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New Approaches for Estimating Risk from Exposure to Diethyistilbestrol
Gerald R. Cunha,1 John-Gunnar Forsberg,2 Robert Golden,3 Arthur Haney,4 Taisen Iguchi,5 Retha Newbold,6 Shanna
Swan,7 and Wade Welshons
'Anatomy Department and Reproductive Endocrinology Center, University of California, San Francisco, California USA; 2Tornblad Institute
Lund, Sweden; 3ToxLogic, Potomac, Maryland USA; 4Department of Obstetrics and Gynecology, Duke University Medical Center, Durham,
North Carolina USA; 5Department of Biology and Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan;
6Laboratory of Toxicology, Environmental Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park,
North Carolina USA; 7Department of Family and Community Medicine, University of Missouri, Columbia, Missouri USA; 8Department of
Veterinary Biomedical Science, University of Missouri, Columbia, Missouri USA

A subgroup from a National Institute of Environmental Health Sciences, workshop concerned with
characterizing the effects of endocrine disruptors on human health at environmental exposure levels
considered the question, If diethylstilbestrol (DES) were introduced into the market for human use
today and likely to result in low-dose exposure of the human fetus, what would be required to
assess risk? On the basis of an analysis of the quality of data on human DES exposure, the critical
times and doses for inducing genital tract malformations and cancer must be determined. This
would be facilitated through analysis of the ontogeny of estrogen receptor expression in the
developing human genital tract. Models of low-dose estrogenic effects will have to be developed
for human and rodent genital tract development. Mouse models offer many advantages over other
potential animal models because of the wealth of the earlier literature, the availability of sensitive
end points, the availability of mutant lines, and the possibility of generating genetically engineered
model systems. Through multidisciplinary approaches, it should be possible to elucidate the cellular
and molecular mechanisms of endocrine disruption elicited by estrogens during development
and facilitate an assessment of risk to humans. Key words: carcinogenesis, clear cell carcinoma,
diethylstilbestrol (DES), genital tract, human, teratogenesis. - Environ Health Perspect 107(suppi
4):625-630 (1999).
http.//ehpnetl.niehs.nih.gov/docs/1999/suppl-4/625-630cunha/abstract.html

This report is the product of a subgroup from
a National Institute of Environmental Health
Sciences, workshop concerned with character-
izing the effects of endocrine disruptors on
human health at environmental exposure lev-
els. This workshop provided a forum to dis-
cuss methods and data needed to improve
risk assessments of endocrine disruptors. This
report addresses data on the health effects of
diethylstilbestrol (DES) and how this infor-
mation may be used to evaluate risks from
exposure to weaker synthetic estrogens. The
goal of this review is a re-evaluation of the
risk assessment of the human DES experi-
ence, using the abundant experimental ani-
mal data to answer the following questions:
How can we use the human and animal data
to better anticipate adverse health effects from
agents that are introduced in the future? How
could we have anticipated the consequences
of DES exposure from the information avail-
able when DES was approved for use in preg-
nant women? Can general lessons be drawn
regarding animal-to-human extrapolation
for endocrine disruptors? To answer these
questions, a historical perspective is required.

Years before clinical use of DES in
pregnant women, estrogens in general, and
DES specifically, were known to induce
breast cancer in postnatal mice and rats when
pharmacologic doses were given chronically
over long periods (1-3). The relationship of
postnatal studies to possible transplacental

carcinogenesis was certainly not appreciated
in the 1930s and early 1940s. Indeed,
transplacental carcinogenesis of DES or other
estrogens was not considered or reported by
investigators at that time. Although prior to
1945, estrogens were known to perturb uro-
genital development in fetal rodents (4,5)
and were thought to cross the placenta in
humans (6,7), direct evidence of teratogenic-
ity of estrogens in humans was unknown
until after the association between DES and
vaginal adenocarcinoma was reported. In any
case, despite the tragedy of the DES episode,
the human DES clinical data offer an
unprecedented opportunity to learn about
the consequences of in utero exposure to a
potent estrogen and thus to infer potential
risks following exposure to less potent
environmental estrogens.

