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Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

(Manuscript received 7 June 2019, in final form 1 October 2019)

ABSTRACT

Strong surface winds under extratropical cyclones exert intense surface stresses on the ocean that lead to

upper-ocean mixing, intensified heat fluxes, and the generation of waves, that, over time, lead to swell waves

(longer than 10-s period) that travel long distances. Because low-frequency swell propagates faster than high-

frequency swell, the frequency dependence of swell arrival times at a measurement site can be used to infer

the distance and time that the wave has traveled from its generation site. This study presents a methodology that

employs spectrograms of ocean swell from point observations on the Ross Ice Shelf (RIS) to verify the position

of high wind speed areas over the Southern Ocean, and therefore of extratropical cyclones. The focus here is on

the implementation and robustness of the methodology in order to lay the groundwork for future broad ap-

plication to verify Southern Ocean storm positions from atmospheric reanalysis data. The method developed

here combines linear swell dispersion with a parametric wave model to construct a time- and frequency-

dependent model of the dispersed swell arrivals in spectrograms of seismic observations on the RIS. A two-step

optimization procedure (deep learning) of gradient descent andMonte Carlo sampling allows detailed estimates

of the parameter distributions, with robust estimates of swell origins. Median uncertainties of swell source

locations are 110 km in radial distance and 2 h in time. The uncertainties are derived fromRIS observations and

the model, rather than an assumed distribution. This method is an example of supervised machine learning

informed by physical first principles in order to facilitate parameter interpretation in the physical domain.

1. Introduction

Strong winds associated with extratropical cyclones

act on the ocean surface and generate surface gravity

waves. These waves propagate long distances and are

observed as swell (Snodgrass et al. 1966). Long swell

waves (in the range between 0.03 and 0.8Hz) can

travel across ocean basins with minimal attenuation

(Snodgrass et al. 1966). Because wave dispersion de-

pends on frequency, swell observed at distant locations

contains information about its position and time of gen-

eration. The idea of tracking storms using swell was first

shown by Munk (1947) and by Barber and Ursell (1948).

The objective of this study is to establish a methodology

to use modern swell observations to learn about con-

ditions at the swell’s source region as well as the travel

path of the swell.

The locations where swell waves originate experience

intense atmosphere–ocean interaction. Some of the stron-

gest events occur in the Southern Ocean, where the

observing system is sparse and storm systems are not

well characterized by direct observation (e.g., Bourassa

et al. 2013). Strong surface winds lead to intense air–sea

fluxes of heat, momentum and CO2, with potential im-

plications for ocean circulation changes and the ocean

uptake of anthropogenic heat and CO2 in the Southern

Ocean (SO; Swart et al. 2018; Rintoul 2018; Marshall

et al. 2016; Munday and Zhai 2017; Gruber et al. 2019).

Ocean swell spectra are routinely generated from

autonomous wave buoy observations, GPS sensors, or

seafloor pressure sensors (Munk et al. 1963; Collard

et al. 2009; Delpey et al. 2010; O’Reilly et al. 2016), and

they have also been observed by land-based seismic

stations when swell interacts with the coast (Bromirski

et al. 1999). The time series of swell arrivals at an ob-

servation site can be converted to a time evolving power

spectrum, known as a spectrogram. Each set of swell

arrivals detected in a spectrogram is related to the sur-

face wind at the storm (Pierson and Moskowitz 1964;

Hasselmann et al. 1973; Elfouhaily et al. 1997) and can,
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as we will show, be interpreted as a remote observation

of the storm itself.

This study adopts a unique approach by using seismic

data collected not on land, but instead on a floating ice

shelf, as part of the Ross Ice Shelf (RIS) Vibration

Project (Wiens et al. 2014; Bromirski et al. 2017). The

data from the RIS allow us to compute an extensive

series of high-resolution spectrograms of surface gravity

waves, similar to conventional wave observations. We

use these data as a training set to develop a new method

to characterize ocean swell observations.

Feature comparison in geophysical data is often chal-

lenging because the observations are noisy, and the

models are too simple. As we outline below, the com-

bination of optimization and Monte Carlo methods en-

ables us to improve our model understanding of the

data, while we use the model to identify the relevant

data. This is a ‘‘machine learning’’ approach that is

constrained by physical laws, with the benefit that it

generates uncertainties based on the data and the

model, rather than assuming an a priori uncertainty

distribution (Marone 2018).

We present a method to compare characteristic pat-

terns in seismic spectrograms with a parametric model

that is constrained by the physics of ocean gravity waves.

We first briefly describe the physical background that

motivates the model (section 2) and introduce the

dataset (section 3). Then, we introduce the governing

cost function (section 4), the model (section 5), and the

data preparation (section 6). The actual fitting procedure

is explained in section 7, and its performance is shown in

section 8 and discussed in section 9. The developed code

for this analysis will be publicly available in a github re-

pository (https://github.com/mochell/stormy_forerunners)

after completing the project.

2. Waves across the Pacific: Physical background

Observations on the RIS record storm-induced swell

events (Fig. 1), much like previously reported observations

along coastlines (Munk and Snodgrass 1957; Snodgrass

et al. 1966). The gestalt of these coherent packages of

swell energy is shaped by three processes:

1) The dispersion of deep water waves means longer

waves travel faster, such that the longest wave gen-

erated by a storm arrives first (Munk 1947; Barber

and Ursell 1948; Snodgrass et al. 1966; Gallet and

Young 2014). At any point in the ocean, an observer

who records the arrival time of waves of different

frequencies can estimate both the time of origin and

the distance traveled, assuming all waves come

from the same source. For continuous observations,

like those provided by the RIS seismometers, the

succession of wave arrivals results in a sloped line in

the wave spectra (Fig. 1). The sloped line of these

dispersed wave events is an indirect measure of the

radial distance to the origin of the waves.

