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Abstract

Although research indicates health and well-being benefits of greenspace, little is known regarding 

how greenspace may influence adaptation to health risks from heat, particularly how these 

risks change over time. Using daily hospitalization rates of Medicare beneficiaries ≥65 years 

for 2000-2016 in 40 U.S. Northeastern urban counties, we assessed how temperature-related 

hospitalizations from cardiovascular causes (CVD) and heat stroke (HS) changed over time. We 

analyzed effect modification of those temporal changes by Enhanced Vegetation Index (EVI), 

approximating greenspace. We used a two-stage analysis including a generalized additive model 

and meta-analysis. Results showed that relative risk (RR) (per 1°C increase in lag0-3 temperature) 

for temperature-HS hospitalization was higher in counties with the lowest quartile EVI (RR=2.7, 

95% CI: 2.0, 3.4) compared to counties with the highest quartile EVI (RR=0.40, 95% CI: 0.14, 

1.13) in the early part of the study period (2000-2004). RR of HS decreased to 0.88 (95% CI: 

0.31, 2.53) in 2013-2016 in counties with the lowest quartile EVI. RR for HS changed over time 
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in counties in the highest quartile EVI, with RRs of 0.4 (95% CI: −0.7, 1.4) in 2000-2004 and 2.4 

(95% CI: 1.6, 3.2) in 2013-2016. Findings suggest that adaptation to heat-health associations vary 

by greenness. Greenspace may help lower risks from heat but such health risks warrant continuous 

local efforts such as heat-health plans.
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1. Introduction

Climate change has increased exposure to extreme heat (Smith et al., 2014), with the last 

five years as the warmest on record (NOAA, 2020). Global temperature is expected to 

increase by 1.5 °C between 2030 and 2052 if greenhouse gas (GHG) emissions of the 

past decade continue (Tong and Ebi, 2019). Under this scenario, extreme heat events are 

expected to occur in 47 U.S. states and lead to a four- to twenty-fold increase in the 

population exposed to extreme heat events by the late 21th century (Dahl et al., 2019). 

Some communities and populations may have little capability to cope with expected record

breaking heat events and thereby will suffer disproportionately.

Climate change poses direct and indirect threats to health, including through impacts of 

high temperature and heat waves. Heat stroke (HS) is a direct health outcome exacerbated 

by thermoregulation failure due to exposure to extremely high temperature and it, which 

can lead to a mortality rate near 80% (Li et al., 2017). Positive associations between heat 

exposure and increased heat stoke have been reported in several studies (J.F. Bobb et al., 

2014; Wang et al., 2016). Excess cardiovascular deaths associated with high temperature 

are also a major health burden of climate change (Song et al., 2017). In addition to deaths, 

significant increases in cardiovascular hospitalizations during warm seasons were reported 

(Phung et al., 2016). While relatively fewer studies focused on hospitalization compared 

with mortality for cardiovascular diseases (CVDs) (Campbell et al., 2018), evidence for the 

associations between temperature and cardiovascular hospitalizations has been inconsistent. 

Several studies of heat-related hospitalizations have shown increased admissions for CVDs 

in the U.S. (J.F. Bobb et al., 2014; Li et al., 2019; Lin et al., 2009; Schwartz et al., 2004), 

Europe (Kovats et al., 2004), Asian countries (L. Cui et al., 2019; Son et al., 2014), and 

Australia (Turner et al., 2012). Some other studies did not observe associations between 

high temperature and increased risk of hospitalizations for CVDs in the U.S. (Gronlund 

et al., 2014a) and Europe (Michelozzi et al., 2009; Monteiro et al., 2013; Urban et al., 

2014; Wichmann et al., 2011). Examining hospitalization risks from temperature aids our 

understanding of the burden from heat on the health care system. Further, analyzing heat 

effects on hospitalizations could provide timely evidence for monitoring of population 

health (Cheng et al., 2016). Given the inconsistent findings among studies on the effects 

of high temperature on hospitalization, further research is needed to provide evidence 

on the temperature-hospitalization associations and what factors may function as effect 

modifications on those associations. Associations between heat and health appear to change 

over time (Jennifer F. Bobb et al., 2014). Studies in countries such as France, Italy, South 
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Korea, and the U.S. reported significant temporal shifts in the heat-mortality association, 

mostly finding decreasing risk (i.e., adaptation) (Barreca et al., 2016; A. Fouillet et al., 2008; 

Schifano et al., 2012; Vicedo-Cabrera et al., 2018). Temporal changes in heat’s impacts on 

health can relate to changes in economy, population characteristics, temperature distribution, 

and behavior (Hondula et al., 2015). Some epidemiological studies suggested that increased 

prevalence of air conditioning over time contributed to adaptation to heat (Barreca et al., 

2016). However, little is known regarding which environmental factors that may explain or 

contribute to adaptation to heat.

