

the other hand, in Fig. 4.5(ii), C, which uses SIRO queueing, can elect to transmit the

packet destined to D first while B is busy transmitting to A. In this case, the spatial reuse

is increased, and the channel is better utilized.
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Figure 4.5 Spatial reuse under FIFO and SIRO queueing. (i) B is transmitting to A, so
C must wait until B is finished. (ii) B is transmitting to A, but C can elect to transmit to
D at the same time.

4.5 Simulation Results and Analysis

To find the average capacity of the network, packets are periodically inserted into

the queues of random source nodes and forwarded towards random destination nodes.

The number of packets inserted each period is increased until the queue in at least one

node is slowly increasing unbounded. We equate the total throughput of the network as

its capacity.

The throughput of a network depends on the SNR threshold γt, which controls

the communication range. Smaller γt leads to larger communication range, which re-

sults in less interference and spatial reuse, and larger γt leads to smaller communication

range, which results in more interference but also more spatial reuse. We expect the

throughput to be a concave function of γt; therefore, given a network size, we look for

the optimal throughput by slowly increasing γt from 0.
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4.5.1 Full traffic pattern

Fig. 4.6 shows the performance of CSMA/CA under heavy traffic as a func-

tion of network size. The top plot considers a normalizing SNR γnorm = 20dB, and

it shows that even under favorable conditions (i.e., RTS-CTS handshake requires zero

time, no ACK, perfect and continuous transmission rate adjustments), CSMA/CA falls

a magnitude short of the FD and TD bounds. It should be noted that because we used a

moderate SNR value, the benefits of spatial reuse over the detrimental effects of inter-

ference is only beginning to appear at 81 nodes. In terms of numbers, normalized by the

FD upper bound, at n = 9, CSMA/CA with SIRO achieves 27%, and CSMA/CA with

FIFO achieves 26%; and at n = 81, CSMA/CA with SIRO achieves 8%, and CSMA/CA

with FIFO achieves 4%.

In the bottom plot, which considers γnorm = 5dB, the benefits of spatial reuse be-

comes much more pronounced beyond 16 nodes. The difference between the CSMA/CA

results and the FD upper bound is also much smaller at the lower SNR range. In terms of

numbers, normalized by the FD upper bound, at n = 9, CSMA/CA with SIRO achieves

43%, and CSMA/CA with FIFO achieves 40%; and at n = 81, CSMA/CA with SIRO

achieves 31%, and CSMA/CA with FIFO achieves 15%.

In both cases, when compared to CSMA/CA with FIFO queueing, CSMA/CA

with SIRO queueing provides approximately two-fold increase in capacity at 81 nodes.

The improvement will only increase with n, as the FIFO result is a decreasing function

while the SIRO result is an increasing function due to better spatial reuse.

4.5.2 Skewed traffic pattern

In Fig. 4.7, we consider the performance of CSMA/CA under skewed traffic

matrix. In Section 3.5.3, we found that the directionality of the traffic created bottle-

necks near the base-station nodes and lead to a decrease of capacity with n. The same
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Figure 4.6 Comparison of theoretical bounds and CSMA/CA throughput. Network con-
siders full traffic matrix with channel model including path-loss and shadowing. Nor-
malizing SNR γnorm = 20dB for the top plot, 5dB for the bottom plot. (a) Average FD
upper bound. (b) Average TD lower bound with no interference. (c) CSMA/CA with
FIFO queueing. (d) CSMA/CA with SIRO queueing.
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Figure 4.7 Comparison of theoretical bounds and CSMA/CA throughput. Network
considers skewed traffic matrix with channel model including path-loss and shadowing.
Normalizing SNR γnorm = 20dB. (a) Average FD upper bound. (b) Average TD lower
bound with no interference. (c) CSMA/CA with FIFO queueing. (d) CSMA/CA with
SIRO queueing.

phenomenon is seen in the CSMA/CA results, where CSMA/CA with SIRO queueing

appears to provide only a small improvement (∼ 10%) in capacity when compared to

CSMA/CA with FIFO queueing. This is because nodes far from the base-stations are

competing to transmit to nodes closer to the base-stations, so transmitting random pack-

ets in the queues does not lead to large increase in channel utilization. In terms of

numbers, normalized by the FD upper bound, at n = 9, CSMA/CA with SIRO achieves

29%, and CSMA/CA with FIFO achieves 28%; and at n = 81, CSMA/CA with SIRO

achieves 12%, and CSMA/CA with FIFO achieves 11%.
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4.6 Conclusions

