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ABSTRACT OF THE DISSERTATION

Z-Graded Maximal Orders of GK 3

by

James William Berglund

Doctor of Philosophy in Mathematics

University of California, San Diego, 2012

Professor Daniel Rogalski, Chair

The first Weyl Algebra can be viewed to have Z-graded quotient ring Q =

k(u)[t, t−1;σ], and Bell and Rogalski have classified all simple Z-graded subrings

of this quotient ring with Gelfand-Kirillov (GK) dimension 2. In this paper, we

seek to understand maximal orders of this quotient ring with GK dimension 3. We

start by examining a representative example, k〈 1
u
t, t−1〉 ⊂ Q, and then move on

to show that any Z-graded maximal order A ⊂ Q must have A0 be a localization

of k[u], or a ring in the form k[S], where S is a σ-closed set of rational functions

of the form 1
u−a . Finally, we completely classify the possible Z-graded maximal

orders inside k(u)[t, t−1;σ].

viii



Chapter 1

Introduction

Throughout this paper, let k be an algebraically closed field of characteristic

zero.

The Weyl algebra is a celebrated ring in noncommutative ring theory. The

first Weyl Algebra, which has presentation

A1 = k〈x, y〉/(yx− xy + 1), (1.1)

has especially nice properties. We can view it to be the free algebra over two

non-commuting variables x and y over some field k, with the relationship between

the x and y being exactly that yx = xy − 1. From another perspective, it is the

realization of a very natural ring of operators on k[t]. In this viewpoint, we view

y to correspond to multiplication by t and x to correspond to d/dt. Moreover, it

is a simple ring that is not a division ring, which is a property that never happens

in commutative algebra, and it also is a simple Noetherian domain, which means

that ascending chains of right or left ideals eventually stabilize. While this is a

much studied ring, even still people are examining this ring from new perspectives.

A graded ring is a ring R that can be written as a sum of abelian groups

⊕Ri, such that RiRj ⊂ Ri+j. Note that we can consider A1 as a Z-graded ring, by

assigning x to have degree 1, and y to have degree −1. When viewed in this way,

we can start looking at the graded ring-theoretic structure of the ring. S. Sierra in

particular was able to classify all rings that were graded-Morita equivalent to A1;

that is, she was able to find all rings that had essentially the same graded-module

1
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structure [11]. This result inspired J. Bell and D. Rogalski to also examine the

graded structure of rings similar to the Weyl algebra. The first thing they noted

was that if we set xy = t, we obtain a different point of view of A1; the graded

quotient ring is isomorphic to a skew-Laurent ring

Q(A1) ∼= k(u)[t, t−1;σ], (1.2)

where σ is the automorphism that has σ(u) = u + 1. In other words, we can

view this ring to be all the Laurent polynomials with coefficients in k(u), with the

relationship that tf(u) = σ(f(u))t. They then endeavored to try to classify all

Z-graded GK 2 simple rings that were subrings of k(u)[t, t−1;σ]. GK dimension is

a noncommutative analogue of classical Krull dimension, and gives the asymptotic

growth of a generating set of the algebra. So in other words, they wanted to find

all comparatively small subrings of k(u)[t, t−1;σ], which they were able to do.

Theorem 1.3 (Bell-Rogalski [3]). A ring R is a Z-graded simple subring of

k(u)[t, t−1;σ] that has GK dimension 2, where k has characteristic zero, if and

only if it is isomorphic to one of the following forms: Let R0 = k[u], and choose

c ∈ k(u) with cσ(c) · · · σn(c) ∈ k[u] for sufficiently large n. Then if we set s = c−1t,

then

R = k[u][t, t−1;σ] ∩ k[u][s, s−1;σ]. (1.4)

So with this result, in this thesis the goal is now to try to relax the simple

GK 2 restrictions on the ring, and simply classify all Z-graded maximal orders

in k(u)[t, t−1;σ]. Maximal orders are the noncommutative analogue to integrally

closed rings, which correspond in dimension one to smooth curves in algebraic

geometry, so this is a natural restriction to make. Now, to begin with, in this

paper we will examine an example that arose in the paper of Bell and Rogalski:

A = k〈 1
u
t, t−1〉 ⊂ k(u)[t, t−1;σ], the k-algebra generated by the elements 1

u
t and

t−1. The ring A has some interesting properties:

Theorem 1.5. Let A = k〈 1
u
t, t−1〉. Then the zeroth degree piece A0 is not finitely

generated as a k-algebra. Additionally, A is Noetherian, has classical Krull dimen-

sion 2, and is a maximal order.
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Moreover, we will be able to specifically describe the structure of the prime

ideals and simple graded modules of A. It turns out that A0 in this example is

special. We will show that:

Theorem 1.6. Let R ⊂ k(u). Then if R has field of fraction k(u) and is both

σ-closed and integrally closed, then R is the localization of some polynomial ring.

In particular, either R = k[u]S−1, for some σ-closed set S, or

R =

{
f

g
| deg(f) ≤ deg(g), g only has factors in some σ-closed set S

}
. (1.7)

Now, we want to restrict our search for subrings of k(u)[t, t−1;σ] that are

maximal orders. The integrally closed subrings of k(u) turn out to be critical in

the classification of these type of rings.

Theorem 1.8. If R ⊂ k(u)[t, t−1;σ] is a maximal order, then R0 is integrally

closed and σ-closed.

So we can restrict our search for maximal orders A to two cases: one where

A0 is some localization of a polynomial ring, and the other where A0 is a particular

ring of rational functions as in 1.7. The first case is similar to the case considered

by the paper of Bell and Rogalski [3], but the second case is quite different, as extra

ring structure develops. Since A0 is a PID, we can write A =
⊕∞

n=−∞ aiA0t
i, for

some choice of ai ∈ k(u), and we will refer to the ai as structure constants. We can

view each ai = bici, where σ(ci)A0 = ciA0, and σ(bi)A0 6= biA0. It turns out after

suitably adjusting t, we can adjust the bi so that they are eventually constant for

sufficiently high n. The ci portion of each structure constant behaves in a regular,

periodic manner. Putting these together, we get the following main theorem.

Theorem 1.9. Let A be a finitely-generated Z-graded algebra that is an order of

k(u)[t, t−1;σ], that has A0 being a ring of all rational functions of degree at most

zero, with poles at some set of points that is closed under σ, as in 1.7. Then after

an appropriate choice of t and s, there exists some choice of n, x, y that induce a

sequence mi, where mi =
⌊
−xi

n

⌋
when i < 0 and mi =

⌊
yi
n

⌋
for i > 0. Consider

R =
(⊕

umiA0t
i
)
∩
(⊕

umiA0s
i
)
. (1.10)

Then R is a maximal order for A.
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This problem has many natural questions arising from it. For example, in

the Bell and Rogalski paper [3], they showed there were two fundamental auto-

morphisms that arose in this situation: one that sends u to u+1, which is the case

we studied, and one that is the automorphism that sends u to cu, where c is not a

root of unity. So examining the situation with the new automorphism might yield

interesting results.

We can also more dramatically change the base field as well. Instead of tak-

ing the quotient field to be k(u)[t, t−1;σ], instead we can take it to be k(X)[t, t−1;σ]

for some elliptic curve X. Elliptic curves have a natural translation operation and

reasonable divisor structure, so similar methods as used in this paper should be ap-

plicable in order to classify the maximal orders in this quotient ring. Furthermore,

instead of considering k(u) as the base field, we can consider rational function fields

of higher transcendence degree. In the Bell and Rogalski paper, they were able to

classify simple rings of minimal GK dimension over fields with any transcendence

degree, so it is possible their results could extend to classify the maximal orders of

these quotient rings as well.

Finally, it would be interesting to consider the module structure of this class

of rings. In a paper by P. Smith [12], he was able to find a commutative graded

ring that had that had the same module structure as the first Weyl algebra. So,

it might be possible to find a similar commutative graded ring that has the same

module structure as k〈 1
u
t, t−1〉.



Chapter 2

Background

2.1 Localization

An important tool for studying rings in general is the idea of localization.

Definition 2.1. A set S is a multiplicative subset of R if for all s1, s2 ∈ S, s1s2 ∈ S.

Let R be a commutative domain, and let S be a multiplicative set of R not

containing 0. The idea is we want to construct a ring that R embeds into that has

inverses at exactly the elements of S.

Definition 2.2. The localization RS−1 is the ring (R×S)/∼, where ∼ is the equiv-

alence relation (r1, s1) ∼ (r2, s2) if r1s2 − s1r2 = 0. This ring has multiplication

defined by (r1, s1)(r2, s2) = (r1r2, s1, s2) and (r1, s1) + (r2, s2) = (r1s2 + r2s1, s1s2).

We denote the element (r, s) in this ring as rs−1.

The most important property of localization is that it preserves the ideal

structure of the ring in a strong fashion.

Theorem 2.3. Let I be an ideal of a commutative domain R such that I ∩S = ∅.

