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ABSTRACT OF THE THESIS

Gated Skip Connections for High Fidelity, Identity-Preserving, Continuous Face
Modification

by

Devendra Pratap Yadav

Master of Science in Computer Science

University of California San Diego, 2020

Professor Garrison W Cottrell, Chair

Face image modification is a variant of the image-to-image translation task where we

modify features of a face image to evoke given target attributes, while preserving the identity

of the pictured person. Generative Adversarial Networks (GANs) using an encoder-decoder

architecture have been widely used to modify both discrete and continuous face attributes, with a

few different architectures designed to address the challenge of preserving identity through the

modification. We propose a novel GAN architecture that introduces gated skip connections in

the generator’s decoder for this task. Our model enables high fidelity (512×512) modification

with minimal changes to irrelevant facial regions, while using fewer parameters than existing

xi



approaches. We demonstrate the model on discrete CelebA attributes, continuous facial Action

Unit labels, and perceived social impression traits such as “attractive”, “kind”, and “trustworthy”.

Our model is also able to selectively visualize the modified face features, allowing us to extract

plausible visual explanations for face attributes, including, for the first time, social impression

traits. An experiment with human raters validates that our model can effectively alter a face’s

social impressions.

xii



Chapter 1

Introduction

Generative Adversarial Networks (GANs) have shown state-of-the-art performance on

several image-to-image translation tasks such as image super-resolution [WYW+18, HSU18],

synthetic-to-real images [HLBK18] and semantic maps to real images [WLZ+18, PLWZ19]. Face

attribute modification is an image-to-image translation task where face images are transformed

according to discrete or continuous attributes [CCK+18, HZK+19, PAM+18].

A critical feature of face modification is that it must preserve the person’s identity,

otherwise it reduces to a conditional GAN that generates arbitrary faces based on only attribute

labels. Spatial attention based approaches [ZKSC18, PAM+18] achieve this by copying pixels

from the input image, but this strategy only works well when modifications are region specific.

For instance, if the face modification task aims to change the face pose, a large region of the face

needs to be generated and the utility of input image pixels is limited. Instead of pixels, copying

more abstract features of the input image though skip connections, in an encoder-decoder based

generator, preserves details for arbitrary modifications [HZK+19, IZZE17]. However, as we add

more skip connections in decoder layers, the attribute modification intensity decreases, when

training with unpaired training samples [LDX+19]. Liu et al. [LDX+19] propose STGAN to

address the decrease in modification capacity by selective transfer of encoder features through
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skip connections. STGAN uses Selective Transfer Units (STUs), which are inspired by Gated

Recurrent Units [CVMBB14], to select and transform encoder features. A STU generates a state

which is passed as input to the next STU, and an output which is concatenated with decoder

features. This approach generates features corresponding to the image output through STUs as

well as the decoder layers. Compared to a basic U-net [RFB15] architecture, STGAN’s approach

adds an additional set of feature decoding layers for STUs. This leads to an increase in the number

of generator parameters, making it inefficient as we scale to higher image resolutions.

We aim to perform selection of useful encoder features in a parameter efficient manner.

To this end, we propose a novel gating module that selects which encoder features to use in

skip connections to preserve image details. We use our Gated Skip Connection (GSC) module

to replace decoder layers in a U-net [RFB15] architecture. For a given generator depth and

number of feature channels per layer, our approach requires roughly half as many generator

parameters as STGAN, while maintaining equivalent performance. We also compare our method

with spatial attention based GANimation [PAM+18], for continuous modification of facial Action

Units [FE78], and show significant improvement in image quality and identity preservation.

Our efficient architecture scales from 128×128 to 512×512 resolution using only 43% more

parameters, producing accurate attribute modifications with ∼99% identity preservation accuracy.

To the best of our knowledge, no existing work tackles unsupervised face attribute modification

at 512×512 resolution.

Since our model, Gated Skip Connection GAN (GSC-GAN), has access to the original

encoded features though skip connections, the decoder primarily generates face modifications;

allowing us to explain its operation by visualizing the modified features. We use this to study a

novel dataset of perceived social traits from face images. Our model extracts visual explanations

for traits such as intelligent, kind and healthy. We verify our model’s correctness through a human

rater study and achieve ∼81% accuracy. This shows that our model can perform realistic face

modifications to alter the social perception of faces. To summarize, the key contributions of our
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Figure 1.1: Continuous modification on a relative scale for a CelebA attribute (young), Action
Unit (AU25) and social trait (kind) using our proposed model, GSC-GAN. Please zoom in for
details.

work are:

• A Gated Skip Connection (GSC) module that selects useful features from skip connections

in a U-net architecture. Our proposed model achieves equivalent performance in face

editing to state-of-the-art STGAN, with roughly half the generator parameters.

• Our model performs high-fidelity, identity-preserving face attribute modification at 512×

512 resolution. Additionally, for a given face image and target attribute, our model can

visualize the feature modifications, providing insight into salient features for an attribute.

• We use our model to modify facial features driving subjective impressions of 10 social

traits, achieving 81.3±12.1% accuracy with human raters.
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1.1 Related Work

1.1.1 Generative Adversarial Networks

Generative Adversarial Networks [GPAM+14] use an adversarial learning process to syn-

thesize realistic images from random noise input. Conditional GANs [MO14] add a conditioning

input to control the properties of generated images. WGAN variants [ACB17, GAA+17] use

Wasserstein distance to improve adversarial training stability. Recent work has shown that GANs

can generate realistic images at over 1024×1024 resolution [WLZ+18, KALL17, KLA19].

1.1.2 Face Attribute Modification

GANs have been widely used for image-to-image translation according to domain labels

or specific image attributes. This can be achieved in a supervised setting by training with

paired input/output image samples [IZZE17, WLZ+18, PLWZ19], but such paired samples

are scarce. GANs can use labeled but unpaired images to learn image-to-image translations

between domains [ZPIE17, CCK+18, HLBK18]. GANs with an encoder-decoder architecture

can modify face images according to discrete facial attributes, with the best architectures using

skip connections [HZK+19, LDX+19]. Continuous valued Facial Action Units [FE78] have been

modified by GANimation [PAM+18] using a spatial attention based generator. While paired

image translation has been done at high resolution [WLZ+18, PLWZ19], modifying unpaired

faces at high resolution remains a challenge. With paired images, a loss using pixels [IZZE17] or

features [WLZ+18] provides supervision for both realism and target attribute generation. In our

experiments with unpaired images, we observe that the losses for realism and attribute generation

compete with each other when optimized together in the generator. At higher resolutions, it’s

easier to discriminate real and fake images, causing the model to favor input image reconstruction

over attribute generation.
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1.1.3 Modifying the First Impressions Evoked by Faces

Upon seeing a face, people quickly form impressions of their social traits such as kindness,

attractiveness, trustworthiness; these perceptions have profound influences on subsequent social

judgments and behavior [TODMS15]. Although psychologists have explored how first impres-

sions of faces vary across cultures, [OT08, TODMS15, SLZ+18], attempts to explain what facial

features affect social perceptions have been relatively ad hoc. We know of only one paper that

attempts to modify faces to alter specific social impressions [Ata19], but it uses an auto-encoder,

resulting in very low resolution images that limit its usefulness and interpretability.