We have described the CSMA/CA medium access control mechanism and pre-

sented its throughput analysis for multihop wireless networks. It is shown that while a

very optimistic form of CSMA/CA was analyzed, the gap between the CSMA/CA re-

sult and the FD upper bound is still significant, especially if a large network operating

at high SNR is considered. This leads to the conclusion that, although the gap between

any realistic MAC protocol and the FD upper bound may not be closed completely, as

the latter considers no interference, there is still room for improvement in MAC design

that will decrease that gap. One of the ways is to use SIRO queueing instead of FIFO

queueing, which increases spatial reuse and can provide significant capacity gain as we

have shown.

Chapter 4, in part, is a reprint of the material to be submitted to IEEE Transac-

tions on Wireless Communications. The dissertation author was the primary investigator

and author of this paper, and the co-author listed in these publications directed and su-

pervised the research which forms the basis of this dissertation.



C H A P T E R 5

A New Time-Division Scheduling Scheme

5.1 Introduction

In Chapter 4, we compared the performance of a protocol based on CSMA/CA

against the FD upper bound and concluded that there is a significant capacity gap that

may be decreased by new MAC designs. In this chapter, we derive a time-division

scheduling scheme from the FD flow that, even in the presence of interference, performs

better than CSMA/CA.

5.2 Time-Division Schedules Derivation

Before we explain how to derive the new time-division schedules, we first refer

back to the notations used in the proof of Claim 1 of Section 3.4. First, we introduce the

normalized flow matrix B whose elements are defined by Bij = f̂ij/cij , where f̂ij is the

element of the global minimum flow f̂ that corresponds to the flow on link (i, j) (i.e., f̂

is the final flow matrix produced by the FD algorithm). Since the flow elements are in

bits and the capacities are in bits/second, then the elements in B have unit in seconds.

Next, we rewrite

B = βB̃ (5.1)

where β is the largest row or column sum of B. B̃ has the property that there exists

some ĵ such that either the ĵth column sum or ĵth row sum or both equal to one. Now we

49
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pad the elements of B̃ so that all of its column and row sums equal to one and call this

matrix B̃
pad

. B̃
pad

is a doubly stochastic matrix and can be decomposed into a convex

combination of permutation matrices 1.

Next, we seek to find a set of permutation matrices that can be convexly com-

bined into B̃
pad

. This can be done as follows:

1. Let m = 1

2. Let Em be a perfect matching of B̃
pad

3. Define P m such that Pm
ij =





1, if Em has an edge (i, j)

0, otherwise

4. Let αm equal the smallest element in B̃
pad

that corresponds to the non-zero elements of P m

5. Set B̃
pad

= B̃
pad − αmP m

6. Set m = m + 1 and repeat from Step 2 until B̃
pad

= 0

In Step 2, a permutation matrix can be obtained by finding a perfect matching of B̃
pad

using the Dulmage-Mendelsohn decomposition [53]. In Step 3 and 4, we weigh the

permutation matrix by a factor αm, which is the amount of time it will take to empty

one element of B̃
pad

. Since we subtract the same value from all rows and columns of

B̃
pad

in Step 4, the new B̃
pad

is another doubly stochastic matrix only weighted by a

value less than 1. Therefore, it can further be decomposed into a convex combination

of permutation matrices. We continue to empty elements from B̃
pad

in Step 5 until all

elements are zero, at which time we will have obtained a set of weighted permutation

matrices whose weights sum to 1.

Each permutation matrix represents a set of concurrent transmissions, and its

1Birkhoff-von Neumann Theorem. See Section 3.4



51

weight the amount of time the concurrent transmissions are active. The resulting weighted

permutation matrix dictates how much time is remove from B̃
pad

. If we define fP =

α(C.∗P ), then it denotes the corresponding flow removed by using the set of transmis-

sions given by P for α seconds2. For example, if we have

α = 0.5, P =


 0 1

1 0


 , C =


 0 1.7

2.3 0


 ,

then αP implies that links (1, 2) and (2, 1) are both active for 0.5 seconds, and fP

implies that 0.85 bits and 1.15 bits are removed from links (1, 2) and (2, 1), respectively.