Then there is a corresponding ideal IS−1 in RS−1, and moreover this correspon-

dence respects the inclusion of ideals. Furthermore, all ideals of RS−1 have form

IS−1 for some I < R.

Proof. See [6, III.4.7], and [6, III.4.9].

5
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We want to also do this in the non-commutative case, however the process

is much trickier. The concern is that if we have r1s
−1
1 r2s

−1
2 , moving the r2 past the

s−11 might be impossible. In other words, for all s ∈ S and r ∈ R, we need there

to exist some r′ and s′ such that s−1r = r′s′−1, or in other words

rs′ = sr′. (2.4)

Definition 2.5. If a multiplicative set S ⊂ R has the property that for all r ∈ R
and s ∈ S, there exists some r′ ∈ R and s′ ∈ S that satisfies the condition found in

2.4, or in other words that rS ∩ sR 6= ∅, we say S satisfies the right Ore condition.

Theorem 2.6. If S ⊂ R consists only of regular elements and satisfies the Ore

condition, we can form the localization RS−1, similar to the commutative case. If

RS−1 is right Noetherian, then for all ideals I < R that have I ∩ S = ∅, there is

a corresponding ideal IS−1 < RS−1. Additionally, all ideals in RS−1 have form

IS−1 for some I < R.

Proof. See [8, 2.1.12] and [8, 2.1.16].

It turns out that wide classes of rings automatically satisfy this property.

Theorem 2.7. Let S be the set of all nonzero elements of R. If R is a right

Noetherian domain, then S satisfies the Ore condition.

Proof. See [8, 2.1.15].

Definition 2.8. If in a domain the set S of all nonzero elements satisfies the Ore

condition, we call RS−1 the right quotient ring of R.

2.2 Orders in Rings

In algebraic geometry, the notion of integral closure is very important, since

integrally closed rings correspond to normal geometric objects, and smooth geo-

metric objects in dimension 1. Thus, we are motivated to use a similar notion for

noncommutative rings. We will develop a notion of orders in quotient rings, and

then maximal orders, following the presentation of McConnell and Robson [8]. Let

R be a subring of Q, its quotient ring.
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Definition 2.9. The ring R is considered a right order in Q if each q ∈ Q has

form rs−1 for some r, s ∈ R. R is a left order if each q ∈ Q has the form s−1r. If

a ring R is both a left and right order, it is considered an order.

It turns out there is a natural way we can define an equivalence relation on

the right orders of a quotient ring.

Lemma 2.10. Let R be a right order in a quotient ring Q and let S be a subring

of Q. Suppose there are units a and b of Q such that aRb ⊂ S. Then S is a right

order in Q.

Proof. Consider for each q ∈ Q the element a−1qa. Since R is a right order, there

are r, t ∈ R with a−1qa = rt−1. But now

q = art−1a−1 = arbb−1t−1a−1 = (arb)(atb)−1.

Therefore, every element of q can be written in the form s1s
−1
2 , and thus S is a

right order of Q.

This leads us to make a natural equivalence relation on the right orders of

Q.

Definition 2.11. R and S are considered equivalent right orders of Q if there are

units ai, bi ∈ Q such that a1Rb1 ⊂ S, and a2Sb2 ⊂ R.

So now, in each equivalence class of right orders, there potentially are el-

ements that are maximal with respect to inclusion. We will call these orders

maximal (right) orders. This is an important concept since the restriction to the

commutative case returns the definition of an integrally closed domain.

Lemma 2.12. Let R be a commutative ring that is a right order of Q. Then R

is a maximal order if and only if R is completely integrally closed, that is, if there

are a, q ∈ Q with aqn ∈ R for all n, then q ∈ R.

Proof. Let R be a maximal order. Then for any a, q that has aqn ∈ R for all n,

then note aR[q] ⊂ R. So R and R[q] are equivalent orders, and since R ⊂ R[q],

this implies that R = R[q]. But then q ∈ R, as needed. For the other direction, say
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R is completely integrally closed, and let R ⊂ R′ be an equivalent order. So there

is some a ∈ Q with aR′ ⊂ R. Take any q ∈ R′, and note that aR[q] ⊂ aR′ ⊂ R.

But now aqn ∈ R for all n. But since R is completely integrally closed, this means

q ∈ R. So thus R = R′, and R is a maximal order.

Lemma 2.13. For a commutative Noetherian ring, R is integrally closed if and

only if R is completely integrally closed.

Proof. As a reminder, R is integrally closed if for any element q in the quotient

ring of R that is a zero of some monic polynomial in R[x], then q ∈ R.

Say R is completely integrally closed. Note for all q ∈ Q with q that is

a root of some monic polynomial p(x) ∈ R[x], that R[q] is a finitely-generated

module. Say p(x) has degree m. Then, q ∈ Q(R), so q = r1
r2

, with ri ∈ R. Consider

R[q] as a R-module. Now rm2 R[q] ⊂ R, since {1, q, . . . , qm−1} generate R[q]. Thus

rm2 q
n ∈ R for all n, so since R is completely integrally closed then q ∈ R. Therefore,

R is integrally closed. Say R was integrally closed, and let a, q ∈ Q be such that

aqn ∈ R for all n. Note R[q] ⊂ a−1R as R-modules, and since R is Noetherian,

a−1R is also Noetherian as an R-module, so thus R[q] is finitely generated. But

then for sufficiently high n, qn can be written as a R-linear sum of lesser powers, so

thus there is a monic polynomial that has q as a root. Thus q ∈ R, as needed.

So thus the theory of maximal orders is the noncommutative analogue of

integral closure for commutative Noetherian rings.

It will be useful to have a way to check if an order is maximal, so the next

few propositions will lead to a result that we can use to check to see if an order is

maximal. First, the following result is given without proof:

Lemma 2.14. Suppose R and S are equivalent right orders in Q with R ⊂ S.

Then there are equivalent right orders T and T ′ in Q such that R ⊂ T, T ′ ⊂ S,

and units r1, r2 of Q in R such that r1S ⊂ T , Tr2 ⊂ R, Sr2 ⊂ T ′, and r1T
′ ⊂ R.

Thus, r1Sr2 ⊂ R.

Definition 2.15. The right order of an ideal I < R is the set

Or(I) = {q ∈ Q | Iq ⊂ I}. (2.16)



9

Analogously, the left order of the ideal is the set

Ol(I) = {q ∈ Q | qI ⊂ I}. (2.17)

Lemma 2.18. Or(I) and Ol(I) are right orders in Q equivalent to R.

Proof. Note that for any x ∈ I, that xOr(I) ⊂ I ⊂ R, and R ⊂ Or(I) by property

of R being an ideal of I. So thus R and Or(I) are equivalent orders. Also, note that

Ol(I)x ⊂ I ⊂ R, and again R ⊂ Ol(I), so R and Ol(I) are equivalent orders.

So with this machinery, we can develop this method to check for maximal

orders:

Proposition 2.19. Let R be an order in Q. Then R is a maximal order if and

only if Or(I) = Ol(I) = R for all ideals I of R.

Proof. For the forward direction, if R is a maximal order, note by 2.18 that Or(I)

and Ol(I) are equivalent orders to R that contain R. So necessarily Or(I) =

Ol(I) = R.

For the backwards direction, say there is some S such that R ⊂ S, and R

and S are equivalent orders. So by Lemma 2.14 there exists some T such that

R ⊂ T ⊂ S, and some r1, r2 ∈ R with r1S ⊂ T and Tr2 ⊂ R. Let I = {x ∈
R | Tx ⊂ R}. Then I is a non-empty ideal of R, and moreover T ⊂ Ol(I), as

for any x ∈ I, t ∈ T , we have tx ∈ R by definition of I, and moreover, tx ∈ I as

Ttx ⊂ Tx ⊂ R. So thus T = R. Likewise, let J = {x ∈ R | xS ⊂ T}. Again,

J is a non-empty ideal of R, and S ⊂ Or(I), as for any x ∈ I, s ∈ S we have

xs ∈ T = R, and then xsS = xS ⊂ T . So S = R, as needed, and thus R is a

maximal right order.

2.3 Grading in Rings and Modules

Let R be a ring, and G be an Abelian group, which for our purposes will

be Z under addition.
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Definition 2.20. The ring R is G-graded if R can be written as a direct sum of

Abelian groups Rg in the form R =
⊕

g∈GRg, where for all g1, g2 ∈ G, Rg1Rg2 ⊂
Rg1+g2 .

Definition 2.21. A Z-graded ring R is considered N-graded if Ri = 0 for all i < 0.

Example 2.22. For example, Z[x] is a N-graded ring, as Z[x] =
⊕

n∈N Zxn. Gen-

erally, any polynomial ring is N-graded, with multiple choices for the grading. For

example, Z[x, y] =
⊕

n∈N Z[x]yn, in which case we create our grading in terms

of the degree in y. However, we can also grade Z[x, y] =
⊕

n∈N
∑n

i=0 Zxiyn−i, in

which case we graded according to the total degree in each monomial.

Example 2.23. A1 = k〈x, y〉/(yx− xy − 1) is Z-graded, with y having degree 1,

and x having degree −1.