If properly interpreted, lessons from the
DES episode may prove invaluable for judg-
ing potential effects of compounds that have
been or will be identified as potential
endocrine disruptors. It will be important,
however, to keep in mind the considerable
differences in potency between such com-
pounds when inferences are drawn concern-
ing potential effects. For example, the
carcinogenicity of DES was identified in a
human study including only 8 cases and 32
controls (8). Normal sample size calculations
would rule such a study as inadequate.
However, because the cancer induced by

DES (clear cell vaginal adenocarcinoma) was
so rare in young women, the association
between prenatal DES exposure and develop-
ment of clear cell adenocarcinoma of the
vagina was easily identified. Clearly, most
chemicals with significantly less potent
endocrine (e.g., estrogenic) effects will convey
much-reduced risks, particularly at low doses.
Thus, study designs for other endocrine dis-
ruptors will have to be more precise and more
powerful, especially if the background inci-
dence of a particular lesion is substantial.
Given the history of the DES episode, we
have considered this issue: If DES were intro-
duced into the market for human use today
and were likely to result in low-dose exposure
of the human fetus, what would be required
to assess risk of developing adverse health
outcomes such as cancer or impaired repro-
ductive potential? To answer this question,
we have considered the following points:
* Delineation ofthe critical times and doses

for inducinggenital tract malformations and
cancer. Critical time periods and doses
must be determined for DES-induced
malformations of the developing human
Mullerian duct, Wolffian duct, urogenital
sinus, and their organ derivatives. Given
the plethora of teratogenic effects of DES
on the developing male and female genital
tracts (Tables 1,2), different lesions are
expected to have different periods of tem-
poral susceptibility as well as different dose
levels required to induce such effects. The
background information for such terato-
genic studies can be estimated from the lit-
erature of classical embryologic studies.
Retrospective studies on the incidence of
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Table 1. Effects of perinatal exposure to estrogenic substances in males.

Rat Mouse Human Estrogenic effects Notes

+ + Not known Decreased prostate and seminal vesicle secretion High doses
+ + Not known Increased prostate weight Low doses

Not known +/- +/- Rete testes tumor
Not known + +/- Decreased sperm count
Not known + Not known Increased lactoferrin in seminal vesicle High doses

+ + + Mullerian duct remnants in males, hypertrophic prostatic utricle
Not known + +/- Impaired reproduction High doses
Not known + + Anomalies of male external genitalia
Not known + Not known Thyroid effects
Not known + Not known Intersex
Not known + Not known Alterations in sex behavior

+ + - Hypothalamic changes

Table 2. Effects of perinatal exposure to estrogenic substances in females.

Rat Mouse Human Estrogenic effects Notes

+ + Not known Polyovulatory follicles
+ + Not relevant Ovary-independent vaginal cornification
- + + Cervical/vaginal carcinoma

Not known + +/- Uterine carcinoma
Not known + +/- Immune dysfunction More frequent autoimmune

disease in women
+ + Not known Polycystic ovary
+ + +/- Estrus/menstrual cycle disturbance
+ + Not known Mammary tumors in daughters Small increased risk in mothers
+ + + Vaginal adenosis
+ + + Impaired myometrial development T-shaped uterus in humans

Not known + + Impaired reproduction
+ + Not known Mammary gland alterations
+ + + Mesonephric remnants

Not known + Not known Accelerated vaginal opening Equivalent to puberty in humans
Not known + + Oviductal malformations
Not known + + Uterine and cervical malformations

certain lesions such as adenosis in women
exposed in utero to DES in relationship to

the initiation of DES treatment are helpful
in establishing periods of susceptibility
even though estimates of gestational ages

of exposure may be inexact. Human cell
lines are not particularly useful for deter-
mining the critical times and doses for
inducing human genital tract malforma-
tions. However, analysis of DES effects on
grafts ofhuman fetal genital tracts in nude
mice has proved to be a reliable method
for assessing periods of susceptibility for
the induction of different lesions (9-13).
Indeed, this method is perhaps the only
method for delineating the critical times
and doses for inducing human genital
tract malformations. Contrary to popular
thought, a considerable amount of abortus
material is available for such screening
purposes. Clearly, it will be necessary to

extend these studies to determine the spe-
cific times and doses of DES required to

induce various lesions in the developing
human genital tract. This will provide a

relevant basis for judging the likelihood of
similar effects from compounds identified
as environmental endocrine disruptors.
Recognizing that other developing organ

systems such as the neuroendocrine and
immune systems are also sensitive to

estrogenic substances, critical periods for
inducing adverse effects on these systems

would also need to be established.
Ontogeny ofestrogen receptor (ER) expres-
sion in the developing human genital tract.
The presumed mechanism of action of
DES is through ER in the developing
genital tract, even though action via other
receptors and nonreceptor-mediated
mechanisms should also be considered.
Although the ontogeny of expression of
ER has been studied in the mouse and rat,

data are meager for the human genital
tract (14-16). Future studies need to

take into account both ER-alpha (ERa)
and the recently discovered ER-beta
(ER,B) (17). The literature is even more

deficient for the ontogeny of androgen
receptors and progesterone receptors,
especially in the human fetal genital tract
(18,19) . Such ontogenic studies will be
critical for the interpretation of adverse
effects of DES and other chemicals and
drugs with hormonal activity.