2) The spectrogram and its shape are related to winds

in the wave generation region. There is extensive

literature about ocean wave spectra. See, for example,

the compendial overviews ofMassel (1996, chapter 3.2)

or Elfouhaily et al. (1997). The most commonly used

parametric models are the Pierson–Moskowitz (here

after PM) spectrum for a fully developed sea or the

Joint North Sea Wave Project (JONSWAP) spec-

trum (Fig. 2, Pierson and Moskowitz 1964; Phillips

1985; Hasselmann et al. 1973, 1976). Bothmodels are

possible functional forms for this optimization prob-

lem. The advantage of the JONSWAP spectrum is

that it is more flexible and is not limited to fully de-

veloped seas. It also relates the peak frequency fm
and the amplitude parameter a to the nondimensional

fetch ~X

f
m
5

3:5g

U
10

~X20:33, (1)

a5 0:033

�
f
m
U

10

g

�0:67

5 0:076 ~X20:22, (2)

with

~X5
gX

U2
10

, (3)

where X is the fetch in meters (defined as the hori-

zontal distance over which wave-generating winds are

able to act), U10 is the 10-m wind speed over that

area, and g is the acceleration due to Earth’s gravity

(Hasselmann et al. 1973). The JONSWAP relations

can be inverted to infer speed and fetch at the loca-

tion of the storm from the wave spectrum parameters

a and fm, detected at a remote location (Pierson and

Moskowitz 1964; Hasselmann et al. 1976). Both PM

and JONSWAP spectra are based on theories of wave

generation by winds (Phillips 1957; Miles 1957, 1960),

and their only difference stems from the JONSWAP

model’s inclusion of additional parameters that vanish

under the assumption of a fully developed sea (see

section 5, Fig. 2, and Massel 1996, chapter 3.2).

3) When swell travels into sea ice, it can be damped or

reflected (Fox and Squire 1994; Squire 2007; Vaughan

et al. 2009). While low-frequency swell waves travel

through sea ice and are detected in seismic records on

the RIS (typical periods of about 15 s, Fig. 1 shading;

Collard et al. 2009; Cathles et al. 2009; Bromirski et al.

2010; MacAyeal et al. 2009), higher frequencies are
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strongly damped (periods of about 10 s and shorter;

Kohout et al. 2014; Collins et al. 2015; Ardhuin et al.

2016). It is hypothesized that damping of incident

swell energy by sea ice helps to maintain the overall

ice shelf stability (Squire et al. 1994; MacAyeal et al.

2006; Robinson and Haskell 1990; Lipovsky 2018;

Massom et al. 2018). However, a validated parametric

model of sea ice induced damping does not exist and

FIG. 1. Spectrogram of the vertical acceleration in DR01 between November 2014 and December 2016. The

spectrogram is expressed as a power spectra with a basic segment length of 20min. The spectral estimate at each

time step is sampled from 12 of these segments.
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is therefore not included in our formulation of the

model (section 5).

The first two processes, wave dispersion and spectral

shape, are used to construct our model for the optimi-

zation procedure. The model is constrained by prior

physical knowledge about the processes that we aim to

investigate. If the residual differences between model

and data share common features between multiple events,

then the misfit can potentially be attributed to physical

processes that are not represented in the model, such as

the attenuation due to sea ice.

Most ocean swell observations show a superposi-

tion of locally and remotely generated waves (Rapizo

et al. 2015; O’Reilly et al. 2016). In contrast, the swell

spectra observed on the RIS are only due to remotely

generated waves because swell generation in the prox-

imity of the ice shelf is suppressed by sea ice. Even in

summer, when melting may produce open water areas

close to the RIS, any locally generated waves are shorter

than the remotely generated swell. Wave genera-

tion at the observation site is not possible because the

observations are made on the ice shelf rather than in the

ocean. The fact that RIS data highlight the impacts from

remote storm activity in the Southern Ocean makes

them unique.

On the other hand, RIS seismic records may be the

result of processes that are absent in open ocean ob-

servations, such as interactions with sea ice, topog-

raphy and currents, or the ice shelf itself. The intent

of this discussion of the method is to first set these ad-

ditional complexities aside and, in a second step, assess

whether RIS-specific processes can explain the de-

viation of the observations compared to the model

function. This model function represents a physical

hypothesis for the evolving ocean wave spectra; how-

ever, we do not expect it to apply exactly in each

individual case.

3. Seismic observations in the Ross Ice Shelf

The Ross Ice Shelf Vibration Project was a field cam-

paign carried out from October 2014 to December 2016

with the goal of recording the Ross Ice Shelf response

to gravity wave impacts for geophysical, glaciological

and oceanographic purposes (Wiens et al. 2014). To

investigate the RIS response to gravity wave forcing, a

network of 28 seismic stations recorded 2 years of con-

tinuous vertical and horizontal displacements at each

station (Fig. 3). The sampling rate was either 100 or

200Hz depending on the instrument configurations at

each station (Bromirski et al. 2015). Data were archived

in accordance with IRIS (Incorporated Research Insti-

tutions for Seismology; www.iris.edu) standards for seis-

mic data. The three stations closest to the front (DR01,

DR02, and DR03) recorded the highest amplitude re-

sponse for swell waves, and are thus used for the analysis

presented in this paper, because they are expected to

have the largest signal-to-noise ratios for swell waves.

The processing is as follows. First, the 100- or 200-Hz

time series are averaged to 1Hz, because the time scales

of interest (waves with frequencies less than 0.1Hz) are

perfectly resolved by 1-Hz sampling, and the much

smaller data volume makes processing more efficient.

FIG. 3. Map of the Ross Ice Shelf Vibration Project. The position

of the front Stations DR01, DR02, and DR03 are indicated by

the blue, orange, and red dots. Other seismic stations are shown

as green dots. The ice-shelf thickness is shown as shading. The

ice-shelf edge migrated northward since the ice-shelf thickness

was derived (Haran et al. 2005; Haran and Bohlander 2014). The

front stations were about 2 km away from the ice-shelf front when

the data was recorded. The ice shelf thickness data are taken from

Basemap2 (Fretwell et al. 2013).