Greenspace is a potential environmental factor that could modify the association between 

temperature and risk of hospitalizations. Interest in greenspace as a nature-based solution 

is growing, and many studies noted health benefits of greenspace (e.g., reduced risks of 

mortality, obesity, mental disorders, adverse birth outcomes) in urban populations (Dadvand 

et al., 2015; Kim and Kim, 2017; Laurent et al., 2019; Vienneau et al., 2017). Growing 

evidence indicates benefits of greenspace in relation to air pollution and heat, as well as 

direct health benefits (Fong et al., 2018). Greenspaces in urban settings can help mitigate 

heat through tree-shaded spaces (Park et al., 2017).

Normalized difference vegetation index (NDVI) is a primary metric of the amount of 

vegetation (i.e., greenspace) used in research including studies to examine the benefits 

of greenspace. Some recent studies used enhanced vegetation index (EVI), an advanced 

version of NDVI with adjustments for errors over variable atmospheric and ground 

conditions below vegetation (Matsushita et al., 2007). Studies have suggested that increased 

greenness measured by NDVI or EVI is negatively associated with land surface temperature, 

ambient temperature, and urban heat island effect (Y. Cui et al., 2019; Stephen et al., 

2014). Decreased temperature-related mortality in regions with higher NDVI or EVI levels 

have been reported as well (Burkart et al., 2016; Madrigano et al., 2013; Son et al., 

2016). However, little is known regarding greenspace’s effect on adaption of heat-related 

hospitalization risks over time (Choi et al., 2012). Scientific evidence is needed on whether 

urban greenspace impacts temporal trends in how heat impacts health.

We hypothesized that areas with higher levels of greenspace have lower association between 

high temperature and risk of hospitalizations, and that the influence of greenspace on the 

heat-health relationship changes over time. We analyzed temporal changes in temperature

related hospitalization risks (CVD and HS), including effect modification by local amount of 

greenspace, in 40 urban U.S. counties. This study can aid decision makers in planning urban 

greenspace to address heat-related health risks in the present day and under a changing 

climate.

2. Materials and Methods

2.1. Data

We focused on 40 urban U.S. counties in the Northeast (Connecticut, Pennsylvania, New 

Hampshire, New Jersey, New York, and Massachusetts) with populations > 200,000 based 

on the 2010 Census. Daily county-level rates of hospitalizations for the warm season 

(June–September) for the years 2000-2016 were obtained for persons ≥ 65 years from 
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billing claims of Medicare enrollees (fee-for-service beneficiaries). We used International 

Classification of Diseases, Ninth Revision (ICD-9) primary discharge codes: all CVD 

[390-398, 401-405, 410-414, 415-417, 420-429 and HS [992.0]. Hospitalization counts were 

stratified by age (65 – 74, ≥75 years) for each county and day.

We obtained 4×4km gridded projections of average daily temperature and dew point 

temperature from the Parameter-elevation Relationships on Independent Slopes Model 

(PRISM) AN81D dataset (Daly et al., 2008). We used PRISM data of the next day to 

match health data of a given day, since PRISM used noon in Coordinated Universal Time 

of the previous day as the start of a day, corresponding to 8am the previous day in Eastern 

Standard Time (Weinberger et al., 2019). We calculated county-specific daily averages of 

meteorological values as the population-weighted average of census tract values (Weinberger 

et al., 2019).

We included a variable for fine particulate matter (PM2.5) as a potential confounder. We 

utilized daily 1×1km gridded PM2.5 concentrations estimated with a hybrid model using 

convolutional neural network technique to incorporate data from multiple sources and the 

detailed methods were described elsewhere (Di et al., 2016). We calculated census tract

level daily PM2.5 as the average of all grid cells within the census tract and estimated 

county-level PM2.5 using population-weighted averaging. First, we calculated a PM2.5 

concentration for each census tract as the average of PM2.5 among all grid cells within 

that census tract. A grid cell’s pollution level was included if any portion of that grid cell 

was within the census tract. Next, we calculated PM2.5 levels for each county (i.e., the 

county-specific population-weighted average PM2.5) as the weighted average of census tract 

PM2.5 concentrations where the weights were proportional to the population size of the 

census tract (U.S. 2010 Census). This method gives higher weight to parts of the county 

with high population and lower weight to those with lower population, thereby creating 

a “population-weighted” average. We calculated the county-specific population-weighted 

average PM2.5 as the weighted average of census tract PM2.5 concentrations within the 

county with weights equal to census tract population sizes.

