
Lawrence Berkeley National Laboratory
LBL Publications

Title

PluginPlay: Enabling exascale scientific software one module at a time

Permalink

https://escholarship.org/uc/item/2xh2j8nc

Journal

The Journal of Chemical Physics, 158(18)

ISSN

0021-9606

Authors

Richard, Ryan M
Keipert, Kristopher
Waldrop, Jonathan
et al.

Publication Date

2023-05-14

DOI

10.1063/5.0147903

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2xh2j8nc
https://escholarship.org/uc/item/2xh2j8nc#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


PluginPlay: Enabling Exascale Scientific Software One Module at a Time

Ryan M. Richard,1, 2, a) Kristopher Keipert,3 Jonathan Waldrop,1 Murat Keçeli,4 David

Williams-Young,5 Raymond Bair,4 Jeffery Boschen,1, 2 Zachery Crandall,1, 2 Kevin

Gasperich,4 Quazi Ishtiaque Mahmud,2 Ajay Panyala,6 Edward Valeev,7 Hubertus van

Dam,8 Wibe de Jong,5 and Theresa L. Windus1, 2, b)

1)Ames National Laboratory, Ames, IA, 50011, USA.

2)Iowa State University, Ames, IA, 50011, USA.

3)NVIDIA, San Jose, CA, 95131, USA.

4)Argonne National Laboratory, Lemont, IL, 60439, USA.

5)Lawrence Berkeley National Laboratory, Berkeley, CA, 94720,

USA.

6)Pacific Northwest National Laboratory, Richland, WA, 99354,

USA.

7)Virginia Tech, Blacksburg, VA, 24061, USA.

8)Brookhaven National Laboratory, Upton, NY, 11973, USA.

(Dated: 10 October 2023)

1



For many computational chemistry packages, being able to efficiently and effectively

scale across an exascale cluster is a heroic feat. Collective experience from the De-

partment of Energy’s Exascale Computing Project suggests that achieving exascale

performance requires far more planning, design, and optimization than scaling to

petascale. In many cases, entire rewrites of software are necessary to address fun-

damental algorithmic bottlenecks. This in turn requires a tremendous amount of

resources and development time, resources that can not reasonably be afforded by

every computational science project. It thus becomes imperative that computational

science transition to a more sustainable paradigm. Key to such a paradigm is mod-

ular software. While the importance of modular software is widely recognized, what

is perhaps not so widely appreciated is the effort still required to leverage modular

software in a sustainable manner. The present manuscript introduces PluginPlay,

https://github.com/NWChemEx-Project/PluginPlay, an inversion-of-control frame-

work designed to facilitate developing, maintaining, and sustaining modular scientific

software packages. This manuscript focuses on the design aspects of PluginPlay, and

how they specifically influence the performance of the resulting package. Although,

PluginPlay serves as the framework for the NWChemEx package, PluginPlay is not

tied to NWChemEx, or even computational chemistry. We thus anticipate Plugin-

Play to prove to be a generally useful tool for a number of computational science

packages looking to transition to the exascale.

a)Electronic mail: rrichard@ameslab.gov
b)Electronic mail: twindus@iastate.edu



I. INTRODUCTION

Colloquially speaking, Moore’s law1 is the observation that the computing power of avail-

able processors doubles approximately every two years. Moore’s law, combined with Dennard

scaling2 (the observation that despite the increase in processing power, the power consump-

tion remains about the same for the same die size), has been responsible for a golden age of

computational science, where one could run larger and larger simulations simply by waiting

for new hardware. Unfortunately, Moore’s law and Dennard scaling can not, and will not,

continue indefinitely. Particularly within the last decade or so, scientists have come to ap-

preciate that in order to simulate even larger systems, scientists will need to embrace the

increasingly heterogenous hardware landscape.

When the Exascale Computing Project (ECP) started, the NWChem3–6 team viewed

the ECP as an opportunity to start anew with NWChemEx6. With NWChemEx being

a ground-up rewrite of the original NWChem, the team invested a significant amount of

time in software design with the intent of ensuring that NWChemEx will be a sustainable

software package for years to come. The resulting design champions encapsulation and a

separations-of-concerns on a somewhat unprecedented level - especially for exascale, at least

for computational chemistry. More specifically, the entirety of NWChemEx is written as

self-contained modules. The list of available modules, which module to call, and even how

the modules are wired together can all be changed dynamically, at runtime, in a non-invasive

manner. The present study argues that reaching the exascale is dramatically easier with

sustainable, modular software. Key to NWChemEx’s sustainability efforts is PluginPlay, a

framework for supporting modular scientific software.

The present study “derives” PluginPlay https://github.com/NWChemEx-Project/PluginPlay.

By this we mean that in Section II B we will start by formally enumerating the design con-

siderations necessary for high-performance scientific computing (including exascale). From

there, Section III presents a series of logical arguments showing how these design consider-

ations motivated the architecture (defined here as the high-level design aspects pertaining

to the overall structure of the PluginPlay library, and how it interacts with other stakehold-

ers), and ultimately design of PluginPlay. We conclude with a high-level overview of the

design of NWChemEx’s Hartree-Fock (HF)/density functional theory (DFT) code, focusing

in particular on how PluginPlay facilitates a modular implementation. The present study is



part of the Journal of Chemical Physics’s special topic on “High-Performance Computing in

Chemical Physics” and a separate submission by Williams-Young and co-workers continues

the discussion by focusing on the inner workings, performance, and initial applications of

GauXC. While GauXC7,8 was developed as part of the NWChemEx project to compute

the exchange-correlation energy for NWChemEx’s DFT code, the modular nature of the

architecture allows the GauXC code to be used in other software packages as well. It is our

hope that the current study will: clarify just how hard exascale scientific software devel-

opment actually is, and serve as a template of sorts for future design efforts. We should

also note that, while the first application of PluginPlay is NWChemEx, PluginPlay is a

general reusable open-source framework for computational science that is not explicitly tied

to NWChemEx (or even exascale computing).

II. BACKGROUND

A. Exascale Computing

The Department of Energy (DOE) ECP started in 20169,10 with the aim of building the

United States’ first exascale computers, as well as the exascale-capable software stack to

accompany them. While it was widely appreciated11–13 at the onset of ECP that moving

from the petascale to the exascale would be more difficult than the transition from terascale

to petascale, exactly how much more difficult was perhaps not as appreciated. At the risk

of oversimplifying, the difficulty in transitioning to the exascale comes down to two things:

strong versus weak scaling and the heterogeneous hardware of most exascale computers.

In high-performance computing (HPC) one discusses two types of scaling: weak and

strong. An application is said to exhibit weak scaling if the time-to-solution remains con-

stant upon scaling both the amount of work and the computational resources by the same

factor. For example, the work required to compute a coupled cluster with single, double,

and perturbative triple excitations (CCSD(T))14 energy scales as O (N7) (N being problem

size). Assuming a particular CCSD(T) implementation exhibits perfect weak scaling, then

if we double the problem size (which in turn produces 27 = 128 times more work), then

increasing the computational resources also by a factor of 128 would result in the same

time-to-solution as the original problem. For a fixed amount of work, if we increase the



amount of available computing resources by some factor, then assuming the application ex-

hibits strong scaling, the time-to-solution would decrease by the same factor. For example,

assuming our CCSD(T) implementation also exhibits strong scaling, then if t was our initial

time-to-solution, upon increasing the computing resources by a factor of 128 for the same

problem, the new time to solution would become t
128

.

It is impossible to maintain strong scaling indefinitely; at some point one simply runs out

of work to parallelize and the additional computing elements remain idle. In practice, most

developers worry about strong scaling until the time-to-solution has been reduced to some

reasonable amount, at which point concern shifts to weak scaling. “Reasonable” is highly

situational and ultimately comes down to how long the user is willing to wait. For example,

many people are willing to wait an hour for a single-point energy of a very large system

computed using a high-level of theory, but an hour is still too long for a single-point energy

computation if the goal is to run molecular dynamics (which typically seeks sub-second

single-point energy evaluations).

So why does this all matter for exascale computing? Generally speaking, algorithms which

exhibit weak-scaling are “embarrassingly parallel” and will continue to exhibit weak-scaling

indefinitely. They thus can be adapted to the exascale reasonably easily. The problem is,

especially for electronic structure theory, most algorithms are not embarrassingly parallel,

and we need to contend with strong scaling. When it comes to strong scaling we are at the

mercy of Amdahl’s law15. Amdahl’s law says the strong scaling efficiency of your algorithm

is limited by the fraction which is not parallelized. In other words, if for a given problem

size you want to maintain the same parallel efficiency while using x-times more computing

resources, you need to decrease the serial portion of your algorithm by a factor of x. As

an example, a code which has an 80% parallel-efficiency on petascale hardware, will need

1000 times less serial code in order to maintain 80% parallel-efficiency on exascale hardware.

For practical reasons, developers usually choose to parallelize the code regions which take

the longest first; meaning, it can be exponentially harder to parallelize the remaining serial

fraction of the code, since it often is made up of many small routines rather than one

large routine. On most exascale machines, processing power primarily comes from graphics

processing units (GPUs), each of which are terascale computing resources; thus to scale

from one GPU to an exascale machine requires a 1,000,000 times reduction in the amount

of serial code.



This brings us to the second of the aforementioned problems, the heterogeneous hardware.

Existing central processing unit (CPU) implementations are usually ill-suited for use on

GPUs and must be rewritten. Making matters worse, at present, each GPU vendor uses its

own programming language, with its own abstractions. So a GPU implementation targeting

one vendor is usually not even portable to another vendor. While more general solutions,

such as OpenMP16 exist, they are still not as performant across all platforms as vendor

specific solutions. Combine this with the more complicated memory hierarchies on exascale

computers — standard dynamic random-access memory (DRAM), non-volatile random-

access memory (NVRAM), solid-state drives (SSDs), and device memory — and even data

movement is more difficult. Then the metaphorical cherry-on-top is that this all gets coupled

back to Amdahl’s law; so unless one is willing to rewrite every existing bottleneck CPU

algorithm, strong scaling across an exascale machine will, in general, not be possible. Making

matters still worse, while GPUs are the primary accelerators in play at the moment, a whole

host of other accelerators — field-programmable gate arrays (FPGAs), tensor processing

units (TPUs), and quantum computers — are waiting in the wings. In short, HPC is hard,

and it has only gotten much harder with the arrival of the exascale era. Scientific software

is often developed with limited resources, and the arrival of the exascale era promises to

further strain those resources. It thus becomes essential for scientific software be developed

in a sustainable manner.

B. Sustainable Scientific Software

As the author lists for most scientific software packages attest, it already takes a tremen-

dous number of people to write performant scientific software. The last section painted a

pretty grim picture of what it takes to develop exascale software and suggested how the sit-

uation will only continue to get worse. Frankly speaking, many scientific software packages

are already struggling to balance their current research efforts with fundamental software

maintenance (bug fixes, feature requests, performance tuning, and porting to new hardware).