The set of weights α = (α1, α2, . . . ) and the corresponding permutation matri-

ces obtained from the decomposition of B̃
pad

indicate very optimistic performance that

not only require a node to be able to establish multiple full-duplex connections simulta-

neously, but also require the channel to be interference-free. In Section 3.4, we analyzed

the case where nodes are only allowed to establish single half-duplex connections and

were able to decompose each permutation matrices into three or less maximum size rate

matrices, each representing a set of concurrent transmissions, to obtained a TD lower

bound with no interference. However, these rate matrices may not perform well when

interference is considered. Therefore, we seek an alternate strategy to obtain a set of

rate matrices from each permutation matrix that perform well under interference.

In decomposing a permutation matrix into a set of rate matrices that observes

interference, there are two extremes. On one end, a permutation matrix can be de-

composed into n rate matrices each representing a single transmission, which is, by

definition, interference-free. On the other end, it can be decomposed into a set of max-

imum size rate matrices, in which each receiver experiences a large amount of interfer-

ence. Analogous to CSMA/CA, obtaining a set of rate matrices of single transmission is

equivalent to having a very small SNR threshold γt, and obtaining a set of rate matrices

2.* is an element-by-element multiplication operator
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of maximal concurrent transmissions is equivalent to having a very large γt. There-

fore, we expect the optimal performance to occur when there are a moderate number

of rate matrices each representing only a few concurrent transmissions. However, given

a permutation matrix, in order to find the optimal performance under interference, we

will have to consider all combinations of different size rate matrices (i.e., all combina-

tions of singles, doubles, triples, etc.). Instead of doing an exhaustive search for each

permutation matrix, we will seek to obtain a ”good” suboptimal performance using a

straightforward method.

First, we make the following observation. For an n-node network, each weighted

permutation matrix αP has n non-zero elements, corresponding to n transmitters trans-

mitting to n receivers for α seconds. fP denotes the amount of flows removed from the

corresponding transmitter-receiver pairs, in the absence of interference. However, if we

account for interference, then a node will take longer than α to completely transmit the

same amount of data. However, it is still advantageous to allow concurrent transmissions

if the overall throughput is greater than the weighted sum of the throughput of the indi-

vidual transmissions. For example, if cAB = 1bit/second and cEF = 1bit/second, then if

A transmit to B in the first second and E transmit to F in the second second, then the aver-

age throughput is 1bit/second. However, if both A and E are concurrently transmitting to

their respective receivers and the capacities with interference are cI
AB = 0.75bits/second

and cI
EF = 0.75bits/second, then the throughput is 1.5bits/second, which is higher than

if they transmitted individually.

With the above observations, we formulated a straightforward strategy to derive

rate matrices that perform well under interference from a weighted permutation matrix,

a process of which is similar to that of the CSMA/CA scenario. Let tm and rm denote

the sets of active transmitters and receivers, respectively, in the mth iteration. Let t̄m

and r̄m denote the sets of nodes that cannot transmit and receive, respectively. Let cI
m

denote the sum capacity of the links of the pairs in tm and rm, while taking into account
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interference; and let c̃I
m denote the sum capacity of the links of the pairs in tm and

rm and another pair not in the sets, while taking into account interference. In other

words, cI
m is the sum capacity of the current set of concurrent transmission, and c̃I

m is

the hypothetical sum capacity if one other pair is added to the concurrent transmission.

Consider weighted permutation matrix αP . For the first iteration, we initialize

by searching the permutation matrix left to right and then top to bottom. Find the first

non-zero element and note its position (i1, j1) in the matrix. Insert i1 into t1 and r̄1,

and j1 into r1 and t̄1. Take note of its capacity ci1,j1 and SNR γi1,j1. Search the rest of

the permutation matrix for the next non-zero element and note its position (i2, j2). If i2

is not in t1 and t̄1, and j2 is not in r1 and r̄1, then we call (i2, j2) an available pair. We

note its capacity ci2,j2 and SNR γi2,j2. We then calculate the capacities with interference

cI
1 and c̃I

1, with the extra pair of transmitter-receiver being (i2, j2), using Equations (2.1)

and (2.2). If c̃I
1 >= max(cI

1, ci2,j2), that is, adding (i2, j2) pair improves the throughput,

then we call (i2, j2) an desirable3 pair with respect to the pairs already in t1 and r1, and

insert i2 into t1 and r̄1, and j2 into r1 and t̄1. Otherwise, move to the next available

non-zero element. If it is also desirable, then update t1, r1, t̄1 and r̄1 accordingly.