We estimated greenspace with EVI, which is calculated as the difference between near

infrared radiation and visible radiation divided by near-infrared radiation plus visible 

radiation. EVI ranges from −1 to +1 with higher values indicating denser vegetation and −1 

indicating waterbody features (NASA, 2018). We excluded negative values indicating water 

bodies. We obtained a 16-day composite image 250-m resolution EVI data from Moderate 

Resolution Imaging Spectroradiometer (MODIS) product MOD13Q1. We estimated county

specific EVI using population-weighting (Heo and Bell, 2019). First, the average EVI 

for every census tract in each county was calculated using the EVI pixel values (without 

negative values indicating waterbodies) within and surrounding the census tract boundary 

for January 1, 2000 to December 31, 2016. Then, we calculated the population-weighted 

average EVI for each county for each time of observation (16-day composite of the MODIS 

imagery data) through the study period as: EV Ii, t∑1
i EV Ici, t × POPc /POPi, where EVIi,t is 

the EVI of county i for time t, EVIci,t is the EVI value of census tract c of county i at time 

t, POPc is the population of census tract c (2010), and POPi is the population of county i. 
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We explored seasonal and yearly trends of EVI; EVI showed strong seasonality with higher 

vegetation in the warm seasons, but annual mean of EVI was constant over the 17 years 

in all study counties (Supplementary Figure S1). Therefore, we used the average of 16-day 

composite EVI over the study period to representative local vegetation level of each county.

2.2. Models for temporal variation in temperature-hospitalization associations

A two-stage statistical model (Bell et al., 2012) was used to quantify impacts of short-term 

exposure to high temperature on hospitalization risk for each county, and then to estimate 

overall risk across counties. In the first stage, we used a generalized additive model (GAM) 

with Poisson distribution to estimate associations between lag0-3 days temperature (e.g., 

lag0 for the same day as hospitalization; lag0-3 for same day and the 3 previous days) and 

hospitalization for each county. Applying a 4-day lag period is similar to the lag structures 

used in previous studies (Cheng et al., 2016; Guo et al., 2011b; Wang et al., 2014; Yang et 

al., 2012) and allows comparisons of research findings. Natural cubic splines were applied 

for weather variables as they are less sensitive to outliers and more able to capture the 

true curve (Goldberg et al., 2011). We quantified Relative Risks (RR) of hospitalization as 

the linear changes in hospitalization per 1°C increase in daily mean temperature above a 

specified threshold (i.e., 95th percentile) of daily mean temperature in each time period and 

county. RRs for the entire period (i.e., not accounting for temporal change in association) 

were calculated by:

ln E μtc = β0
c + αcDOW T + ns timet, 2 + ns Dtc, 3 + α1

cAt + Atns timet, 1 + βPM
c PMtc + poptc + β1

cT1tc

+ β2
cT2tc

where E μtc  = expected cause-specific hospitalization count for county c on day t; β0
c = 

model intercept; αc= vector of regression coefficients for day-of-the-week for county c; 

DOWt = categorical variable for day-of-the-week on day t; ns(timet,2) = natural cubic spline 

of time with degrees of freedom (df) (3 df/season for CVD, 2 df/season for HS); ns Dt
c, 3  = 

natural cubic spline of dew point temperature for county c on day t with df=3; At = indicator 

for those ≥75 years; Atns(time, 1) = natural cubic spline of time with df=1 for those ≥75 

years; PMt
c = PM2.5 = PM2.5 in county c on day t; poptc = offset term of the number of total 

beneficiaries of Medicare in county c on day t; T1t
c = continuous variable of daily mean 

temperature of county c for day t and lag0-3 when daily mean temperature < county-specific 

thresholdc, and 0 otherwise; and T2t
c = continuous variable of daily mean temperature of 

county c on day t and lag0-3 when daily mean temperature > county-specific thresholdc, and 

0 otherwise. Associations between heat and hospitalization were estimated by β2 (equation 

1). County-specific thresholds were set to the 95th percentile of daily mean temperature for 

that county.

Next, we assessed temporal changes in RRs by year and in separate time periods for each 

county. For yearly changes in RRs, we applied an interaction term between temperature 

T2t
c  and an indicator term of each year. Separately, we estimated temporal changes in RRs 

by generating a separate estimate by time periods using stratified GAMs for 4 separate 
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periods (2000-2004, 2005-2008, 2009-2012, and 2013-2016). The use of two approaches 

(interaction term and stratification by 4-year periods) allows us examine robustness of 

effects and presenting findings in multiple ways, thereby aiding comparison to other studies.

We combined county-specific estimated RR for each of time period using random-effects 

meta-analysis with restricted maximum likelihood (REML) estimation method as:

Rc = μ + uc + ec, uc ∼ N 0, τ2 , ec ∼ N 0, V c

where Rc = log RR in county c, μ = log of the average true temperature-hospitalization 

association, uc = variability in the parameter from county c around its mean (μ), ec = 

sampling error for county c, T2 = residual heterogeneity among true estimates across all 

counties, and Vc = sampling variance-covariance matrix.

2.3. Effect modification by greenspace

We estimated whether the temporal pattern in associations between temperature and hospital 

admissions differs by level of greenspace. Using equation 2, we pooled county-specific RRs 

separately by EVI quantile: first quartile (Q1) (counties with EVI <0.23); Q2 (0.23 ≤ EVI 

<0.27); Q3 (0.27 ≤ EVI <0.3); Q4 (EVI ≤0.3). Statistical software package R 3.4.0 and R 

‘mgcv’, ‘splines’, and ‘metafor’ packages were used.