* Low-dose models ofestrogenic effects on

genital tract development. Even though
DES exposure levels of the developing

human vary considerably, all clinical
exposure of human fetuses falls into the
high-dose range. High-dose animal studies
mainly designed to duplicate the therapeu-
tic doses prescribed for pregnant women

have been extensively published for mouse
and rat, although a few low-dose studies
have been described (20-22). Low-dose
animal models are now receiving attention
(23-25) and indicate that outcomes from
high- and low-dose exposure can be both
qualitatively and quantatively different.
Additional low dose-response animal
work is required to assess the potential
effects of less potent estrogenic com-

pounds on the many end points previously
described (Tables 1,2). Because of the
wealth of DES data in both animals and
humans, an animal model that is sensitive
to DES effects at low doses may be useful
in screening other compounds with
potentially similar mechanisms of action.
The ability to study low-dose effects on

human urogenital tract development
would be valuable. Such information in
the human could be obtained by studying
transplants of human fetal genital tracts in
DES-treated nude mouse hosts (10). The
transplant model of human fetal genital
tracts could be used as either a screen or a

confirmatory test for low-dose effects seen

in animal studies. Such proposed use of
human fetal genital tracts in DES-treated
nude mouse hosts to delineate the lower
end of the dose response in developing
human genital tracts could provide the
basis for assessing low-dose effects of envi-
ronmental chemicals identified as having
potential endocrine-disrupting effects.
Characterization ofhuman fetal serum-
binding proteins. Calculation of relative
binding affinity (RBA) and serum-

modified access (SMA) is a powerful
method for determining levels of free
compound capable of eliciting estrogenic
effects in a test system (26). This infor-
mation is available for the fetal rat and
mouse but is not available for the human
fetus. Umbilical cord serum from full-
term fetuses should be analyzed to assess

RBA and SMA. Serum from first and sec-

ond trimester human fetuses will be
extremely difficult to obtain. Fetal pri-
mate serum may be a useful substitute.

What Is the Quality of Human
DES Exposure Data?
Even though the dosing regimen recom-

mended by Smith et al. (27) was in wide-
spread use, this dosage pattern was far from
universal, particularly since its efficacy had
never been established. Thus, there are

defined cohorts of women who received
1.4-17.9 g DES as a total dose during
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pregnancy (28), even though a certain level of
imprecision exists concerning timing of expo-
sure and the numbers of individuals exposed
in utero to specific maternal doses of DES. In
any case, the human data available are primar-
ily related to the high-dose regimens. With
respect to clear cell vaginal adenocarcinoma, it
is evident that for many patients even these
high-dose exposures were insufficient to
induce neoplasia in all but a small subset of
patients. Thus, it would appear that there are
dosages and/or periods of high-dose DES
exposure that do not trigger neoplastic change
in both humans and animals. For nonmalig-
nant lesions in humans such as adenosis, cervi-
cal defects, and T-shaped uteri, the timing of
exposure is important in generating genital
tract abnormalities. Based upon the abundant
human clinical data, the relationship between
dosage and the development of nonmalignant
lesions suggests that there are also DES doses
below which adverse noncancer effects are
not seen. However, for humans especially,
there is a great need to accurately define the
exact dose range and timing that elicit genital
tract malformations and those doses that are
below the threshold for eliciting adverse
effects. Use of a nude mouse transplant sys-
tem for human fetal genital tracts may be the
only method to obtain this critical data.
Acquisition of these types of data will permit
relevant potency comparisons between DES
and environmental compounds identified as
having estrogenic activity.