Increasing the complexity of the software, and needing to wholesale port a large number of

existing CPU-based algorithms to new hardware, is unlikely to be feasible on a per-package

basis. As we look to the future of scientific software it seems clear that sustainability will

need to play a bigger role.



Unfortunately, achieving sustainability is not accidental and requires careful design and

planning. Up until about the early 2000s, many legacy scientific software packages were

developed without adhering to any real design principles. In many cases, the lack of design

was not intentional, but stemmed from the fact that historically scientific software has been

developed by scientists who often did not keep up with software engineering practices17.

While legacy packages may have had different origin stories, the lack of design, particularly

with respect to interoperability, means that when a feature of another package was needed

it was often easier to re-implement the feature than to reuse the other package’s feature.

Within electronic structure theory, the net result is that each package’s feature set has

tended to converge to a set of standard algorithms, e.g., DFT, second-order Møller-Plesset

perturbation theory (MP2), CCSD(T). This is a substantial amount of duplicated work and

few, if any, of these redundant implementations have been developed in a modular fashion,

in turn perpetuating the cycle.

While many legacy package developers have, often in hindsight, realized the importance

of better design, particularly when it comes to modularity, for many legacy packages it is too

late. After decades of development, many legacy packages contain millions of lines of code,

hundreds of features, a tightly-coupled code base, and mounds of technical debt (the cost,

in developer time, needed to refactor a unit of code into the most effective solution). For

such packages, changing the design requires repaying more technical debt than is practical,

resulting in two choices: start from scratch or continue to rack up technical debt. While

we do not purport to have a third option, we presently argue that the changing HPC land-

scape, specifically the need to create hardware-specific algorithms, can be seen as a golden

opportunity for starting from scratch, and it is imperative that we use this opportunity to

develop the most sustainable software we can in an effort to avoid the need to start from

scratch again.

To be clear, while the contents of this subsection have so far been largely anecdotal, they

are consistent with other anecdotal accounts of scientific software development. As a direct

result of similar situations and realizations, a number of different research software sustain-

ability groups18–28, ranging from federal governments to individual research disciplines, have

begun to form. Together these organizations have provided a wealth of guidance for de-

veloping sustainable research software; however, for brevity, we have distilled this guidance

down to the following high-level design considerations:



II.B.1 Sustainable. Sustainability is defined as the ability for a software package to persist

and remain useful beyond the original set of use cases. This includes, but is not limited

to: new hardware, new applications, new developers, and new development paradigms.

Sustainability does not imply that the software remains static, in fact our definition

all but guarantees that the software must evolve over time. Moving forward, the time

to develop performant components is likely to increase, and to avoid duplication, the

goal should be to develop sustainable software, not to “just get something working.”

II.B.2 Reproducible. Scientific software does science. A fundamental tenet of science is

that results should be reproducible (running the same software, with the same inputs,

should produce the same results). It is important that software be designed in a

manner which facilitates reproducibility and ideally replicability (the ability to obtain

consistent results with different software and similar inputs).

II.B.3 Modular. Modularity comes in two flavors: inter- and intra-package modularity. We

are specifically interested in inter-package modularity where the modular software:

is created, designed, and distributed independently of other software; fully encapsu-

lates its dependencies; has well defined (and stable) application programming inter-

faces (APIs) and user interfaces (UIs); and is reusable by other software as is (no

modifications required). By contrast, intra-package modularity is only concerned with

reuse throughout the same package, and reuse outside the package may be impractical.

Ultimately, most modern software development projects (scientific software included)

are too large to tackle in any manner other than piecemeal, which is why modularity

is so important.

II.B.4 Interoperable. In software engineering two components are interoperable if they

“just work” together. This specifically means the components use the same data

formats, protocols, and standardized APIs. In particular, if two components are in-

teroperable they do not require adaptors, converters, or the like, in order to work

together. Interoperability plays a key role in sustainability by increasing developer

productivity and increasing the reuse of modular software. Again we can define intra-

and inter-package interoperability. Inter-package interoperability ultimately amounts

to the packages in a community coming together and establishing data and communi-

cation standards, which is beyond our present scope. Without community consensus,



true inter-package interoperability is impossible and conversion tools become neces-

sary. Intra-package interoperability is an easier ideal, and simply means that within a

software package modules are interoperable.

II.B.5 Performant. Scientific simulations are computationally expensive. Even a small

degradation in performance can cause a simulation to be intractable. Software design

must not inhibit performance on current (or future) hardware. In practice, perfor-

mance can not be an afterthought and it must be designed for from the beginning.

II.B.6 Research-Based. The end-goal of scientific software is research. Research is an

inherently uncertain process. A priori it is difficult, if not impossible, to know what

theories will pan out, how users will leverage your software, what new use cases will

result from ongoing research, or which funding opportunities will be available. The

ability to rapidly prototype is important for quickly discerning the viability of an idea,

but ultimately robust, sustainable software needs to be the foundation of research

efforts to ensure results are correct and reproducible.

II.B.7 Complex. Few computational scientific studies are able to publish results simply by

running an existing program. Scientific workflows usually consist of some combination

of: code development, ad hoc couplings between software and/or scripts, data analysis,

and visualization. Software designs need to be extensible so as to not hinder current

or future research workflows.

II.B.8 Multidisciplinary. Most computational science codes require expertise beyond the

target scientific domain, e.g., computer science, data science, computational mathe-

matics, statistics, and/or software engineering. In computational chemistry, even the

scientific domain expertise tends to be multidisciplinary with needs for expertise in

physics, materials science, and biology.

II.B.9 Decentralized. Scientific research is conducted world-wide. Most existing scientific

software packages do not have the luxury of having all developers reside locally. This

complicates synchronization, and often means developers are not necessarily aware of

other efforts, even when those efforts may be targeting the same package. Somewhat

related, the resulting software stack tends to be decentralized as well. While there are

some efforts29 to unify the process of delivering a full working, scientific software stack,



developers must contend with the fact that, at present, their software’s dependencies

tend to be scattered across the internet.

C. Prior Work

The considerations in Section II B ultimately motivated us to write PluginPlay. Before

discussing the architecture of PluginPlay in Section III, we briefly review related efforts in

computational chemistry, as well as relevant C++ frameworks.

One of the first attempts at modularizing the field of computational science was associ-

ated with the Common Component Architecture (CCA)30 project. Each software component

adhering to CCA conventions needed to adhere to the relevant standardized APIs. CCA

attempted to span multiple programming languages and allow dynamic loading of modules

to enable end-to-end, complex scientific HPC simulations. While the machinery needed to

actually assemble software from CCA compliant components was fickle and cumbersome to

use due to its prototype nature, CCA is notable in that it is one of the few prior efforts

to really consider most of the considerations in Section II B. Although the CCA has been

abandoned, some of its computational chemistry contributions live on in terms of combin-

ing multiple theory levels31 and integral APIs32, as well as the software engineering ideas

associated with HPC.

Within electronic structure theory, there are several packages designed with inter-

package modularity in mind. One of the first was Massively Parallel Quantum Chem-

istry (MPQC)33,34. The original design33 defined a series of abstract classes to serve as

internal APIs; derived classes then implemented the functionality. Originally, these classes

only provided intra-package modularity; however, this restriction was later lifted34 by al-

lowing the implementations to treat MPQC as a dependent library. Like MPQC, Psi435–37

provides a number of internal APIs which can serve as customization points. Using Psi4’s

plugin mechanism developers can non-invasively extend Psi4 by writing plugins; however,

these internal APIs are limited to high-level properties36, such as total energies, and (similar

to MPQC) require the developer to link against Psi4. The Psi4 team works closely with

the Molecular Sciences Software Institute (MolSSI), and Version 1.4 of Psi437 relaxes these

restrictions by using the MolSSI-developed Quantum Chemistry Archive (QCArchive) (vide

infra). Perhaps Python-based Simulations of Chemistry Framework (PySCF)38 comes the



closest to the level of inter-package modularity targeted by PluginPlay. In particular, the

PySCF objects are composable functors (callable objects associating a state with a routine).

Using composition, users can manually wire together a new call graph containing a mix of

PySCF and user-defined functors. Owing to how composition is implemented, and the fairly

coarse-grained nature of the functors (e.g., computing integrals, building integrals, and

transforming integrals), the new call graph can often be represented as a one line command.

Finally, since PySCF and Psi4 have Python interfaces, it is possible for the user, at runtime,

to extend and override much of the functionality provided by PySCF and Psi4; however,

without formal standards in place (such as the ones PySCF provides38 for overriding the

Hamiltonian) the resulting code is likely to be fairly fragile. This is because the resulting

user code typically modifies the underlying software in ways in which the developers did

not intend and/or are not actively supporting. So while this sort of non-invasive extension

is great for rapid prototyping, it tends to be ill-suited for sustainable development.

More recently, inter-package modularity efforts have seen an increased interest in de-

veloping computational chemistry workflow tools. Included in this category are: Atomic

Simulation Environment (ASE)39, MolSSI Driver Interface (MDI)40, Python-based Ams-

terdam Density Functional (ADF) (PyADF)41, Python Materials Genomics (pymatgen)42,

QCArchive43, and Quantum Chemistry Automation and Structure Manipulation (QChASM)44

projects. Historically, these projects have also been referred to as “drivers” because they

drive other software packages. Generally speaking, all of these tools interact with existing

computational chemistry packages at a very high-level (typically the same level as an end-

user), which in turn tends to limit them to primarily modularizing energies (and energy

derivatives). That said, many of these workflow tools provide additional features (such as

structure manipulations), but because these features tend to not be modularized, they can

not easily be used by the underlying software. In turn, many of these additional workflow

features need to be re-implemented by the underlying software, potentially leading to a large

amount of redundancy. Many of these tools also address most of the considerations listed

in Section II B, but with a restriction to high-level modularity. Perhaps the most notable

omission among these tools is the multidisciplinary consideration (II.B.8); these tools tend

to be overwhelmingly focused on interfacing to computational chemistry software.

Most computational chemistry packages have some level of intra-package modularity in

the form of functions and/or libraries (or the language equivalents). The packages we have



included here have been singled out because they also include some level of inter-package

modularity. The resulting modules tend to be fairly heavy since they have the package being

extended as a dependency. As we argue in Section III, the key to decoupling the module

from the package to extend, is to build the package on top of an inversion-of-control (IOC)45

framework. Because of the performance consideration, we need to be able to seamlessly use

C/C++ modules with this framework and we limit ourselves to IOC frameworks written in

C++. While a number of such frameworks exist46–49, we were unable to locate any which are

currently supported and under active development. Finally we note that PluginPlay grew

out of the now abandoned Pulsar Computational Chemistry Framework project50. Many of

the original design elements of Pulsar ended up in a beta version of Simulation Development

Environment (SimDE)51 (N.B., we have since changed the abbreviation from SDE to SimDE

to avoid confusion with “software development environment”). Since Reference 51, SimDE

has undergone a significant amount of refactoring in order to better separate the parallel

runtime, the IOC framework, the chemistry-specific classes, and the development environ-

ment into reusable components. As a result of this refactoring we have produced PluginPlay.