2.4. Sensitivity analysis

We conducted several sensitivity analyses. First, we used a different metric of greenspace 

instead of EVI to test the robustness of how greenspace may modify risk estimates of 

hospitalizations associated with high temperature. We used population-weighted percent 

tree canopy cover for each county using the 30-m resolution 2016 Tree Canopy Cover 

Dataset from the U.S. Forest Service (USFS) in assessing effect modification by greenspace. 

Second, we conducted analysis using different df for in the models to adjust for seasonal 

and long-term trends. While the main analysis used 2 df/season for HS and 3 df/season 

for CVD, sensitivity analysis applied 3, 4, and 5 df/season. Third, we controlled for daily 

mean ozone concentration (ppm) in the models for CVD hospitalizations in addition to 

the adjustment of PM2.5. Fourth, we considered different percentile distributions for the 

comparison of temperatures to estimate risks. Whereas the main analysis presents results for 

a 1°C increase in temperature above the 95th percentile, we also calculated RR comparing 

the relative risk daily hospitalization at the 99th percentile of the daily mean temperature 

distribution for the study period to the 90 th percentile in each county. As different studies 

use a range of approaches to present numerical estimates from the non-linear temperature

health association, the sensitivity analysis comparing risk at the 99th to 90th percentile of 

temperature aids comparison of findings to other work.

3. Results

3.1. Descriptive statistics

Table 1 provides descriptive statistics of temperature, EVI, and cause-specific 

hospitalizations. Over the 17 years, EVI level was relatively constant.
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Temperature distributions of study counties grouped by county-level EVI for 2000-2007 

and 2008-2016 are shown in Supplementary Figure S2. The Q4 group showed the lowest 

temperature ranges (mean of 21.1°C in 2000-2016), meaning that on average the areas with 

the highest greenness has the lowest temperatures.

The sum across the 40 counties for hospitalizations from HS and CVD and daily mean 

temperature for each month and date for the study period (2000-2016) are shown in Figure 

1. HS hospitalizations were higher on days with higher daily mean temperature. Relatively 

fewer CVD hospitaliztions were observed on July 4, which is a public holiday.

3.2. Temporal changes in temperature-hospitalization relationships

High temperature was positively associated with HS but showed no associations with CVD. 

RRs for a 1 °C increase in lag0-3 daily temperature for the entire period (2000-2016) were 

1.000 (95% CI: 0.998, 1.001) for CVD and 2.285 (95% CI: 2.143, 2.428) for HS. Estimates 

of RRs by year for CVD and HS did not consistently show consistent values of risk of CVD 

or HS hospitalization from high temperature across the years of the study period (Figure 2).

We also estimated how these risks change over time by dividing the study period into four 

4-year periods. The RRs for 1 °C increase in lag0-3 daily temperature for the 4 separate 

periods indicated a consistently decreasing pattern for risk of HS over time (e.g., 2.019 in 

2000-2004 to 1.212 in 2013-2016) (Table 2). The temporal change in the CVD risks was not 

significant despite a slight decrease in the RRs over time.

3.3. Effect modification by greenness

Pooled risks of hospitalization for 4 separate periods (2000-2004, 2005-2008, 2009-2012, 

2013-2016) and EVI categories showed that log RRs of high temperature and HS tended 

to decrease over time in counties with the lowest EVI (Q1) and increased in counties with 

the highest EVI (Q4) (Figure 3, Supplementary Table S1). The RRs in 2013-2016 were 

significantly lower than the RR in 2000-2004 (ratio of RRs = 0.614, p-value = 0.080) 

at a significance level of 0.1. The RR (0.397, 95% CI: 0.139, 1.134) was lowest in the 

highest EVI group (Q4) at earlier time period (i.e., 2000-2004); the lowest EVI group (Q1) 

showed the highest risk for the same period (2.707, 95% CI: 1.367, 5.362). For the estimated 

association between high temperature and CVD, the central estimates tended to increase 

slightly over time in the Q4 EVI quantile group in 2005-2008 but RRs were lower than 1 in 

later time periods.

The sensitivity analysis using tree canopy cover instead of EVI showed similar results for 

HS: an increasing pattern in Q1 group and a decreasing pattern in Q4 group (Supplementary 

Figure S3). The correlation between EVI and tree canopy cover was 0.8. The sensitivity 

analysis using different df for the temporal trend of hospitalizations showed robust results 

for the RRs of CVD and HS hospitalizations (Supplementary Figure S4, Table S2). 