Definition 2.24. If R is G-graded, r ∈ R is a homogeneous element if there is

some g ∈ G such that r ∈ Rg.

Example 2.25. In the second grading discussed above for Z[x, y], x2y + 3y3 is a

homogeneous element. However, it is not homogeneous in the first grading.

Definition 2.26. In a graded ring, an ideal is homogeneous if it is generated

by only homogeneous elements. If an ideal is homogeneous, we can write it as

I =
⊕

g∈G Ig.

Example 2.27. In Z[x], the ideal I = {f |f(0) = 0}, is a homogeneous ideal, since

I = (x). However the ideal I = (x+ 2) is not homogeneous.

Lemma 2.28. If I is a homogenous ideal in a graded ring R, then R/I is a graded

ring as well, with (R/I)g = Rg/Ig.

We can associate graded modules to graded rings.

Definition 2.29. Let R be G-graded. A G-graded right module M =
⊕

g∈GMg

is a R-module such that for all g1, g2 ∈ G, Mg1Rg2 ⊂Mg1g2 .

We can also define a graded quotient ring to a graded domain, if the set of

homogeneous elements satisfies the Ore condition.
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Definition 2.30. Let S be the set of all nonzero homogeneous elements of a

domain R. If S satisfies the Ore condition, then we say Qgr(R) = RS−1, and we

refer to this ring as the right graded quotient ring of R. It is the smallest ring that

has inverses to all homogeneous elements.

It turns out now to check for maximal orders in graded rings, it is sufficient

only to check graded ideals and look in the graded quotient ring, as this next result

adapted from a paper of Rogalski shows [10, 9.1]:

Lemma 2.31. Let R be a Z-graded graded domain which has graded quotient

ring D and right quotient ring Q. Then R is a maximal order if and only if

Og
r(I) = R = Og

l (I) holds for all homogenous nonzero ideals I of A, where Og
r(I) =

{q ∈ D | Iq ⊂ I} , and Og
l (I) = {q ∈ D | qI ⊂ I}.

Proof. Write D = K[t, t−1;σ], for some division ring K and automorphism σ on

K. We know K is a maximal order in itself, so thus it follows that D is a maximal

order in Q [7, IV.2.1, V.2.3].

So now, for the nontrivial direction, say Og
r(I) = R = Og

l (I) for all homo-

geneous ideals I. Take some ideal I < R, and say there is q ∈ Q with qI ⊂ I. By

ideal correspondence, ID is a two-sided ideal of D, thus we have qID ⊂ ID. But

D is a maximal order, so this forces q ∈ D. So we can write q =
∑n

i=m di, with

di ∈ Di.

Let Ĩ be the homogeneous ideal generated by all leading coefficients in I.

Note we must have dnĨ ⊂ Ĩ, so thus dn ∈ Og
l (Ĩ). Therefore, dn ∈ R. But since

qI ⊂ I and dnI ⊂ I now, we see that (q − dn)I ⊂ I, so q − dn ∈ Ol(I). We

can repeat this argument though, and see that all the di ∈ A. So q ∈ A, as

needed. Thus, Ol(I) = A. We can repeat this argument switching the direction of

everything, to get that Or(I) = A as well, as needed.

2.4 Skew-Polynomial Rings

Let R be a ring with 1. There is an easy way to make a polynomial-like

ring off R that shares several properties with the polynomial ring.



12

Definition 2.32. Let R be a ring and σ be an automorphism of R. The skew-

polynomial ring R[u;σ] is the ring that consists of elements of the form anu
n +

· · ·+ a0, along with the property that ua = σ(a)u.

Example 2.33. Let R = C, and σ send z to z̄. Then R[u;σ] is a skew-polynomial

ring, and as an example

(1 + 3i)u3(1 + 2i)u = (1 + 3i)σ3(1 + 2i)u4 = (1 + 3i)(1− 2i)u4 = (7 + i)u4. (2.34)

First note that skew-polynomial rings have a natural notion of degree, sim-

ilar to polynomials, and thus have a natural N-grading. Also like a polynomial

ring, the properties of R help determine the properties of R[u, σ].

Proposition 2.35. If R is a integral domain, R[u;σ] is an integral domain. If R

is a Noetherian ring, so is R[u;σ].

Proof. If R is an integral domain, note that

(anu
n + · · ·+ a0)(bmu

m + · · ·+ b0) = anσ
−n(bm)un+m + · · ·+ a0b0 (2.36)

and since σ is an automorphism, bm 6= 0, so thus this is nonzero as the highest

degree term has a nonzero coefficient. For the proof of the second statement, see

[8, 1.2.9].

Finally, it will be nice to know if the graded quotient ring of a skew-

polynomial ring R[u;σ] exists, and it does.

Proposition 2.37. Let R be a commutative ring, and let S be the set of all nonzero

homogeneous elements in A = R[u;σ]. Then S satisfies the Ore condition.

Proof. First, we claim that we only have to consider the Ore condition for ho-

mogeneous elements in R. Suppose we knew that for any choice of homogeneous

r1, r2 ∈ R and s ∈ S, that there exist t, v ∈ S and x,w ∈ R such that r1t = sw

and r2v = sx. Find homogeneous a and b such that ua = vb. Thus we have that

r1(ua) = s(wa) and r2(vb) = s(xb). Therefore, we have (r1 + r2)(ua) = s(wa+xb),
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so r1 + r2 and s satisfy the Ore condition as well. Now, fix some rtn ∈ An and

stm ∈ S, and note that σ−n(s)tm 6= 0, as σ is an automorphism, and thus,

rtnσ−n(s)tm = stmσ−m(r)tn. (2.38)

Therefore, rS ∩ sR 6= ∅, as needed. So S satisfies the Ore condition.

2.5 Dimension in Rings

In commutative ring theory, a natural notion to study the size of a k-algebra

is Krull Dimension.

Definition 2.39. The classical Krull dimension of a ring R is the supremum of

lengths n of chains of prime ideals P0 ( P1 ( · · · ( Pn.

Example 2.40. k[x1, x2, . . . , xn] has Krull dimension n, while Z has Krull dimen-

sion 1.

This definition is not quite as appropriate in non-commutative rings though,

since prime ideals might be sufficiently scarce to not say anything meaningful for

the ring. So the wish is to generalize this notion into something that coincides with

Krull dimension in commutative rings, but also has meaning in non-commutative

rings. This motivation lead to the creation of Gelfand-Kirillov dimension (GK

dimension).

Definition 2.41. Let R be a finitely-generated k-algebra, with a finite dimensional

generating k-subspace V that contains 1. The GK dimension of R is

lim sup
n→∞

log(dimk V
n)/ log(n). (2.42)

This definition is fairly hard to follow initially, so some examples are in

order:

Example 2.43. Let R = k[x, y]. A generating set of R is V = k{1, x, y}, and

V n has a basis of (n+1)(n+2)
2

elements in it, as there are exactly n + 1 elements of
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exactly degree n, and Vn contains all elements of degree less then or equal to n.

So as n→∞,
log(dimV n)

log(n)
→ 2, (2.44)

and thus the GK dimension of R is 2.

Example 2.45. Let R be the first Weyl Algebra: R = k[x, y]/(yx−xy− 1). Take

V = k{1, x, y}. Then it can be shown that a basis for V n can be given by elements

of the form {xiyj | i + j ≤ n}. So the previous analysis holds, and R again has

GK dimension 2.

Generally, a ring having GK dimension n corresponds to the growth of

V n being asymptotically polynomial with exponent n. A natural question to ask

regarding GK dimension is whether it is invariant no matter the generating set,

and it turns out it is.

Theorem 2.46. GK dimension is well defined.

Proof. See [8, 8.1.10].



Chapter 3

The Major Example

The major example we first examine is A = k〈 1
u
t, t−1〉 ⊂ k(u)[t, t−1;σ], with

σ the automorphism sending u to u + 1, and it turns out this is a representative

example. In this section we will explore all the ring-theoretic properties of this

ring, and see that many of the same techniques can be used in the more general

case to classify maximal orders. To begin with, just to define some notation that

will be used:

Definition 3.1. Let A+ =
⊕∞

n=0An, and A− =
⊕0

n=−∞An. That is, A+ is the

N-graded subring of A that consists of the non-negative degree graded pieces of A,

and A− is the N-graded subring that consists of all the non-positive degree pieces

of A.

First off, A turns out to have a very nice characterization:

Proposition 3.2. A0 is the ring of rational functions of degree at most 0 with

poles at the integers. Moreover, A+ has the form A0[w;σ], where w = 1
u
t, and A−

has the form A0[v;σ−1], where v = t−1.

Proof. Note that ( 1
u
t)nt−n is in A0. Expanding this out, we get a rational function

fn with

fn =

(
1

u
t

)n
t−n =

1

u

1

u+ 1
· · · 1

u+ (n− 1)
.