So while some high-level design details of PluginPlay were included in Reference 51, those

details: are not exhaustive, are intermixed with design details from other components, and

are only used to motivate the introduction of the overall SimDE project. The exact relation-

ship between SimDE, PluginPlay, and the other components of the NWChemEx software

stack are summarized in Section IV.

III. PLUGINPLAY DESIGN

A. Motivation

Section II B ended with a series of considerations that scientific software should address.

From the standpoint of the high-level architecture of a scientific software package, considera-

tions research-based, complex, and multidisciplinary (II.B.6, II.B.7, and II.B.8 respectively)

are arguably the most important. Together these considerations tell us the resulting soft-

ware needs to be, from the beginning, extremely flexible in order to adapt to: unforeseeable

research directions, new workflows, and the differing conventions/paradigms across scien-

tific disciplines. While modularity will inevitably play a key role in the solution, the level



FIG. 1. Difference between a normal package and a package powered by an IOC framework. In

both panels modules are called in a top-to-bottom, left-to-right ordering.

of flexibility required extends beyond modularity and raises a new consideration of avoiding

as many a priori couplings as possible. In particular, designs inherently limit the applica-

bility of the resulting software package if they couple to specific sets of: hardware, features,

data types, or even components. Of these assumptions, avoiding coupling to a known set

of components is arguably the most difficult to avoid. As alluded to in Section II, software

engineers have already come up with a solution: IOC frameworks.

The difference between normal control graph execution and an IOC is shown in Figure 1.

Generally speaking, most scientific software has either a single entry point (e.g., main func-

tion for C/C++ executables and Python scripts) or a series of well-defined entry points

(e.g., UI of Python packages). Regardless of the number of entry points, each entry point

is capable of calling a fixed number of subroutines, each of which are then also limited to

calling a fixed number of subroutines, etc. The point is, in a traditional software package,

once the user has called an entry point the software maintains control, and is responsible



for delegating control flow from that point forward. This means the only way to add a new

feature, use case, etc. is to modify the software, at each point where it needs to know about

the feature, use case, etc. Conversely, when software is built on an IOC framework, the soft-

ware dispatches control to the framework, and the framework decides the first subroutine to

call based on the end-user’s input. If that subroutine needs to relinquish control, including

to call another subroutine, the subroutine first returns control to the IOC framework, and

the IOC framework chooses whom to pass control to, i.e., subroutines do not choose which

subroutines they call, the IOC framework does. In turn, newly added features are immedi-

ately available throughout the call graph, without needing to modify the software. While

an IOC framework avoids coupling components to each other until runtime, it does so by

instead coupling every component to the IOC framework. In practice, this is typically not

as bad as it sounds, since the components usually treat the IOC framework as a dependency,

and thus the coupling to the IOC framework can be treated as an implementation detail of

the component. The advantage of using an IOC framework is that it allows us to address

considerations: research-based, complex, and multidisciplinary (II.B.6, II.B.7, and II.B.8).

Because of the modular consideration (II.B.3) we will consider our software as being

comprised of components, and because of the performant consideration (II.B.5) it will be

necessary for some of the components to tightly couple to a specific problem and/or specific

hardware. We term such pieces “modules”. In many computational chemistry applications,

modules tend to focus on filling in tensors and/or consuming tensors (N.B., we include in

this statement scenarios where formally the theory and equations call for tensors, but in

practice the full tensors are never actually assembled). Regardless of their contents, from

the perspective of the IOC framework, modules form the nodes of the call graph. The

IOC framework is thus ultimately charged with discovering new modules and wiring them

together. Being able to manipulate modules from within the IOC framework is essential to

sustainable (II.B.1) since it enables developers to non-invasively extend performance-critical

pieces of the software to new hardware and use cases, all while having a minimal impact on

the rest of the software.

Driven by performance (consideration II.B.5), and realizing the IOC framework will nec-

essarily touch performance-critical modules, we have limited ourselves to C++ IOC frame-

works. This is because the HPC community is overwhelmingly moving from Fortran to

C/C++ (as evidence, note that the majority of ECP projects10 assume C or C++) and be-



cause a C++-based framework is capable of leveraging C (and Fortran) and C++ modules.

Thanks to projects such as Cppyy52 and PyBind1153, C++ software can easily be exposed

to Python to improve the user experience (UX) without sacrificing performance35–38, which

facilitates rapid prototyping and the research-based consideration (II.B.6). Following from

Section II, we were unable to locate any existing C++ IOC frameworks which are actively

supported. Furthermore, to our knowledge, none of the existing computational chemistry

efforts are designed to support IOC throughout the entire call graph, down to the lowest

levels. Thus, in order to have a performant C++ IOC framework for scientific applications,

we ultimately chose to develop PluginPlay.

As presently motivated, to address the considerations raised in Section II B, PluginPlay

was designed subject to the following considerations:

III.A.1 Sustainable. Sustainability is even more important since every subroutine will couple

to PluginPlay. Therefore sustainability of the downstream software assumes sustain-

ability of PluginPlay itself.

III.A.2 Performant. With many calls routing through PluginPlay, PluginPlay must not

inhibit the performance of those calls.

III.A.3 Multidisciplinary. PluginPlay needs to be capable of handling modules from a

variety of disciplines. These disciplines use different terminology, types, and standards.

III.A.4 Module discovery. PluginPlay must be capable of dynamically discovering modules.

The set of modules, the module authors, the deployment location of the module, and

the relevancy of each module may change over time. It is thus unsustainable for

PluginPlay to assume a static list of modules.

III.A.5 Module wiring. Since the set of modules is dynamic, PluginPlay must also wire

the modules together dynamically. A dynamic call graph also ensures the resulting

software is extensible and can be adapted to new use cases.

III.A.6 Reproducible. PluginPlay is designed as a framework for scientific software, and,

therefore, results with PluginPlay must be reproducible. Considerations III.A.4 and

III.A.5 result in unique challenges to reproducibility since what modules can be called,

and which modules are wired together, can change from run to run.



The main goal of PluginPlay is to performantly build and manage a dynamic call graph

comprised of performant modules.

B. Architecture

PluginPlay’s architecture was designed in response to the considerations raised at the end

of Section III A. For sustainability and performance reasons, PluginPlay’s design adheres

to usual C++ conventions, such as those underlying the C++ standard library. This fa-

cilitates using other C++ libraries (many of which also assume standards compliant code).

In particular, PluginPlay is largely object-oriented, with stateful code being represented

by classes, and pure functions being implemented by free functions. Given the complex-

ity of scientific software, object-oriented programming is an essential tool for maintaining

intra-package modularity.

From Section III A we established that PluginPlay’s main tasks will be to discover new

modules and wire them together. From the complexity consideration in Section II B, we

expect the call graph for most scientific packages to be significantly more complicated than

just calling one or two modules. In PluginPlay modules are represented by the Module class

(see Figure 2). A “leaf” module, is a module which is a leaf of the call graph, i.e., does

not call any other modules. Modules which are not leaves will return control to PluginPlay

at least once before the module completes; both leaves and non-leaves return control to

PluginPlay upon completion. As a slight aside, in PluginPlay the dynamical nature of the

call graph means that a module’s leaf status can vary from run to run, or even within the

same run! In turn, the effective call graph of the program is assembled by PluginPlay and

comprised of modules. Since it will in general take many modules to implement a feature,

we also introduce “plugins.”

Simply put, plugins are collections of modules that developers choose to distribute to-

gether. The extent of a plugin is defined by the developers/maintainers of the plugin’s

distribution. Plugins are generally large enough to be an independent software repository.

Though plugins are distributed as a single entity, for a given calculation, PluginPlay may

wire the call graph to use the whole of the plugin or only select modules. For example, at

present, the NWChemEx team develops and maintains plugins for self-consistent field (SCF)-

like theories (including DFT), and coupled cluster. Users wanting the features included in



FIG. 2. Illustration of the key concepts in PluginPlay: modules, plugins, the literal PluginPlay

framework, call graph assembly, and property types. See text in Section III B for a more detailed

description.

a plugin should download the plugin, start up an instance of PluginPlay, and then load the

plugin into the PluginPlay instance. Plugins help address the decentralized consideration

(II.B.9) from Section. II B, by allowing research groups to maintain and focus on their own

set of modules, in relative isolation, if they so choose.

To address II.B.8, the multidisciplinary consideration, PluginPlay treats each module

as a black-box. While some modules may be interchangeable, e.g., modules implementing

different eigensolvers or modules implementing different SCF guesses, many modules are

not, e.g., one can not use an eigensolver (by itself) as an SCF guess. Making matters more

complicated, sometimes whether two modules are interchangeable is situationally dependent.

For example, under normal conditions the total SCF energy is not interchangeable with the

total MP2 energy; however, for the purposes of geometry optimization, the two may be used

interchangeably. PluginPlay thus needs a mechanism for knowing when two modules can be

used interchangeably, and in response we introduce the “property type” concept, modeled

by the PropertyType class.

Each property type is a class, the name of which is associated with a property. For

example, NWChemEx defines a class Energy to be a property type for the total energy of



a chemical system, and a different class FockOp to be the property type for computing the

Fock operator. To avoid biasing PluginPlay towards any one discipline, we have designed

PluginPlay’s PropertyType class so that the exact details of each property type are actually

declared and defined downstream of PluginPlay, in the domain-specific software leveraging

PluginPlay. In practice property types serve a twofold purpose; in addition to stating which

property a module can compute, each property type also establishes the API for computing

the titular property. For example, the NWChemEx Energy property type declares that mod-

ules which compute energies take the chemical system to compute the energy of and return

the energy as a double precision number. When a module needs to compute a property, the

module signals this to PluginPlay by requesting PluginPlay provide a module to call which

satisfies the corresponding property type. PluginPlay then chooses the module to run, runs

the chosen module, and returns the requested property. The NWChemEx team is in the

process of creating SimDE, a (currently private) GitHub repository which will serve as a

centralized community resource for standardizing property types across quantum chemistry.

The use of a common set of property types community-wide will facilitate interoperability

(consideration II.B.4). An initial release of SimDE is slated for summer 2023.

Property types are used to define how PluginPlay obtains properties from modules. In

practice, this means module developers have tremendous flexibility when it comes to how

they can implement a module. For example, a module which computes say the DFT energy

of a molecular system can do so by wrapping a call to an existing electronic structure

package, or by implementing the DFT method itself. As long as the modules satisfy the

same property type, they can be used interchangeably. It is worth noting that a module is

allowed to satisfy multiple property types. So a module which wraps an existing electronic

structure package would, in general, satisfy a lot of property types (in theory one for every

property the package can compute). As discussed in Section III D, thanks to memoization

calling the same module multiple times, and with the same inputs, will introduce minimal

additional cost beyond the first call. In turn, even though each call to a module only returns

a single property, modules which compute multiple properties can still be used efficiently.

