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ABSTRACT Bacteroides fragilis is a Gram-negative commensal bacterium commonly 
found in the human colon, which differentiates into two genomospecies termed 
divisions I and II. Through a comprehensive collection of 694 B. fragilis whole genome 
sequences, we identify novel features distinguishing these divisions. Our study reveals 
a distinct geographic distribution with division I strains predominantly found in North 
America and division II strains in Asia. Additionally, division II strains are more frequently 
associated with bloodstream infections, suggesting a distinct pathogenic potential. We 
report differences between the two divisions in gene abundance related to metabolism, 
virulence, stress response, and colonization strategies. Notably, division II strains harbor 
more antimicrobial resistance (AMR) genes than division I strains. These findings offer 
new insights into the functional roles of division I and II strains, indicating specialized 
niches within the intestine and potential pathogenic roles in extraintestinal sites.

IMPORTANCE Understanding the distinct functions of microbial species in the gut 
microbiome is crucial for deciphering their impact on human health. Classifying division 
II strains as Bacteroides fragilis can lead to erroneous associations, as researchers may 
mistakenly attribute characteristics observed in division II strains to the more extensively 
studied division I B. fragilis. Our findings underscore the necessity of recognizing these 
divisions as separate species with distinct functions. We unveil new findings of differen­
tial gene prevalence between division I and II strains in genes associated with intestinal 
colonization and survival strategies, potentially influencing their role as gut commensals 
and their pathogenicity in extraintestinal sites. Despite the significant niche overlap 
and colonization patterns between these groups, our study highlights the complex 
dynamics that govern strain distribution and behavior, emphasizing the need for a 
nuanced understanding of these microorganisms.

KEYWORDS pangenome, commensal bacteria, genomic diversity, niche adaptation, 
Bacteroides

B acteroides fragilis is a persistent colonizer of the human gut linked to both health 
and disease (1) and is composed of two genomospecies termed divisions I and II. 

They have primarily been differentiated through the presence of cepA, a beta-lactamase, 
which is unique to division I (2), and the chromosomally encoded carbapenemase gene 
(cfiA or ccrA), which is unique to division II and provides resistance to beta-lactamase 
inhibitors (3, 4). Due to their genetic similarity, traditional methods such as 16S rRNA 
gene analysis cannot distinguish between these divisions, yet they share an average 
nucleotide identity (ANI) of 87%, below the typical species cutoff of 96% (3, 5–10). 
Here, we conduct a comprehensive genomic comparison and identified genes conserved 
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within each B. fragilis division, but not shared between them, shedding light on the 
unique biological roles and functions of these divisions within their ecological 
niches.

We analyze 694 B. fragilis whole genome sequences, including 139 from our own 
collection, which we isolated and sequenced for the first time, and the remaining 
from public sources (Tables S1 and S2). To compare the genetic relatedness between 
divisions, we employed Mash, a whole genome k-mer-based approach (11) to determine 
the genetic distance between each strain (Fig. 1A). Metric multidimensional scaling 
(mMDS) reveals a clear separation of strains into two distinct divisions (Fig. 1A). To further 
support this distinction, we discovered a significant difference in GC content between 
the divisions (Welch’s t-test, P = 8.1e-5; Cohen’s effect size, d = 0.35) (Fig. 1B), although 
no differences were found in genome size (Welch’s t-test, P = 0.22) (Fig. 1C). We also 
observe a difference in the average GC content in the core genes (present in >99% of 

FIG 1 B. fragilis is composed of two monophyletic divisions. (A) Metric multidimensional scaling (mMDS) of the k-mer based Mash distances of 694 strains, 

colored by divisions I (green, n = 554) and II (purple, n = 140). (B) GC content (%) of isolate assemblies in division I and II isolates. Average for division I = 43.35% ± 0.19 and division II = 43.42% ± 0.16 (P = 8.1e-5, Welch’s t-test with unequal variance; n = 694). (C) Genome size (bp) of isolate assemblies in division I and II 

isolates. Average for division I = 5.26×106 bp and division II = 5.22×106 bp (P = 0.22, Welch’s t-test with unequal variance; n = 694). (D) The proportion of isolates 

originating from abscess (P = 0.18), blood (P = 0.0049), and fecal (P = 0.0011) samples in division I compared with division II, P-values from Fisher’s exact test. 