FIG. 2. Pierson–Moskoviz (solid lines) and JONSWAP spectra

(dashed) for a variety of fetches and wind speeds. The fetch length

x and wind speed U10 are indicated [see (1) and (3)].
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Second, the recorded time series are corrected for

the frequency-dependent response function of the seis-

mometer. The 1-Hz time series is deconvolved with the

instrument response function, which is a cosine window

(f15 1024Hz, f25 23 1024Hz, f35 0.4Hz, f45 0.5Hz).

The resulting displacement time series are prewhitened

by taking the second derivative in time to generate a time

series of acceleration inmeters per second squared (ms22).

Peaks in the acceleration time series are removed if

they deviate from the mean by more than 10 standard de-

viations; any resulting gaps are filled by linear interpolation.

Less than 0.1% of the data are removed from the time se-

ries, and the removals have no effect on themodel estimate.

After these preliminary adjustments, a spectrogram is

calculated at each station using the 1-Hz averaged time

series for a shifting window discrete Fourier transforma-

tion. To calculate spectrograms, data are first split into

segments of 20-min duration, with 50% overlap. Each

segment is detrended and fast Fourier transformed to

produce periodograms. Spectral estimates are computed

at hourly time increments, by averaging periodograms

from eleven 20-min segments centered around 1-h time

steps (i.e., spanning a total time period of 120min), while a

Hanningwindowwas applied to each segment. The 20-min

segment length determines the frequency resolutionwith a

lowest frequency of 1/1200Hz. The resulting 2-yr spec-

trogram for DR01 is shown in Fig. 1. (Spectrograms for

DR02 and DR03 appear indistinguishable from DR01.)

4. Cost function definition

Our next objective is to optimally fit the swell arrivals

detected in the spectrograms to a model based on the

JONSWAP spectrum by adjusting the free parameters

in the model. We do this via a nonlinear minimization

method performed on a global cost function

F5 J
d
1 J

m
, (4)

which is the sum of the data cost function Jd and the

model cost function Jm (known as ridge or lasso regu-

larization). The data cost function Jd is the sum of the

squared difference between data D and model M(p),

with p being the model parameter, multiplied by the

weight function w at each point

J
d
5�

i,j
[(D

i,j
2M

i,j
)w

i,j
]2. (5)

The model cost function Jm is the sum of squares of the

normalized parameter values

J
m
5�

k

�
pi
0 2 pi

pi
s

�2

, (6)

where p is a set of function parameters for optimization,

p0 represents the initial guesses of the parameter vector,

and ps is the corresponding prior error estimate (see the

appendix).

The model cost function allows us to optimize func-

tion parameters p, while taking account of prior esti-

mates of uncertainty in the parameters ps. To allow a

wider range of parameter values, the prior uncertainty

is artificially set to be large. Too small values for ps
result in an overweighting of the costs due to the pa-

rameters, resulting in overly conservative model be-

havior that is more likely to remain close to the initial

conditions. The following sections explain the parametric

model (section 5), and the data preparation and weight

function (section 6).

5. Model description

The model MS [MS(f , t) is compared against the

data D(f, t) at each iteration of the minimization pro-

cedure. The model has a time component MT(t) and a

spectral component S( f) that are both described here.

We assume a separable model Ms(f, t) 5 S( f)MT(t).

1) The spectral part of the model S( f ) is based on

open-ocean swell spectra of a fully developed sea

(section 2). The JONSWAP spectrum [Hasselmann

et al. 1973; Massel 1996, p. 94, Eq. (3.81)] is re-

formulated as

S( f )5 â(2pf )25 exp

"
2x

�
f

f
m

�24
#
gd , (7)

d5 exp

"
2
1

2

�
f 2 f

m

s
0
f
m

�2
#
, (8)

where f is the frequency, â the amplitude parameter

in units of acceleration squared, x the nondimen-

sional stretching term (x 5 5/4 in the standard

JONSWAP model), fm the position of the peak

frequency, g the measure of the height of the peak

function, and s0 the width of the peak function. We

define an amplitude parameter â5 g2a such that the

first guess of â is of order one, while the initial value

of a is inferred from the data (see below). This model

reverts to the original PM-spectrum when â and x

are set to constant values taken from JONSWAP

(Hasselmann et al. 1973). In total, there are five free

parameters in (7) and (8): the conventional peak

parameter fm and four more parameters (x, â, g, s0)

to allow for the additional complexity in the seismic

data due to the interaction with sea ice and the RIS

(section 2). Other parameters of the JONSWAP
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spectrum, such as U10 and ~X are not used directly

in the model (7), but can be inferred using the

estimated parameters fm and â in (1)–(3).

2) In the time domain, visual inspection of the

spectrogram suggests that swell arrivals gener-

ally have a relatively sharp leading edge (Fig. 4),

while their decay varies (Munk and Snodgrass

1957). This behavior is approximated by the G
distribution

M
T
(~t )5

1

s
t
G(~t )

 
~t2 ~t

peak

s
t

!b21

e2
~t , (9)

with the G function as

G(~t )5

ð‘
0

x
~t21e2x dx , (10)

where ~t[ (t2 tstart)/(tend 2 tstart)5 (t2 tstart)/Dt is the
normalized time, with tstart being the lower left and

tend the upper right corner of the parallelogram

(Fig. 4a, described in section 6a). The dimensionless

parameter st is set to 0.07, so that MT(~t ) in (9) has a

maximum value of order one, such that the only pa-

rameter that determines the amplitude is â. The term
~tpeak represents the location of the peak in time,

and b controls the width of the G distribution; both

are used for parameter optimization (section 7).

Figure 5a illustrates MT(~t ) for default values of
~tpeak and b and for the maximum and minimum

values for b, set as constraints for the optimization

(see the appendix).

3) The time-evolving peak frequency is expressed as a

linear function that is informed by the deep-water

dispersion relation:

f
peak

(~t )5 (~t2 ~t
0
)m~t

, (11)

where fpeak is the peak frequency, ~t0 is the center of

the nondimensional normalized time axis, and m~t

is the rate of change in units of hertz. Note that

fpeak is different from the maximum peak fre-

quency fm: fpeak is peak frequency at each non-

dimensional time ~t, while fm is the maximum of the

peak frequencies, that is, the peak frequency over

the whole event.