In our opinion, property types are one of the key pieces missing from all of the existing

computational chemistry efforts summarized in Section II. In particular, property types

are key to PluginPlay’s ability to address II.B.8, the multidisciplinary considerations raised

in Section III A, namely by allowing downstream developers to non-invasively extend the



FIG. 3. Illustration of the key components of PluginPlay. See text in Section III B for description.

framework to new or domain-specific properties. Furthermore, since the downstream devel-

opers can define the property types in terms of native domain-specific object types, property

types also allow us to avoid performance issues (consideration II.B.5) at module interfaces,

by not requiring data to be serialized, written to disk, or otherwise converted. Finally,

property types create a mechanism for enforcing intra-package interoperability by requiring

modules to adhere to standardized APIs. If the community as a whole adheres to the same

standardized APIs, then property types are also compatible with inter-package interoper-

ability (consideration II.B.4). The PluginPlay concepts introduced so far are summarized

in Figure 2.

From the above discussion we have motivated the major concepts of PluginPlay: modules,

plugins, and property types. The present architecture of PluginPlay is shown in Figure 3.

PluginPlay is built on ParallelZone54, a runtime system which at present provides object-

oriented C++ bindings to the Message Passing Interface (MPI) and some rudimentary

hardware information pertaining to what hardware is present. Full details on the design,

scope, and features of ParallelZone are beyond our present scope. We direct interested

readers to the ParallelZone repository54 for more details. At present, PluginPlay primarily

uses ParallelZone to track the MPI context and forward it to modules; however, ongoing

development efforts are looking at expanding that use to include coarse-grained parallelism

over the call graph. PluginPlay ensures that each module has access to the current runtime

system by providing them direct access to ParallelZone; the module developer is then free

to use ParallelZone for their parallel needs or to grab the MPI communicator and drop



down to MPI if they so choose (at present each module is responsible for its own thread

management). Descriptions and designs for the four major components of PluginPlay (the

module manager, cache, module utilities, and call graph) are the subject of the next four

subsections. The remainder of Figure 3 serves as a reminder that plugins and modules

(and property types) are developed downstream of PluginPlay and added to PluginPlay in

a dynamic manner, i.e., at runtime and on-the-fly.

While this subsection motivated the architecture of PluginPlay, it did so starting from

very general considerations for scientific software. As other software packages target exascale

platforms, many of them will face similar problems as NWChemEx already has, and we close

this subsection by summarizing how exascale HPC considerations specifically shaped the

architecture of PluginPlay. As stated in Section II A, many scientific software applications

will seek strong scaling on exascale hardware, which in turn will require parallelizing nearly

the entirety of the package. Being able to piece together already parallelized components

will dramatically speed-up such efforts, but assembling disparate components is only viable

for highly flexible software packages. Maintaining parallelism over the entire program is

facilitated by having a literal representation of the call graph. Using the call graph it is

possible to programatically assess what tasks are present, and how they are coupled. The

modular nature of the call graph allows performance tuning on a per-module basis. By

being able to dynamically swap modules we are able to port large portions of code, most

modules of which are not so hardware-specific, to new platforms relatively easily. The

introduction of property types played a key role in this design as it facilitated writing

PluginPlay in a domain-agnostic manner that supports a modular software stack, without

requiring serialization and/or conversions at module interfaces, both of which can be serious

bottlenecks for performance.

1. Writing PluginPlay Plugins



Listing 1. “C++ source code showing how to write a module.”



In an attempt to better illustrate the various PluginPlay concepts we show how one could

write a trivial C++ plugin. More detailed tutorials, using the most up to date PluginPlay

feature set can be found in PluginPlay’s documentation55.

The bulk of any plugin consists of the modules. Listing 1 shows annotated C++ source

code for writing a very simple module. Modules are ultimately C++ classes and must be

declared and implemented. To simplify this process as much as possible, PluginPlay defines a

series of C preprocessor macros (source code in all capital letters); the preprocessor macros

hide the boilerplate (and template meta-programming) needed to create and register the

classes with PluginPlay. Users are encouraged to use the C preprocessor macros as the

underlying declarations are not considered stable parts of the PluginPlay API. In Listing 1

we declare a single module MyModule, and then implement MyModule’s two methods: the

constructor and run. A module’s constructor is used primarily to associate metadata with

the module, register the property type(s) the module satisfies, and register any call back

points the module defines. Here we only set the module’s description, but each module

also has a number of other metadata fields including: authors, references, and version. The

remainder of the constructor in Listing 1 establishes that MyModule satisfies the Energy

property type, and that it provides one call back location for another module also satisfying

the Energy property type. The run member of a module is the member which is actually

called when a caller runs a module. Most run implementations involve a bit of boilerplate

relating to unwrapping/wrapping inputs/results. Aside from that, the remainder of the run

method is the actual module implementation. In Listing 1 we implement our module by

calling another module satisfying Energy and simply returning its result.



Listing 2. “C++ source code showing how to write a plugin.”

Most users of PluginPlay will focus primarily on creating modules, which they will likely

add to an existing plugin. As mentioned in Section III B, plugins are nothing more than

collections of modules which are distributed together. Listing 2 illustrates how to cre-

ate a plugin. In order to discover the plugin, PluginPlay requires that all plugins ex-

pose a load modules function which takes a mutable ModuleManager instance. Inside the

load modules function, one simply adds their plugin’s modules to the provided module

manager.



Listing 3. “C++ source code showing how to write a property type.”

For completeness Listing 3 shows how to create a property type. Property types should

ideally be PluginPlay implementations of community standards. In turn, if a property type

already exists for a property, users should prefer that property type over implementing a

new one. The result is that users only need to write new property types when their module

computes a property for which no standard exists, and needing to write new property types

is expected to become rarer as PluginPlay’s ecosystem grows. Since property types define



APIs, we need to define the input fields and result fields, i.e., the types and names of the

input arguments and the returned results. As shown in Listing 3, the process is largely

identical for the inputs and results. First one calls declare input/declare result for

defining inputs or results respectively. Then one chains add field calls for each field (the

syntax is a bit odd because behind the scenes a large amount of template meta-programming

is occurring). Optionally, the developer may also provide descriptions describing what/how

each input/result is used/obtained. The property type shown in Listing 3 declares one input,

a read-only reference to std::vector<double> object holding the atomic positions, and one

result which is of type double.

C. Call Graph Design

From the perspective of PluginPlay, a program’s call graph is a directed acyclic graph

(DAG) where the nodes are modules and the edges point from the calling module to the

callee module. Actually discovering the modules, and then subsequently assembling the call

graph, is the responsibility of the module manager component described in Section III E.

The call graph component focuses purely on representing the DAG. From our discussion so

far, we have the following considerations which pertain to the call graph component:

III.C.1 Extensible. Sustainability of the call graph component requires the call graph to be

extensible to new use cases and features. It also requires us to avoid assuming any

particular node is the head node of the DAG, since that limits extensibility.

III.C.2 Performant. To avoid introducing performance bottlenecks, assembling and travers-

ing the DAG must be performant. Additionally, we anticipate that the DAG will prove

useful down the line for automatic coarse-grained parallelism by allowing us to track

task dependencies.

III.C.3 Multidisciplinary. PluginPlay will interact with multiple domains, and thus nodes

need to support domain-specific types in order to performantly model domain-specific

concepts.

III.C.4 Domain Agnostic. Seemingly at odds with III.C.3, we also need to avoid coupling

PluginPlay to any one domain.



III.C.5 Dynamic. Discovery and building the DAG needs to be dynamic to adapt to new

use cases and science drivers.

While actually assembling the DAG is the responsibility of the module manager com-

ponent, we describe the assembly process here that ensures the call graph component has

the features necessary to enable assembly. DAG assembly ultimately starts with developers

writing modules, since these modules will end up forming the nodes of the DAG. To address

the domain-agnostic consideration (III.C.4), the Module class will have the same API re-

gardless of its contents (the property type will differentiate the different module interfaces),

and to address extensibility (consideration III.C.1) we require all nodes to be instances of

the Module class, i.e., the root and leaf nodes are not treated any differently. In practice,

PluginPlay does not need to actually know the types of the objects traversing the module

boundaries. Hence to satisfy III.C.3, the multi-disciplinary consideration, we use a technique

known as type erasure. Conceptually, type erasure in C++ can be thought of as simulating

a common base class for all objects. Inside PluginPlay, we then pass inputs/results to/from

a module via the common base class, and the users downcast them back to their original

types. Of note, type erasure is fully type-safe and is implemented using template meta-

programming and pointer casts, which allows it to avoid serialization and/or copies, i.e.,

type erasure also satisfies consideration III.C.2 regarding performance.

Figure 4 illustrates the actual data traversal process. The keys to the entire process are

the property types (which we remind the reader are defined downstream of PluginPlay).

Property types define the typed API of the module, and they also wrap the machinery to

type-erase the domain-specific objects. When a user calls a module they specify the property

type to run the module and provide it domain-specific types. This all happens in the user’s

code. The property type then type-erases the inputs (AnyField is the class responsible for

the type erasure) and forwards them to PluginPlay. At this point, PluginPlay dispatches

to the selected module, and forwards the type-erased inputs into the module developer’s

code. Inside the module developer’s code, the type-erasure process is reversed by passing

the type-erased inputs into the property type, which in turn unwraps them back to their

domain-specific types. Returning data from a module uses the same process, but in reverse.

From the perspective of the call graph’s design, the key points are: PluginPlay only interacts

with type-erased data and control passes through PluginPlay on its way to/from module

developer’s code from/to the calling code.



FIG. 4. Illustration of how data traverses module boundaries in PluginPlay. See Section III C for

more details.

The fact that control always passes through PluginPlay before/after entering/leaving a

module is the key to satisfying consideration III.C.5, dynamic. DAG creation starts when

the end user calls the first module. Control flows through the interior of that module, until

the module needs to call another module. At this point, the module asks PluginPlay to call

a module with a specified property type, and PluginPlay is then able to dynamically decide

which of the registered modules to call. In practice, PluginPlay actually assembles the entire

DAG upon calling the first module. This is to ensure that the full DAG can actually be

formed. By ensuring the DAG can be formed, we avoid running a potentially expensive

computation, for a long period of time, only to find that it is not possible to complete the

computation.

Figure 5 illustrates how the call graph is actually built. When a module developer

writes a module, they specify not only the property type the module satisfies, but also the

potential callback points within the module (n.b., the logic inside the module is free to



FIG. 5. Illustration of how PluginPlay assembles the call graph. See Section III C for more details.

choose which callback points it actually invokes, and it need not call all of them). Each

callback point is assigned a label (‘‘Callback A’’, ‘‘Callback B’’, and ‘‘Callback C’’

in Figure 5) for disambiguation; for example, without labels, and relying only on property

type, it would not be possible to distinguish between ‘‘Callback A’’ and ‘‘Callback B’’

in Figure 5. Conceptually this creates the DAG shown in the bottom-left of Figure 5. When

DAG creation is triggered by the root module, PluginPlay loops over the registered callback

points and assigns them modules (the modules are chosen from among the module pool in

the module manager, vide infra). The result is the DAG in the bottom-right of Figure 5.

This process is then repeated recursively for each of the modules added in the previous step.