First, let us establish that k[{ 1
u−c}c∈Z] ⊂ A0. Consider the set {f0, f1, . . . , fn}. If we

bring this set of polynomials to their common denominator u(u+1) . . . (u+(n−1)),

15
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note that the numerator of f0 will be a degree n polynomial, the numerator of f1

will be a degree n − 1 polynomial, and so on. So thus we easily see that the

numerators of these rational functions span the space of polynomials with degree

at most n. Thus, by considering the span of {f0, . . . fn}, we can obtain elements

in A0 of the form p(u)
u(u+1)···(u+n−1) , with p being an arbitrary polynomial of degree

at most n. In particular, we can get 1
u+c

for any choice of c ∈ Z≥0. For c ∈ Z−,

we repeat this construction, but we look at elements of t−n
(
1
u
t
)n

to obtain the

rational functions with denominator u− c. Note that naturally A0 ⊂ k[{ 1
u−c}c∈Z],

as A0 is generated by 1
u
t and t−1, and σ sends integer poles to other integer poles.

Finally, this ring has the description as given by virtue of the theory of partial

fractions.

For the description of the full ring, we can proceed by induction on the

length of word of the generators. Say we knew that all words of length n in 1
u
t and

t−1 can be written either in the form A0, A0

(
1
u
t
)m

or A0(t
−1)m, for some m ≥ 1. So

consider a word of length n+ 1. Set aside the left-most term of the word, and note

the other terms form a word of length n. If our initial term was 1
u
t, our word can be

rewritten either in the form 1
u
tA0,

1
u
tA0

(
1
u
t
)m

or 1
u
tA0(t

−1)m. All of these can be

changed to the correct form though: the first can be written σ(A0)
1
u
t, the second

σ(A0)
(
1
u
t
)m+1

, and the third as σ(A0)
1
u
(t−1)m−1. As σ(A0) ⊂ A0, and 1

u
A0 ⊂ A0,

we see in all the cases we have an element of the correct form. If the initial term

was t−1, the analysis is essentially the same. Thus we see that A+ = A0[w;σ], and

A−1 = A0[v;σ−1], as needed.

With the characterization in hand, we can proceed to classify the prime

ideals of A0, and we get the following.

Proposition 3.3. The prime ideals of A0 are exactly the ideals of the form ( 1
u

+c),

where c ∈ k−{ 1
n
| n ∈ Z \ {0}}, and the zero ideal. Moreover, these ideals are all

distinct, depending on the choice of c.

Proof. Let P be our prime ideal, and take a element f
g
∈ P with minimal degree

in the denominator. First, we rule out that deg(g) = 0, as that would force f

to be a unit. We claim that deg(g) = 1. Suppose not, so that we can factor
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g = g1g2, where deg(g1) = 1, and factor f = f1f2, with deg(f1) ≤ deg(g1) and

deg(f2) ≤ deg(g2). This procedure is possible since k is algebraically closed. Now,
f1
g1
, f2
g2
∈ A0, and since P is prime, one of these elements must be in P . This

contradicts the minimality of g. So thus our ideal has an element of the form a+bu
c+du

,

which after division and multiplication by d, we can view to have the form a′+ b′

u−c′ .

Now, say our ideal has two elements of this form, call them a1+ b1
u−c1 and a2+ b2

u−c2 .

We can multiply each element by u−ci
u

, and we get ai + bi−aici
u

. If bi − aici = 0,

then our ideal has a unit, so say not. We can scale both of the elements by the

bi− aici, so now we have two elements of the form a′i + 1
u
. So if a′1 = a′2, they were

originally scalar multiples, so we’re done. If a′1 6= a′2, we can subtract a′1 + 1
u

from

a′2 + 1
u

and get an element of the form a′1−a′2 6= 0, which is a unit. The ideal would

then be the entire ring, so thus would not be prime. We need to make sure a+ 1
u

isn’t a unit. Rewriting, we see that a + 1
u

= a
u+ 1

a

u
. So this is a unit if u + 1

a
is a

function with a zero at an integer, thus 1
a

cannot be in Z. Finally, note that we

can do this analysis with every rational function in the ideal, and if there wasn’t a

common factor of the form a+ 1
u

between them, our analysis shows that the ideal

must necessarily be a unit ideal by virtue of being able to generate two distinct

elements of this form. Thus the prime ideal must be principal, generated by the

common factor.

With this, we get a nice corollary:

Proposition 3.4. A0 is a PID, and A is Noetherian.

Proof. By a theorem in Hungerford [6, 8.2.4], if a ring has all prime ideals being

principal, the ring itself is principal. So A0 is a PID.

Now, let w = 1
u
t, and v = t−1. Say we have an ascending chain of right

ideals in A, I0 ⊂ I1 ⊂ · · · ⊂ In ⊂ · · · . First, for each In, let

Jn =
{
a | awk + ak−1w

k−1 + · · · ∈ In
}

(3.5)

be the ideal of leading coefficients of elements with positive degree in In. First,

we need to check that Jn are ideals of A0. Given two elements a, b ∈ Jn with

a+ b 6= 0, note that there are corresponding functions fa = awn + an−1w
n−1 + · · ·
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and fb = bwm + bm−1w
m−1 + · · · . Assuming n > m, multiplying fb by wn−m on

the right and summing, we get an element of In with leading coefficient a + b, as

needed. Also, for any r ∈ A0, there is a polynomial with leading coefficient ar,

indeed, multiply fa by σ−n(r), and we get faσ
−n(r) = arwn+an−1σ

−1(r)wn−1+· · · ,
as needed.

We have J0 ⊂ J1 ⊂ · · · ⊂ Jn ⊂ · · · . A0 is a PID, so this sequence eventually

stabilizes to some J , and there is some f in some IN such that the leading coefficient

of f generates this ideal. Let deg(f) = M . Now, for all 0 < m < M , we will make

a similar argument. For each m, let

Jn,m =
{
a | awk + ak−1w

k−1 + · · · ∈ In, k ≤ m
}

(3.6)

be the set of leading coefficients of elements of In with with degree at most m,

having at least one term of positive degree. Using the same argument as above, we

generate ideals Jn,m of A0, and from these ideals we can find fm ∈ INm such that

fm has an appropriate leading coefficient to generate Jn,m. Now, say our original

chain of ideals is infinitely ascending. So for k � N,N1, . . . Nm, we have Ik+1

strictly containing Ik. Take a term g with minimal positive degree that is in Ik+1

but not Ik, and say deg(g) = d. If d > M , note that the leading of coefficient of

g is some A0 multiple of the leading coefficient in f , so there is some r ∈ A0 such

that g − rfwd−M has degree strictly less then the degree of g. If deg(g) < deg(f),

then the leading coefficient of g is some A0 multiple of the leading coefficient in

fdeg(g), so g − rfdwd−deg(fd) has degree strictly less then g. In either case, we get

a contradiction violating the minimality of our choice of g. So thus if g exists, it

cannot have any terms of positive degree.

However, we can repeat this argument, this time considering the most nega-

tive coefficients of elements with at least one term of negative degree in In, viewing

our indeterminate variable to be v, instead of w. So g cannot have any terms of

negative degree. Thus g ∈ A0. Now the In ∩ A0 generate a ascending chain of

ideals in A0. By the Noetherian property in A0, however, this must stabilize as

well. So if we choose sufficiently high K, we get Ik = Ik+1 for all k > K as needed.

Thus A satisfies the Noetherian property for right ideals. For left ideals, we can

do a similar argument, but we have to consider all our ring elements to be written
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wnan + . . . + wa1 + a0 + va−1 + . . . vma−m. Our ideals of leading coefficients are

different, but the argument is essentially the same.

From here, we are able to characterize the prime spectrum of A. To begin

with, we need a lemma adapted from a paper of Bell, Rogalski, and Sierra [2].

Lemma 3.7. Nonzero prime ideals in A contain a nonzero homogeneous prime

ideal.

Proof. Note that the graded quotient ring of A is Q = k(u)[t, t−1;σ]. Since k(u)

has no σ-fixed ideals, and powers of σ never are an inner automorphism of k(u),

this forces Q to be simple [8, 1.8.5]. So take a nonzero prime ideal P ⊂ A. We

claim that P must contain a homogeneous element. For sake of contradiction,

suppose not. Let S be the set of all homogeneous elements in A, and note Q is

the localization of A at S. As P < A is a proper ideal that has no homogeneous

elements, PS−1 is therefore a proper ideal of Q, via the ideal correspondence in

localization. Q is simple though, so this is impossible. Thus P must have some

nonzero homogeneous element in the ideal. Now, let P̃ be the ideal generated

by all homogeneous elements in P , which is not the 0 ideal by before. Note if

homogeneous ideals Ĩ and J̃ have Ĩ J̃ ⊂ P̃ , we necessarily have Ĩ J̃ ⊂ P as well.

Since P is prime, this forces one to be in the ideal, say Ĩ. But by the construction

of P̃ , Ĩ ⊂ P̃ as needed.

Also, knowing the σ-fixed ideals of A0 will be very helpful.