Continue adding desirable pairs until one cannot be found after searching through n

consecutive non-zero elements. At that point, stop because we have exhausted all the

choices. The resulting set of concurrent transmissions given in t1 and r1 performs well

under interference in the sense that its overall throughput is greater than each of the

individual capacities. From t1 and r1, we can also calculate the new capacity matrix

with interference CI
1.

Let I be the indicator matrix for tm and rm, that is, it is an n × n zero-matrix,

except at positions in the matrix that correspond to transmitter-receiver pairs in tm and

rm, where it is 1. For example, if tm = (1, 3) and rm = (2, 4), then I1,2 = I3,4 = 1.

I.∗fP is the matrix of flow that must be removed by the concurrent transmissions given

3Under this definition, a node pair must be available before it is desirable; therefore, desirable implies
available.
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in tm and rm. We use the set of concurrent transmissions long enough (βm seconds) to

remove the smallest non-zero flow in I.∗fP . In other words, βm = min(I.∗fP ./CI
m)4.

Once the smallest non-zero flow is removed, we retire the corresponding transmitter-

receiver pair from tm and rm and restart search for additional desirable pairs. Each

time a new set of concurrent transmission is found, m is incremented by one, I , CI
m

and βm are calculated and more flow are removed from fP . This continues until all

flows in fP are removed. At this point, the weighted permutation matrix αP is retired,

and we begin decomposing the next weighted permutation matrix. This continues until

all weighted permutation matrices are decomposed. The series of sets of concurrent

transmissions t̂ = (t1, t2, . . . ) and r̂ = (r1, r2, . . . ) is a time-division schedule under

interference, and the series of weights β̂ = (β1, β2, . . . ) becomes the amount of time

each schedule is used. The total amount of time βt it takes to remove the FD flow f̂ is

equal to β
∑

m βm, where β was derived in Equation (5.1). The capacity of the network

while using the schedules t̂ and r̂ is equal to the sum of the elements of the traffic matrix

T divided βt.

5.3 Scheduling Improvement

In the above section, the series of sets of concurrent transmissions t̂ and r̂ and

their weights β̂ were derived sequentially, i.e., t1, r1 and β1 were obtained first, and so

forth. Neither the sets of concurrent transmissions nor their weights are optimal. The

sets of concurrent transmissions cannot be changed because they were the product of

an suboptimal strategy we implemented in the previous section. However, the weights

that corresponds to the sets may be optimized so that the same amount of flow may be

removed while using less total time. This optimization problem is described below and

4./ is the element-by-element division operator. Division by zero is ignored because we don’t care
about the values in those positions.
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can be solved using linear programming [31].

Given: Ĉ
I

Minimize:
∑
m

βm

Constraints: βm >= 0
∑
m

βmCI
m >= f̂

where Ĉ
I

= (CI
1,C

I
2, . . . ) is the series of capacity matrices corresponding to the series

of concurrent transmissions given in t̂ and r̂. In words, the optimization problem seeks

to minimize the total amount of time it takes to remove at least as much flow as the FD

flow f̂ , since there may not be an improvement if we were to require that exactly the

same amount of flow is to be removed.

5.4 Simulation Results and Analysis

In the previous chapters, we have presented bounds with no interference and

results of an protocol based on CSMA/CA. Now, we will show the performance of our

time-division schedules relatives to those results.

5.4.1 Full traffic pattern

In Fig. 5.1, we show the performance of the time-division scheduling scheme

presented in this chapter, in addition to the results presented in Fig. 4.6. We consider a

full traffic matrix and normalizing SNR γnorm of 20dB and 5dB. Channel model consid-

ers path-loss and shadowing. The new capacity curves are (c) and (d), which respectively

represent the results for unoptimized TD schedules and the optimized TD schedules.