Controlling for daily mean ozone concentration did not meaningfully change RRs of CVD 

hospitalizations (Supplementary Table S3). Lastly, we estimated the RR of hospitalization at 

the 99th percentile of daily mean temperature distribution compared to the 90th percentile for 

each county (Supplementary Table S4). RRs for CVD showed negative associations between 

high temperature and CVD hospitalizations across the 4 separate study time periods and the 
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EVI quantiles. The temporal changes in the temperature-hospitalization associations for HS 

over time in the EVI groups were robust: high temperature-related HS risks in the early time 

period (2000-2004) in the lowest EVI group (Q1) and high temperature-related HS risks in 

later period (2013-2016) in the highest EVI group (Q4).

4. Discussion

The health effects of heat appear to change over time, potentially due to changing 

temperature range, characteristics of heat waves (e.g., duration), and physical 

acclimatization to heat (Jennifer F. Bobb et al., 2014). Temporal changes in heat

hospitalization relationships imply the importance of a long study period to investigate 

adaptation. Greenspace may contribute to reduced temperature and improved general health 

and well-being on a long-term basis, which could contribute to changes in health risks of 

temperature over time. In this study, we found that the temporal patterns of the association 

between high temperature and HS hospitalizations may be partially attributable to county

specific greenness, as measured by EVI. In general, results suggest a decline in temperature

hospitalization associations over time for counties with lower EVI. During 2005-2016, 

counties with high greenness (in the highest quartile of EVI) showed a slightly increasing 

pattern for risks, although the results are not significantly different. The mechanisms through 

which greenspace modifies temperature-health associations and contributes to changes over 

time for these risks is unclear, although several plausible pathways have been proposed. One 

potential reason for higher risks during earlier periods could be that the areas with lower 

greenness might have higher exposure to heat and causing higher heat-related hospitalization 

risks, followed by the population adapting to heat over time, resulting in lower associations 

in recent years. Higher temperature in areas with less greenspace could be related to 

urban characteristics such larger impervious areas, high population density, and high energy 

consumption. Further, interventions to reduce short-term heat exposure and resulting health 

impacts also may have played a role (Jennifer F. Bobb et al., 2014). The impacts of high risk 

of HS hospitalization from high temperature might have led to implementation of preventive 

measures in some areas that meaningfully lowered those risks over time. A survey 

conducted in 2007-2008 for 285 U.S. communities found that various local health preventive 

actions implemented across the U.S. included broadcasting heat exposure symptoms and 

health guidelines, operating information phone lines, designating public cooling shelters, 

extending operation hours of community centers with air conditioning, increasing outreach 

efforts to vulnerable populations such as the elderly and the homeless, paving with cool 

materials, and installing vegetated roofs (i.e., green roofs) (O’Neill et al., 2010). Preventive 

measures including cooling centers and heat wave alert systems were implemented in some 

of our study counties (Supplementary Table S5). Further research is required to verify 

the direct effectiveness of these local preventive actions for diminishing the impacts of 

high temperature on adverse health impacts such as hospitalizations, including how the 

effectiveness of such policies vary by greenspace. We also note that counties with the 

highest temperatures, which are also the counties with overall low EVI in this study, 

would be vulnerable to more frequent record-breaking extreme heat events in the future 

under climate change (Perkins, 2015), which would lead to higher risks of heat-related 

health outcomes. As overall temperatures increase and heat waves become more frequent, 
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intense, and longer in duration under climate change, populations may experience increased 

risks despite acclimatization. Further research is needed to better understand the various 

pathways through which greenness modifies the heat-health relationship and how greenness 

contributes to changes in this association over time, as well as the complex systems of 

temperature, greenness, and health under a changing climate.

On the other hand, the risk of HS hospitalization associated with high temperature did 

not decrease in the counties with higher greenness as measured by EVI. This may be 

associated with potential changes in demographics and environment in these regions over 

time. While we only focused on urban regions, counties with higher EVI can be considered 

as suburban areas in comparison with urban counties with lower EVI. Urbanization and 

land-use changes (e.g., increased impervious area) (Zhang et al., 2013) in recent decades in 

suburban areas may result in increases in population and congestion in greenspace (e.g., high 

population per park area if the population size grow and less greenspace is available). These 

changes in environment and population combined with the increased ambient temperature 

(e.g., urban heat island) (Zhang et al., 2013) might hinder the benefits of adaptation to 

heat-hospitalization associations in populations in these areas. Adaptation to heat-health 

associations over time may be another contributor for the absence of decreasing patterns 

for the HS hospitalization risks associated with high temperature. To the best of our 

knowledge, these potential factors have not been fully examined to date, so they should 

be further examined to better understand the reasons for the absence of adaptation to 

heat-hospitalization associations over time in regions with high levels of greenspace.