Lemma 3.8. The only σ-fixed ideals of A0 are
{(

1
u

)n | n ≥ 0
}
, and (0).

Proof. Say (f
g
) 6= 0 is σ-fixed, with n being the difference in degrees between the

denominator and numerator. Then
(
f
g

)
=
(
σ(f)
σ(g)

)
. So there is some a ∈ A0 such

that f
g

= aσ(f)
σ(g)

. So we get that fσ(g)
σ(f)g

∈ A0. This forces f to have all integer roots,

as if it did not, there would be a largest such root z. Now σ(f) has a root z + 1,

and fσ(g) has no corresponding root to be able to cancel it, as g only has roots

at integers, and the non-integer roots of f are at most z by construction, so thus

cannot be z + 1. If f has only integer roots though, we can find an appropriate

unit g
unf
∈ A0 so our ideal would have the desired form.
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So now, we can prove our main result:

Theorem 3.9. A has classical Krull dimension 2. Let I =
(
1
u

)
< A0. The nonzero

prime ideals of A are either of the form

1. Pi = I
(
1
u
t
)t

, for i ≥ 0, and Pi = Ai, for i < 0,

2. Qi = Ai for i > 0, and Qi = Iti for i ≤ 0,

3. S0 = I, Si = Ai for i 6= 0, or

4. Lifts of primes found in the quotient ring A/P and A/Q, which are both

isomorphic to polynomial rings.

Proof. So the first goal is to classify the graded-ideal structure for A. Let I be

our graded ideal, and for now focus on I+ =
⊕∞

j=0 Vj(
1
u
t)j. Note since 1

u
t ∈ A,

we get Vj ⊂ Vj+1. We also get σ(Vj) ⊂ Vj+1, via multiplication of 1
u
t from the

opposite side. All the Vj are ideals of A0, and since A0 is a PID, it is Noetherian,

so eventually for sufficiently large n > N , we have Vn = Vn+1, and moreover this

shows that Vn = σ(Vn). So these ideals are forced to be σ-fixed. Moreover, a

similar result is true for I− =
⊕∞

j=0 V−jt
−j, except we merely have to multiply by

t−1 now, and we find that for sufficiently large n > N , V−n = V−(n+1), and these

V−n are σ-fixed.

So, returning to the analysis of the A+ portion of the ideal, choose some

n high enough that Vn = Vm for all m > n. The ideal Vn is σ-fixed by above,

so thus it has the form
(

1
u

k
)

, or 0. Now consider the ideal Vn−1. We know that

1
u
Vn ⊂ Vn−1, by virtue of multiplying In by t−1, and Vn−1 ⊂ Vn, via multiplying

In−1 by 1
u
t. Thus we have (

1

u

k+1
)
⊂ Vn−1 ⊂

(
1

u

k
)
, (3.10)

and we can conclude that Vn−1 is either
(

1
u

k+1
)

or
(

1
u

k
)

. Therefore, to each In

we can associate a positive integer an such that Vn =
(
1
u

an
)
, and the an are a

non-increasing series from n = 0 to infinity. The same analysis can be done on the

negative portion of the ideal as well, and we see that the a−n form a non-increasing

series from n = 0 to infinity at well.
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So now suppose V0 =
(
1
u

a0
)
, where a0 > 1. When we consider A/I, note

that elements of negative degree in (A/I)0 are nilpotent. To see this, we examine

the structure of V0. We claim that we can view V0 to be the ideal of all elements

with degree less than or equal to a0. Say we have an element f
g
, with deg(f) = n,

and deg(g) = a0 + n, for some n ≥ 0. Then we have:

f

(u− c1) · · · (u− cn)
=

f

un
1

ua0
un

(u− c1) · · · (u− cn)
. (3.11)

Both f
un

and un

(u−c1)···(u−cn) are in A0, so thus this belongs to V0. Clearly V0 only

consists of elements with degree at most a0, so the claim is established. Now

consider the ideal J/I < A/I, where J/I =
(
1
u

)
. Note J/I is nonzero, since

a0 > 1, so at least 1
u
∈ J/I. However, (J/I)a0 = 0, as V0 contains everything that

has degree at most −n, and as V0 ⊂ Vi for all i, all the Vi have this property as

well. Thus, A/I has a nonzero nilpotent ideal, so thus is not prime. Therefore,

a0 = 1 by force, and A/I0 ∼= k. Letting w = 1
u
t and v = t−1, we can see that A/I

has either the form (A/I)+n = kwn or (A/I)+n = 0, with the latter case happening

for all larger n once it appears. Likewise, (A/I)−n = kvn or (A/I)−n = 0, with the

same property that once a graded piece is zero all further graded pieces are zero.

Note that wv = 0 in A/I, as wv = 1
u
∈ I0. Thus, we can see by checking the

multiplication of homogeneous elements that this ring is now commutative, and

therefore we simply need to ensure this ring is an integral domain. Clearly, we

cannot have elements of both v and w in the ring, so without loss of generality,

assume (A/I)−n = 0 for n ≥ 0. If we have (A/I)1 = 0, we simply will have k, and

if (A/I)1 6= 0, note that wn 6= 0 for all n > 0, so thus (A/I)n 6= 0 for all n > 0.

Thus, once we mod out by the graded homogenous ideals we either get a

k alone, or a polynomial ring. We know by Lemma 3.7 that all height one primes

are homogeneous, and that polynomial rings have classical Krull dimension 1, so

thus our ring has classical Krull dimension 2, as needed. Additionally, we have our

classification of the prime ideals.

Moreover, using similar techniques, we can characterize all simple graded

modules of A.
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Theorem 3.12. A has two families of right simple graded modules M : The first

has exactly one nonzero graded component Mi
∼= A0/(

1
u
), and the other has the

form A/I, where In =
(
1
u

+ c
) (

1
u
t
)n

for n ≥ 0, and In =
(
1
u

+ c
)
tn, for n < 0,

and c is not the inverse of a nonzero integer.

Proof. Let M =
⊕

Mi be a simple module of A, w = 1
u
t, and v = t−1. First note

that each Mi is a simple right A0 module. For sake of a contradiction, say that

nonzero N0 < M0 as A0 modules. Now consider the right A module N0A. N0A <

M , so thus N0A = M . In particular, (N0A)0 = M0. But (N0A)0 = N0A0 = N0, so

N0 = M0 as needed.

Now, since A0 is a PID, its simple modules have the form A0/m, where m

is some maximal ideal of A0. Say, up to a shift, that M0 is a nonzero component of

M . Then either m = (1/u) or m = (1/u−c0), where c0 is not the reciprocal of any

integer. Now, to find simple graded modules, we need to find graded maximal right

ideals I of A, since necessarily if M is simple then M ∼= A/I. So say In = Vn
(
1
u
t
)n

if n ≥ 0, and In = Vnt
n if n < 0. Note that

V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ · · · (3.13)

is the inclusion induced by multiplication by 1
u
t on the right, and likewise

V0 ⊂ V−1 ⊂ · · · ⊂ V−n ⊂ · · · (3.14)

is the inclusion induced by multiplication by t−1 on the right. Since M0 must be

simple, we then know I0 is either
(
1
u

)
or
(
1
u

+ c
)

for some c. So let us do the
(
1
u

)
case first.

In this case, I is contained in the right ideal J , where J0 =
(
1
u

)
, and Ji = Ai

for i 6= 0. This is an ideal, as AiA−i ⊂ 1
u
A0 for i 6= 0. Note that the induced module

has the form M0 = k, and Mi = 0 for i 6= 0.

In the other case, we claim if V0 =
(
1
u

+ c
)
, then all other Vi =

(
1
u

+ c
)

as

well. So by the inclusions already discussed, and since
(
1
u

+ c
)

is maximal, for each

direction, either all the Vi have this form, or there is some choice of N such that

Vi = A0 for all i ≥ N . We claim the latter is impossible though. If this is the case,

there is a smallest possible choice of N . Now, note that A0

(
1
u
t
)N

t−1 ⊂ I, so in
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particular 1
u

(
1
u
t
)N−1 ∈ I, so thus 1

u
∈ VN−1. However, this violates the choice of

N , since if 1
u

+ c and 1
u

are both in VN−1, then VN−1 = A0. So thus V0 =
(
1
u

+ c
)
,

then all Vi =
(
1
u

+ c
)
, and this choice of Vi gives a I such that A/I is the other

class of simple modules.

Note that in the first case, the shift will move where the non-zero graded

piece is, while in the second case, the shift keeps the form of the module, possibly

changing the choice of c.

Now, we will show that A is a maximal order.

Proposition 3.15. A is a maximal order.