Acknowledgment Chapter 1, in part, has been submitted for publication of the material. Yadav,

Devendra Pratap; Hu, Weifeng; Song, Amanda; Vul, Edward; Cottrell, Garrison. “Gated Skip

Connections for High Fidelity, Identity-Preserving, Continuous Face Modification”. The thesis

author was the primary investigator and author of this paper.
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Chapter 2

Datasets

2.1 Social Traits Dataset

Existing face image datasets such as CelebA [LLWT15] or EmotionNet [FBQSM16]

contain labels for discrete face attributes (such as Beard, Eyeglasses, Smiling) or facial Action

Units for which the salient facial features are known. We collected a new dataset to understand

how facial features affect the perception of complex social traits from face images. Based on

the key dimensions of facial impressions identified by [TODMS15, SLZ+18], we used 10 social

traits grouped into three categories: (1) Warmth traits: trustworthy, humble, kind; (2) Physical

Appearance traits: attractive, masculine, healthy; and (3) Capability traits: intelligent, powerful,

responsible, successful. We select 1611 Caucasian faces from the US 10K Adult Database

[BIO13] and obtain ratings on all 10 social traits for each face using Amazon Mechanical Turk.

Each social trait rating is a continuous value in [1.0,9.0]. Note that these ratings reflect raters’

perception of these traits from images, rather than the unknown latent traits of the people pictured

in the images. We refer to this dataset as “Social Traits Dataset” in our work.
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Figure 2.1: The task page shown to human raters on Amazon Mechanical Turk to collect ratings
for the Social Traits Dataset.

2.1.1 Data Collection Procedure

We selected 1611 Caucasian faces from the US 10K Adult Database [BIO13], where

faces are cropped to an oval shape, limiting the influence of image background when rating faces

on social traits. In our online Amazon Mechanical Turk experiment, participants are asked to

indicate their first impression of an image on a specific social trait by providing an integer rating

on a scale of 1-9. An illustration of the rating task is shown in Figure 2.1. We then asked raters

what they think others would rate the face. Using our unpublished data, we found that this reduces

social desirability biases when offering potentially contentious opinions. Participants saw 100

faces in a sequence, and rated one face at a time for a specific social trait.

We recruit 428 Caucasian-American participants (254 female) using Amazon Mechanical

Turk. The participants’ median age range is 30-39 years old. Since rating social traits is a

subjective task, we designed a screening mechanism to ensure participants were paying attention

to the task. The screening consisted of 20 randomly selected unique faces and a randomly-

selected social trait to rate. The 20 faces were presented, then they were shuffled and shown

again, resulting in a 40-trial sequence. If a participant’s reliability was significantly above zero

7



(as measured by Spearman’s rank correlation of test/retest ratings), and they used at least three

different scores from the 9 point scale, the participant passed the “reliability test”. A reliable rater

is shown 100 new faces and asked to rate them on a social trait. Unreliable raters are not used to

collect ratings for our dataset. For our dataset with 1611 face images, we collected at least ten

ratings per image-trait combination, which are averaged to get a continuous rating in [1.0,9.0] for

each image-trait pair.

Figure 2.2: Morphed faces representing the 5 highest and 5 lowest rated faces per gender for
selected social traits.

Using our dataset of perceived social trait ratings, we visualize an average high or low

rated face for selected social traits in Figure 2.2. We average 5 faces to generate a morphed face as

follows: 1) Detect 68 landmarks for all faces using Dlib [Kin09]. 2) Average the landmarks across

all faces to get a 68 average landmarks. 3) Use Delaunay triangulation and affine transformation

to morph each face to the 68 average landmarks. 4) Average all morphed faces to get the final

output face image. We can observe salient facial features such as smile for humble and successful.

8



We also observe an effect of age and wrinkles for attractive, although these are averaged out

when morphing faces. Later in our study of perceived social traits, we present a method to better

visualize salient facial features for each social trait using a GAN.

Figure 2.3: Intraclass Correlation Coefficient (ICC) for each trait in the Social Traits Dataset.

2.1.2 Rater Consistency for Social Traits

Due to the subjective nature of perceived social traits, rater may disagree with each

other when rating a given face. We analyze the consistency among the raters in our dataset

for each social trait. We used a one-way Intraclass Correlation Coefficient (ICC) [Bar66] to

measure the agreement level by evaluating the ratio of the variance of item random effects to

the overall rating variance. Figure 2.3 shows the ICCs of each social trait. Similar to previous

research [HSFS17], we found that there is more agreement for traits representing warmth and

9



appearance-based appraisals (e.g., kind, attractive and masculine), than for competence-related

traits (such as responsible, intelligent, and powerful). This is not surprising as attractiveness,

youth, and propensity to smile are much more evident in a face image than traits like responsible

or intelligent.

2.2 Attribute Prediction Model: PredCNN

We train a deep convolutional neural network model (referred to as PredCNN) to predict

attributes for face images. PredCNN is used to augment the social trait ratings dataset, and

evaluate attribute generation accuracy for images modified using the GAN. PredCNN uses

ResNet-50 [HZRS16] pre-trained on the ImageNet classification task to extract image features,

and fine-tunes it during training. A 512-dimensional feature output from ResNet-50 is used with

256-dimensional fully connected layers to predict attribute labels. We use the same architecture

for both discrete and continuous attributes, using sigmoid activation with binary cross entropy

loss and mean squared error loss respectively. The architecture of the model is shown in Figure

2.4. The model is trained using stochastic gradient descent, with a learning rate of 0.001 for 40

epochs. We use a train/val/test split of 0.9/0.05/0.05 for all samples in a given training dataset,

using the validation set to select the best performing model.

2.3 Celeba-HQ-60k

CelebA-HQ [KALL17] is a dataset of 30k face images at 1024×1024 resolution. While

CelebA contains image of size 218×178, CelebA-HQ uses the online image sources for CelebA

dataset and refines them to obtain 30k images. They perform image denoising, artifact removal

and super-resolution to obtain high quality faces. We use a similar methodology as CelebA-HQ

and obtain an additional 30k faces at a smaller 512×512 resolution, annotated with the same
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Figure 2.4: Architecture of our attribute prediction model: PredCNN, used to label CelebA-
HQ-60k and evaluate accuracy of GAN-based attribute modifications.

40 face attributes as CelebA-HQ. CelebA provides the original uncropped source images used

to create the dataset, which range from 100 to 4000 pixels for the shorter side. We perform

face detection on all source images and select the ones with face width greater than 256 pixels.

Note that we do not consider the 30k face images already present in CelebA-HQ dataset. The

faces are cropped, aligned, denoised and resized to a size of 512x512. For faces smaller than

512x512, we use a super-resolution GAN based on ESRGAN [WYW+18], which is trained

for the super-resolution task on the CelebA-HQ dataset. Finally, we use a deep image quality

assessment network [BMM+17] to evaluate and select the top 30,000 images. Combining these

new 30k images with the existing 30k images in CelebA-HQ (resized to 512× 512), we get

CelebA-HQ-60k containing 60k images at 512×512 resolution.
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Figure 2.5: CelebA-HQ-60k samples obtained after denoising and GAN based super-resolution.
Zoom in for details.