Division I: total = 554, fecal = 228, blood = 30, abscess = 51; division II: total = 140, fecal = 56, blood = 21, abscess = 23. The proportion of isolates originating 

from Africa (P = 0.18), Asia (P = 2.2e-16), Europe (P = 0.00019), or North America (P = 2.2e-16) in division I compared with division II, P-values from Fisher’s Exact 

Test. Division I: total = 554, Africa = 33, Asia = 46, Europe = 11, North America = 459; division II: total = 140, Africa = 13, Asia = 58, Europe = 13, North America = 

56. (E) Distribution of isolates in each continent per division in the Pasoli et al., 2019 data set. The proportion of isolates originating from Africa (P = 1), Asia (P = 

3.9e-08), Europe (P = 9.4e-07), North America (P = 0.029), Oceania (P = 0.00017), or South America (P = 1) in division I (green) compared with division II (purple), 

P-values from Fisher’s exact test. Division I: n = 437, Africa = 1, Asia = 107, Europe = 263, North America = 63, Oceania = 1, South America = 2; Division II: n = 

65, Africa = 0, Asia = 39, Europe = 18, North America = 3, Oceania = 5, South America = 0. (F) Phylogenetic tree of the core genome alignment of 694 strains 

through maximum likelihood, midpoint rooted, colored by divisions I (green) and II (purple). (G) The phylogenetic tree of the core genome alignment of division 

I strains through maximum likelihood, midpoint rooted, annotated with the inner ring, Group: healthy, infection, IBD, non-human animal, unknown; and outer 

ring, Continent: Asia, Africa, Europe, Oceania, North America, and South America (n = 554).(H) The phylogenetic tree of the core genome alignment of division 

II strains through maximum likelihood, midpoint rooted, annotated with the inner ring, Group: healthy, infection, IBD, non-human animal, unknown; and outer 

ring, Continent: Asia, Africa, Europe, Oceania, North America, and South America (n = 140).
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isolates) of divisions I (44.6% ± 4.1) and II (45.0% ± 4.0), demonstrating the same trend 
where division II strains have a moderately higher average GC content than division I 
(Welch’s t-test, P = 8.3e-21). Of the shared core genes in division I versus II, the average 
GC content per gene in divisions I and II is 44.9% ± 3.7 and 45.0% ± 3.8, respectively 
(Welch’s t-test, P = 0.0081). However, core genes exclusive to division I have an average 
GC content of 43.0% ± 5.5, whereas those unique to division II are 44.2% ± 5.7 (Welch’s 
t-test, P = 4.2e-19), suggesting the differences in GC content stem from recent evolution 
between divisions. Although significant, the GC content difference is subtle and may 
not accurately categorize any given isolate as either division I or II. Finally, based on 
the maximum likelihood, midpoint-rooted phylogeny of the core genome alignment, 
divisions I and II separate into discrete clades (Fig. 1F).

We next investigated whether divisions I and II are associated with disease states, 
isolation sites, or other metadata categories. Division I strains are more prevalent (80% 
of the total; 554 of 694) than division II. Among the 409 isolates from abscesses, fecal 
samples, or blood, division I strains are more commonly isolated from fecal samples 
(74%) compared with division II (56%, Fisher’s exact test, P = 0.0011) (Fig. 1D). Conversely, 
division II strains are more frequently associated with abscesses (23%) or blood (21%) 
compared with division I strains (16% from abscess, Fisher’s exact test, P = 0.18, and 
10% from blood, Fisher’s exact test, P = 0.0049) (Fig. 1D). Notably, division I and II strains 
exhibit variations in the continent of isolation. Moreover, 84% (n = 459) of division I 
strains originate from North America, compared with only 40% (n = 56) of division II 
strains (Fisher’s exact test, P = 2.2e-16) (Fig. 1D and H). In contrast, only 8% of division 
I strains originate from Asia (n = 46), compared with 41% (n = 58) of division II strains 
(Fisher’s exact test, P = 2.2e-16) (Fig. 1D and G). To further explore the geographical 
distribution of these divisions, we examined 502 species-genome bins (SGBs) classified 
as B. fragilis, which were reconstructed from 9,428 human gut metagenomic samples 
worldwide (12). 87% and 13% of strains belong to divisions I and II, respectively. No host 
harbor both divisions, in line with reports from other studies (13–16). Most of the division 
I strains (75%) originate from Europe or North America, whereas most division II strains 
(60%) are from Asia (Fig. 1E). This aligns with previous reports indicating a higher rate of 
cfiA+isolates (division II) in Japan, Hong Kong, and India (17). This geographic disparity 
suggests the under-representation of division II strains in public databases may be due to 
the limited sampling of specific populations (18).

Using Panpiper (19), we compared the pangenomes of B. fragilis division I and II, 
and identified 794 genes with differential prevalence, including the exclusive presence 
of cfiA in division II and cepA in division I (Fig. 2A, B and E; Table S3) (2, 4). We 
next assessed the differential abundance of carbohydrate-active enzymes, along with 
reference metabolic (EC) and reference KEGG orthology pathways (KEGG KO) (Fig. 2C 
through E). Our analysis reveals division­specific metabolic capabilities and potential 
ecological niches. Division II strains have genes favoring the degradation of plant cell 
walls, including glycosyl hydrolases (GH5, GH9, GH51, and GH95) (Fig. 2C), suggesting 
adaptation to dietary variations. Specifically, BFAG_03498 (ko:K01179, GH9) is predicted 
to mediate the breakdown of cellulose, BFAG_02344 (GH51) is involved in the breakdown 
of arabinose-containing polysaccharides, and BFAG_0465 (GH95), an alpha-L-fucosidase, 
is involved in the cleavage of internal beta-1,4-glycosidic bonds present in plant cell 
walls (20) (Table S3). One possible explanation for the higher prevalence of plant cell 
wall degradation genes in division II strains may be dietary differences among hosts of 
divisions I and II, potentially linked to their distinct geographical distributions (Fig. 1D 
and E) (21). Division I strains harbor genes indicative of complex carbohydrate degrada­
tion, a hallmark feature of gut-resident commensal Bacteroides (1, 22). This includes 
two predicted alpha-L-rhamnosidases (BF9343_0522, BF9343_0310; GH78), which are 
core genes exclusive to division I (Fig. 2C; Table S3). Division I strains also exhibit 
an enrichment of GH33 sialidases (Fig. 2C), which catalyze the cleavage of terminal 
sialic acid residue. Although sialidases have been linked to virulence (23), the B. fragilis 
GH33 sialidase mediates intestinal colonization and persistence during early life (24). 