We found that both higher measures of greenness considered (EVI and percent tree canopy 

cover) tended to have decreasing associations between temperature and HS hospitalization 

over time (Figure 3, Supplementary Figure S3). EVI considers healthiness of vegetation 

such as trees, shrub, and grass but the tree canopy cover merely considers leaves, branches, 

and stems of woody plants. While short vegetation such as grass and shrubs can effectively 

cool surface temperature as do tress in urban areas (Armson et al., 2012), short vegetation 

does not provide much shade. Thus, health benefits through cooled ambient temperature 

and reduced heat exposure may be more comprehensively captured by EVI, but pathways 

of reducing hospitalization effects of high temperature could vary by type of greenspace 

and thereby the metric used to estimate greenspace. Nonetheless, both EVI and tree canopy 

cover showed a potential role of greenspace for adaptation to heat-related hospitalization 

risks. Further research is needed to differentiate the influence of different forms of 

greenspace, including various types of vegetation.

Changes over time for heat-related health impacts may relate to various other factors that 

have changed over time. Impacts from heat may be modified by air conditioning (Barreca 

et al., 2016; Jennifer F. Bobb et al., 2014), and interventions such as early warning systems. 

Changes in demographics, land use, built environment, and behavior may also lead to 

spatiotemporal differences in the health effects of high temperature, which are also related to 

latitude and temperature range. To maximize the health benefits of greenspace for reducing 

impacts of high temperature on hospitalization in the future, greenspace efforts should be 

combined with thoughtful urban planning approaches that consider the range of benefits 

from urban green space. Further, to better understand the benefits of greenspace in relation 
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to impacts of heat, epidemiological studies should develop and apply methods to examine 

exposure to various features of urban greenspace instead of overall vegetation levels for 

a given city (e.g., green building, green roof, shelter systems, water architecture, roadside 

trees).

Research findings for the temperature-hospitalization associations for CVD have been less 

conclusive than for some other health endpoints (Dang et al., 2019; Iñiguez et al., 2021). 

According to a systematic review (Phung et al., 2016), negative associations between heat 

and CVD hospital admissions were reported by some studies in Copenhagen, Denmark 

(Wichmann et al., 2011); Chiang Mai, Thailand (Pudpong and Hajat, 2011); and some 

urban regions in the U.S. (Green et al., 2010; Gronlund et al., 2014b), although the 

overall association was positive. On the other hand, significant temperature-hospitalization 

associations were found in studies conducted in several cities in the United States (Gronlund 

et al., 2014a; Koken et al., 2003; Lin et al., 2009; Schwartz et al., 2004). While the 

CVD hospitalization effects of ambient temperature have been less consistent among 

studies, studies have consistently found positive associations between heat waves (i.e., 

prolonged heat exposure) and CVD hospitalization (Phung et al., 2016) indicating the 

cardiovascular effects of heat. Further, studies of the present day consistently identified 

the Northeast U.S. as having the highest heat-related mortality and hospital admissions 

(Curriero et al., 2002; Wang et al., 2016). In our study, higher temperature was associated 

with lower risk of cardiovascular hospitalizations. As CVDs are the main cause of heat

related mortality (Linares and Díaz, 2007), the relationship between higher temperature and 

lower cardiovascular hospitalizations could relate to high temperature causing people with 

cardiovascular diseases to die before reaching hospitals (e.g., out-of-hospital cardiovascular 

deaths) (Pudpong and Hajat, 2011). Given the contrasting pattern of temperature between 

mortality and hospitalization among different populations and geographical regions, further 

investigations of temperature’s effects on hospitalizations are needed to better understand 

the mechanisms by which temperature triggers fatal or non-fatal health outcomes including 

for various vulnerable populations.

We examined the changes in heat-hospitalization relationships using two approaches (by 

each year and by 4-year time periods). Various approaches can be applied to examine 

temporal changes in temperature-health relationships. Several studies compared 2 or more 

time periods with the equivalent number of years (Barreca et al., 2016; Heo et al., 2016; Kim 

et al., 2019; Schifano et al., 2012), while some other studies examined how risk changes 

by each year (Guo et al., 2012). Studies also compared the health effects among different 

specific heat wave episodes to examine adaptation (A Fouillet et al., 2008; Kyselý and 

Plavcová, 2012). A variety of modeling decisions and parameter settings are needed to 

examine changes in the exposure-response relationships. Several studies applied a constant 

linear relationship above a fixed temperature threshold, often selecting the minimum 

mortality temperature or minimum risk temperature, forcing a V-shaped relationship curve 

(Guo et al., 2011a). Others applied nonlinear relationships using smooth curves for the 

exposure-response relationships and quantified effects of temperature changes by comparing 

the risk at certain percentiles (e.g., 99th vs. 90th percentile) of the city’s temperature 

range (Anderson and Bell, 2009). To ensure the comparability of the models and results, 

we focused on U.S. urban counties in the northeast area that would likely have similar 
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climate as in some previous studies performed in the U.S. (O’Neill et al., 2003). To ease 

interpretation, we used relative thresholds and V-shaped relationship functions using two 

temperature variables. However, a V-shaped relationship function may not fully capture the 

relationship for regions that show no minimum risk temperature (Anderson and Bell, 2009). 