2.3.1 Generating Additional Attribute Labels

Continuous CelebA Attribute Labels

While CelebA-HQ-60k contains binary attribute labels, we aim to convert them to prob-

ability based-continuous labels to evaluate GAN based attribute modification methods. Our

experiments show that these continuous labels improve face attribute modification performance.

We train PredCNN from Section 2.2 on 8 selected binary attributes in the CelebA-HQ-60k dataset:

Bald, Bangs, Black Hair, Blond Hair, Eyeglasses, Heavy Makeup, Male, No Beard, Smiling,

Young. The model achieves a classification accuracy of 92.6% on the test set. For each attribute,

the predicted probability is linearly transformed to get a continuous label in [−1.0,1.0], where

−1.0 denotes absence of the face attribute.
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Continuous Facial Action Unit Labels

We label the CelebA-HQ-60k faces for 17 facial Action Unit (AU) attributes, which

denote specific facial muscle movements based on the Facial Action Coding System [FE78]. We

consider the following Action Units: {AU01, AU02, AU04, AU05, AU06, AU07, AU09, AU10,

AU12, AU14, AU15, AU17, AU20, AU23, AU25, AU26, AU45}. We use OpenFace 2.0 [BZLM18]

to predict a continuous AU intensity in [0.0, 5.0] as well as a binary label denoting presence of

AU. The absolute AU intensity values in [0,5] are linearly transformed to relative values in [-1.0,

1.0].

Perceived Social Trait Labels

We train PredCNN on the Social Traits Dataset described in Section 2.1. This model

achieves Root Mean Square Error (RMSE) = 0.78 on the test set, where the ratings are in [1.0,9.0].

We use the model to annotate the images in CelebA-HQ-60k with social traits. The predicted

ratings in [1.0,9.0] are z-scored and linearly transformed to lie in [−1.0,1.0]. We z-score the

ratings so that all social traits have losses on a similar scale while training our models.

Our final CelebA-HQ-60k dataset contains 60k faces at 512×512 resolution, labeled on

three attribute categories: (1) 8 CelebA face attributes, (2) 17 facial Action Units and, (3) 10

perceived social traits.
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Chapter 3

GSC-GAN: Gated Skip Connection

Generative Adversarial Network

Generative Adversarial Networks (GANs) with an encoder-decoder architecture have

been used to modify face attributes in [HZK+19], [LDX+19] and [PAM+18]. The generator

takes an input image and target attribute values to create a modified image. An encoder-decoder

architecture reduces the spatial resolution of an image to extract a high-level feature encoding,

which can lead to loss of fine image details. To retain these details, AttGAN [HZK+19] employs

a skip connection in the decoder. While this improves image quality, [LDX+19] shows that

adding more skip connections decreases the attribute modification accuracy significantly. STGAN

[LDX+19] proposes Selective Transfer Units (STUs), inspired by Gated Recurrent Units (GRUs)

[CVMBB14], which selectively transfer the encoder features to the decoder layers, preventing

the reconstruction of face regions that should be modified. While this improves modification

accuracy, it adds an additional set of feature decoding layers for STUs, significantly increasing

the number of parameters in the generator (68% increase compared to a corresponding U-net

[RFB15]). We aim to make the selection of useful encoder features more efficient, with minimal

loss in performance.
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We propose a novel gating module inspired by Minimal Gated Units (MGUs) [ZWZZ16]

that selects parts of the encoder features before combining them with the decoder features. Starting

with a U-net architecture [RFB15], we use Gated Skip Connection (GSC) modules to replace the

layers in the generator’s decoder. In the following sections we describe the architecture of the

proposed GSC module, the generator and the discriminator. We detail the loss functions and the

objective used to train the model.

3.1 Problem Formulation

We are given an input image x ∈ RH×W×3 labeled with a N dimensional attribute vector

vorig = (v1, ...,vN)
>, where vk represent the value of the kth attribute. Let vtar be a desired

attribute vector. We aim to learn a mapping F : (x,vtar)→ y where y is an image representing the

attributes vtar. A supervised method would require tuples of (x,vtar,y), but instead, we employ an

unsupervised learning approach using tuples (x,vorig,vtar). A dataset containing tuples (x,vorig)

is used with randomly sampled vtar (from the dataset) to learn F . Recent work [LDX+19] on

this problem shows that using an attribute difference vector vdiff = vtar−vorig improves learning

for GAN-based methods. Hence, we reformulate the mapping as F : (x,vdiff)→ y.

3.2 Gated Skip Connection (GSC) Module

Consider a GAN generator with a U-net architecture, where the decoder layers are replaced

with a module. We have N encoder layers {E1, ...,EN} and N decoder modules {MN , ...,M1},

where M1 produces the final image output. Now we define the operations for the kth decoder

module (or Gated Skip Connection module) in the generator. Let vdiff be a vector representing the

target attribute modifications. Let fk−1
enc denote the features from the k−1th encoder layer, and

fk+1
dec denote the output features from the k+1th decoder module. The kth decoder module uses
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fk−1
enc , fk+1

dec and vdiff as input to produce output features fk
dec as,

f̂1 = W1 ∗T fk+1
dec , (3.1)

g = σ(W2 ∗ [ fk−1
enc , f̂1, vdiff ]), (3.2)

f̂2 = g◦ f̂1 +(1−g)◦ fk−1
enc , (3.3)

fk
dec = tanh(W3 ∗ [ f̂1, f̂2, vdiff ]), (3.4)

where [·, ·] denotes concatenation, ∗T denotes transposed convolution, ∗ denotes convolu-

tion, σ(·) denotes sigmoid activation and ◦ denotes element-wise multiplication. W1,W2,W3

denote learned weight matrices. vdiff is replicated spatially before concatenation.

Figure 3.1: Architecture of our Gated Skip Connection (GSC) module. ◦ denotes element-wise
product.

We show the architecture of the Gated Skip Connection (GSC) module in Figure 3.1. The

previous decoder features fk+1
dec are upsampled using a transposed convolution to get f̂1 ,which has

the same shape as the encoder features fk−1
enc . vdiff and two feature maps are used to predict a gating
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Figure 3.2: Architecture of GSC-GAN, showing the encoder-decoder architecture using GSC
modules.

mask g through a convolutional layer. We use a sigmoid activation to generate values in [0,1] for

the gating mask. The gating mask g performs an element-wise linear combination/selection of

features from the decoder (f̂1) and the skip connections (fk−1
enc ) to yield f̂2. The selected encoder

features can be used to improve the modified image features as well as reconstruct parts of the

input image.

Finally, we allow the module to combine f̂2 with the upsampled decoder features f̂1 to

produce the output decoder features fk
dec. This step has a similar function as the update gate in

GRUs, where we can choose to use the information from the skip connection-based features f̂2.

While GRUs and MGUs use gates to forget and update the hidden state, our module instead forgets

parts of the input (fk−1
enc ), and our ablation studies show that this change improves performance

over GRU based gating. Since the GSC module uses a single gate, compared to two gates in

STGAN’s STU [LDX+19], it’s a parameter efficient feature gating method for skip connections.