At present, each module provides defaults for the callbacks in order to facilitate assembling

the DAG; users can override the defaults, before DAG creation, in order to call whichever

module they choose (so long as the module satisfies the correct property type).

While conceptually simple, the DAG assembly process just described relies on the use

of very inflexible property types. The most obvious problem with this design is that many

algorithms, and therefore modules, require more inputs than those the property types allow.

For example, the Energy property type described above only takes as input the chemical

system, but many electronic structure methods also need the atomic orbital (AO) basis

set, i.e., the contraction coefficients and expansion coefficients for each primitive Gaussian.



There are two potential solutions to this problem: add “module-specific inputs” or, ob-

tain the additional inputs by calling another module. PluginPlay supports both solutions.

Module-specific inputs are inputs which must be set by the user before the DAG is cre-

ated (in practice most module-specific inputs have default values and only need to be set

if the user wants a non-default value). Module-specific inputs work best for algorithmic

parameters which are rarely changed, or when they are changed, can easily be set by the

end user,e.g., convergence tolerances or the maximum number of iterations. For obtaining

more complicated inputs, such as the AO basis set, PluginPlay recommends calling another

module (in this case a module which returns the AO basis set given the chemical system).

In passing we note that modules may return additional information either by satisfying mul-

tiple return types, or by defining module-specific results. Satisfying multiple property types

works best when a module is being called by another module. In this case, even though the

caller defines multiple call back points (one for each property type) each call is wired to the

same module. Similar to module-specific inputs, module-specific results work best when it

is the end user who is retrieving the result; this is because to retrieve module-specific results

one must know they exist without recourse to a property type.

D. Cache Design

The fact that property types are necessarily rigid, combined with the fact that different

algorithms need different inputs, led to the PluginPlay design decision of “call another

module to obtain the additional inputs.” This is a rather elegant solution in that it allows

the property type to capture the inputs common to each algorithm, while still allowing

the module developer to encapsulate the process of obtaining the additional inputs. The

downside is that not all additional inputs are trivial to compute. In order to adhere to

consideration III.A.2, i.e., performant, we need to avoid recomputing non-trivial inputs.

Thankfully, software engineers have again already devised a solution: “memoization”, a

process where results from expensive function calls are cached to avoid recomputing them.

Conceptually, memoization in PluginPlay is relatively straightforward. For each module,

PluginPlay maintains a cache. The cache is an associative array whose keys are the full set of

inputs (including the module-specific inputs and any callback modules), and the associated

value is the set of results from calling the module with those inputs. Before calling a module,



PluginPlay checks the cache to see if the module has already been called with this set of

inputs. If it has, the results are simply returned; if it hasn’t, the module is run and the

results are cached for future usage. While caching/memoization may at first seem like

a PluginPlay specific design consideration, it actually turns out to be heavily related to

considerations regarding reproducibility (III.A.6 and II.B.2). In turn the considerations for

the cache component are:

III.D.1 Memoization. The need for the cache component was brought on by needing to

memoize execution of the DAG.

III.D.2 Performant. The cache component is needed to ensure the call graph component can

satisfy consideration III.C.2. It is therefore essential that the call graph component

also be performant.

III.D.3 Reproducible. The result of running a computation with memoization disabled

should be identical to running it with memoization enabled (aside from the time to so-

lution). In turn, the cache also must capture all of the information needed to reproduce

the calculation.

Fundamentally, memoization of a function assumes the function is a “pure function.”,

a function that returns identical results for identical inputs and has no side-effects. The

former condition means the output of the function can not vary with changes to global

variables, files, or any other inputs not directly passed into the function; as a corollary, it

also means that the function must be deterministic. The “no side-effect” condition means

the function can not modify global state, files, or any other results not directly returned

from the function. Every pure function is trivially reproducible, since, by definition, a pure

function is guaranteed to return the same results for the same inputs. Generalizing to the

memoization of a module, we define a “pure module” by analogy to a pure function. A pure

module: is a module that returns identical results for identical inputs, has no side-effects, and

only calls other pure modules. Each pure module individually satisfies the reproducibility

condition III.D.3, and it stands to reason that any DAG comprised of pure modules also

satisfies III.D.3.

Knowing that a module is a pure module is not enough to satisfy the memoization

consideration III.D.1, you also need to build the map from inputs to results. This requires



capturing all of the inputs and results for each call and caching them. The full design of

the cache is fairly complicated, and beyond our current scope; instead we point out some

of the additional design considerations which stem from ensuring the cache satisfies the

memoization and performant considerations (III.D.1 and III.D.2). These are considerations

that potential solutions to the reproducibility consideration (II.B.2) will likely also need to

contend with. These considerations include: data size, recording sufficient provenance, and

checkpointing.

Arguably the largest complication is that some of the inputs/results are large data struc-

tures. Furthermore, some of these large data structures will be inputs or results to/from

multiple modules. Storing multiple copies of a large object is inconsistent with the perfor-

mance consideration (III.D.2). One potential solution is hashing. Using hashing, each object

is associated with a hash, and copies of the hash are stored. Hashing has several problems

though: First, hashing a large object can be expensive, and hashing a large distributed ob-

ject is difficult to do in a performant manner. Second, in the most general scenarios, hashing

tends to be invasive because it requires knowledge of the internal state of the object. Third,

while hash collisions should be theoretically rare, in practice, naive hashing of objects can

result in far more frequent hash collisions; a notable example is that many hashing im-

plementations will compute the same hash for any empty container, even though different

containers constitute different inputs. Instead of hashing, PluginPlay’s cache component

uses universally unique identifiers (UUIDs)56. Generating a UUID is a trivial process which

is decoupled from the identity of the object (although care needs to be taken when generating

UUIDs for distributed objects, since each rank generates a different UUID). Furthermore,

UUIDs are guaranteed to be unique.

With the UUID solution, recording sufficient provenance to tell different inputs apart

is relatively straightforward. PluginPlay associates a UUID with each object and module.

When a particular module is called, PluginPlay recursively records the UUIDs for each

input, and the UUIDs for each module which will be called. Realizing that memoization

is only attempted with pure modules, this is then sufficient provenance to reliably apply

memoization. Looking an input up in the cache involves comparing UUIDs (which are short

strings) and mapping objects to UUIDs (which involve value comparisons); anecdotally,

the rate-limiting step is almost always the latter. Unfortunately, the overall performance

of value comparisons depends on the implementation of the objects being compared and



is out of the control of PluginPlay. As such, the performance of value comparison can

vary widely from fractions of a second to much worse depending on how the comparison is

implemented. We note that the value comparisons in the cache usually result in false (thus

performance benefits greatly from short-circuit logic) and value comparisons should scale

(at worst) linearly in the size of the object.

Given the importance of the data in the cache, losing it may be detrimental to per-

formance. For this reason, PluginPlay also supports backing the cache up to disk. If in

addition to the cache, one also saves the object to UUID mapping, the cache can be used

for checkpointing/restarting the calculation. In short, if one pre-populates the cache before

running a calculation, control will quickly return to parity with the previous run thanks to

memoization. It is worth mentioning that every memoizable module gets checkpoint/restart

for free, simply by using PluginPlay. Before concluding this section, we want to note that the

cache component is more complicated than alluded to here. Notably, PluginPlay contains

mechanisms for deciding what is/is not cached, support for memory hierarchies (combina-

tions of memory and disk), and a mechanism for adding additional database backends. It

is entirely possible to use PluginPlay with no cache at all; however, without a cache any

performance gains from memoization will be lost. At present the user must be involved with

many of these decisions, but our intent is to automate as much of the cache’s operation as

possible. We also want to note that the user can directly access the cache if they wish.

E. Module Manager Design

The module manager component of PluginPlay is designed to respond to the remaining

considerations raised in Section III A:

III.E.1 Stable. III.A.1 requires PluginPlay to be extremely stable as instability jeopardizes

the entire ecosystem. Developers want guarantees that their plugins will continue to

work long term.

III.E.2 UX. Also related to III.A.1, the module manager is the API of PluginPlay. Long term

sustainability requires the module manager to provide a good UX.

III.E.3 Module management. III.A.3 and III.A.4 mean that PluginPlay will need to in-

teract with a diverse, dynamic set of modules. Modules will need to be discovered,



FIG. 6. High-level design aspects pertaining to PluginPlay’s module manager component. See

Section III E for more details.

added, modified (usually by changing input values), and potentially removed, all at

runtime.

III.E.4 Wiring. While wiring was discussed in Section III C, actually responding to III.A.5

falls to the module manager.

The module manager component is modeled by the ModuleManager class, the basic design

of which is shown in Figure. 6.

The ModuleManager class addresses the UX consideration (III.E.2) by providing the API

for interacting with PluginPlay. Internally, the ModuleManager uses the pointer to imple-

mentation (PIMPL) idiom to separate the API from the implementation details, which is a

direct response to the stability consideration (III.E.1). With PIMPL, PluginPlay can main-

tain backwards compatibility, even if the implementation details need to be overhauled.

Since a ModuleManager instance is essentially an instance of PluginPlay, it is the home for

many of the high-level architecture details such as the ParallelZone handle, the cache, and

the call graph. For the purposes of this subsection, the only additional feature of the module

manager component is the module pool of loaded modules.

To address module management (III.E.3), we have added a module pool to the module

manager. The module pool is an associative array where the keys are labels for modules

(termed “module keys”) and the values are the modules. The module keys are arbitrary



strings, aside from the fact that each key must be unique; however, typically keys are actually

short descriptions of the algorithm in the module and any notable option values. When a

user selects a module to run, they do so from the module pool. This triggers the building

of the call graph, and thus consideration III.E.4 is also satisfied by the module pool.

F. Module Utilities

While together the module manager, call graph, and cache components addressed all of

the considerations raised in Section III A, PluginPlay actually includes a fourth “module

utilities” component. This component additionally helps with III.A.1, III.A.2, and III.A.6

by providing generic tools designed to facilitate software development and maintenance.

At present this includes three utilities: documentation generation, profiling, and check-

point/restart.

When developing a module, the module developer registers the inputs/results the module

takes/returns (via its property type) and the callback points it provides. This is done to

programatically expose the API of the module to PluginPlay. Since PluginPlay knows the

API of the module, PluginPlay can autogenerate API documentation for the module. To in-

crease the usefulness of the generated documentation (and to provide additional provenance

to support III.A.6), PluginPlay allows developers to provide additional module metadata

such as: module authors, papers to cite, and extended descriptions. At present, the resulting

API documentation is generated in reStructured Text (reST) format and is suitable for in-

clusion in Sphinx57 documentation; however, tools such as Pandoc58 can be used to convert

to a different markup language. Generating the documentation from the source code has

the notable advantage that changes to the source are automatically synchronized with the

documentation.

As noted a number of times, PluginPlay was designed with performance, specifically

exascale performance, in mind. Key to achieving such performance is profiling. PluginPlay’s

ability to non-invasively inject tooling into the call graph is a boon for profiling modules.