The existence of cohorts exposed to DES
at mean total maternal doses spanning more
than an order of magnitude provide an oppor-
tunity to study the dose-response characteris-
tics for relatively high-dose DES-induced
effects. These data also provide the opportu-
nity to compare human clinical data and
dose-response data for DES-induced effects
observed in animal studies. As part of the
ongoing follow-up of DES-exposed cohorts,
substantial numbers of exposed males and
females have been studied. Depending on the
timing of exposure and the total maternal DES
dose administered, unequivocal (and more
readily observed) effects seen in males and
females include reproductive tract malforma-
tions, impaired reproduction, and vaginal car-
cinoma (29-33). More equivocal effects
include decreased sperm count (34-36),
immune dysfunction (37), alterations in sex-
ual behavior (38), disturbed menstrual cycles
(39), and testicular cancer (40). To date,
DES-exposed males and females diagnosed
with malignant or nonmalignant lesions
indude individuals in childhood and puberty,
and adults less than 50 years of age. Substantial
numbers of males and females in the DES
adenosis cohort are just now reaching 50 years
of age. This is the age when male and female
reproductive tract neoplasias typically begin to

occur. Additional follow-up of DES-exposed
sons will be essential to establish whether they
are at increased risk of testicular or prostate
cancer. It is important to note that, in general,
women have been more extensively studied
than men because of the initial association
between in utero DES exposure and vaginal
cancer and also because of a greater interaction
of women with health care services and
providers. Furthermore, women have formed
DES support groups and have successfully lob-
bied the government for studies of the adverse
effects ofDES.

It should also be noted that some of the
adverse effects observed as a consequence of
in utero exposure to DES occur against an
extremely low background incidence of
reproductive tract malformations and vaginal
carcinoma. By following the DES-exposed
cohorts, it will be challenging to determine if
more prevalent conditions (i.e., thyroid
effects, breast and prostate cancer, endo-
metriosis, immune dysfunction) or condi-
tions that increase in frequency with age (e.g.,
declining immune function, endometrial
hyperplasia and cancer, ovarian cancer,
benign prostatic hyperplasia, prostatic cancer)
are increased as a result of in utero exposure to
DES. Also, the possibility of third-generation
effects has to be considered (41).

The lack of low-dose human DES
exposure data might be addressed by the use
of human fetal reproductive tract tissue trans-
planted to nude mouse hosts. This would
permit a detailed study of the lower end of
the dose-response curve. Previous use of such
a model system of human fetal reproductive
tract transplants has demonstrated that many
of the high-dose DES effects observed in the
epidemiologic studies can be induced experi-
mentally in such transplants of human fetal
reproductive tracts. The transplant model
offers the possibility of extending dose-
response studies in the human well below the
DES doses used dinically. Additionally, such
data would also serve as a bridge between the
low-dose mouse data and potential low-dose
human effects data. Because of the known
potency of DES, acquiring these kinds of data
would provide the most relevant basis for
judging whether compounds identified as
having estrogenic activity might be expected
to be teratogenic in humans.

Possible Pharmaceutical
Exposures to Endocrine-
Disrupting Chemicals
during Pregnancy
Environmental contamination by endocrine-
disrupting agents has received considerable
attention in the scientific and lay press, and
the impacts of such agents on reproduction in
wildlife has had a deleterious impact on many

species (42). Humans can be exposed to
endocrine disruptors through use of a variety
of commonly used medications. Thus, poten-
tials for exposing women of reproductive age
to hormonally active drugs (estrogens, andro-
gens, or progestins) include the following
possibilities: a) inadvertent use of a drug in
the luteal phase of a conceptive cycle,
b) inadvertent administration of a drug dur-
ing pregnancy in oligo/amenorrheic women,
c) contraceptive failure coupled with contin-
ued use of birth control pills, d) inadvertent
administration of a drug following non-
hormonal contraceptive failure (intrauterine
devices, condoms, diaphragms), and e) use of
a drug in gynecologic or medical disease in
women of child-bearing age. Inappropriate
exposure to estrogens, androgens, and/or
progestins can elicit severe malformations of
the genital tract. Thus, low- or high-dose
exposure to hormonally active compounds
should be avoided at all costs, and if exposure
occurs, any adverse outcomes should be mon-
itored. Some currently used pharmaceuticals
that may pose risks to the human fetus are
given in Table 3.

Animal Models
Summary ofthe Models

The animal models in which the develop-
mental effects of DES exposure have been
studied mainly include the mouse, rat, and
hamster. The mouse has been the most
extensively studied species, and the size of
the data set in mice is superior to those for all
other species combined. This extensive body
of evidence in the mouse extends back about
50 years. The perinatal DES-treated mouse
model correlates remarkably well with the
adverse effects observed in both male and
female humans exposed in utero to DES.
Tables 1 and 2 illustrate these effects and the
correspondence in effects between rodent
and human studies.