We provide vdiff as input to guide feature combination, and we find that removing concatenation

of vdiff in Equation 3.4 reduces modification accuracy ( 2% decrease for Action Unit attributes).
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3.3 GSC-GAN Architecture

GSC-GAN consists of an encoder-decoder based generator G and a discriminator D. The

generator’s encoder consists of N convolutional layers {E1, ...,EN}, with corresponding outputs

{f1
enc, ..., fN

enc}. The generator’s decoder consists of N decoder (GSC) modules {MN , ...,M1} with

corresponding outputs {fN
dec, ..., f

1
dec}. Figure 3.2 shows the architecture of our model’s generator

with N = 5. The GSC module Mk computes its output (fk
dec) by combining the previous decoder

representation (fk+1
dec ) with the corresponding encoder representation (fk−1

enc ). At the first decoder

module MN , we assign fN+1
dec = fN

enc, and at the last decoder module M1 (where input f0
enc is

unavailable), we simply use a transposed convolution of the decoder feature f2
dec followed by a

convolutional layer to produce f1
dec – the modified image output. E1 extracts features with Cinit

channels from the input, and the number of channels is doubled by every layer up to a maximum

of 1024. Specifically, an encoder layer doubles the number of channels only if it is less than 1024,

otherwise it keeps 1024 channels in the output features.

The discriminator D consists of two components: the adversarial critic Dcritic and the

attribute predictor Dattr. Both components share a series of convolutional layers, denoted by

Dconv, to extract image features. The image features are passed to two Fully Connected (FC)

layers to predict an output. Dattr and Dcritic do not share the FC layers. Dattr predicts attribute

labels and Dcritic predicts a real value which is used to distinguish real and generated samples.

The number of channels in Dconv are set in a manner similar to G’s encoder, starting with Cinit

and doubled by every layer upto a maximum of 1024.

We present the different components used in the generator and discriminator architecture

for GSC-GAN in Table 3.1. Table 3.2 uses these components to describe the architecture of

generator and discriminator. Note that we show the architecture for 128 and 512 image size. The

architecture used for 256 image size is obtained by using generator from the 128 size model, and

discriminator from the 512 size model.

18



Table 3.1: Specification of different components used in GSC-GAN’s generator and discrimina-
tor.

Component Name Specification
BN/IN Batch/Instance Normalization
ReLU / LReLU ReLU and Leaky ReLU activations

TrConv/Conv (c, k, s)
Transposed Convolutional / Convolutional layer with
c output channels, kernel size k and stride s

FC (d) Fully connected layer with d nodes
Ei(c) Conv( c , 4, 2 ) , BN, LReLU

Mi(c), i > 1
W1 = TrConv( c , 4, 2 )
W2 = Conv( c , 3, 1 ), BN, Sigmoid
W3 = Conv( c , 3, 1 ), BN, tanh

M1(c) TrConv( c , 4, 2 ) , BN, ReLU, Conv( 3 , 3, 1 ), tanh
Dconvi(c) Conv( c , 4, 2 ) , IN, LReLU

3.4 Loss Functions and Objective

Following our problem formulation in Section 3.1, for a given input image x, let vorig

denote the true attribute labels. We wish to modify x according to target attributes vtar. We

sample vtar at random from the dataset, thus ensuring that we respect the correlation structure of

dataset labels in the target vectors. The attribute difference vector vdiff = vtar−vorig is used to

inform the generator about the magnitude and direction of attribute modifications. The generator

outputs a modified image y = G(x,vdiff). Now we describe the losses used to train GSC-GAN.

3.4.1 Adversarial Loss

We train the generator G to output realistic images using the adversarial learning for-

mulation proposed by Wasserstein GAN [ACB17] along with the improvements proposed by

WGAN-GP [GAA+17]. The adversarial loss for the generator (LGadv) and the discriminator

(LDadv) are,

min
G

LGadv =−Ex,vdiffDcritic(G(x,vdiff)), (3.5)

min
Dcritic

LDadv = EyDcritic(y)−ExDcritic(x)+λgpEx̃[(‖∇x̃Dcritic(x̃)‖−1)2], (3.6)
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Table 3.2: Architecture of GSC-GAN for 128 and 512 image size. See Table 3.1 for specification
of components. Na denotes number of attributes in the dataset. A column represents the
components in a sequential order.

Image size Generator Discriminator
Encoder Decoder Dcritic Dattr

128

E1(64) M5(512) Dconv1(64)
E2(128) M4(256) Dconv2(128)
E3(256) M3(128) Dconv3(256)
E4(512) M2(64) Dconv4(512)
E5(1024) M1(32) Dconv5(1024)

FC(1024), LReLU FC(1024), LReLU
FC(1) FC(Na)

512

E1(32) M6(512) Dconv1(32)
E2(64) M5(256) Dconv2(64)
E3(128) M4(128) Dconv3(128)
E4(256) M3(64) Dconv4(256)
E5(512) M2(32) Dconv5(512)
E6(1024) M1(16) Dconv6(1024)

FC(512), LReLU FC(512), LReLU
FC(1) FC(Na)

LGadv guides the generator G to output realistic images. LDadv guides the discriminator

network Dcritic to distinguish between real and fake images. The gradient penalty [GAA+17],

having a coefficient λgp, is calculated using samples x̃ obtained by random interpolation between

real and fake image pairs. Following WGAN-GP [GAA+17], we set λgp = 10 and use a 5:1

update rate for D and G respectively.

3.4.2 Attribute Modification Loss

While we don’t have the ground truth output image, we use the known target attributes

to constrain the output image. The regression loss LDreg trains Dcritic to accurately predict vorig

given x. Additionally, we want the generated image y to represent the target attribute values vtar.

This loss is denoted by LGreg ,
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min
Dattr

LDreg = Ex,vorig

∥∥vorig−Dattr(x)
∥∥2

2 , (3.7)

min
G

LGreg = Ey,vtar ‖vtar−Dattr(y)‖2
2 , (3.8)

3.4.3 Reconstruction loss

While modifying images, we require the generator to reconstruct parts of the image which

are not relevant to the target modifications. Hence, if vdiff = vzero =~0 we want the generated

image y = x. This is enforced using `1 loss which retains fine details better than `2 loss. The

reconstruction loss Lrec is given by,

min
G

Lrec = Ex ‖x−G(x,vzero)‖1 , (3.9)

3.4.4 Final Objective

The final objective combines the aforementioned losses and alternatively optimizes the

generator and discriminator. The discriminator loss Ldis and generator loss Lgen, which use

hyperparameters λDreg , λGreg and λrec to balance different loss components, are given by,

min
G

Ldis = LDadv +λDregLDreg, (3.10)

min
D

Lgen = LGadv +λGregLGreg +λrecLrec. (3.11)
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Chapter 4

Experiments

4.1 Training Procedure

We train our GSC-GAN model on the CelebA-HQ-60k dataset for the three types of

attributes it is labeled on. We use λDreg = 1, λGreg = 10, λrec = 40 for all models, except λGreg = 15

for CelebA attributes. Our experiments use a train/test split of 59k/1k images on the CelebA-HQ-

60k dataset.