Let’s first examine the case with γnorm = 20dB. The unoptimized TD schedule
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Figure 5.1 Network capacity results obtained using different methods. Full traffic ma-
trix and normalizing SNR γnorm = 20dB (top) and 5dB (bottom). Channel considers
path-loss and shadowing. (a) Average FD upper bound. (b) Average TD lower bound
with no interference. (c) Average unoptimized TD results with interference. (d) Aver-
age optimized TD results with interference. (e) CSMA/CA-based scheme with SIRO
queueing. (f) CSMA/CA-based scheme with FIFO queueing.
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results closely match that of the CSMA/CA scheme with SIRO queueing, which as we

recall is very optimistic because unrealistic assumptions were made that idealized the

performance of that protocol (i.e., control packets require negligible time to transmit,

no control packet collisions, nodes can adjust their transmission rates instantaneously

based on the number of concurrent transmissions at any point in time). No such unreal-

istic assumptions are necessary in our TD scheduling strategy because a central system

computes the schedules and all transmission rates are pre-calculated because the sets

of concurrent transmissions are known. This allows us to conclude that our unopti-

mized TD scheduling scheme can outperform a realistic implementation of CSMA/CA

scheme.

The performance of the optimized TD schedules is shown in curve (d). Due

to computational issues, which will be clarified in Section 5.5, it is only extended to

networks of size 36. At n = 36, the optimized results are a 33% improvement over the

unoptimized result. We expect, on average, the improvement to increase with n because

the size of the sets of weights βm increases with n, and larger sets mean there are more

potential gain when optimizing them.

In terms of numbers, let’s first look at the case of n = 36. Normalized by the

FD upper bound, the TD lower bound with no interference is 62%, the unoptimized

TD result with interference is 11%, and the optimized TD result is 14%. In the case of

n = 81, and again normalized by the FD upper bound, the TD lower bound with no

interference is 63%, the unoptimized TD result is 8%, and the optimized TD result is

at least 10%, which is based on the assumption that the optimization provides at least a

33% gain over the unoptimized results.

Now, let’s examine the case with γnorm = 5dB. Here, we see that CSMA/CA

scheme performs much better than our TD scheduling scheme. This is not surprising

because the effects of interference is much less severe in the low SNR region. In the

limit as the interference goes to zero, we expect the CSMA/CA results to approach the
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optimal capacity, which is likely to be closer to the FD upper bound than the TD lower

bound without interference, and we also expect the unoptimized TD results to approach

the TD lower bound without interference because both are derived from the decomposed

permutation matrices. However, we must keep in mind that a realistic implementation

of CSMA/CA may still perform close to, if not below, the TD scheduling performance.

Also, the performance improvement of the optimized TD schedules over unoptimized

ones is 37%.

For n = 36, normalized by the FD upper bound, the TD lower bound with no

interference is 66%, the unoptimized TD result is 21%, and the optimized TD result is

28%. For n = 81, the TD lower bound with no interference is 65%, the unoptimized

TD result is 18%, and the optimized TD result is at least 24%.

5.4.2 Skewed traffic pattern

In Fig. 5.2, we show the results when considering a skewed traffic matrix. Com-

pared to the performance under full traffic, the performance of TD scheduling under

directional traffic is significantly better than CSMA/CA, with an improvement of al-

most 81%. However, under directional traffic, the gain from optimizing the weights of

the TD schedules is only 23% at n = 36. Overall, for the same γnorm, the ratios be-

tween the FD upper bound and the other results are significantly smaller. For n = 36,

normalized by the FD upper bound, the TD lower bound without interference is 82%,

the unoptimized TD result is 23%, and the optimized TD result is 29%. For n = 81, the

TD lower bound without interference is 81%, the unoptimized TD result is 22%, and the

optimized TD result is at least 27%.

5.4.3 Suboptimal Versus Optimal Scheduling

As a way to gauge the performance of our optimized TD schedules, we solved

the optimization problem in Section 5.3 using the complete combinations of rate matri-
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Figure 5.2 Network capacity results obtained from different methods. Skewed traffic
matrix and normalizing SNR γnorm = 20dB. Channel considers path-loss and shadow-
ing. (a) Average FD upper bound. (b) Average TD lower bound with no interference.
(c) Average unoptimized TD results with interference. (d) Average optimized TD results
with interference. (e) CSMA/CA-based scheme with SIRO queueing. (f) CSMA/CA-
based scheme with FIFO queueing.
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Table 5.1 Suboptimal versus Optimal TD scheduling for n = 9

Scheduling Type: Optimal Suboptimal
Capacity (bits/sec/Hz): 6.71 6.38

ces for an 9-node network with full traffic matrix and γnorm = 20dB. The results are

shown in Table 5.1. As will be explained in Section 5.5, for a network with 9 nodes, the

optimal scheduling scheme will require the calculation of 26,784 rate matrices, whereas

our suboptimal strategy only require the calculation of a maximum of 5,832 rate matri-

ces. However, even though the suboptimal strategy only considers a small fraction of the

total available rate matrices, its performance is about 95% of the optimal performance.