More specifically, at present PluginPlay is able to time each call to a module without the

developer needing to add timers. This is useful for determining which routines are causing

bottlenecks. The same mechanism can be extended to monitor additional resource usage

(e.g., memory, disk, or GPU) on a per module basis. While this functionality is redundant



with that provided by existing tools such as Intel’s VTune59, having this functionality native

to PluginPlay facilitates more fine-grained profiling, down to a per module invocation basis.

The last notable utility included in PluginPlay is checkpoint/restart. While briefly dis-

cussed in Section III D, software built on PluginPlay gets checkpoint/restart for free as a

side effect of memoization. At least within electronic structure theory, most packages have

very limited checkpoint/restart capabilities. If they exist they are usually limited to reading

in SCF/DFT molecular orbitals. Being able to save/load a calculation on a much more

fine-grained scale is somewhat of a game changer for a field where week-long, and even

month-long, calculations are not uncommon. Furthermore, with the increase in the number

of hardware pieces involved in an exascale system, hardware failures are expected to become

more common11. Being able to checkpoint/restart thus offers a mitigation strategy. Finally,

we note that checkpoint/restart is also likely to enable cloud computing applications, where

jobs may be suspended and/or moved to make room for other, higher-priority, jobs.

G. Design Summary

The point of Section II and Section III was to enumerate the considerations facing sci-

entific software development at the advent of the exascale era, and to explain how those

considerations impacted the architecture and high-level design decisions leading to Plugin-

Play. Achieving exascale performance requires a large number of software components to

execute together in concert. Simply developing a series of disjoint, performant components

will not suffice; one needs a means of wiring the performant components together. As this

section showed, development of PluginPlay needed to overcome a number of design consid-

erations and challenges. Software design is ultimately a soft science, meaning PluginPlay is

not the only possible solution which addresses the considerations raised in Sections II and

III and it is possible to develop other solutions; however, to our knowledge, no other solution

addressees every consideration raised in Sections II and III. To facilitate the development of

additional solutions, we end this section by summarizing the key high-level considerations

other potential modular solutions must contend with:

• Sustainability. A lot of time and effort will need to be poured into each component.

It is thus imperative that the resulting components be sustainable, and the framework

for combining the components also be sustainable.



• Extensible. The fact that the software is for research means that its scope will continue

to expand. New use cases and features will need to fully integrate into existing pack-

ages. Ensuring hooks exist for these features is complicated by the fact that we often

do not know what these features will look like ahead of time, nor do we necessarily

know the performance considerations.

• Reproducible. Recording all of the provenance needed to reproduce a calculation is

complicated. PluginPlay actually records a fair amount of provenance automatically

as a side-effect of memoization. Full automation requires PluginPlay to capture addi-

tional provenance (including code versions, and call graphs). At present, PluginPlay

is not able to do this, but such features are planned.

• Decentralized. Scientists have a tendency to develop code in relative isolation. Solu-

tions need mechanisms for connecting together potentially disparate contributions.

• Domain-specific types. Many existing solutions make assumptions about the data

types at interfaces. Needing to convert, serialize, or use a format like JSON, will be a

serious bottleneck for objects with a large amount of state. Furthermore, the objects

storing this data are unlikely to be standardized across domains.

• Algorithm inputs. Even if components compute the same property, they may need

different inputs. This leads to contention with interoperability efforts which require

the components to have the same API.

• Data reuse. Data reuse is extremely complicated when you do not know the inner

workings of a component. At the same time, the computational complexity of many

scientific algorithms means that missing a reuse opportunity can lead to significant

performance bottlenecks.

• Checkpoint/restart. As the number of hardware components in an HPC system in-

creases, hardware failures are expected to be more common. Even if it turns out that

hardware failures are still rare for exascale systems, jobs crashing is unlikely to be

rare. This is because even in the exascale era, jobs will continue to run out of wall

time, power failures will still happen, and users will still specify incorrect/incompatible



FIG. 7. Overview of the NWChemEx ecosystem based on PluginPlay. NWChemEx developers

write modules based on SimDE which is PluginPlay plus Chemist plus property types. Chemist

defines a series of computational chemistry-specific classes designed for HPC use. The property

types provided by SimDE are defined in terms of Chemist’s classes. Plugins are managed by

PluginPlay, with APIs defined by SimDE.

settings. Losing an exascale run is 1000 times more costly than losing a comparable

petascale run.

• Performance. Exascale means every step of the process needs to be performant and

every one of the aforementioned considerations must be handled in a performant man-

ner.

IV. PLUGINPLAY APPLICATION: HF AND DFT

The present section outlines how the HF and DFT codes are implemented in NWChemEx,

with a specific focus on PluginPlay’s role in the implementation. For perspective, Figure 7

summarizes the overall NWChemEx ecosystem. Consistent with considerations II.B.3 and

II.B.5, Chemist is a stand-alone library containing performant implementations of classes

modeling commonly encountered chemistry concepts, including: the chemical system, op-

erators, tensors, and wavefunctions. SimDE uses these classes to define the property types

used by NWChemEx’s modules. Thus, as the name suggests, SimDE serves as a develop-

ment environment for developers wanting to write modules which are interoperable with the

NWChemEx software stack. The “Internal Plugins” component of Figure 7 contains the

first-party PluginPlay plugins developed by the NWChemEx team, a broad term for those



contributing to the NWChemEx software stack. The top-level “NWChemEx” component

provides a unified UI to NWChemEx akin to a traditional electronic structure software pack-

age. Under the hood, the NWChemEx component simply loads the first-party NWChemEx

plugins into PluginPlay and relies on PluginPlay to power the software. Most end users

interact with the NWChemEx ecosystem purely through the NWChemEx component and

do not need to know the remaining details of the software stack. At the time of publication

Chemist, SimDE, the HF/DFT plugin, and NWChemEx are still under heavy development

and not yet publicly available. We intend initial public releases for the entire stack by the

end of 2023.



Listing 4. “Pseudocode for running a Hartree-Fock calculation.”

As also shown in Figure 7 the NWChemEx ecosystem contains a number of contact

points with the broader computational chemistry community. The first contact point is

with the first-party plugins/modules. NWChemEx’s first-party plugins are simply C++

libraries, meaning each plugin can easily be used as a dependency of another computational



FIG. 8. Non-iterative portion of the call graph for NWChemEx’s HF/DFT plugin. A top-down,

left-to-right call order is implied. Nodes are labeled with the property type a module must satisfy

in order to be callable at that location. The syntax depicted on each node is: the name of the

property type, the inputs to the module (in parentheses), and the results (with C++ trailing return

syntax). Items appearing in quotes are descriptive placeholders meant to clarify and/or simplify

the figure and are not classes contained in Chemist. All other text is the actual type of the object

or property type as one would find in Chemist or SimDE respectively.

chemistry code. While not explicitly depicted in Figure 7, NWChemEx actually maintains

a series of plugins, with one per major electronic structure theory. This makes it easier for

another package to pick and choose which NWChemEx plugins they want to use, e.g., it is

possible for another package to use the SCF plugin as a base for many-body theories. The

other major contact point is that anyone can contribute to NWChemEx through the external

plugins component. This component allows NWChemEx, via PluginPlay, to reuse content

developed primarily for use with other computational chemistry packages. More specifically,

it is possible to use existing modular software with PluginPlay by wrapping it so that it

has a compatible API. Moreover, if the original developers use the property types defined

by SimDE, then the resulting modules will exhibit true inter-package interoperability with

NWChemEx.

Given the foundational role of HF/DFT in electronic structure theory, the first plugin

the NWChemEx team wrote was the HF/DFT plugin. Listing 4 shows an example C++



main function for running an SCF calculation in NWChemEx. The listing shows how this

done directly with PluginPlay. The generality of PluginPlay admittedly leads to a verbose

API. That said, software packages can use source code like that shown in Listing 4 to

implement a more user-friendly UI of their choice. Notably, it is relatively straightforward

to map the user interface for most existing electronic structure packages onto a series of

PluginPlay calls. Figure 8 and 9 show the call graph PluginPlay generates upon loading the

SCF plugin maintained by the NWChemEx team. The call graph has been split into two

pieces to enhance readability. Each node in Figures 8 and 9 is labeled with the property

type a module must satisfy to be called at that location. So the first module that the user

calls must satisfy the Energy property type. Following the property type, the values in the

parenthesis are the types of the objects which are passed into the module at that point.

So the input to the first module will be an object of type ChemicalSystem, which is the

Chemist class describing the input to the simulation including the molecule(s) and any fields

the molecule lives in. After the inputs is the type of the return (using C++ trailing return

type syntax). When a type is in double quotes, it means that the type shown in Figure 8 is

not the actual type used in the code and defined in Chemist, but a stand-in type used for

clarity and/or to simplify the figure. So the return of the first module is an object describing

the "Energy" of the input chemical system, but since “energy” is in double quotes, we know

that the actual returned object’s type is not actually depicted in Figure 8 (in this case the

actual return type is double, which we choose not to show for clarity reasons).

As mentioned in Section III, PluginPlay allows the user to non-invasively change the call

graph. Even though Figures 8 and 9 are the default call graphs of NWChemEx’s HF/DFT,

every node in this call graph represents a customization point that can be changed, at

runtime, by the user, all without needing to modify any part of NWChemEx. Thus users

are free to use their own modules, or modules from other plugins, throughout the HF/DFT.

This is particularly powerful if the user wants to, say, capture the Fock matrix. In this

case, the user can write a simple wrapper using a lambda function, which wraps the normal

Fock matrix module, and does additional processing of the Fock matrix, e.g., copying it to a

variable captured by the lambda function. It is also particularly powerful if the user wants

to add additional terms to the Hamiltonian (n.b., the user is not restricted to adding terms

to the core Hamiltonian, but can even add density-dependent terms).

While being able inject functionality as just described may seem like “syntactic sugar”,



FIG. 9. Iterative portion of the call graph for NWChemEx’sSCF plugin. See the caption for Fig. 8

and the text in Section IV more details.

keep in mind that the traditional method of adding such functionality is to modify the code

with additional logic (e.g., if the user wants the value, do something). Unfortunately, ob-

taining performance on many accelerators, including GPUs, requires minimizing conditional

logic. In turn, PluginPlay’s injection mechanism actually makes it easier to port algorithms,

one at a time, to GPUs. Our current GPU porting strategy exploits this by starting our port-

ing efforts at the bottom of Figure 9 and working up. Each time we write a new GPU-based

module it can immediately be used with the rest of the plugin, no additional dispatch logic

required. The black-box nature of each module also facilitates “fusing” modules together.

For example, while the CPU implementations of HF/DFT can be written in a performant

manner using the call graph shown in Figure 9, achieving excellent performance on GPU

requires fusing the integral building and digestion into a single GPU kernel. The resulting

kernel can be inserted at the MeanFieldJ and MeanFieldK nodes, in turn subsuming the

ERI4 modules needed by the CPU versions. The full details of our GPU accelerated HF/DFT

plugin are beyond our current scope for this article and interested readers are encouraged

to read more details in the article by Williams-Young and co-workers also appearing in this

special issue.