The model architecture is varied based on the training image size as shown in Table

3.2. For 128×128 image size, we use 5 layers in generator’s encoder, 5 GSC modules in the

generator’s decoder, and 5 convolutional layers in Dconv, with Cinit = 64. At 256× 256, our

default architecture increases layers in Dconv to 6, and reduces nodes in fully connected layers

for Dcritic and Dattr to 512. Note that for a fair comparison with STGAN at 256×256 resolution,

we instead use the same Cinit = 48 and Dconv depth (5 layers) as STGAN’s architecture in our

Action Unit attribute experiments. At 512×512, we further set Cinit = 32 and increase encoder

layers and GSC modules in G to 6. All models are trained using the ADAM [KB14] optimizer

with β1 = 0.5 and β2 = 0.999. We use a learning rate of 10−4 and train for 100 epochs with

a batch size of 32 (reduced to 16 for 512 image size). We compare our method with state-
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of-the-art models for discrete and continuous face attribute modification: STGAN [LDX+19]

and GANimation [PAM+18] respectively. We use the authors’ code for GANimation1 and a

Pytorch re-implementation for STGAN. We train both models for 100 epochs using their default

hyperparameters and architecture.

4.2 Evaluation Metrics

Attribute Modification Accuracy We evaluate if the GANs modify attributes accurately using

a predictive model. We generate images by modifying one attribute at a time, and predict their

attribute values. The generated and target attribute values are used to measure accuracy or

root mean squared error (RMSE). For discrete CelebA attributes, we use the PredCNN model

described in Section 2.2 to predict binary labels. For continuous facial Action Unit (AU) attributes,

we use OpenFace 2.0 [BZLM18] to predict a continuous AU intensity as well as a binary label

which denotes presence/absence of an Action Unit.

Fréchet Inception Distance (FID score) Fréchet Inception Distance or (FID score) [HRU+17]

is used to evaluate image quality for GAN generated images [KLA19] [KALL17]. This measure

embeds the real and generated images into the feature space of a specific layer from Inception

Net [SLJ+15]. The embedding layer is assumed to be a continuous multivariate Gaussian. The

Fréchet distance or the Wasserstein-2 distance between these two Gaussians (real and fake) is

used to calculate the FID score. A lower FID corresponds to more realistic generated images.

Identity Preservation Accuracy While modifying faces, we prefer to preserve the identity of

the person. This is desirable for attributes such as facial Action Units or CelebA face attributes.

To measure identity preservation, we use a state-of-the-art face recognition model based on

SENet-50 [CSX+18, HSS18] trained on the VGGFace2 dataset [CSX+18]. We use the model to
1https://github.com/albertpumarola/GANimation
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extract features for a face image pair (original and modified image), and use a threshold of 0.4 on

the cosine distance between them to get identity preservation accuracy.

4.3 Continuous Attribute Modification

Facial Action Units (AUs) denote independent facial muscle movements based on the

Facial Action Coding System [FE78]. These AUs combine to generate various facial expressions.

We study the task of modifying these AU attributes for face images in a controllable, continuous

manner. We use OpenFace 2.0 [BZLM18] to label 17 AUs for faces in the CelebA-HQ-60k

dataset as described in Section 2.3.1. We adapt STGAN for continuous AUs by replacing the

binary cross entropy loss using mean squared error loss in the attribute discriminator. While AUs

are annotated using continuous intensity values in [0,5], we normalize and linearly transform the

values to lie in a relative range of [-1, 1] during training. We note that for a fair comparison with

STGAN at 256×256 resolution, we use GSC-GAN with similar model capacity as STGAN’s

architecture (Cinit = 48 and Dconv depth of 5 layers).

4.3.1 Qualitative Evaluation

We train GSC-GAN, STGAN and GANimation at 128 and 256 image sizes. Figure 4.1

shows samples of AU modification at 256 size. Our model and STGAN accurately modify the

AUs with constrained changes that preserve the face identity. GANimation generates higher

AU intensity but does not preserve identity as well. We observe many artifacts in the images

generated by GANimation. The quality of the learned image-level attention map in GANimation

greatly affects the modified image regions, which leads it to modify irrelevant face regions.

Since the Action Unit attributes are continuous, we show that our model smoothly inter-

polates between low and high intensities in Figure 4.2. The model gradually creates modified

features which are different from simply fading in two sets of features. We go beyond the -1
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Figure 4.1: Action Unit modification with GANimation, STGAN, and GSC-GAN at 256×256
resolution. The columns show modification to 5.0 absolute AU intensity. Please zoom in for
details.

to 1 relative AU values used during training to exaggerate the modified features. GANimation

applies a spatial attention map at an image level, while our GSC module combines encoder and

decoder features. As shown in Figure 4.3, the image level attention in GANimation doesn’t

handle occlusions well. STGAN, which also combines features instead of pixels, also handles

occlusion better than GANimation. We also train GSC-GAN at 512× 512, and observe high

fidelity Action Unit modification with excellent identity preservation. We show the results of

interpolation for selected Action Units in Appendix A.2.

4.3.2 Quantitative Evaluation

Table 4.1 shows results for quantitative evaluation of all methods using the metrics

described in Section 4.2. For each test image, we modify AUs one at a time to 0 and 5 absolute

intensity values, generating 34000 images for evaluation. We calculate AU generation accuracy

and RMSE for each of the 17 Action Units, and use the 17 values to get the mean and standard

deviation. We observe that GANimation achieves better modification accuracy and RMSE but a

poor FID score and identity preservation. GSC-GAN and STGAN achieve much better identity
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Figure 4.2: Interpolation along relative AU values using GSC-GAN at 256×256 resolution.
Relative values of -1 and 1 denote absolute AU intensity of 0 and 5 respectively.
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Figure 4.3: AU25 (Lips Part) modification to 5.0 absolute intensity with occluded faces for
GANimation, STGAN, and GSC-GAN.

Table 4.1: Evaluation of GSC-GAN (ours), STGAN and GANimation for continuous Action
Unit (AU) attributes. Training image size is denoted by subscripts. Note: RMSE uses AU
intensity in [0,5].

Methodsize
AU generation
accuracy(%)↑ RMSE↓ FID↓ Identity preservation

accuracy(%) ↑
GANimation128 91.4 ± 4.9 1.34 ± 0.51 17.02 20.6
STGAN128 80.0 ± 8.0 2.09 ± 0.33 12.97 96.3
GSC-GAN128 80.6 ± 6.7 2.04 ± 0.33 12.43 99.4

GANimation256 89.2 ± 5.9 1.42 ± 0.55 14.03 48.2
STGAN256 81.5 ± 5.9 1.81 ± 0.33 11.15 98.6
GSC-GAN256 82.1 ± 6.1 1.71 ±0.35 11.41 99.3

GSC-GAN512 80.4 ± 6.9 1.78 ±0.39 11.81 99.1
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preservation and FID scores while achieving acceptable modification accuracy. GSC-GAN has

a slight edge over STGAN on all metrics at a 128 image size. We see a similar trend at 256

size, except STGAN achieves better FID. Our results show that GSC-GAN scales to 512×512

resolution as well, with high identity preservation and modification accuracy. While STGAN has

similar performance as GSC-GAN, the latter uses fewer parameters.