FIG. 4. Spectrogram of a single swell event in January 2015 with the three stages of the fitting procedure.

(a) Derived spectrogram (shading; section 3). Black and green dots indicate manually identified edge points

of the parallelogram-shaped date mask (green line; section 6a). Red lines are used as the model initial

condition, and gray contours indicate the data weighting function w in (15). (b) Masked data (shading;

section 6a) with initial slope (red) and model (black contours). (c) As in (b), but with the optimized slope

and model.
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The rate of change m~t and nondimensional ini-

tial time ~t0 are directly related to the distance and

time estimates (Snodgrass et al. 1966; Munk and

Snodgrass 1957; Barber and Ursell 1948). The

inversion of (11) gives a relation for ~tpeak( f ), which

is inserted into (9).

The G distribution MT, the JONSWAP spectrum S, and

the linear slope equation (11) yield a two-dimensional

model of swell arrivals:

M
S
( f , ~t )5 S( f )M

T
(~t ) (12)

5 â
2

0:7(2p)5
1

G(~t ) f 5
gd

�
~t2 f m21

t 1 ~t
0

0:07

�b21

3 exp

"
2x

�
f

f
m

�24

2 ~t

#
, (13)

with d5 exp

"
2
1

2

�
f 2 f

m

s
0
f
m

�2
#
. (14)

Equation (12) has Nvar 5 8 fitting parameters:

p5 fâ, x, fm,mf, ~t0, b, g,s0gT. These parameters are

the basis for the nonlinear optimization procedure de-

scribed in section 7, and the sensitivity of the model (12)

to these parameters is shown in Fig. 5.

6. Prehandling the data

Achieving optimal agreement between the data and

the model function requires selection and preliminary

correction of the data. This section explains how events

are selected and corrected to facilitate nonlinear opti-

mization. First, the shape (section 6a) and amplitude

(sections 6b and 6c) of individual events are used to

ensure similar signal-to-noise levels. Subsequently the

FIG. 5. Default (gray), minimum (blue), and maximum (red) model parameters with the G distribution for the (a) shape

parameter b, (b) the slope parameter mf, (c) the peak frequency fm, (d) the peak parameter g, (e) the peak width s0, and (f) the

stretching x.
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model is fitted to the adjusted data, given a customized

set of initial parameters, but without further individual

tuning of the model (section 7).

a. Selection procedure and masking

The vertical acceleration spectrograms from stations

DR01 to DR03 show about 250 wave events during

the 2-yr RIS measurement period. (Fig. 1 shows the full

record for DR01, and Figs. S2 and S3 in the online

supplemental material show the same for DR02 and

DR03.) These events are common features in the spec-

trograms of other stations across the RIS array (Fig. 3).

Wave events are strongest near the ice shelf front and

decay with distance toward the interior of the shelf

(Bromirski et al. 2017).

Each event has a characteristic slope, indicating that

low-frequency energy arrives before higher frequen-

cies (section 2). In this analysis, the slopes are iden-

tified using an interactive hand picking procedure. An

example of this is shown in Fig. 4a, in which the wave

event (blue shading) is identified by its low- and high-

frequency limits (black dots in Fig. 4a) and its estimated

time width (green dot in Fig. 4a).

The data mask is a parallelogram defined by three

values, as follows (Fig. 4a, green perimeter). The up-

per and lower limits are the corresponding frequen-

cies of the black dots, and the tilted sides are twice

the temporal separation between the green point and

the black middle line. Initial parameters for slope

and intersect (section 5) are taken from a line cen-

tered between the left boundary and the middle line

(Fig. 4a, red line).

b. Data weighting

There is additional prior information about the use-

fulness of the data within the data mask. High ampli-

tudes close to themask boundary are typically attributed

to noise, while data in the center of the domain are likely

associated with the selected event. The geometry de-

rived in the previous section is also used to construct a

data weighting function defined as

w5 (w
G
1w

G
sw

D
)/21w

floor
, (15)

where wG is a geometrical weight that decays from 1

in the center to 0 at the boundary using a Hanning

window (Fig. 4a, gray contours),wD( f , ~t ) is the spa-

tially smoothed1 data divided by its maximum value, such

thatwD is a matrix that weights high-amplitude data points

more strongly, and (s) is the Schur product. The mini-

mum iswfloor5 1026. The total weightw can vary between

wfloor and wfloor 1 1 and is constructed such that data

points at the boundary, especially of high amplitude, are

downweighted, while data points in the center with high

amplitudes are upweighted. The noise floor value wfloor

represents the general uncertainty in the data that is esti-

mated from the uncertainty in the spectral estimate. The

uncertainty of the spectral estimate is derived from sub-

sampling described in section 3.

c. Noise handling

Within the parallelogram-shaped mask used to select

data from the spectrogram, higher noise levels often

occur at lower frequencies (Fig. 4a, below 0.05Hz and in

Fig. S4). Here, noise is accounted for by fitting a noise

model prior to fitting the actual model. The noise model

follows an exponential decay of the form

M
n
( f )5b

n
e2tnf, (16)

where bn and tn are free parameters. The difference

between the masked data ~D andMn [Mn(f ) defines the

noise cost function

F5�
i,j

" 
~Di,j

s
D

2Mi,j
n

!
wi,j

noise

#2
, (17)

with ~D as themasked acceleration spectrum, normalized

by its standard deviation

s
D
5

�
1

N2 1
�
N

i

~D
i
2 ~D

� �2�1/2
. (18)

The model weighting function wnoise 5 1 2 wG 1 wfloor

is the opposite of the geometric weight from (15) and

downweights data points with high signal-to-noise ra-

tios, such that (16) fits to the background noise rather

than the data. The noise cost function (17) is minimized

for each event individually using the gradient descent

methods described in section 7. The resulting noise-

reduced data matrix

D5
~D

s
D

2M
n

(19)

is used for the actual model fitting. It contains the

noise-corrected and normalized data for each event.