The last point we want to make is that the vast majority of the call graph shown in

Figures 8and 9 is expected to remain the same regardless of whether or not the leaves

of the graph are run on CPUs or GPUs or some other hardware. In turn, it provides a

straightforward path to port this HF/DFT plugin to additional hardware architectures and

software interfaces. Of note, most of the differences between restricted, unrestricted, and

restricted open shell HF occur prior to the leaves of the graph. In turn, while we are at the

moment exclusively concerned with porting our restricted HF code to GPU, we anticipate

the resulting efforts to immediately enable GPU-enabled unrestricted and restricted open-

shell versions as well.

Designing the aforementioned HF/DFT plugin was admittedly a trial-and-error process.

The encapsulated nature means that all state a module needs must either be passed into

the module, or come from calling a module. While conceptually a simple requirement,

note that because each module is developed in relative isolation, and without knowledge

of exactly which modules will call it, or be called by it, we need a way to programatically

forward assumptions and to explicitly indicate what a module should compute. We found

that it was quite natural to express, and manipulate, these assumptions/instructions with a

quantum chemistry domain-specific language (DSL) comprised of operators, orbital spaces,

and wavefunctions. In particular our implementation of the DSL strives to allow users to

compose with these objects in manners akin to how one would actually derive the theory.

For example, note near the top of Fig. 8 how the Hamiltonian is split into the electronic

Hamiltonian and the (not explicitly shown) nuclear-nuclear repulsion operator. This allows

us to programatically, and explicitly, choose the modules for computing the various energy

terms. This is an important design aspect because, although we as humans can tell from

the names of classes what they are supposed to compute, the program can not. By creating

objects to represent the various terms in the Hamiltonian we are able to correctly dispatch

in a programatic manner. While beyond the scope of the current article, we have found that

similar considerations are necessary for correlated methods. For example, we are able to

correctly dispatch between say MP2 and coupled cluster with single, and double excitations

(CCSD) based on the wavefunction ansantz (i.e., is the correlated wavefunction created by

transforming it by a resolvent or an exponentiated excitation operator).



V. OUTLOOK

Writing software capable of using exascale resources is complicated. In many cases, it

will require rewriting entire swaths of code to use new hardware. Often the effort needed for

these rewrites is non-trivial and it is imperative that as scientific software targets exascale

computing, it does so in a sustainable manner. A key aspect of sustainable computing will

be writing reusable, modular software. Ideally, this modular software should be fairly fine-

grained, to facilitate easier refactoring as bottlenecks arise and/or porting to new hardware.

The present study argues that simply having the modules is not sufficient, one also needs

a mechanism for assembling the modules. To this end, we have developed PluginPlay.

Developing exascale-ready software is a complicated, iterative process. PluginPlay primarily

facilitates this process by simplifying the refactoring efforts inherent to such a process.

We specifically want to stress that using PluginPlay offers no more guarantee of exascale

performance, than using C++ does. In both cases, the potential for exascale software exists,

but whether the final software achieves exascale performance ultimately depends on how

the developer uses PluginPlay, or C++. That said, on going efforts within the NWChemEx

project offer anecdotal evidence (see for example the concurrent submission, to this special

issue, by Williams-Young and co-workers) that it is possible to develop exascale software

using PluginPlay.

PluginPlay is an open-source, domain-agnostic, IOC framework for writing scientific soft-

ware. Using PluginPlay, new algorithms are written as “modules”. Modules are the funda-

mental nodes of the software’s call graph. Modules are wired together in order to compute

specific features, and the modules needed to support a particular feature are distributed as

“plugins.“ Each plugin is typically developed by a small group of developers working closely

together. Similar to web browser plugins, users then choose the plugins they want, add them

to PluginPlay, and run the resulting software. Since PluginPlay assembles the call graph

dynamically, it is possible to non-invasively modify the call graph for new hardware and/or

use-cases without needing to directly modify the existing plugins or modules. In addition

to providing runtime functionality for manipulating the call graph, PluginPlay also provides

checkpoint/restart, API documentation, and profiling tools which facilitate development

of the downstream package. PluginPlay is ultimately a framework for writing software.

Computationally expensive algorithms are developed as modules, and anecdotal evidence



suggests that PluginPlay itself contributes negligible overhead (fractions of a second) to

such algorithms. This is easily understood by virtue of the fact that many of PluginPlay’s

features are implemented in terms of core C++-language features such as inheritance and

pointer casts. The largest caveat to the aforementioned performance statements comes from

usual C++ memory considerations, namely users may see performance degradation if they

copy large data objects in to/out of PluginPlay; however, PluginPlay fully supports modern

C++ techniques for avoiding copies including move semantics and smart pointers.

One of the first applications built on PluginPlay is NWChemEx. As a case study, the

current study shows how NWChemEx leverages PluginPlay to non-invasively modify the

HF/DFT code to port bottleneck kernels to GPU. Efforts are nearing completion to ex-

tend similar functionality to traditional many-body methods and linear-scaling variants of

many-body methods. Outside the NWChemEx organization, other applications such as

GhostFragment60, a software suite for fragment-based methods, are being built as Plugin-

Play plugins in order to directly leverage the PluginPlay ecosystem. While we are optimistic

that the ecosystem will continue to grow, we note that to users of GhostFragment, Plug-

inPlay is an implementation detail. Thus even if the PluginPlay ecosystem never extends

beyond NWChemEx, it is possible for GhostFragment to still remain useful to other pack-

ages, albeit with a little bit of glue code to adapt the property type-based APIs to the APIs

expected by the package.

Adding existing libraries to the PluginPlay ecosystem is possible. More specifically, de-

velopers must identify the property type(s) an existing library should satisfy, and write glue

code to convert the inputs provided by the property type to the inputs the existing library

expects. Similar considerations exist for the results as well. Assuming one uses the property

types already established in SimDE, the resulting plugin will depend on the initial library

and SimDE (and its dependencies including PluginPlay). This process can even be done

non-invasively in a separate repository from the original library, if the developer likes.

As we look to the future, we anticipate the number of modular scientific software libraries

to continue to increase. This is driven by a number of factors including better software engi-

neering practices, funding agency requirements, and the need to piecemeal port algorithms

to new hardware. Such a landscape is prime real estate for PluginPlay, and the software

packages built on top of PluginPlay. It is our vision that scientific software will move to-

wards an app-store like future, where users pick the features/methods they want to use from



a scientific app store. Users will be able to choose apps from their developers of choice, and

for their hardware of choice. PluginPlay serves a key role in this vision by being able to wire

those apps together. We also look forward to better integrating PluginPlay with existing

quantum chemistry packages, particularly by making contact with concurrent efforts such as

those by MolSSI20. While such collaborations would most likely initially focus on high-level

couplings (energies, potential energy surface scans, geometry optimizations, etc.), over time,

we anticipate lower-level couplings to become feasible as well. This in turn would facilitate

the transition to exascale, not in just NWChemEx, but other packages as well.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collab-

orative effort of the U.S. Department of Energy Office of Science and the National Nuclear

Security Administration.

REFERENCES

1G. Moore, “Cramming more components onto integrated circuits, reprinted from electron-

ics, volume 38, number 8, april 19, 1965, pp.114 ff,” Solid-State Circuits Newsletter, IEEE

11, 33 – 35 (2006).

2R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous, and A. LeBlanc, “Design of

ion-implanted mosfet’s with very small physical dimensions,” IEEE Journal of Solid-State

Circuits 9, 256–268 (1974).

3M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. V. Dam, D. Wang,

J. Nieplocha, E. Apra, T. Windus, and W. de Jong, “NWChem: A comprehensive and

scalable open-source solution for large scale molecular simulations,” Computer Physics

Communications 181, 1477–1489 (2010).

4R. A. Kendall, E. Aprà, D. E. Bernholdt, E. J. Bylaska, M. Dupuis, G. I. Fann, R. J.

Harrison, J. Ju, J. A. Nichols, J. Nieplocha, T. Straatsma, T. L. Windus, and A. T. Wong,

“High performance computational chemistry: An overview of NWChem a distributed par-

allel application,” Computer Physics Communications 128, 260–283 (2000).

5E. Aprà, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Va-



liev, H. J. J. van Dam, Y. Alexeev, J. Anchell, V. Anisimov, F. W. Aquino, R. Atta-Fynn,

J. Autschbach, N. P. Bauman, J. C. Becca, D. E. Bernholdt, K. Bhaskaran-Nair, S. Bo-

gatko, P. Borowski, J. Boschen, J. Brabec, A. Bruner, E. Cauët, Y. Chen, G. N. Chuev,

C. J. Cramer, J. Daily, M. J. O. Deegan, T. H. Dunning, M. Dupuis, K. G. Dyall, G. I.

Fann, S. A. Fischer, A. Fonari, H. Früchtl, L. Gagliardi, J. Garza, N. Gawande, S. Ghosh,

K. Glaesemann, A. W. Götz, J. Hammond, V. Helms, E. D. Hermes, K. Hirao, S. Hi-

rata, M. Jacquelin, L. Jensen, B. G. Johnson, H. Jónsson, R. A. Kendall, M. Klemm,

R. Kobayashi, V. Konkov, S. Krishnamoorthy, M. Krishnan, Z. Lin, R. D. Lins, R. J.

Littlefield, A. J. Logsdail, K. Lopata, W. Ma, A. V. Marenich, J. M. del Campo, D. Mejia-

Rodriguez, J. E. Moore, J. M. Mullin, T. Nakajima, D. R. Nascimento, J. A. Nichols,

P. J. Nichols, J. Nieplocha, A. O. de-la Roza, B. Palmer, A. Panyala, T. Pirojsirikul,

B. Peng, R. Peverati, J. Pittner, L. Pollack, R. M. Richard, P. Sadayappan, G. C. Schatz,

W. A. Shelton, D. W. Silverstein, D. M. A. Smith, T. A. Soares, D. Song, M. Swart, H. L.

Taylor, G. S. Thomas, V. Tipparaju, D. G. Truhlar, K. Tsemekhman, T. V. Voorhis,

Á. Vázquez-Mayagoitia, P. Verma, O. Villa, A. Vishnu, K. D. Vogiatzis, D. Wang, J. H.

Weare, M. J. Williamson, T. L. Windus, K. Woliński, A. T. Wong, Q. Wu, C. Yang,

Q. Yu, M. Zacharias, Z. Zhang, Y. Zhao, and R. J. Harrison, “NWChem: Past, present,

and future,” The Journal of Chemical Physics 152, 184102 (2020).

6K. Kowalski, R. Bair, N. P. Bauman, J. S. Boschen, E. J. Bylaska, J. Daily, W. A. de Jong,

T. Dunning, N. Govind, R. J. Harrison, M. Keçeli, K. Keipert, S. Krishnamoorthy, S. Ku-

mar, E. Mutlu, B. Palmer, A. Panyala, B. Peng, R. M. Richard, T. P. Straatsma, P. Sushko,

E. F. Valeev, M. Valiev, H. J. J. van Dam, J. M. Waldrop, D. B. Williams-Young, C. Yang,

M. Zalewski, and T. L. Windus, “From NWChem to NWChemEx: Evolving with the com-

putational chemistry landscape,” Chemical Reviews 121, 4962–4998 (2021).