We expect the performance ratio to decrease with n, but the computational trade-off is

much more significant as the optimal strategy becomes intractable as n increases even

by a few nodes, e.g., there are over 4 billion rate matrices for a network of only 16 nodes.

5.4.4 Time-Varying Fading and Mobility

When the capacity performance of our TD schedules are obtained, we assumed

the channel is static, that is, there are no mobility and time-varying fading. However,

in any realistic setting, the channel gains change over time. Therefore, it is necessary

to evaluate the degradation in the performance of our TD schedules when there are

time-varying fading and/or mobility. We will isolate time-varying fading and mobility

to two separate events and evaluate the degradation caused by each, where the channel

gains change as a percentage of their means. The means of the channel gains are not

necessarily defined in the statistical sense. It is defined as the instantaneous channel

gain values when a set of TD schedules are calculated; i.e., TD schedules are calculated

based on a snapshot of the channel gain matrix, and this snapshot is what we define

as the means of the channel gains. TD schedules are updated either periodically or in

response to some external command, and the duration between consecutive updates is

dictated by the amount of change in channel gains that can be tolerated. We seek to
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find the average performance degradation of TD schedules as a function of the speed of

channel gain variation.

Performance degradation from time-varying channel is obtained as follows. Sup-

pose that we have calculated a set of TD schedules, β̂, t̂ and r̂, based on a snapshot of

the channel at time t, which will be used for a duration of tu, the period between TD

schedule updates. Suppose further that the channel changes at time tc ∈ [t, t + tu),

causing most, if not all, of the link capacities to change. We assume that the channel

changes on a time scale greater than the amount of time it takes to complete one cycle of

the TD schedules, so the link capacities change but remain constant for one cycle of the

TD schedule. After completing one cycle of the TD schedules, we will have delivered

some amount of traffic equal to f ′. However, what we desired to have delivered was the

amount of traffic given by the FD flow f̂ . Comparing f ′ to f̂ , we will see that some

elements in f ′ will be greater than their counterparts in f̂ , and some elements in f ′ will

be less than their counterparts in f̂ . If k is the minimum value such that kf ′ij >= f̂ij , for

all i, j, then the performance degradation is 1/k. In other words, using the TD schedules

when the channel changes can only deliver an amount of traffic equal to T /k.

Consider a set of TD schedules that are calculated based on a snapshot of the

channel gains at some instance in time. In addition, assume that nodes move in two di-

mensions according to independent and identically distributed uniform random variables

with range [−d, +d], where d is normalized by the unit distance from which γnorm is de-

fined (e.g., if nodes are initially distributed 1km apart, and nodes move at a maximum

of 10m in any direction, then d = 0.01). Fig. 5.3 shows the performance degradation

in network capacity as a result of mobility. First, we notice that the larger networks

suffer more degradation from the same amount of mobility. This is expected and can

be explained by the fact that, on average, a larger network contains more links that are

heavily degraded due to mobility, and each degraded link will increase the amount of

time it takes to deliver the corresponding amount of flow in the FD flow matrix. Sec-
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Figure 5.3 Average performance degradation in network capacity as a result of node
mobility. (a) n = 9. (b) n = 16. (c) n = 25.
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Figure 5.4 Average performance degradation in network capacity as a result of time-
varying fading. (a) n = 9. (b) n = 16. (c) n = 25.

ondly, we see that even low mobility has an immediate impact on the network capacity.

This is most likely due to the choice of attenuation factor used in the path-loss function,

which is α = 4. We expect the impact to lessen for smaller α and to grow for larger α.

Now let’s consider the effects of time-varying fading on the network capacity.