The geometric data selection and the constructed weight

function focus the nonlinear optimization on individual

dispersed wave events, while downweighting neighbor-

ing events and the seasonally changing low-frequency

noise due to sea ice (Fig. 1). The data selection process

1 The data are smoothed by using a running mean with a width

that is 0.2% of the size of the data matrix.
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generates a collection of 250 similar events that can be

well characterized by the model function (section 4).

7. Nonlinear fitting

The optimization method changes the parameters p

of the model function M to minimize the cost function

F[M(p), p] equation in (6). The smallest value of F that

the method finds represents the best fit between model

and data and is only dependent on a set of parameters p.

a. Choice of initial values

The initial values of these parameters are either set

to a standard value or are informed by the geometrical

form of the data mask (Fig. 4b). The first guess dis-

persion slopemf and nondimensional initial time ~t0 are

taken from the masking procedure (red line in Fig. 4a),

and the peak frequency fm is initially set to the peak

frequency of the masked data. The initial fm is also used

to calculate â(a) from (2) assuming a wind speed of

10m s21. Other parameters that modify the spectral

shape are initialized from the JONSWAP spectrum

standard values (Hasselmann et al. 1973), which are

estimated based on open ocean observations.

An overview of the sensitivity to parameter values is

shown in Fig. 5. The initial parameters and their limits

are set to physically plausible ranges (see the appendix,

Table 1, and Massel 1996), such that they allow a wide

range of possible values, and equally importantly, also

adjust to the noise level. In high noise cases, the model is

often unrealistic and results in a poor fit characterized

by a large fractional error (section 8a). These cases can

be identified and are not considered for further analysis

(section 8c).

b. Optimization method and estimations of
uncertainty

The nonlinear model (12) is optimized using a two-

stage fitting algorithm to minimize the cost function

F in (6). In the first stage, the model is initialized with

p0 and then changed using the Levenberg–Marquardt

(LM) algorithm (damped least squares; Newville et al.

2014) to find a local minimum of the cost function. The

LM algorithm calculates the local gradient in param-

eter space and moves its next guess of parameters in

the direction of the gradient. The iteration terminates

if the change of the cost function is small (,10215), if

the change in the independent variables is small, or if

the number of iterations exceeds its limit defined as

100(n 1 1)n, with n being the size of D. We used a gra-

dient method first, rather than a nonlinear search, be-

cause of its faster convergence to a (local) minimum

for a relatively smooth cost function.

In the second step, a parallel tempering Markov

chain Monte Carlo (PTMCMC; Goodman and Weare

2010; Foreman-Mackey et al. 2013; Earl andDeem 2005)

method is used to further minimize the cost function and

to produce an a posteriori error distribution for all vari-

ables simultaneously. This process is similar to simulated

annealing, where the progress toward an optimal solu-

tion can only be seen from the average of many itera-

tions rather than from each single iteration (Kirkpatrick

et al. 1983). This is a powerful tool in situations in which

multiple optimal solutions could exist, as in this prob-

lem: even though one origin per wave event is assumed,

the uncertainty estimate from PTMCMC is generally

capable of capturing several wave events that arrive at

the same time.

Each Markov chain is initialized with the optimal

parameters from the steepest descent method, and its

first guess is seeded from a random distribution. This

chain, often called a walker, goes through 1000 function

evaluations, with two different annealing temperatures,

but only every second evaluation from the final 75%

of this process contributes to the error distribution

(750 function evaluations per walker). This is repeated

1000 times in aMonte Carlo sense to create a distribution

with 7.5 3 105 data points in the eight-parameter space.

Figure 6 shows two examples of codistributions of two

elements of p for the event in Fig. 4c. (All distributions

are shown in Fig. S1.) The distributions have clear

maxima, which are the optimal values for each param-

eter. We use the median (blue lines in Fig. 6) as the best

model fit, while half the difference of the 15.87% and

84.13% quantiles (dashed lines, the width of one stan-

dard deviation in a normal distribution) is taken as a

simple measure of uncertainty (Newville et al. 2014).

The resulting best (median) model fit is shown in Fig. 4c.

The parameters are assumed to be uncorrelated (see the

appendix and Fig. S1), with their width being sensitive to

the choice of prior uncertainty values (section 4 and the

appendix). However, the codistribution of the slope ~t0
and intersect m~t parameters shows a correlated error in

TABLE 1. Table of model fitting parameters, their initial condi-

tions, and priors. An initial value of ‘‘adjusted’’ indicates that the

initial value is inferred from the data.

Parameter Initial value (�)0 Min Max Prior std (�)s

â ag2 0.01 â0 100 â0 0.2

fm Varying 0.04 0.1 0.002

g 2 1 4 0.4
~t0 Varying 20.5 0.2 0.04

s0 0.05 0.01 0.1 0.01

mf Varying 0.5 m0
f 2.5 m0

f 0.2

x 5/4 1 3/2 0.05

b 2.1 1.2 3 0.08
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all observed cases (Fig. 6a). This distribution is con-

verted from the ~t0–m~t space to initial time

t
0
5 ~t

0
DT1 t

start
, (20)

and radial distance

r
0
5

g

4pDT
m~t

, (21)

withDt5 tend2 tstart (section 5) and using the deepwater

dispersion relations (Barber and Ursell 1948; Munk and

Snodgrass 1957; Snodgrass et al. 1966). The resulting

distribution reveals probabilities of wave event origin in

time and radial distance and allows us to create prob-

ability maps to quantify the likelihood of a specific

origin. Figure 7 shows these maps of probability in the

time and radial distance space (TR space). They are

direct conversions of the observational scatter captured

by the PTMCMC method (section 7). Smaller patches

in the TR space (Fig. 7, bottom) correspond with very

certain model estimates of events in the observed spec-

trogram (Fig. 7, top), while larger patches in the TR space

correspond with less well defined wave events. This am-

biguity between a recent nearby event and a distant event

from further back in the past can be reduced by using

other dependencies in the model and by drawing on

extra information about wind events from atmospheric

observations and models. The authors plan to address

this in future work.

8. Performance of the optimization

a. Distribution of fitting parameters

To compare the eight model parameters consistently

we express them as normalized distance computed

relative to the prior (section 4). Figure 8 shows the

decomposition of the model cost Jm in (6) into the cost

introduced by each of the eight parameters for the three

front stations. The initial cost of each parameter is zero

(green line), while the median model cost of the param-

eter is indicated by the black line.