Observation mSystems

July 2024  Volume 9  Issue 7 10.1128/msystems.00516-24 3

https://doi.org/10.1128/msystems.00516-24


Because sialic acid is identified in capsular polysaccharides and lipooligosaccharides 
(25), its presence may influence colonization and interactions within the host. Division 
I strains are also enriched in the type VI secretion system GA3, with 84.4% of division 
I strains having all T6SSiii GA3 structural genes (BF9343_1919–1925, 1931, 1940–1943) 
(26) compared with 48.1% in division II. This system, exclusive to B. fragilis, is recognized 
for mediating intra-strain competition and colonization dynamics (27–29). The differen­
tial abundance of glycosyl hydrolases and T6SSiii GA3 suggests distinct colonization 
strategies between division I and II strains within the gut.

Division I and II strains may occupy distinct ecological niches, distinguished by genes 
associated with metabolism and pathogenicity. Division II strains exhibit an increased 
abundance in genes related to proline degradation and glutamate synthesis pathways 
(EC 3.4.21.26, BFAG_03703; EC 1.5.5.2, BFAG_03859) (Fig. 2D; Table S3). Additionally, 
these strains have an increased abundance of the gene encoding DNA-formamidopyri­
midine glycosylase (EC 3.2.2.23, BFAG_03121), crucial for DNA repair mechanisms against 
mutagenesis and cell death induced by alkylating agents (Fig. 2D; Table S3). We also 
observed differential prevalence in genes and pathways related to multidrug resist­
ance. Division I strains have an increased prevalence of gamma-carboxymuconolactone 

FIG 2 B. fragilis divisions I and II segregated by multiple differentially abundant genes and gene categories. (A) Relative log2 gene abundance heatmap by 

division, where genes are clustered by R pheatmap complete method, annotated by regions of gene clusters core to both divisions, core only to division I, or 

core only to division II. (B) Histogram of log2-fold change of prevalence between all genes in division I versus II. (C-E) Log2 average number of genes per isolate 

in categories, (C) carbohydrate-active enzymes (CAZy) (log2-fold change ≥0.5), (D) EC category (log2-fold change ≥1), and (E) KEGG KO (log2-fold change ≥0.5) 

between divisions I and II, displaying categories significant by Kruskal–Wallis test (corrected P ≤ 0.01). Legend is log2 average number of genes per isolate in 

each category. (F) Total number of antimicrobial resistance (AMR) genes per isolate for each division; P = 0.004, Welch’s t-test. (G) The percentage of isolates per 

division with each antimicrobial resistance gene. cfr, chloramphenicol–florfenicol resistance gene; cfx, cefuroxime resistance gene, erm, erythromycin resistance 

gene; mef, macrolide efflux gene; msr, macrolide efflux gene, nim, nitroimidazole resistance gene; sul, sulfonamide resistance gene; tet, tetracycline resistance 

gene.

Observation mSystems

July 2024  Volume 9  Issue 7 10.1128/msystems.00516-24 4

https://doi.org/10.1128/msystems.00516-24


decarboxylase (EC 4.1.1.44) (Fig. 2D) associated with the breakdown of aromatic 
compounds and antimicrobial resistance (AMR) (30). We indentify a putative erythromy­
cin esterase that detoxifies macrolides also more abundant in division I (31). Conversely, 
division II strains have a higher abundance of efflux proteins (K09771, K11741) (Fig. 2E; 
Table S3) and virginiamycin A acetyltransferase (vat, K18234), providing resistance to 
streptogramins (Fig. 2E; Table S3). Indeed, division II strains harbor a higher number 
of known AMR genes per isolate compared with division I (P = 0.004) (Fig. 2F and G), 
indicating a potential for increased virulence. Further experimental studies are necessary 
to determine the functional impact of division­specific genes to understand their roles 
and interactions within the intestinal ecosystem and host. Collectively, our comparative 
genomics study unveils distinct geographical distribution and genetic signatures within 
B. fragilis divisions, offering insights into their intricate interactions with the host and 
respective ecological niches.
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