Assume that the channel gains are scaled by independent and identically distributed

uniform random variables with interval between [(1 − y/100), (1 + y/100)], where

0 ≤ y ≤ 100 is the maximum percentage deviation. The channel is static when y = 0

and time-varying otherwise. Fig. 5.4 shows the performance degradation of network

capacity as a function of y, caused by time-varying fading. Similar to the performance

shown under mobility, we see that the larger networks suffers more degradation, and
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this can be explained in the same way as previously. However, unlike mobility, small

amount of time-varying fading does not cause significant degradation in network capac-

ity because a change in fading is not exacerbated by a power factor of 4 as in the case

with path-loss. Therefore, a network with immobile nodes can still perform well under

our TD schedules as long as the time-varying fading does not vary by a large amount

between schedule updates.

5.5 Computational Issues

In [25], the authors proposed a method to find the capacity region of an n-node

wireless network by finding the convex hull of all the rate matrices. In a multihop

network with spatial reuse, there are
∑bn/2c

i=1
n(n−1)...(n−2i+1)

i!
ni + 1 such rate matrices.

Similarly, in the FD decomposition, to find the optimal decomposition of up to n2 per-

mutation matrices, we would need to search up to
∑bn/2c

i=1
n(n−1)...(n−2i+1)

i!
rate matrices

for each permutation matrix5. However, the suboptimal strategy presented in Section

5.2 decomposes each permutation matrix into a maximum of n(n − 1) rate matrices,

leading to a maximum of n3(n− 1) rate matrices in the complete FD decomposition.

The optimization problem in Section 5.3 has n2 simultaneous equations and

n3(n − 1) degrees of freedom, giving a maximum of n5(n − 1) elements that must be

stored in memory while they are being processed. This polynomial increase of memory

requirement restricted the calculation of our optimal TD results to n = 36. Tables 5.2

and 5.3 shows the average time it takes to calculate a set of unoptimized and optimized

TD schedules, respectively, for different network sizes.

5There are n(n − 1) . . . (n − 2i + 1) distinct choices for the 2i nodes in i pairs of concurrent trans-
missions, but we must divide this by i! to account for the fact that pair orderings are unimportant
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Table 5.2 Average time (sec) to obtain a set of unoptimized TD schedules
n = 9 16 25 36 49 64 81

Avg. time = 0.1 1.1 7.0 31 110 320 840

Table 5.3 Average time (sec) to optimize the TD schedules
n = 9 16 25 36

Avg. time = 0.04 0.08 0.5 3.0

5.6 Conclusions

In this chapter, we proposed and described a new TD scheduling scheme derived

from the FD results. We also described an improvement to the TD schedules that in-

creased the total throughput significantly, even for small to medium size networks. Our

TD schedules performed better than an idealized version of CSMA/CA, for medium to

high SNR regions. Moreover, the TD schedules performed well against the FD upper

bound when there is a directional traffic pattern, but not as well when the traffic pattern

require all nodes to communicate with all other nodes. Finally, we examined the effects

of time-varying fading and mobility on the TD schedules and found that mobility de-

grades the performance of the TD schedules much more than time-varying fading. This

observation can be explained by the fact that mobility is exacerbated by the path-loss

coefficient of α = 4, while time-varying fading is not. Therefore, we conclude that

our TD schedules performs well in an environment where the channel changes slowly

relative to the TD schedule update rate. As such, the amount of time-varying fading and

mobility we can tolerate affects how quickly we must update the TD schedules.

Chapter 5, in part, is a reprint of the material to be submitted to IEEE Transac-

tions on Wireless Communications. The dissertation author was the primary investigator

and author of this paper, and the co-author listed in these publications directed and su-

pervised the research which forms the basis of this dissertation.
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Conclusions and Future Work

In this dissertation, we have made two major contributions in the consideration

of the capacity of wireless ad hoc networks with arbitrary size, topology and traffic pat-

terns. The first contribution is the calculation of an upper bound using the FD method.

The upper bound is found by successively rerouting the traffic using relay nodes that are

underutilized. This way, the relay burdens of the traffic demands are distributed across

all the nodes, and the capacity of the network is maximized. However, the FD method

operates on continuous flow elements, and this brings up two issues. One issue is we

cannot enforce the requirement that a node can only establish half-duplex connection

with one other node at any instance in time, i.e., it cannot transmit and receive simulta-

neously, or transmit to or receive from multiple nodes simultaneously. The other issue is

that, with continuous flows, interference cannot be accounted for during the calculation

of the upper bound because we do not know the set of concurrent transmissions at any

given time.