The Mouse As the Best Anima] Model
Although the rat and hamster may be equally
appropriate for modeling DES effects in
humans, data in these species are not nearly
as abundant as those for the mouse. Rat
studies are only likely to further validate the
existing mouse data. Another advantage of
the mouse model is the wealth of genetic
information that is available and the relative
ease of using transgenic and gene knockout
mice to study the mechanism by which DES
produces adverse effects. In addition, geneti-
cally modified strains of mice might make it
possible to study the interaction between
direct DES effects, immune factors, and
endogenous hormones in teratogenic or
carcinogenic processes. Additional advan-
tages of the mouse model include the
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Table 3. Drugs potentially capable of eliciting adverse effects on development via disturbance of sex hormones.

Combination estrogen/progestin (oral contraceptives and continuous combined hormone replacement therapy,
continuous combined oral contraceptives)
C-19 norprogestins (modified testosterone)

High androgenicity - levonorgestrel
Intermediate androgenicity - norethindrone (acetate), ethynodiol diacetate, norgestrol
Low androgenicity - gestidine, norgestimate, desogestrel

C-21 progestins: medroxyprogesterone acetate
Estrogens

Ethinyl estradiol (20-35 pg)
Mestranol (35 pg)
Conjugated estrogens (0.625-2.5 mg)

Progestin-only products
Medroxyprogesterone acetate (oral and/or depo)
Megestrol acetate (Megace) - for endometrial cancer
Norethindrone acetate (Micronor)
Levonorgestrel implants (Norplant)
Micronized progesterone (oral)
Progesterone transvaginal gel
Progesterone in oil for injection

Antiandrogens
Spironolactone (receptor antagonist and synthesis inhibitor)
Flutamide (receptor antagonist)
Finasteride (5a-reductase inhibitor)
Cimetidine (tagamet, significant effects within the range of ulcer treatment)
Cyproterone acetate (formulated with ethanyl estradiol in Europe)
Letozole (aromatase inhibitor)

Androgens
Danazol (androgen/anabolic for treatment of endometriosis, hereditary angioneurotic edema, fibrocystic breast
disease, AIDS)

Estratest (1.25 mg + 2.5 mg methyltestosterone)
Depotestadiol (estradiol + testosterone for intramuscular use)
Testosterone (implants/gel/transdermal)
Oxandraolone (and other anabolic agents)

Estrogens
Conjugated estrogens
Conjugated equine estrogens (equillin, equillinin, other equine estrogens)
Micronized estradiol
Transdermal estradiol
Transvaginal estradiol

SERMs
DES
Clomiphene citrate
Tamoxifen
Nafoxidine
Raloxifene
Toremifene
Many others in development

Antiprogestins
RU486 (receptor blocker)
Epostane (synthesis inhibitor)

Other agents to which fetuses could be inadvertently exposed
Fluconazole (systemic antifungal)
Acyclovir (antiherpetic drug)
Famciclovir (antiherpetic drug)
Valcyclovir (antiherpetic drug)
Interferon a-n3

Abbreviations: DES, diethyistilbestrol; SERMs, selective estrogen-response modulators.

following: a) smaller amounts of the test

compound are required for study; b) hous-
ing and animal care expenses are less than
those for other rodents; and c) faster breed-
ing to generate multigenerational studies is
possible. Reproductive tract development is
similar in mice and humans. Therefore, the
DES mouse model can be used to study
developmental exposure to a wide range of
compounds to which pregnant women may

be exposed including selective estrogen
response modulators (SERMs).

Animal ModeLs ThatWil
Acommodate SERMs
The activity of SERMs can be studied in
animal models to assess compounds such as

clomiphene or tamoxifen (43). Potential
SERM activity of a compound may induce a

response in the human that is not induced in

the animal model. Tkisnial for false
negative and false -pot-xi~.esults can be
reduced by using multiik-*nimal models
(mouse and rat) rather dtf&elying on a sin-
gle model in which SERMWactivity may be
expressed. The danger is that all models may
not be equally sensitive. Also, it is unclear
whether a negative response is a result of
decreased sensitivity. Although SERMs may

be capable of inducing selective responses in
specific animals, tissues, or conditions, as far
as is known, all SERM activities have in
common the binding to the ER. The use of
receptor-binding assays is another approach
to reliably screen for the effect of SERMs.
These assays may include relative binding
affinity analysis.