4.4 Discrete Attribute Modification

We use the CelebA-HQ-60k dataset to evaluate model performance on modifying dis-

crete attributes. We select 8 face attributes from the CelebA dataset: Bald, Bangs, Eyeglasses,

Heavy Makeup, Male, No Beard, Smiling, Young. These attributes are chosen since they modify

different regions of the face, and include both local and global face modifications. Since GSC-

GAN and GANimation are originally designed for modifying continuous attributes, we convert

the binary labels into continuous probability-based labels in [−1.0,1.0] as described in Section

2.3. In order to utilize these continuous labels with STGAN, we replace the binary cross entropy

loss in attribute discriminator with mean square error loss. We also train the original STGAN

model with binary attribute labels and binary cross entropy loss, denoted by STGAN-BCE in our

discussion, but find that it doesn’t perform as well.

4.4.1 Qualitative Evaluation

We use low and high attribute values of −1.0 and 1.0 to generate modified face images

at 128×128 image resolution. Figure 4.4 shows the qualitative results for our model, STGAN,

STGAN-BCE and GANimation. We observe that both our model and STGAN, which use encoder

features though skip connections, preserve identity well, while modifying attributes accurately

at the same time. GANimation generated images show slightly higher attribute modification

intensity but they contain unrealistic artifacts which result in poor identity preservation. Note
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Figure 4.4: CelebA attribute modification results for GSC-GAN, STGAN, STGAN-BCE and
GANimation. Each attribute is inverted and column labels show the target value.

that our model doesn’t enforce identity preservation during training, but the skip connections

implicitly guide the model to use the original image features to generate the output modified

image. We observe that STGAN-BCE, which is trained with binary labels and cross entropy loss,

generates much lower intensity attribute modifications. We also show that our model scales to

512×512 resolution, while maintaining accurate identity preservation and modification quality in

Appendix A.1. We show interpolation along relative attribute values and observe that our model

learns a continuous modification for most of the CelebA attributes, despite the original labels

being binary.

4.4.2 Quantitative Evaluation

We quantitatively evaluate our model, STGAN, STGAN-BCE and GANimation using the

metrics described in Section 4.2. Each model is used to modify CelebA attribute one at a time

to the opposite value as its original binary label. We do this for each of the 1000 images in our
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Table 4.2: Evaluation of GSC-GAN (ours), STGAN, STGAN-BCE and GANimation for
CelebA discrete attributes. Models are trained at image size as denoted by subscripts.

Methodsize
Attribute generation
accuracy (%) ↑ FID ↓ Identity preservation

accuracy (%) ↑
GANimation128 65.1 ± 30.6 22.90 30.1
STGAN-BCE128 52.2 ± 33.9 21.63 97.1
STGAN128 60.9 ± 29.4 18.45 99.0
GSC-GAN128 60.3 ± 26.8 19.63 98.8

GSC-GAN512 66.6 ± 28.9 18.60 98.8

CelebA-HQ-60k test set, which results in 8000 generated images. We use PredCNN from Section

2.2 trained on CelebA-HQ-60k (test set accuracy of 92%) to predict binary attribute labels for

the generated images. An accuracy score is calculated based on the predicted and target attribute

values. Note that since we used PredCNN based on ResNet-50 to generate the probability based

continuous labels, we use a different ResNet-101 based PredCNN model to evaluate accuracy. We

calculate attribute generation accuracy for each of the 8 CelebA attributes, and use the 8 values

to get the mean and standard deviation. We also calculate FID score and identity preservation

accuracy using the 8000 generated images.

Quantitative evaluation results are shown in Table 4.2. All models obtain good attribute

modification accuracy but the quality of the generated samples varies across models. GANimation

achieves high accuracy, but does poorly on image quality metrics. STGAN achieves slightly

better FID score and identity preservation, compared to GSC-GAN. Our model, using about

half the generator parameters as STGAN, achieves similar performance. We observe a high

standard deviation for attribute generation accuracy since some attributes are modified accurately

( Smiling:98%, Bangs:94% ) while others show low modification accuracy ( Bald:15%, Male:39%

) for GSC-GAN. We observe a similar difference in accuracy for GANimation and STGAN as

well. Our model, GSC-GAN, scales to 512×512 resolution, with improved accuracy and FID

score. The results show that our GSC modules effectively utilize skip connections to generate

high quality face modifications that preserve identity.
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4.5 Parameter Efficiency

Our experiments on discrete and continuous attributes show that GSC-GAN provides

similar performance to STGAN in both qualitative and quantitative comparisons. Now, we

compare the total number of parameters for both models at various resolutions. Our model is

efficient in both the generator and the discriminator architecture. In the generator, the efficiency is

obtained by maintaining a single set of decoder layers, while STGAN contains two sets of feature

decoding layers. In the discriminator, we find that adding additional layers as we increase the

input image size, reduces the total parameters. The reduction is observed due to a decrease in the

spatial size of the features extracted in Dconv before the fully connected layers. For instance, a

feature with dimensions 512×16×16, when flattened and passed to a 512-d fully connected layer,

would require 67M parameters. If we add another convolutional layer, doubling the channels,

but reducing the feature’s spatial dimensions to 1024× 8× 8, we only need 33M parameters.

Moreover, since we limit the number of channels to 1024, the parameter reduction is larger for

deeper networks.

The primary hyperparameters affecting the parameter count in the generator are the depth

of the encoder-decoder component, and the feature channels being extracted at each layer. Both

STGAN and GSC-GAN extract Cinit number of channels from the input image and double it

every layer in the encoder. For deeper architectures, GSC-GAN limits the number of channels

to a maximum of 1024. For the same generator depth, and feature channels Cinit , GSC-GAN

contains only 47% of STGAN’s generator parameters.

Table 4.3 shows the parameters for STGAN and GSC-GAN at 128, 256 and 512 image

size. At 128×128, both models use same generator depth and Cinit , hence a direct performance

comparison is possible. As shown in our experiments, GSC-GAN achieves equivalent perfor-

mance with half the generator parameters. At 256× 256, we use a GSC-GAN architecture

that uses the same Cinit (48) and Dconv depth (5 layers) as STGAN. Hence, we can make a fair
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Table 4.3: Number of generator (G) and discriminator (D) parameters for GSC-GAN and
STGAN at different image sizes (denoted by subscript).

Methodsize
G parameters
(million)

D parameters
(million)

Total parameters
(million)

STGAN128 74.8 44.7 119.5
STGAN256 42.2 56.6 98.8
STGAN512 42.2 207.6 249.8

GSC-GAN128 35.3 44.7 80.0
GSC-GAN256 19.8 56.6 76.4
GSC-GAN512 35.3 78.3 113.6

parameter and performance comparison. Again, GSC-GAN uses half the generator parameters

and achieves equivalent performance as shown in our experiments. Although STGAN authors

do not evaluate an architecture for 512×512 resolution, we extend their 384×384 architecture

to higher resolution based on their code2. At 512×512, STGAN uses 250M parameters versus

GSC-GAN’s 114M. The reduction in G parameters is smaller as we use 1 layer deeper G than

STGAN. A deeper D reduces the total parameters significantly. As shown in our experiments,

GSC-GAN achieves good performance at 512×512, while only using only 42% more parameters

than a 128×128 resolution model.