The FD upper bound is not necessarily the tightest upper bound. In fact, if we

enforce the requirement of half-duplex communications, then the FD upper bound is

unachievable with high probability as the number of nodes in the network increases.

However, we are able to prove that, under special cases, 2/3 of it is achievable, and

under the worst case, 1/3 of it is achievable; that is, we can find a set of TD schedules

that can achieve at least 2/3 or 1/3, depending on the situation, of the upper bound, in

the absence of interference. We called the performance of this set of TD schedules the

66
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TD lower bound without interference.

The FD method also allowed us to examine the behaviors of networks under

different channel conditions and with different traffic patterns. We saw that if the chan-

nel conditions are known precisely, then shadow and multipath fading actually increase

the network capacity because the network can take advantage of the links that are bol-

stered by the fading, while avoid those that are degraded. For networks with full or ring

traffic patterns, the network capacity increases with n. Under the same traffic patterns,

the capacity is an approximately linearly function with respect to SNR in dB, for small

networks, and a polynomial function with respect to SNR in dB, for medium to large

networks. For networks with skewed traffic pattern, the capacity actually decreases with

n, and that the capacity functions with respect to SNR in dB for different network sizes

only differ by some constant offsets.

The second contribution deals with both issues unresolved by the FD method.

We produced a lower bound on the capacity by introducing a process to derive a set of

TD schedules that performed well under interference. We are also able to optimize the

TD schedules to increase its performance significantly. Both the unoptimized and opti-

mized TD schedules performed better than an idealized protocol based on CSMA/CA,

for medium to high SNRs. The performance of the TD schedules compared to the upper

bound varied depending on the SNR and traffic pattern. For networks with medium to

high SNR and full or ring traffic pattern, the upper bound is a magnitude larger than

the performance of the TD schedules, but with low SNR, the upper bound is less than

4 times the performance of the TD schedules for networks of up to 81 nodes. For net-

works with skewed traffic pattern, even with moderate SNR, the upper bound is no more

than 4 times the performance of the TD schedules. The TD schedules can also perform

well under time-varying fading and mobility as long as the schedules are updated fre-

quently enough so the fading and node positions do not change beyond some tolerance

threshold.
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Figure 6.1 An example of local and boundary traffic flows. Dotted circles denote bound-
ary nodes. A has packet destined to Z, and B has packet destined to Y. A and B first
use local TD schedules to transmit their packets to a boundary node in Area 1. The
packets are forwarded to another boundary node in Area 2. They are routed locally in
Area 2 from the boundary node close to Area 1 to boundary nodes close to Area 3. Fi-
nally, the packets cross into Area 3 using boundary TD schedules and are routed to their
destination locally.

The rate of update is dependent on the number of nodes and the computational

power of the central station. If the update rate is too slow to accommodate the rate of

change in channel conditions, then one suggestion is to break up the coverage area into

multiple, smaller areas, each containing fewer nodes, and calculate local TD schedules

for each area. To find a set of TD schedules, the original traffic matrix will have to be

divided into two different types of traffic matrices: boundary traffic matrices denoting

the traffic between boundary nodes in adjacent areas and local traffic matrices denoting

the traffic between local nodes in the same area. If a node wishes to transmit to another

local node, then a set of local TD schedules can be calculated from the channel and

local traffic matrix. If a node wishes to transmit to another node in a different area, then

a set of TD schedules can be calculated from the channel matrix and local and global

traffic matrices (see Fig. 6.1). However, there must be some way to resolve time slot
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contentions among the local and boundary TD schedules to minimize or avoid packet

collisions. This is a subject of future work. Other possible subjects of future work

include creating a more detailed performance function for the FD algorithm that takes

into account realistic wireless network properties, such as interference, and finding a

way to decompose the FD flow into a better set of TD schedules.

It must be noted that our work is ultimately non-information theoretic, mean-

ing that our results are the byproduct of a set of specific transmission strategies that

include multihop routing, spatial reuse, and variable transmission rates, and they may

be proven suboptimal. However, it is a truism, in our field, that the ultimate usefulness

of a theoretical work is its effects on the design and performance of practical systems.

For a practical network that has a given size, topology and traffic pattern, our work pro-

vided a numeric upper bound against which current protocols may be compared, and a

constructive lower bound that is achievable with current technologies.
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