The distribution of costs due to the parameter ad-

justment is similar for all parameters and for all stations,

with a clear maximum close to zero. Final parame-

ter values close to the initial value suggest that small

changes in the parameters are enough to reduce Jd
substantially without introducing costs in Jm. However,

there are cases for all parameters where the final value

deviates from the initial value more substantially. In

these cases, the costs in Jm introduced by large param-

eter adjustments are small compared to the reduction

achieved in Jd such that the overall cost F is still mini-

mized. This must be the case because the ratio of model

to data cost, Jm/Jd, rarely exceeds 20% for all fitted cases

(Fig. A1). This suggests that, based on gradients inF, an

efficient minimization can often be effected via small

changes in themodel parameters, or sometimes through a

few larger changes to a subset of parameters. Since

the gradient descent method terminates if the number of

FIG. 6. PDFs of four parameters inferred in an example case using the PTMCMC algorithm. (a) The three panels

in the top left show the joint PDF as well as the single PDF for the slope parametermf and intersect parameter ~t0.

(b) The three panels in the lower right show the joint PDF and single PDFs for the peak parameter g and the

amplitude parameter â. The blue lines indicate themedian and the dashed lines the 15.87th and 84.13th percentiles.
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iterations exceeds its limit, it is possible that regions

of parameter space in the direction of small gradients

are never explored. However, these are sampled later by

the Monte Carlo method.

Parameters that determine the radial distance and

initial time are optimized during the minimization

procedure. The position of ~t0 has, in the median, a larger

contribution to Jm than other parameters (Fig. 8a). That

is, in about 85% of all cases, changes in the modeled

position were necessary to achieve minimum cost. In

contrast, the model slope parameter mf also adjusts

(Fig. 8b), but introduces smaller costs, because the

manual selection criteria better define its initial values

than the position of the initial time (section 6a).

Two parameters of the JONSWAP spectrum (g and

s0) also introduce noticeable model costs (Figs. 8c,d).

Their initial values were manually adjusted away from

the standard JONSWAP values (Fig. A2), because trials

that started with standard JONSWAP values reduced

the overall quality of the fit (larger fractional errors).

In the end, neither the standard JONSWAP values

nor the chosen initial values (the appendix) are the

best choices to capture the shape of the observed swell

events well. However, an additional free parameter, x

(Fig. 8e), that changes the general shape of the spec-

trum, often remains close to its initial, theoretically

well-constrained value of 5/4 [see (7)], as predicted by

Hasselmann et al. (1973).

b. Comparing fitting performance between
front stations

The optimization algorithm found 225 events dur-

ing the 24-month observational period. They occurred

at each of the three ‘‘front’’ stations DR01, DR02, and

DR03, each about 2 km away from the ice-shelf edge

(blue, orange, and red dots in Fig. 3); common events at

all three stations are identified by similar arrival times.

The seismic stations at the RIS ice shelf front are close

together (’80-km separations) compared to the distance

traveled by the waves (’1500km). As a result, the in-

coming wave angles and amplitudes are assumed to be

uniform along the ice shelf front. However, the event

amplitudes observed at DR01 are systematically larger

than at DR02 and DR03 (Fig. 9a). The difference in

amplitude between the stations may be caused by the

structure of the ice shelf, and affected by amajor rift that

separates DR03 andDR01, near DR02. If the amplitude

difference were due to the incoming angle of the waves

rather than ice-shelf rheology, one would expect more

randomly scattered differences between the stations,

because the incident waves are expected to come from a

wider range of incident angles.

FIG. 7. Seismic spectrogram in the RIS (as Fig. 1). The lines show the optimized dispersion

slopes for events from the Southern Ocean (red, south of 308S) or north of it (blue).(b)

Probability maps of wave origins in radial distance and time for the same time as (a). The red

and blue lines indicate the best guess of the initial time, that is, when the lines in (a) cross the

abscissa. Each elliptic pattern in (b) is the probability distribution of the corresponding wave

event in (a). The smaller the probability patterns, themore certain the wave event origin is. The

red and blue dots between both panels show the amplitude as observed on the RIS but position

at their initial time.
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Comparison of other fitted parameters suggests that

the same wave events lead to comparable observations

at the three RIS-front stations. For example, peak fre-

quencies of common events vary by about 0.02Hz or

less between the three stations (Fig. 9b). Austral sum-

mer events, that generally have higher peak frequencies,

also have a similar observed frequencies at all three

front stations. Differences between them are likely

due to independent noise or local shelf structure. Peak

frequencies lower than 0.04Hz are mainly observed at

DR01, while the same events at DR02 or DR03 rarely

fall below 0.04Hz. Reasons for this could be systematic

differences in the ice shelf front geometry, or crevasses

and rifts in the ice shelf between the stations, which are

beyond the scope of this study. Aside from this discrep-

ancy, observations show peak frequencies and spectral

shapes similar to those in the open ocean, indicating that

the RIS response to incident waves maintains properties

from the open ocean waves.

The uncertainty in the radial distance estimate, and

therefore also the uncertainty in initial time, can vary

between the front stations. Figure 9c shows the radial

distance uncertainty for all events (defined as half the

distance between the 15.87 and 84.13 percentiles of

the uncertainty distribution (section 7b, Fig. 6a black

dashed lines). The difference in radial distance uncer-

tainty between the stations is generally larger for larger

uncertainties. For many events, DR02 and DR03 have

smaller uncertainties than DR01. These events are of-

ten, but not always, selected by the criterion of smallest

fractional error, which is explained in the next section

(black half dots, Fig. 9c).

FIG. 8. PDFs of parameters from the 225 fitted parameters sets in the three front stations DR01 (blue), DR02

(orange), and DR03 (red) expressed as normalized distance to initial value following (6). Green dashed lines

indicate the normalized initial values of the model and the black lines are the medians of all cases at all stations.