4.6 Model Ablations

Our Gated Skip Connection (GSC) module proposes an efficient gating architecture

inspired by Minimal Gated Units (MGUs), which uses a single gate. Here, we evaluate if our

MGU based gating performs better than a Gated Recurrent Unit (GRU) based gating architecture.

STGAN uses a GRU inspired gating architecture called Selective Transfer Unit (STU). STU

uses the previous state, encoder features from a skip connection and the target attribute vector to

generate two outputs: a state and a feature output. We directly adapt STU’s gating operations

(as described in STGAN [LDX+19]) into the GSC module, by discarding the state and using

2https://github.com/csmliu/STGAN
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the feature output. We denote this model, that used GRU based gates, as GSC-GAN-gru. We

train GSC-GAN-gru on CelebA attributes and facial Action Unit attributes, using the same

hyperparameters as GSC-GAN at a 128×128 resolution.

Table 4.4: Quantitative results of a model ablation study for discrete CelebA attributes at
128×128 resolution. GSC-GAN-gru replaces GSC module with a GRU based gating module.

Method Attribute generation
accuracy (%) ↑ FID ↓ Identity preservation

accuracy (%) ↑
GSC-GAN-gru 51.2 ± 28.3 17.79 98.7
GSC-GAN 60.3 ± 26.8 19.63 98.8

Table 4.5: Quantitative results of a model ablation study for Action Unit attributes at 128×128
resolution. GSC-GAN-gru replaces GSC module with a GRU based gating module.

Method Attribute generation
accuracy (%) ↑ RMSE ↓ FID ↓ Identity preservation

accuracy (%) ↑
GSC-GAN-gru 75.7 ± 7.8 2.43 ± 0.28 12.46 99.1
GSC-GAN 80.6 ± 6.7 2.04 ± 0.33 12.43 99.4

Table 4.4 and Table 4.5 show the quantitative results for CelebA and Action Unit attributes

respectively. We observe that GSC-GAN-gru achieves similar FID and identity preservation.

However, the attribute generation accuracy decreases significantly. This ablation study shows that

our gating architecture, which uses a gate to forget parts of the input instead of the state, improves

attribute generation.

4.7 Visualizing Modified Features Using GSC-GAN

Our previous experiments show that GSC-GAN can generate accurate modifications while

reconstructing irrelevant regions of the image using information from the skip connections. Since

the decoder modules have access to encoder features at multiple spatial resolutions, its task is

simplified to generating the modified features instead of generating features for the entire image.

This form of residual feature learning enables us to visualize the modifications made by the model
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Figure 4.5: A visualization of residual features learned by GSC-GAN for Action Unit attributes.
We also show the pixel-wise difference between input and output image for comparison.

by removing certain skip connections at inference time, and generating the output image. For

our models, we find that removing the skip connection for decoder module M2 (we set f1
enc = 0)

provides us with an output image that highlights the modified features.

Since our model reconstructs image regions with high quality, we can also use the pixel-

wise difference between input and output image to visualize the feature modifications made

for a given attribute. However, we need to scale the difference values to visualize them as an

image, which can generate color and brightness noise. We compare our method of visualizing

residual features with image difference for CelebA and Action Unit attributes. We visualize the

residual features learned by the model for Action Unit attributes in Figure 4.5. We show the

input image, the output image for each attribute, the corresponding residual features and the

input/output image difference. We observe that both visualization methods produce similar images

highlighting the localized feature modification for Action Units. This shows that GSC-GAN

selectively learns the modified features, and copies encoder features from the skip connection to

reconstruct irrelevant image regions. By visualizing the residual features, we add explainability

to the model’s operations. This method can also help us identify artifacts in generated images,

such as the droplet artifacts seen in dark hair regions of residual features in Figure 4.5. Moreover,
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Figure 4.6: A visualization of residual features learned by GSC-GAN for CelebA attributes.
We also show the pixel-wise difference between input and output image for comparison.

we can also spot erroneous modifications made by the model such as the jaw brightness change

for AU12 and AU15.

We visualize the residual features learned by the model for CelebA attributes in Figure 4.6.

Again, we observe that the residual features help us visualize the feature modifications, although

there is some reconstruction of irrelevant face features from previous skip connections. The direct

input/output image difference produces brightness and color noise for Male and Young attributes,

while the residual features provide a noise-free and color-accurate visualization. We show that

our visualization method can be used to understand salient face features for an attribute in Figure

4.7. We extrapolate the attribute values outside the training range to -1.5 and 1.5, and generate

the modified images. By comparing residual features for low and high attribute values, we can

predict the salient face features for an attribute. In comparison, we note that direct input/output

image difference produces color noise in some cases. Moreover, a direct pixel-wise difference

does not highlight changes well for the Bangs attribute, where the modified feature has a color

similar to the forehead region.
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Figure 4.7: A visualization of residual features learned by GSC-GAN for CelebA attributes, for
relative attribute values of -1.5 and 1.5. We also show the pixel-wise difference between input
and output image for comparison.
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Chapter 5

Modifying Perceived Social Impressions of

Faces

CelebA face attributes and Action Units correspond to facial features which can be easily

visualized. When we modify these features using a GAN, we know what features should be

generated for an accurate modification. We consider a new set of face attributes related to

social traits, for which we cannot intuit the correlated face features easily. When we see a

person’s face, we quickly form impressions of them along social dimensions such as kindness,

trustworthiness and attractiveness. Several studies [OT08, TODMS15, SLZ+18] have analyzed

how these perceptions vary across individuals and cultures. However, attempts to explain possible

factors such as facial features that affect social perception have been scarce.

In previous sections, we have shown that GSC-GAN can accurately modify attributes

with high identity preservation. We use GSC-GAN with the Social Traits Dataset from Section

2.1 to study 10 perceived social traits: trustworthy, humble, kind, attractive, masculine, healthy,

intelligent, powerful, responsible, successful. Since the Social Traits Dataset contains only 1611

images, we generate continuous social trait ratings in [−1.0,1.0] for CelebA-HQ-60k images as

described in Section 2.3.1 for training GSC-GAN.
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5.1 Correlated Visual Features for Social Traits

Figure 5.1: Social trait modification to low and high values using GSC-GAN. Top two rows
show generated images, and the bottom two rows show the modified face features (by visualizing
residual features).

We train GSC-GAN on CelebA-HQ-60k to modify 10 continuous social traits. We use our

default GSC-GAN architecture for 256×256 resolution images. The model achieves a FID score

12.18 and 99.6% identity preservation accuracy on the CelebA-HQ-60k test set. Figure 5.1 and

Figure 5.2 show a face modified for each social trait to low and high values, which correspond to

2.5 and 97.5 percentile rating values respectively. We observe selective transformation of facial

features and good identity preservation across all traits. Attractive and healthy show a noticeable

change in skin smoothness and age. Warmth related traits (kind, humble, trustworthy) show

variation in smile intensity. For capability related traits (intelligent, powerful, and successful),

the model slightly changes smiles, age, makeup and overall image colors. While we can visually
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Figure 5.2: Social trait modification to low and high values using GSC-GAN. Top two rows
show generated images, and the bottom two rows show the modified face features (by visualizing
residual features).

compare low and high rated images, our model-based visualization of residual features better

highlights the salient face features. This visualization method can also surface dataset biases. For

example, the masculine face shows generation of darker hair. Analyzing the original ratings on

1611 images from Section 2.1, we find that only 1.4% of male images had blond hair compared

to 26.8% of female images. We also show that GSC-GAN can perform continuous modification

of these social traits in Appendix A.3. We use relative social trait ratings and interpolate from low

to high values, showing generation of salient face features for each attribute.