We also estimated effects by comparing risks at the 99th and 90th percentiles of the county’s 

daily mean temperature distribution. The results of RRs of hospitalizations of CVD and HS 

from this analysis were robust compared with our main analysis.

Further, a lag structure can be modeled with short lags (e.g., lag0-3) or a longer lag 

(e.g., lag0-21) (Yang et al., 2012). We chose a 4-day lag period (i.e., lag0–3) as the 

main exposure variable in our model. Sensitivity analysis applying a 21-day lag period 

for CVD hospitalization showed similar results with the main analysis. Long lag periods 

were not applied to HS hospitalization since prior studies suggested that the impact of 

short-term exposure to high temperature was acute and lasted for a short period of lag 

days (e.g., 3-5 days) (Cheng et al., 2016; Guo et al., 2011b; Wang et al., 2014; Yang et 

al., 2012). Results from the sensitivity analysis using different degrees of freedom for time 

to control for long-term and seasonal changes in CVD hospitalizations showed that the 

RRs for CVD hospitalization associated with a 1°C increase in lag0-3 temperature above 

the county-specific threshold temperature (95th percentile) did not differ based on different 

degrees of freedoms. In addition to the exposure-response relationships between temperature 

and health, lag structure and threshold temperature may also change over time (Heo et al., 

2016). Future studies could investigate model to fit functions for the temporal changes in all 

these aspects, but the model fitting would become complicated with excessive parameters 

and difficult interpretation. We focused on the changes in the temperature-hospitalization 

associations over time assuming consistent lag structure over time.

This study has a few limitations. Temperature cooling effect may differ by vegetation 

types (e.g., tree, grass, shrub, etc.) (Park et al., 2017) and future analysis should consider 

the variance of vegetation composition among the study regions. We could not consider 

potential effect modifiers such as air conditioning prevalence due to lack of available 

data for our study counties. Effect modification by socioeconomic status or changes in 

other population characteristics warrant investigation. Our geographical coverage focused 

on the northeast area of the U.S. and is not globally representative, particularly for areas 

in developing countries or regions with different species of vegetation (e.g., tropical forest). 

Future studies with more or different geographic regions are required to assess the benefits 

of greenspace for adaption to heat-related risks for a range of locations.

There are several strengths of this study. We applied a long study period of 17 years, while 

most previous studies applied study periods of 5 years or less (Phung et al., 2016; Ye et 

al., 2012). We examined effect modification by greenspace using different greenness metrics 

(i.e., EVI and tree canopy cover) although we did not consider the changes in tree canopy 

cover over time. We used high-resolution modeled temperature data, and a population 

weighing method was applied in calculating county-specific representative meteorological 

values.
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5. Conclusions

We investigated how the association between temperature and risk of hospitalization 

changes in the U.S. Medicare population over time and whether these temporal trends are 

modified by amount of greenspace. We estimated statistically significant positive risks of HS 

hospitalization from heat in 2000-2016. The risks of HS hospitalization from temperature 

tended to decrease over time in counties with the lowest EVI levels, while the risks increased 

in counties with the highest EVI levels. The increased risks of temperature-related HS 

hospitalizations over time in counties with the highest EVI levels implied a potential 

increasing relationship between heat exposure and hospitalization. This may relate to a 

variety of factors such as a non-linear relationship between temperature and health in 

combination with the increased temperature and less efforts in these regions to adapt to 

high temperature. Even though decreased risks of temperature-related HS hospitalization in 

recent years (2013-2016) were found in the counties with the lowest EVI, it is assumed that 

high temperature would continue to contribute to a heat-related health burden under climate 

change. Findings imply the importance of combining greenspace-based adaptation plans and 

local heat-health plans. Continuous investigation of the long-term temporal changes in the 

heat-related hospitalization risks are needed to monitor population’s ability to cope with the 

health burdens from high temperature and climate change.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgement

This work was supported by Assistance Agreement No.RD835871 awarded by the U.S. Environmental Protection 
Agency (EPA) to Yale University. It has not been formally reviewed by EPA. EPA does not endorse any products 
or commercial services mentioned in this publication. This research also was supported by the National Institute on 
Minority Health and Health Disparities of the National Institutes of Health under Award Number R01MD012769. 
The Yale Center for Climate Change and Health also supported this work. The content is solely the responsibility of 
the authors and does not necessarily represent the official views of the EPA, National Institutes of Health, or Yale 
Canter for Climate Change and Health.

Funding

This work was supported by the U.S. Environmental Protection Agency (EPA) [grant number No.RD835871] and 
the National Institutes of Health [grant numbers R01MD012769]

Data statement

The research data is confidential.

Abbreviation

CI Confidence interval

CVD Cardiovascular disease

EVI Enhanced vegetation index

HS Heat stroke
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NDVI Normalized difference vegetation index

RR Relative risk
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Highlights

• Trends in heat-hospitalization associations over time were compared by 

greenness.