What Are the Most Sensitive
End Points?
Assays for the most sensitive end points
must be able to detect the low-dose ranges

that are well defined for DES. In addition,
the full dose-response range must be deter-
mined for each compound and end point.

The low-dose range for DES effect is
approximately 0.02 pg/kg/day for the fetal
mouse prostate (25) and 0.01 pglkg/day for
the neonatal mouse uterus (20,21,23).
Overall, this low-dose range is defined as

estrogenic activity delivered to cells in
approximately the same low range of nat-

ural estrogen (e.g., free estradiol) at physio-
logic levels. A procedure and an approach
for a predicted dose at this level have been
described (26,44). It is not known if
human fetal reproductive tract tissues are as

sensitive to DES as are fetal mouse tissues.
The nude mouse/human fetal tissue trans-

plant system may provide data on this
critical issue.

Biomarkers
Molecular Markrs

Patterning of the male and female genital
tract has recently been shown to involve
expression of hox and wnt genes (45-48). hox
gene knockout (KO) studies have demon-
strated profound disturbances in organogene-

sis and differentiation of the genital tract

(46). DES has been shown to perturb the
expression of several hox genes in the fetal
Mullerian ducts when injected into pregnant
mice (49). It will be useful to explore
whether other exogenous estrogenic com-

pounds share this activity. This new area of
investigation requires further exploration to

elucidate the role of these patterning genes in
urogenital tract development in the mouse.

Comparable studies in the human fetal repro-
ductive tract are possible using the human
fetal genital tract transplants to nude mice
and would be desirable.
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High SenuitMy Biomarrs
ofDESAict

Lactoferrin is a protein that is regulated by
estrogen in the-female mouse reproductive
tract. In the uterus of the adult mouse,
lactoferrin transcripts are stimulated approxi-
mately 300-fold by estradiol or DES (50, 51).
The expression of lactoferrin is induced by
DES in the uterus prenatally, neonatally, and
in adult stages (52), thus making it a particu-
larly attractive biomarker ofDES action in the
mouse. Lactoferrin has also been localized to a
subset of epithelial cells of the human endo-
metrium and is responsive to estrogen (53).
Comparable markers for the human uterus
following exposure to other endocrine-
disrupting chemicals should be sought.

Engineered Assay Systems
Transgenic mice could be created using the
lactoferrin promoter linked to green fluores-
cent protein. Estrogen action could be
detected by external viewing through the
body wall or via an intravaginal light detec-
tion system. In theory a single mouse could
be used sequentially to test a series of separate
compounds for their estrogenicity. This area
of investigation is promising.

What Can Be Learned
Mechanistically for the
DES Data?
A central question is which DES effects are
dependent upon ERa-mediated or ERP-
mediated mechanisms. Studies with ERa-
KO, ERf-KO, and ERa/ER, double KO
mice will be required to settle these issues.
Teratogenicity and/or carcinogenicity could
be ERa-mediated either in the initiation or
promotional phases. If tumor or birth defect
initiation is an ERa-dependent event, the
ERa-K0 mouse will be useful in verifying
that the initiating event involves estrogenic
compounds acting through ERa. If tumor or
birth defect initiation is an ERP-dependent
event, the ERP-KO mouse will be useful in
verifying that the initiating event involves
estrogenic compounds acting through ERa.
More sophisticated models could be created
in which perinatal DES exposure can be
achieved in an ERa-KO context with ERPi
fully active to initiate lesions in the absence
of ERa. At a later point it would be possible
to selectively reestablish ERa-mediated estro-
genic sensitivity by splicing out a stop cas-
sette to reconstitute ERa. Through use of
the CRE-lox system in transgenic mice, it
should be possible to create such a model. By
similar methods the role of ERP in estrogen-
induced teratogenicity and/or carcinogenicity
should be explored. Studies on genetic and
epigenetic changes associated with DES
exposure will also be useful in understanding

the mechanism of action of DES and other
endocrine-disrupting chemicals.

Collectively, the DES database in humans
and rodents is likely to provide a highly rele-
vant yardstick upon which to judge the
potential estrogenic effects of compounds
identified as environmental estrogens. The
combination of known estrogenic potency
with dose-response data for potential end
points of concern in the mice and humans
will be a useful tool for characterizing the
effects of endocrine disrupters on human
health at environmental exposure levels.
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