2182 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 36



c. Measures of fit

The performance of the model optimization is assessed

quantitatively using the fractional error between data and

model

e
frac

5
J
d

�
N

i

D2
i w

2
i

, (22)

with Jd identifying the cost, Di the data, and wi the

specific weight for each point. A good model fit, that is,

low fractional errors, means thatF is small compared to

the data. The distributions of efrac for DR01–DR03 are

shown in Fig. 10. Events with a efrac # 0.6 are defined as

successfully fitted (gray area in Fig. 10a). This represents

between 74% and 84% of all events (varying between

stations) considered in this analysis. Values of efrac. 0.6

are interpreted as unsuccessful fits and represent between

16% and 26% of all cases considered.

The signal-to-noise ratio is generally the same for all

three stations (the median efrac is 0.43 for DR01 and

DR03 and 0.37 forDR02), with a large variance between

individual events (Fig. 10b). For each swell event, the

comparison of efrac varies widely between stations, with

no systematic preference for one station. Higher values

of efrac correspond to a less successful explanation of the

data by the model, or higher noise levels.

Most events have a small fractional error at all stations

(green area in Fig. 10b), but there are a number of events

in which one station performs substantially better than

its neighboring stations (gray areas). To optimize the use

of multiple observations, we compile a set of 208 events

taken from DR01–03 (88% of all initial events, black

half dots) based on events when efrac is smallest. Events

with a fractional error larger than 0.6 at all three stations

are not considered (upper right area in Fig. 10b). By

considering all three stations, we identify 35 additional

events that would not meet our fractional error criterion

for DR01 alone. The use of the three stations reduces the

mean fractional error from 0.42 to 0.26, with the disad-

vantage that no common attenuation transfer function

can be determined for the events (Figs. 10a and 9a).

As shown in Fig. 10b, the fractional error for the same

swell event varies between the different observation sites,

although differences between the three spectrograms are

often difficult to distinguish by eye (cf. Fig. 1 with Figs. S2

and S3). The fractional error criterion provides a single

metric for evaluating all observed events, and when we

adopt a conservative threshold for the fractional error, it

allows rigorous quality control of the data.

The optimization procedure identified swell arrivals at

the RIS based on physical constraints that are parame-

terized in the model (section 5). If data and model are

FIG. 9. (a) Peak amplitude of data under fitted events in DR01

(blue), DR02 (orange), and DR03 (red) against DR01. The dot

sizes indicate the event amplitude. The gray lines connect the same

event in the three stations. (b)As in (a), but for the peak frequency.

(c) As in (a), but for the radial distance error. The half-black circles

indicate the station with the minimal fractional error for each case

(as in Fig. 10b).
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similar, then the fractional error is small, and we conclude

that the observed event is indeed related to incident, dis-

persed swell events. In contrast, a large fractional error

suggests a weaker signal-to-noise ratio, implying for ex-

ample that additional processes have distorted the incident

wave events, that more than one storm is contributing to

forcing the swell, or that the observed features are not

generated by dispersed swell waves.

d. Observed storm activity and wave spectra

Figure 11a shows the radial distance estimate, number

of storms per degree latitude, radial uncertainty, and

time uncertainty. Events with efrac # 0.6 are black

(Fig. 9c, green area), while the remaining events are

gray. The vertical lines show one radial-distance stan-

dard deviation, inferred from the uncertainty estimate

(section 7b), while the standard deviation in time is

not plotted because it is too small. The distributions of

both radial distance and time uncertainty are shown in

Figs. 11c and 11d.

The observed RIS events suggest that storm-generated

packets of surface waves arrive at the ice shelf more than

twice per week (2.3 events per week, all dots in Fig. 11a).

In total, 208 of these events meet the criterion of a well

identified/well fitted event (efrac , 0.6, section 7). The

majority (187 events, 1.8 week21) originate from the

Southern Ocean, and we see no distinct seasonality in

their occurrence rate. The rest (28 events) originate

from the subtropics or the Northern Hemisphere in

boreal winter, and are generated from tropical or ex-

tratropical cyclones in the North Pacific (Cathles et al.

2009; MacAyeal et al. 2006; Bromirski et al. 2010). The

median estimated uncertainty is about 110 km in space

and 2 h in time (Figs. 11c,d). These uncertainties are

small enough to allow the wave events to be matched to

specific high wind speed areas under storms that are

often related to fronts or warm conveyor belts (Schemm

and Wernli 2014), as we will explain in future work.

9. Summary and conclusions

Ocean swell is commonly observed along coastlines

and its origin is a long-standing question in oceanogra-

phy (Munk 1947). Swell is known to be generated by

strong winds associated with extratropical cyclones, but

the exact positions of swell generation have not been

well characterized. Areas of swell generation are hypoth-

esized to correspond to areas of upper-ocean mixing

and often of intense air–sea heat exchange. Here, instead

of relying on in situ observations, we have developed a

methodology to analyze the remote observation of ocean

swell. This can be used to infer characteristics of the swell

generation region.

To assess the locations of high surface winds over the

Southern Ocean we developed a method that combines

spectral analysis from time series of swell arrivals at a

single point with a parametric model optimization. The

parametric model used here represents a combination

of the linearized dispersion relation and the JONSWAP

spectrum. These models are based on different descrip-

tions of the wave source: while the inversion of the linear

dispersion relation assumes a source that is a delta func-

tion in space and time, the JONSWAP spectrum uses a

wind speed over a given length or for a given time (Munk

1947; Hasselmann et al. 1973). Both concepts are approx-

imations to reality, as is their combination (12). The re-

sulting eight-parameter model provides a framework to

describe the (point) origin and spectra of swell observed

by a single point observation.

FIG. 10. Statistics of the fractional error. (a) Histograms of the

fractional error for the 225 fitted events in the front stations DR01

(blue), DR02 (orange,) and DR03 (red). The colored vertical lines

show the median fractional error per station. The vertical dashed

line is the threshold chosen to identify good fits (efrac # 0.6).

(b) Fractional error of each event in DR01, DR02, and DR03,

compared against DR01. Dot sizes indicate the event amplitude.