Proof. By Lemma 2.31, it is sufficient only to consider the graded quotient ring and

graded ideals of A. So take any nonzero graded ideal I ⊂ A, and say homogeneous

q ∈ k(u)[t, t−1;σ] has Iq ⊂ I. Assume q has positive degree, so that q = rwn, with

n ≥ 0, and I+ =
⊕∞

k=0 Vkw
k. By Theorem 3.9, the graded ideal structure of A is

classified. In particular, we have for sufficiently large m that Vm = Vm+n, and all

these ideals are σ-fixed. Thus we have

Vmw
mrwn = Vmσ

−m(r)wm+n ⊂ Vm+nw
m+n = Vmw

m+n. (3.16)

Now, if r has positive degree as a rational function, we would get an immediate

contradiction, as Vm must have a maximal degree element, and multiplication by

r would only increase the degree of this element. So thus r has negative degree as

a rational function. Suppose that r 6∈ A0, so thus r must have poles not at the

integers, call them {z1, . . . , zn}. Moreover, since Vmσ
−m(r) ⊂ Vm, every element in

Vm must have zeros at {z1−m. . . , zn−m} in order to have Vm remain a ideal of A0.

However, we can repeat this argument, now using Vm+n and Vm+2n as our ideals,

and conclude that every element of Vm must have zeros at {z1 − 2m. . . , zn − 2m}
as well. Thus, by repeating this argument, we force elements of Vm to have zeros at

infinitely many locations, which is clearly impossible. So thus r ∈ A0, as needed,

so q ∈ A and A is a maximal order.

Finally, we will show A does indeed have GK dimension 3.
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Proposition 3.17. A has GK dimension 3.

Proof. Take a generating subspace for A of the form k + k
(
1
u
t
)

+ kt−1. Consider

an element of the form an,x,y =
(
1
u
t
)n (( 1

u
t
)

(t−1)
)x−1 ( 1

u
t
) ((

1
u
t
)

(t−1)
)y

(t−1)n+1.

After expanding, we can see that

an,x,y =
1

u
· · · 1

u+ n− 1

(
1

u+ n

)x(
1

u+ n+ 1

)y
. (3.18)

Additionally, an,x,y is made up of 2(n+ x+ y) generators. Now, consider the set

{a0,n,0, a0,n−1,1 . . . , a0,2,n−2, a1,n−2,1, . . . , an−2,1,1}. (3.19)

We claim this set is linearly independent. First, observe that a0,n,0 has a pole of

order n at zero, and no other element on the list has such a pole of that order, so

thus a0,n,0 is linearly independent with the rest of the set. In general, an element

an,x,y has a pole of order x at n, and a pole of order one at all m < n. Thus, as

we go down the list, there is always some pole in each element such that the rest

of the elements to the right of it in the set do not have a pole of that order or

higher. So thus, this is a linearly independent set, and moreover, it has n(n−1)
2

+ 1

elements. However, this is just the elements that have net zero degree. If we allow

the degree to be positive or negative, we can do the same construction as before,

except we initially start by setting aside excess factors of 1
u
t or t−1 as appropriate.

Now, say that we are computing the number of linearly independent ele-

ments in V n. Taking n to be even, we have n
2

generators to form elements of degree

zero, n
2
− 1 generators to form elements of degree ±2, and so on. Thus we have at

least
n/2∑
k=1

k(k − 1)

2
+ 1 =

1

48
(n3 + 20n) (3.20)

linearly independent elements. Therefore A has at least GK dimension 3. However,

by a paper of Rogalski and Zhang [9, 1.6], we know that k(u)[t, t−1;σ] has GK

dimension 3, so A has at most GK dimension 3. So thus the GK dimension of A

is exactly 3, as needed.



Chapter 4

Integrally closed σ-closed subrings

of K(u)

The next goal is to investigate graded maximal orders of k(u)[t, t−1;σ], and

this is very closely related to finding all integrally closed subrings of k(u). Let

R ⊂ k(u) be a subring. First, we need a way to reduce to the finitely-generated

case:

Lemma 4.1. Let R ⊂ k(u) be a subring of k(u) such that Q(R) = k(u). Then R

has a finitely-generated integrally-closed subring R′ with Q(R′) = k(u).

Proof. First we want to find a finitely-generated subring S ⊂ R such that Q(S) =

k(u). Assume this is not possible, for sake of contradiction. So take an element r1

and form Q1 = Q(k[r1]). Since Q1 6= k(u) by assumption, take some r2 ∈ R−Q1,

and form Q2 = Q(k[r1, r2]). Again, this cannot be k(u) by assumption, so we can

find some r3 ∈ R−Q2. Repeating this process, we get a chain of quotient rings

k ( Q1 ( Q2 ( · · · ( Qn ( · · ·

that never terminates. Since k is algebraically closed, all the Qi must have tran-

scendence degree at least one, and by virtue of all these being subsets of k(u),

they all have transcendence degree at most one. So thus all Qi have transcen-

dence degree one. However, by a theorem in Hungerford [6, 5.6.11], these type of

chains cannot go on infinitely. Thus there is some finitely generated subring of S

25
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of R that has Q(S) = k(u). However, taking the integral closure of S, we get a

finitely-generated integral closure R′, by a theorem in Eisenbud [4, 13.13].

Theorem 4.2. Let R ⊂ k(u). Then if R is both σ-closed and integrally closed, then

R is the localization of some polynomial ring. In particular, either R = k[u]S−1,

for some σ-closed set S, or

R = k[S−1] =

{
f

g
| deg(f) ≤ deg(g), g only has factors in some σ-closed set S

}
.

(4.3)

Proof. To begin, by Lemma 4.1 we may take a finitely-generated subring R′ ⊂ R

that has Q(R′) = k(u). Now R, due to being an integral domain, has a corre-

sponding affine variety V = SpecR. This variety has dimension one, since its

corresponding quotient ring is k(u), and moreover, it is smooth, since the local

ring of any point is integrally closed, and the integral closure of the entire ring

passes to the localization. Now by a result in Hartshorne [5, 6.2A], an integrally

closed Noetherian local domain of dimension one is equivalent to being a regular

local ring, so V is smooth by definition. But now by a corollary in Harthshorne

[5, 6.10], every smooth affine curve is isomorphic to a open subset of a nonsingular

projective curve, and that projective curve necessarily must be P1, as there is a 1-1

correspondence between smooth projective varieties and their function fields, and

we know the function field of V must be k(u). So thus, we have V ∼= P1 − S, for

some finite non-empty subset of points S in P1. However, since P1 minus a single

point is isomorphic to A1, we have V ∼= A1 − S ′, where S ′ has one fewer element

then S. The coordinate ring of A1−S ′ is known though, and by the correspondence

of coordinate rings and ideals, we induce an isomorphism R ∼= k[v]T ′−1, where T ′

corresponds to the set of points S ′ that we remove. Note that T ′ ⊂ {v−a | a ∈ k},
by this correspondence.

This isomorphism of rings must induce an isomorphism on the function

fields though, so k(v) = Q(R) = k(u). By an exercise in Hungerford [6, V.2 ex. 6],

we know that v = a+ub
c+ud

for some choice of a, b, c, d ∈ k with ad− bc 6= 0. However,

by long division and appropriate scaling, we see we either have u ∈ R (if d = 0),

or we have an element of the form 1
c′+u
∈ R. Now there are two cases, either u is

in our ring or u is not in our ring.
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In the first case, say that R contains k[u]. First suppose R contains an

element with some denominator, say f(u)
(u−a)g(u) . We can multiply though by g(u)

to get an element of the form f(u)
(u−a) . Now, after polynomial long division, we get

an element of the form p(u) + c
u−a . But R contains k[u], so thus we get R having

an element of the form 1
u−a . We can add u− a to the localization set though and

account for this element. Now we iterate through all the possible factors in the

denominator, and we see R is a localization of k[u], at a set S corresponding to

all linear factors appearing in any denominator. Note that S is σ-closed as we

demand R to be a σ-closed ring.

In the other case, note that k[ 1
u+c

]S−1 = R′. However, S must correspond

to localization at specific points in A1, based on our construction of the ring, so

thus functions of the form 1
u+c
− a. Thus the elements of the localization have

the form r = 1
1

u+c
−a , with a 6= 0 by virtue of u not being in R. Multiplying r by

1
u+c

, we get an element of the form 1
1−a0u−ca0 , which after appropriate scaling has

the form 1
u−a′ . So to get a factor in the denominator, it has to come from some

negative one degree term in the localization, which is what we need. So thus, R′

is generated by elements of the form 1
u−a , and by using an argument very similar

to the one in Proposition 3.2, we can show that R′ has the form described by 4.3.

To finish the proof, note that we can repeat this argument, only using elements

in R − R′. Since u 6∈ R, we always arrive in this case, which consequently makes

our set S larger. So thus, R has the form described by 4.3 as well. Note that S is

σ-closed, as R is.

Note that these rings are both in some sense localizations of polynomial

rings, but the difference is the interaction with σ: k[u] is σ-fixed, while k[ 1
u−a ] is

not.

The reason that integrally closed, σ-closed subrings of k(u) are so important

is that they are the only choices for the degree 0 pieces of maximal orders in

k(u)[t, t−1;σ].

Theorem 4.4. If R =
⊕∞

i=−∞ Vit
i is a maximal order in k(u)[t, t−1;σ], then R0

is a σ-closed integrally-closed subring of k(u).
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Proof. Assume, for sake of contradiction, that R0 is not integrally closed but R is

a maximal order.