39



Figure 5.3: Human verification accuracy for social trait modification using GSC-GAN. ICC
denotes Intraclass Correlation Coefficient which measures rater agreement when rating a social
trait.

5.2 Human Validation Study

While our model helps visualize relevant face features for subjective social traits, we

don’t know if these face features actually affect human social perception. Hence, we conduct

a human rating experiment to verify the modifications learned by our model. While we used

CelebA-HQ-60k dataset for training GSC-GAN, we test on the originally rated 1611 faces from

the Social Traits Dataset (Section 2.1). We select 50 images (25 male, 25 female) that are closest

to the mean ratings for all traits, so that any GAN generated artifacts do not asymmetrically affect

perception.

We conduct a human validation study on Amazon Mechanical Turk (AMT) by showing

two images of a face modified to low and high social trait values, and ask raters to select the one

they perceive to have a higher rating. We recruited 100 raters and obtained at least 10 ratings on

each image pair. Figure 5.3 shows accuracy (how often people chose the image modified to a
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high value of the trait) for each social trait (chance is 50%). Across all 10 social traits, we obtain

an average accuracy of 81.3±12.1%.

Furthermore, we compare modification accuracy with human raters’ agreement on each

trait by calculating the Intraclass Correlation Coefficient (ICC) [Bar66] of human ratings on the

1611 faces. Traits with salient facial features such as masculine, kind, attractive show a high level

of agreement, while humble, powerful and intelligent are more ambiguous and have a low ICC.

Higher rater agreement translates to better training signal, leading to higher model accuracy for

social traits with high ICC in general. Humble, which has the lowest rater agreement, has an

accuracy of 38%, indicating that our model modified humbleness in the wrong direction. Overall,

our experiment shows that GSC-GAN is able to learn face modifications corresponding to social

traits, and is able to modify face images to change their social perception.
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Chapter 6

Conclusion

We study the task of face image modification and propose a novel GAN architecture that

selectively uses skip connections to generate high quality outputs. Our experiments show that

GSC-GAN achieves significantly better image quality and identity preservation than GANimation

on modifying continuous attributes. GSC-GAN achieves performance similar to STGAN with a

parameter efficient architecture. Using our high resolution CelebA-HQ-60k face dataset, we show

that GSC-GAN scales up to 512x512 resolution, while retaining its modification accuracy and

image quality. Our network learns to generate residual image features, which can be visualized

to predict salient features for an attribute. Finally, we use GSC-GAN to modify faces along the

dimension of perceived social traits. We show that our model can modify face features to change

the perception of social traits, obtaining 81.3% accuracy on a human rating trial. Using a similar

experimental framework, we can study arbitrary attributes that are labeled on images.

6.1 Future Work

While our model has good performance on identity preservation and image quality, the

magnitude of changes is lower than GANimation. However, GANimation’s modifications come

at the cost of many image artifacts. We want to investigate improvements to our architecture
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to make the modifications more accurate. We show that our model works for up to 512x512

resolution images. Evaluating the model at 1024x1024 resolution and generating high quality

modified features is an area of interest. Additionally, we can incorporate multi-scale training for

generator and discriminators to improve image quality. Multi-scale or progressive GAN training

has achieved state-of-the-art results with StyleGAN [KLA19] and Progressive GAN [KALL17].

We also aim to use our model on non-face datasets and evaluate its image-to-image translation

performance.

6.2 Broader Impact and Ethics

Our work paves the way for controllable, high resolution, identity preserving face mod-

ifications. The model can be used as a face editing tool that performs complex modifications

along specific attribute dimensions, making it possible to create stimuli for social psychology

experiments. We present an example in our paper where we generate images of the same person

interpolated along a social trait. Similarly, we can produce high quality modifications of Facial

Action Units to study the effects of facial expressions beyond the six basic emotions.

However, this work can also be used for nefarious purposes. For example, someone

could make themselves look more attractive in photos to attract potential dates. Politicians could

modify images of their opponents to make them look less intelligent, more aggressive and less

trustworthy. Research has shown that facial impressions can affect election outcomes, so this is

not an idle concern [TODMS15]. Similarly, hiring decisions can be affected by facial impressions

[TODMS15]. In a remote hiring situation, a person could make themselves look more trustworthy.

On the other hand, it is important for social robots to understand facial impressions. If

a robot can perceive that someone is not attractive or looks untrustworthy, they will be able to

understand how that person might be treated by conspecifics, and attempt to mitigate these human

biases. Again, these social impressions are subjective, not veridical, so they can lead to unfair
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treatment simply due to how a person looks.

Using a framework of learning residual features, our model’s generator provides a way

to visualize the changes it makes to the input image. This can be used to study how the feature

modifications vary across input images and attribute values. Additionally, it can reveal the salient

features for the attribute being modified. If the correct feature modifications are known for an

attribute, we can use the modified feature visualization to detect biases in the model/dataset, as

well as any erroneous changes made by the model. For example, although the intelligence ratings

are very similar for men and women in our dataset, men are rated slightly higher on this trait.

Figure 5.2 shows that the modification for increasing the perception of intelligence looks like a

male in a white collar. This is a bias that has been amplified by the model, making it more salient.
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Appendix A

High Resolution Face Modification Results

A.1 Discrete CelebA Attributes

Figure A.1 presents interpolation along CelebA attributes: Bald, Bands, Eyeglasses,

Heavy Makeup, Male, No Beard, Smiling, Young with relative values from -1.5 to 1.5. Note that

GSC-GAN is trained with probability based continuous labels for the CelebA attributes, which

leads to smooth generation of face features during interpolation.

A.2 Continuous Facial Action Units

Figure A.2 presents interpolation along Action Unit attributes: AU7, AU9, AU10, AU12,

AU20, AU25, AU26, AU45 with relative values from -1.5 to 1.5.

A.3 Perceived Social Traits

Figure A.3 presents interpolation along perceived social traits: Successful, Attractive,

Kind, Masculine, Powerful with relative values from -1.5 to 1.5. Similarly, Figure A.4 presents

interpolation along perceived social traits: Healthy, Intelligent, Humble, Trustworthy, Responsible.
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Figure A.1: CelebA attribute modification using GSC-GAN at 512× 512 resolution. We
interpolate along relative attribute values from -1.5 to 1.5. Zoom in for details.
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Figure A.2: Action Unit attribute modification using GSC-GAN at 512×512 resolution. We
interpolate along relative attribute values from -1.5 to 1.5. Zoom in for details.
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Figure A.3: Social Trait attribute modification using GSC-GAN at 256×256 resolution. We
interpolate along relative attribute values from -1.5 to 1.5. Zoom in for details.
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Figure A.4: Social Trait attribute modification using GSC-GAN at 256×256 resolution. We
interpolate along relative attribute values from -1.5 to 1.5. Zoom in for details.
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