7A. Petrone, D. B. Williams-Young, S. Sun, T. F. Stetina, and X. Li, “An efficient implemen-

tation of two-component relativistic density functional theory with torque-free auxiliary

variables,” The European Physical Journal B 91 (2018), 10.1140/epjb/e2018-90170-1.

8D. B. Williams-Young, W. A. de Jong, H. J. van Dam, and C. Yang, “On the efficient

evaluation of the exchange correlation potential on graphics processing unit clusters,”

Frontiers in Chemistry , Accepted (2020).

9P. Messina, “The exascale computing project,” Computing in Science & Engineering 19,

63–67 (2017).



10“Exascale computing project,” https://www.exascaleproject.org/, accessed: 2-22-

2023.

11P. Kogge, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Har-

rod, J. Hiller, S. Keckler, D. Klein, and R. Lucas, “Exascale computing study: Technology

challenges in achieving exascale systems,” Defense Advanced Research Projects Agency

Information Processing Techniques Office (DARPA IPTO), Techinal Representative 15

(2008).

12E. Abraham, C. Bekas, I. Brandic, S. Genaim, E. B. Johnsen, I. Kondov, S. Pllana, and

A. Streit, “Challenges and recommendations for preparing hpc applications for exascale,”

(2015).

13G. Da Costa, T. Fahringer, J. A. R. Gallego, I. Grasso, A. Hristov, H. D. Karatza, A. Las-

tovetsky, F. Marozzo, D. Petcu, G. L. Stavrinides, D. Talia, P. Trunfio, and H. Astsatryan,

“Exascale machines require new programming paradigms and runtimes,” Supercomputing

Frontiers and Innovations 2, 6–27 (2015).

14K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, “A fifth-order pertur-

bation comparison of electron correlation theories,” Chemical Physics Letters 157, 479–483

(1989).

15G. M. Amdahl, “Validity of the single processor approach to achieving large scale comput-

ing capabilities,” in Proceedings of the April 18-20, 1967, Spring Joint Computer Confer-

ence, AFIPS ’67 (Spring) (Association for Computing Machinery, New York, NY, USA,

1967) p. 483–485.

16R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald, Parallel

programming in OpenMP (Morgan Kaufmann, 2001).

17J. Durrani, “Computational chemistry faces a coding crisis,” https://www.chemistryw

orld.com/news/chemistrys-reproducibility-crisis-that-youve-probably-neve

r-heard-of/4011693.article (2020).

18“Better scientific software,” https://bssw.io/, accessed: 12-30-2022.

19“German society for research software engineers,” https://de-rse.org/de/index.html,

accessed: 12-30-2022.

20“The molecular sciences software institute,” https://molssi.org/, accessed: 12-28-2022.

21“The nordic research software engineers association,” https://nordic-rse.org/, ac-

cessed: 12-30-2022.



22“Research software alliance,” https://www.researchsoft.org/, accessed: 12-30-2022.

23“The RSE association of australia and new zealand,” https://rse-aunz.github.io/,

accessed: 12-30-2022.

24“The society of research software engineering,” https://society-rse.org, accessed:

12-30-2022.

25“Software engineering for science,” https://se4science.org/, accessed: 12-30-2022.

26“The software sustainability institute,” https://www.software.ac.uk/, accessed: 12-30-

2022.

27“The united states research software engineer association,” https://us-rse.org/, ac-

cessed: 12-30-2022.

28“Working towards sustainable software for science: Practice and experiencies,” https:

//wssspe.researchcomputing.org.uk/, accessed: 12-30-2022.

29T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. de Supinski,

and S. Futral, “The Spack Package Manager: Bringing Order to HPC Software Chaos,”

(Austin, Texas, USA, 2015) lLNL-CONF-669890.

30D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand, K. Chiu, T. L. Dahlgren,

K. Damevski, W. R. Elwasif, T. W. Epperly, M. Govindaraju, D. S. Katz, J. A. Kohl,

M. Krishnan, G. Kumfert, J. W. Larson, S. Lefantzi, M. J. Lewis, A. D. Malony, L. C.

McInnes, J. Nieplocha, B. Norris, S. G. Parker, J. Ray, S. Shende, T. L. Windus, and

S. Zhou, “A component architecture for high-performance scientific computing,” Interna-

tional Journal of High-Performance Computing Applications 20, 163 – 202 (2006).

31T. P. Gulabani, Development of high performance scientific components for interoperability

of computing packages, Phd thesis, Iowa State University (2008).

32J. P. Kenny, C. L. Janssen, E. F. Valeev, and T. L. Windus, “Components for integral eval-

uation in quantum chemistry,” Journal of Computational Chemistry 29, 562–577 (2008).

33C. L. Janssen, E. T. Seidl, and M. E. Colvin, “Object-oriented implementation of par-

allel ab initio programs,” in Parallel Computing in Computational Chemistry (American

Chemical Society, 1995) Chap. 4, pp. 47–61.

34C. Peng, C. Lewis, X. Wang, M. Clement, F. Pavosevic, J. Zhang, V. Rishi, N. Teke,

K. Pierce, J. Calvin, J. Kenny, E. Seidl, C. Janssen, and E. Valeev, “The massively parallel

quantum chemistry program (MPQC), version 4.0.0-beta.1,” http://github.com/Valee

vGroup/mpqc, accessed: 12-29-2022.



35J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A. Evangelista,

J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L. Abrams, N. J. Russ, M. L.

Leininger, C. L. Janssen, E. T. Seidl, W. D. Allen, H. F. Schaefer, R. A. King, E. F. Valeev,

C. D. Sherrill, and T. D. Crawford, “Psi4: an open-source ab initio electronic structure

program,” WIREs Computational Molecular Science 2, 556–565 (2012).

36R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. I. DePrince, E. G.

Hohenstein, U. Bozkaya, A. Y. Sokolov, R. Di Remigio, R. M. Richard, J. F. Gonthier,

A. M. James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P. Pritchard,

P. Verma, H. F. I. Schaefer, K. Patkowski, R. A. King, E. F. Valeev, F. A. Evangelista, J. M.

Turney, T. D. Crawford, and C. D. Sherrill, “Psi4 1.1: An open-source electronic structure

program emphasizing automation, advanced libraries, and interoperability,” Journal of

Chemical Theory and Computation 13, 3185–3197 (2017).

37D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis,

P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz,

M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O’Brien,

J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, H. F. Schaefer,

A. Y. Sokolov, K. Patkowski, A. E. DePrince, U. Bozkaya, R. A. King, F. A. Evangelista,

J. M. Turney, T. D. Crawford, and C. D. Sherrill, “PSI4 1.4: Open-source software for high-

throughput quantum chemistry,” The Journal of Chemical Physics 152, 184108 (2020).

38Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D. McClain,

E. R. Sayfutyarova, S. Sharma, S. Wouters, and G. K.-L. Chan, “PySCF: the python-based

simulations of chemistry framework,” WIREs Computational Molecular Science 8, e1340

(2018).

39A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Du lak,

J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B.

Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard,

J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz,

O. Schütt, M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and

K. W. Jacobsen, “The atomic simulation environment—a python library for working with

atoms,” Journal of Physics: Condensed Matter 29, 273002 (2017).

40“MolSSI Driver Interface (MDI) Library,” https://github.com/MolSSI-MDI/MDI Libra

ry, accessed: 12-30-2022.



41C. R. Jacob, S. M. Beyhan, R. E. Bulo, A. S. P. Gomes, A. W. Götz, K. Kiewisch,

J. Sikkema, and L. Visscher, “PyADF — a scripting framework for multiscale quantum

chemistry,” Journal of Computational Chemistry 32, 2328–2338 (2011).

42S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L.

Chevrier, K. A. Persson, and G. Ceder, “Python materials genomics (pymatgen): A robust,

open-source python library for materials analysis,” Computational Materials Science 68,

314–319 (2013).

43D. G. A. Smith, D. Altarawy, L. A. Burns, M. Welborn, L. N. Naden, L. Ward, S. Ellis,

B. P. Pritchard, and T. D. Crawford, “The MolSSI QCArchive project: An open-source

platform to compute, organize, and share quantum chemistry data,” WIREs Computa-

tional Molecular Science 11, e1491 (2021).

44V. M. Ingman, A. J. Schaefer, L. R. Andreola, and S. E. Wheeler, “QChASM: Quantum

chemistry automation and structure manipulation,” WIREs Computational Molecular Sci-

ence 11, e1510 (2021).

45B. Ralph E.; Foote, “Designing reusable classes,” (1988).

46“Autowiring: A C++ inversion of control framework,” https://github.com/leapmotio

n/autowiring, accessed: 12-28-2022.

47“ioc: Inversion of control container c++11,” https://github.com/unixdev0/ioc (),

accessed: 12-28-2022.

48“ioc-cpp: Inversion of control/dependency injection container for c++03,” https://gith

ub.com/mrts/ioc-cpp (), accessed: 12-28-2022.

49“Pococapsule: An IoC and DSM framework for C/C++ applications,” https://code.g

oogle.com/archive/p/pococapsule, accessed: 12-28-2022.

50“Pulsar computational chemistry framework,” https://github.com/pulsar-chem, [Ac-

cessed: 2-6-2023].

51R. M. Richard, C. Bertoni, J. S. Boschen, K. Keipert, B. Pritchard, E. F. Valeev, R. J.

Harrison, W. A. de Jong, and T. L. Windus, “Developing a computational chemistry

framework for the exascale era,” Computing in Science & Engineering 21, 48–58 (2019).

52W. T. L. P. Lavrijsen and A. Dutta, “High-performance python-C++ bindings with PyPy

and Cling,” in Proceedings of the 6th Workshop on Python for High-Performance and

Scientific Computing, PyHPC ’16 (IEEE Press, 2016) p. 27–35.

53W. Jakob, J. Rhinelander, and D. Moldovan, “pybind11 – seamless operability between



c++11 and python,” (2017), https://github.com/pybind/pybind11.

54N. Organization, “Parallel runtime for nwchemex,” (2020),

https://https://github.com/NWChemEx-Project/ParallelZone.

55N. Organization, “Pluginplay,” (2023), https://nwchemex-

project.github.io/PluginPlay/index.html.

56P. Leach, M. Mealling, and R. Salz, “A universally unique IDentifier (UUID) URN names-

pace,” (2005), 10.17487/RFC4122.

57“Sphinx python documentation generator,” https://www.sphinx-

doc.org/en/master/index.html, [Accessed: 2-22-2023].

58J. MacFarlane, “Pandoc: A universal document converter,” (2006),

https://pandoc.org/index.html.

59“Intel vtune profiler user guide,” https://www.intel.com/content/www/us/en/develo

p/documentation/vtune-help/top.html, accessed: 2-27-2023.

60R. M. Richard, “Ghostfragment,” (2020), https://github.com/rmrresearch/GhostFragment.