To begin with, note V1tV−1t
−1 = V1σ(V−1) ⊂ R0. Since R0 ⊂ k(u) is

commutative, note V1σ(V−1) is both a R0 module, since R0R1t ⊂ R1t, and a σ(R0)

module as well, using the same reasoning. Thus, there exists some i1 ∈ R1σ(R−1)

such that σ(R0)i1 ⊂ R1σ(R−1) ⊂ R0. Thus, k〈R0, σ(R0)〉 is an equivalent order to

R0. In general, Vnt
nV−nt

−n = Vnσ
n(V−n) and this is both a R0 and σn(R0) module,

so there is some nonzero rn ∈ R0 such that σn(R0)rn ⊂ R0, by using the same

argument as above. Thus, we can see that R0 and k〈σ−n(R0), . . . , σ
n(R0)〉 are

equivalent orders, as multiplying the second ring by r−n · · · rn sends the ring into

R0. The Krull-Akizuki Theorem asserts that subrings of k(u) are Noetherian [4,

11.13], and in Noetherian commutative rings, maximal orders and integrally closed

domains are equivalent concepts [8, 5.1.3]. So let R̃0 be the integral closure of R0.

It is also the integral closure of k〈σ−n(R0), . . . , σ
n(R0)〉, for each n. So thus R̃0 is σ-

closed. Indeed, for any r ∈ R̃0, there are an ∈ R0 with rn+an−1r
n−1 + · · ·+a0 = 0.

But now σ(r)n + σ(an−1)σ(r)n−1 + · · · + σ(a0) = 0, and R̃0 is the integral closure

of k〈R0, σ(R0)〉 as well, so σ(r) ∈ R̃0 as needed.

Finally, consider R̃ =
⊕∞

i=−∞ R̃0Rit
i. This is a ring, since R̃0 is σ-closed, it

passes freely through the ti. Moreover, R0 ⊂ R̃0, and from Theorem 4.2, we know

that R̃0 is a localization of k[v]. So now consider, R0[v]: this contains k[v], and thus

must be a localization of k[v]. So R0[v] = R̃0, as localizations of polynomial rings

are integrally closed. However, R0[v] is a finite R0-module, as v ∈ R̃0. Writing

v = rs−1, with r, s ∈ R, and supposing that the minimal polynomial of v in R[x]

has degree n, sn−1R̃0 ⊂ R0. Therefore R̃ is an equivalent order of R, but since

R ⊂ R̃, this contradicts our initial assumption that R is a maximal order. So thus

R0 is integrally closed.

It will be useful for later to note some properties of the rings described in

Theorem 4.2.

Lemma 4.5. Let R = k[S−1] be a subring of k(u) that consists of all rational

functions with degree at most zero with poles at a σ-fixed set S, as in 4.3. Then R
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is a PID, and the σ-fixed ideals of R are exactly the ideals In = {r : r ∈ R, deg(r) ≤
−n}.

Proof. The first statement immediately follows since R is a localization of some

polynomial ring over k, and the localization of a PID is again a PID. Let I be a σ-

fixed ideal of R. So I =
(
f
g

)
. If the zeros of f solely belong to the allowable poles in

the ring, note that for any f ′ and g′, with deg(f ′) = deg(f) and deg(g′) = deg(g),

we have f
g
f ′

f
g
g′

= f ′

g′
∈ I. If there is a zero of f that does not belong to the allowable

poles, note that σ(f)
σ(g)
∈ I, so there must exist r ∈ R such that r f

g
= σ(f)

σ(g)
. However,

there must be one such of these zeros that is not a σ-iterate of any other zero in

f , as σ has infinite order. So thus there is a zero of f that is not a zero of σ(f), so

thus r must have a pole at that zero. But this is impossible by construction. So

thus I = In for some n, as needed.



Chapter 5

The classification of Z-graded

rings with A0 in the zeroth degree

piece

Let k[S−1] be a subring of k(u) that consists of all rational functions with

degree at most zero and with poles only at some set S that is σ-closed. The

goal is to find a classification of all finitely-generated Z-graded GK 3 k-algebras

B ⊂ k(u)[t, t−1;σ], that have k[S−1] in their zeroth degree piece. So the first goal

is to classify the structure of B≥0 and B≤0, then glue them together. Without loss

of generality, assume that 1
u
∈ A0, which we can do by replacing u with u + a for

some a, so we can denote by
(
1
u

)
the ideal I1 described in Lemma 4.5.

So first off, note Bi = aiA0t
i, for some choice of ai ∈ A0, due to each Bi

being an A0 module contained in k(u), and thus a principal A0 module. Since B is

finitely generated, we can assume the generating elements lie in the graded pieces

Bk1 , . . . , Bkm . Thus, for all n, we must have

Bn ⊂
∑

ai∈{k1,...,km},
∑
ai=n

Ba1 · · ·Bax . (5.1)

We claim that for n� 0 each summand on the right hand side can be rewritten as

the product of graded pieces with non-negative degree. To begin with, we can view

the product lying in B+B−, where B− is the graded piece with all the negative

graded pieces multiplied together, and B+ is the graded piece arising after all the

30
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non-negative pieces are multiplied together. If there is a negative graded piece in

the product, call it Bm, take the largest graded piece appearing in the process,

BM , and note BmBM ⊂ Bm+M . Note if n is large enough, M < n, so m+M < n

as well. Consider a new product with BM and Bm replaced by BM+m. After this

substitution, the new product, when written as B′−B
′
+, has B′− lying in higher

degree then B−. In other words, the total degree of the negative components is

getting closer to zero. Thus, by iterating this process, we see that we can force

B− = 0, so that the entire product of graded pieces has components that only live

in positive degrees. So thus, we see that, for sufficiently large n,

Bn ⊂
n−1∑
i=1

BiBn−i. (5.2)

This in turn, leads to the condition on the structure constants that

an ∈
n−1∑
i=1

aiσ
i(an−i)A0. (5.3)

Note that in negative degrees, we can do the same argument as above, but

this time aim to eliminate the B+, and see that we get an analogous equation. In

this case though the structure constants in 5.3 all correspond to negative degrees.

Let X = SpecA0, and let σ be the automorphism that σ induces on X.

Note that from arguments above, σ has exactly one fixed point, the ideal (1/u):

the rest of the prime ideals get permuted.

The idea of the argument is we can transform the grading variable t to a

more convenient form in order to simplify the long-term behavior of the constant

ai. To do this, we need to translate this problem to algebraic-geometric language,

then follow the results of Artin-Stafford. So assume t ∈ B1, and note that anA0

generates a subsheaf Fn of K on X, where K is the constant sheaf of rational

functions. Note each Fn is free of rank 1, and thus is of the form OX(Dn), for

some Weil Divisor Dn on X. This divisor is principal, and it can be worked out

that the divisor has form (a−1n ). So the condition on the structure constants now

can be expressed as:

Dn =
r⋃
i=1

Di + σ−i(Dn−i), (5.4)
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where E =
⋃
Di represents the smallest divisor that has E −Di ≥ 0 for all i. We

call a sequence of divisors that has the property in 5.4 a σ-divisor sequence. Now

we follow results in the Artin-Stafford paper.

So now there are two cases. The first case is covered by [1, 2.7]:

Lemma 5.5. Let Dn be a σ-divisor sequence, and let J be a subset of X consisting

entirely of fixed points of σ and set En = Dn|J . Then there exists l such that

Enl = nEl for all n ≥ 1.

In our ring, there is exactly one point that is fixed under the σ-action,

and that is the point corresponding to the (1/u) ideal. So thus by this lemma,

after taking an appropriate Veronese subring, we can make the contribution by the

fixed point have the form given by the lemma - it goes up by a fixed amount as

we increase the degree. Now, we have pretty fine control over the contribution of

the fixed ideal to the ring.

Theorem 5.6. Let A ⊂ k(u)[t, t−1;σ] be a finitely-generated Z-graded k-algebra

that has A0 = k[S−1], and whose structure constants all have form uk. Then there

exists n, x, and y, with n, x, y ∈ Z, n ≥ 1, x + y ≤ 0, that generate an algebra

B described by Bk = ub−
xk
n cA0t

k, for k < 0, and Bk = ub
yk
n cA0t

k for k > 0, such

that B is a maximal order for A.