• Hospitalizations from heat stroke and cardiovascular diseases were examined.

• Higher overall risks of heat stroke were found in regions with less greenspace.

• Risks for heat stroke decreased over time in regions with less greenspace.

• Adaptation to heat-hospitalization associations differed by amount of 

greenspace.
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Figure 1. 
Daily mean temperature and average hospitalizations for each month and day for 2000-2016. 

Values for a given day (e.g., June 1) are based on the average of values of that day in 

each year of the study period. CVD: all cardiovascular disease. A: Daily mean temperature 

averaged across 40 counties, B: Heat stroke hospitalizations/day summed across 40 counties, 

C: CVD hospitalizations/day summed across 40 counties.
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Figure 2. 
Relative risks of hospitalization associated with a 1°C increase in lag0-3 temperature above 

the county-specific threshold temperature (95th percentile) by year. A: all cardiovascular 

disease. B: heat stroke. Dots indicate central estimates; vertical lines indicate 95% intervals; 

dotted lines are Loess curves.
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Figure 3. 
Log relative risks (LogRRs) of daily hospitalization rate associated with a 1°C increase 

in lag0-3 daily mean temperature above the county-specific threshold temperature (95th 

percentile) in 4 separate time periods, by EVI strata. A: all cardiovascular disease, B: heat 

stroke. The threshold was defined as the 95th percentile of temperature in each county. Q1: 

EVI < 0.23, Q2: 0.23 ≤ EVI < 0.27, Q3: 0.27 ≤ EVI < 0.3, Q4: EVI ≥ 0.3.
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Table 1.

Descriptive statistics of temperature, air pollution, and cause-specific hospitalization in the 40 study counties 

in the warm season for 2000–2016, and in separate time periods (2000–2007 and 2008–2016).

Variable 2000–2016 2000–2007 2008–2016

Mean 

(SD)
b

25th to 75th 

percentiles
Minimum 
to 
maximum

Mean 
(SD)

25th to 75th 

percentiles
Minimum 
to 
maximum

Mean 
(SD)

25th to 75th 

percentiles
Minimum 
to 
maximum

Daily mean 
temperature 

(°C)
a

21.7 
(3.9)

19.1 to 21.7 4.4 to 34.2 21.4 
(3.9)

18.9 to 24.3 4.4 to 33.3 21.8 
(3.9)

19.3 to 24.6 7.2 to 34.2

Daily mean dew 
point 
temperature (°C)

15.0 
(4.1)

12.2 to 18.3 −1.7 to 
24.7

15.1 
(4.1)

12.3 to 18.4 −1.7 to 
24.2

15.0 
(4.0)

12.2 to 18.2 −0.8 to 
24.7

Daily mean 
PM2.5(μg/m3)

12.0 
(8.0)

6.5 to 15.2 0.8 to 118.8 14.7 
(9.6)

7.6 to 19.2 1.3 to 118.8 9.6 
(5.4)

5.8 to 12.0 0.8 to 47.1

EVI 0.25 
(0.07)

0.23 to 0.30 0.03 to 0.35 0.25 
(0.07)

0.23 to 0.30 0.03 to 0.35 0.25 
(0.07)

0.23 to 0.30 0.03 to 0.35

Average warm 
season (June-
Sep.) number of 
hospitalizations 
in each county

All 
cardiovascular 
causes

1431 
(746)

896 to 1746 395 to 4213 1690 
(802.5)

1094 to 
2146

613 to 4213 1201 
(607)

754 to 1475 395 to 3703

Heat stroke 0.7 
(1.2)

0.0 to 1.0 0.0 to 9.0 0.8 
(1.3)

0.0 to 1.0 0.0 to 9.0 0.6 
(0.9)

0.0 to 1.0 0.0 to 6.0

a
The mean of daily mean temperature is the average daily mean temperature across all 40 counties.

b
The min and max represent the lowest and highest values, respectively, for a given county across all 40 counties. Temperature distributions of 

study counties grouped by county-level EVI for 2000–2007 and 2008–2016 are shown in Supplementary Fig. S2. The Q4 group showed the lowest 
temperature ranges (mean of 21.1 °C in 2000–2016), meaning that on average the areas with the highest greenness has the lowest temperatures.
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Table 2.

Relative risks of daily hospitalization rate associated with a 1°C increase in lag0-3 temperature above the 

county-specific threshold temperature (95th percentile) in 4 separate time periods.

Time period CVD HS

RR 95% CI RR 95% CI

2000-2004 1.000 0.998, 1.002 2.019 1.863, 2.174

2005-2008 1.000 0.997, 1.003 1.907 1.727, 2.087

2009-2012 1.000 0.997, 1.003 1.755 1.632, 1.878

2013-2016 0.998 0.995, 1.002 1.212 0.879, 1.545

CVD: all cardiovascular disease; HS: heat stroke.
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