Gray lines connect the same event in all three stations. For each

case, the half-black circles indicate the station with the smallest

fractional error. Gray areas correspond to efrac # 0.6 in DR01,

DR02, or DR03, respectively. Dots in the green area indicate

efrac # 0.6 in DR01 and DR02, or DR01 and DR03.
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The systematic comparison of the parametricmodel with

the wave events allows us to quantitatively test models of

generation and propagation. It provides a framework for

learning about the underlying physical process, rather than

letting the machine construct a model of the observations

without physical constraints (often referred to as un-

supervised machine learning; Editorial Board 2019).

A two-stage optimization procedure is used to fit the

model to the data, by exploring the full eight-parameter

space simultaneously. In our procedure, we first apply a

gradient descent method and subsequently carry out

Monte Carlo sampling to ensure 1) that the gradient

descent minimum is ‘‘annealed’’ to a globally optimal

position in parameter space, and 2) that there is a well-

sampled uncertainty distribution for each parameter.

The uncertainty in the fitting parameters is estimated

using a simulated annealing approach (PTMCMC) that

is based on the data and the model, with no prior as-

sumptions about the functional form of the distribution

of the uncertainty. The methodology exposes differ-

ences between events (Fig. A2) that are not obvious to

the eye (Fig. 1) and also allows quantitative comparison

of observations of the same events at three observation

sites (section 8b), which can give insight into wave in-

teractions with the ice shelf and into differences in wave

propagation to the three sites. We showed that the set of

prior model parameters is sufficient to generate well

behaved model fits, with fitted model parameters ad-

justed minimally. Larger parameter adjustments that

introduce model costs (lasso regularization) are only

introduced for a minimization of the total costs, due to a

better fit of the model. Future work could investigate

physical reasons for these extreme parameter by re-

interpreting the model function.

Themethod developed here could in principle be used

for any data documenting swell arrivals and unmarred

FIG. 11. (a) Estimated radial distances and initial times for 225 wave events. Black dots are events with a frac-

tional error efrac # 0.6 (208 events), while gray dots correspond to events with efrac . 0.6 (17 events). Vertical red

lines show the standard deviation of the time inferred from PTMCMC (section 7b). (b) Histogram of numbers of

storms per radial distance. Histogram of (c) radial distance error and (d) initial time error.

FIG. A1. Distribution of the ratio of model cost function Jm in (5)

to data cost function Jd in (6) for all events in the three front sta-

tions. The median is shown by the black line.

NOVEMBER 2019 HELL ET AL . 2185



by locally generated noise. Here we apply the approach

to three seismic stations on the RIS, which provide a

dataset of well resolved swell arrivals close to one ofmost

active cyclone-genesis regions of the globe (Hoskins and

Hodges 2005). These point observations allow us to

identify the swell origin in space and time.

For the two years of RIS data available, the optimi-

zation method results in a catalog of 208 (self) similar

swell arrivals that can be detected in the ice shelf. In

total 187 (90%) of these swell arrivals originate from

the Southern Ocean and can be used to improve the

understanding of the origin of ocean swell and its in-

teraction with sea ice. The remaining 10% originate

from the Northern Hemisphere midlatitudes during

the boreal winter season. This is observational evidence

of the distinctly different seasonality in both hemispheres,

and establishes the incidence of swell impacts on the Ross

Ice Shelf throughout the year. The uncertainties of origin

in location and time are correlated and found to be about

110 km or 2 h, respectively (Figs. 11c,d), which allows us

to reduce the uncertainty of the wave origins to the scale

of atmospheric surface fronts or other features within

cyclones, rather than the scales of cyclones themselves

(1000km, 5 days).

A follow-up paper will apply this method to the RIS

data to verify Southern Hemisphere storm position in

atmospheric reanalysis data. Ice shelf seismic measure-

ments, such as the RIS data, are particularly well suited

for detecting swell arrivals, because the general lack of

open water near the seismic stations means that local

wind waves are absent in the seismic data, resulting in a

relative noise-free set of swell arrivals. In addition, weaker

FIG. A2. As in Fig. 8, but not normalized by prior uncertainty and initial guesses. Green dashed lines indicate the

initial values of the model for cases with independent initial parameters, the black lines are the medians of all cases

at all stations, and the purple lines are the standard JONSWAP values if applicable (section 5).
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events that might complicate the interpretation of the

swell arrivals appear to be largely attenuated when they

propagate through sea ice.

Future work could also apply the methodology to a

broader network of ice-shelf seismic stations or even to

midlatitudewave buoys, bottompressure sensors, or even

land-based seismic stations, although further tuning

would likely be needed to distinguish between locally and

remotely generated waves. The methodology is suitable

for data records of any duration, ranging from a few days

to multiple years, provided that they provide sufficient

temporal resolution. The RIS time series are relatively

short, and a manual procedure was used to preselect

candidate swell arrivals. If this method were applied to

longer observation periods, themanual selection could be

replaced with an automated search strategy from the

catalog of available machine learning tools (Bergen et al.

2019). Finally, by combining observations at several sta-

tions with additional information about ocean currents or

sea ice, the method could potentially be further extended

to study storm intensity and/or sinuous wave travel paths.
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APPENDIX

Cost Function and Residual Distributions

The model and data cost functions are defined in

section 4. Figure A1 shows the dominance of the

data cost function as the distribution of their ratio.

The parametric model of dispersed swell arrivals is in-

troduced in section 5, and the initial values and their

prior estimated uncertainties are summarized in Table 1.

The distribution of the final normalized distance for

each parameter as shown in Fig. 8 is derived by using

Hi 5
pi
0 2 pi

final

pi
s

,

where pi
0 is the initial value, pi

final the final value, and pi
s

the prior weight of parameter i. The terms pi
0 and pi

s

can vary from case to case (section 7a). Figure A2 shows

the distributions for all parameters as in Fig. 8 but for

pi
final rather than for Hi.

The final model parameters are defined by the median

of the Monte Carlo sampling that results in an eight-

dimensional uncertainty distribution, shown as joint

PDFs for an example case in Fig. S1 and the distribution

of the residual between data and model is shown in

Fig. A3.
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