Proof. Let A =
⊕∞
−∞ u

akA0t
k. First note that

AiAj = uaiσ−i(uaj)A0t
i+j = uai(u− i)ajA0 = uai+ajA0, (5.7)

as uaj

(u−i)aj is a unit in A0. Thus, we can focus on the behavior of the exponents. We

know by Lemma 5.5 that there exists some n, x, and y such that akn = −xk for

k < 0 and akn = yk for k > 0. Since A−nAn ⊂ A0, we have that x + y ≤ 0. Now

fix some i > 0, and let l be the least common multiple between i and n. Note that

(Ai)
l/i ⊂ Al, and that unA0 ⊂ umA0 forces n ≤ m, because unA0 is the set of all

rational functions with poles at S with degree at most n, so the smaller A0-module

must have a smaller power of u corresponding to it. So we have ai
l
i
≤ y l

n
, which

after rearrangement gives us ai ≤ y i
n
. We want the maximal order to correspond

to the largest possible ring fitting our parameters, so thus set bi =
⌊
y i
n

⌋
. Similarly,
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for i < 0, we set bi =
⌊
−x i

n

⌋
. We claim that this choice of structure constants

does make a graded ring. Consider the multiplication of BiBj. If i and j are both

positive, we have bi + bj =
⌊
y i
n

⌋
+
⌊
y j
n

⌋
≤
⌊
y i+j

n

⌋
= bi+j. A similar thing happens

if i and j are both negative. Now say i is positive and j is negative. Then we have

bi + bj =

⌊
y
i

n

⌋
+

⌊
−x j

n

⌋
≤
⌊
yi− xj
n

⌋
. (5.8)

If i+ j > 0, we can rewrite this expression as
⌊
y(i+j)−j(x+y)

n

⌋
, and since x+ y ≤ 0,

this expression is at largest
⌊
y(i+j)
n

⌋
= bi+j, as needed. Similarly, if i+ j < 0, then

we have this expression rewritten as
⌊
i(x+y)−x(i+j)

n

⌋
, and again since x+ y ≤ 0, we

gave this is at most
⌊
−x(i+j)

n

⌋
= bi+j. So this choice of bi indeed induces a graded

ring, as claimed.

Next, we show that the constructed ring B is an equivalent order of A.

Note that since AknAc ⊂ Akn+c, we have that akn + ac ≤ akn+c. Furthermore,

B was chosen to have maximal graded pieces with respect to the constraint that

akn = bkn = −xk for k < 0 and akn = bkn = yk, so we have akn+c ≤ bkn+c. Finally,

note that bkn+c = bkn + bc, since floor functions naturally split over addition if one

of the summands is an integer. Putting this all together, we see that akn + ac =

bkn+c− bc + ac is a lower bound for akn+c, and akn+c is bounded by above by bkn+c.

In other words, we have

ac − bc ≤ akn+c − bkn+c ≤ 0. (5.9)

Iterating c from 0 to n− 1, we see that the structure constants of a and b differ at

most by the maximum value δ that bc − ac takes. Thus there exists an element in

k(u), u−δ, that has u−δB ⊂ A. Clearly, we have A ⊂ B, so A and B are equivalent

orders. We will show B is a maximal order in a later result.

Now, it would be nice to know given some choice of n, x, y whether the

associated ring corresponding to these constants is finitely generated. First, we

will need a technical lemma.

Lemma 5.10. Suppose R contains all rational functions of degree at most zero,

with denominators taken from some set of linear functions S. Then for any func-
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tion of the form f
p(u−a) , where p ∈ k[u] and whose factorization lies completely in S,

(u−a) 6∈ S, and deg(f) < deg(p)+1 there exists r ∈ R such that r+ f
p(u−a) = 1

(u−a) .

Proof. Since p and (u − a) share no roots, by the theory of partial fractions, we

can write f
p(u−a) = f ′

p
+ c

u−a for some f ′ ∈ k[u] with deg(f ′) < deg(p). However,

now f
p(u−a) −

f ′

p
= c

u−a as needed.

Proposition 5.11. Let B be a maximal order as described by Theorem 5.6, with

some n, x and y associated to it. Then B is a finitely generated k-algebra if and

only if the denominators in A0 are taken from finitely many σ-orbits.

Proof. Clearly, if B is finitely generated, then the denominators in A0 are taken

from finitely many σ-orbits. So without loss of generality, assume the σ-orbit

we are examining is the one generated by u. Let f = (u − 1)b−1t−1, and let

g = ub1+1(u + 1)−1t, and let us consider R =
〈
f, g, 1

u

〉
. We claim that we can

generate all 1
u+c

from this generating set, and we will proceed by induction on c.

Note 1
u
∈ R by definition, and assume that 1

u
, . . . 1

u+n−1 ∈ R. Note

gnfn = ub1+1(u+ 1)−1 · · · (u+ (n− 1))b1+1(u+ n)−1(u+ (n− 1))b−1 · · ·ub−1

= ub−1+b1+1(u+ 1)b−1+b1 · · · (u+ (n− 1))b−1+b1(u+ n)−1.

(5.12)

First, note that b−1 + b1 ≤ 0. If b−1 + b1 = 0, we get u
u+n

in our ring, so thus

have 1
u+n

in our ring as well. If b−1 + b1 < 0, note that 5.12 has the form required

by Lemma 5.10 as there is only one factor of (u + n) and the other factors in the

denominator are (u+ i) with i < n, so thus we know this element, along with the

elements already in R, can give 1
u+n

as needed. Also note to get negative factors,

if we let f ′ = ub−1+1(u− 1)−1t−1, and g′ = (u+ 1)b1t,

f ′ng′n = ub−1+1(u− 1)−1 · · ·ub−1+1(u− n)−1(u− (n− 1))b1 · · ·ub1

= ub−1+b1+1(u− 1)b−1+b1 · · · (u− (n− 1))b−1+b1(u− n)−1.
(5.13)

Again, either b−1 + b1 = 0, and we are done, or else 5.13 has the form required

by Lemma 5.10, as there is only one factor of (u − n), and the rest of the factors

are (u + i) for i > −n. Therefore, we get 1
u−n ∈ R for all n. Thus

{
1
u
, f, g, f ′, g′

}
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generates the portion of A0 corresponding to that σ-orbit. Since there are finitely

many σ-orbits, we can generate A0 with finitely many elements.

To finish the proof, note that if ix
n

is an integer, then
⌊
(ai+k)x

n

⌋
= a ix

n
+
⌊
kx
n

⌋
.

Let i be the least integer such that ix
n

is an integer, and note that bai+k−bai =
⌊
kx
n

⌋
,

where 0 ≤ k < i. So thus we can generate the negative degree portion of the ring

with finitely many elements; ub−nt−n, and then a collection of elements ub
kx
n ct−k,

with 0 ≤ k < i. We can do an identical method for the positive degree portion

of the ring as well. Thus, we obtained a finite generating set for our ring, as

needed.

Now, we need to consider the case where the structure constants do not

simply have the form un. To start with, we will summarize a result from the paper

by Bell and Rogalski.

Theorem 5.14 (Bell-Rogalski [3]). Let T = k[u]S−1, and consider a finitely-

generated k-algebra of the form R =
⊕∞

i=−∞ aiTt
i, with all the ai ∈ k(u). Then,

after a change of t, for i� 0, we have R = aT ti with a ∈ T , and ai ∈ T for i ≥ 0.

Moreover, there exists some s = (σ(c))−1t, with cσ(c) · · ·σn(c) ∈ T for n � 0,

such that for i� 0, we have Ri = bTsi with b ∈ T , and bi ∈ T for i ≤ 0.

Using this result, we present our main theorem.

Theorem 5.15. Let A be a finitely-generated Z-graded algebra that is an order

of k(u)[t, t−1;σ], and let A0 = k[S−1]. Then after appropriate choice of t, there

exists a ∈ A0 such that for i� 0 Ai = auniA0t
i. Moreover, there exists some s =

(σ(c))−1t, with cσ(c) · · · σn(c) ∈ A0 and b ∈ A0 such that for i� 0, Ai = buniA0s
i.

From the ni sequence, we can find n, x, y from Theorem 5.6, and have them induce

a sequence mi, where mi =
⌊
−xi

n

⌋
when i < 0 and mi =

⌊
yi
n

⌋
for i > 0. Consider

R =
(⊕

umiA0t
i
)
∩
(⊕

umiA0s
i
)
. (5.16)

Then R is a maximal order for A.

Proof. Take T = k[u], and as T is σ-fixed, we can consider the graded algebra

TA. Note that TA0 is just the localization of a polynomial ring TS−1, so thus by
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Theorem 5.14, after adjusting t, we have TAi = aTA0t
i for i � 0, with a ∈ TA0.

Say that Ai = aiA0t
i. Then we have that aiTA0 = aTA0. The units of TA0 are

exactly the rational functions whose numerators and denominators have factors

that appear exactly in S, so we have ai = af
g
, where f and g have factors that

only appear in S. Take a such that a has only zeroes that do not appear in S,

and enough factors of u−1 to make a have net degree zero. Now, aiA0 = af
g
A0,

and for each factor f ′ in f we have u
f ′

a unit, and for each factor g′ in g we have
g′

u
a unit, so thus aiA0 = auniA0 for some ni. So thus we have in large degree that

Ai = auniA0t
i. Note in smaller positive degree, we can repeat this process to see

that Ai = aiu
niA0t

i, with ai ∈ A0 with degree zero, as the structure constant in

TA belongs to T . Likewise, there exists an s = (σ(c))−1t such that for i � 0, we

have Ai = buniA0s
i, and Ai = biu

niA0s
i for i < 0, with bi ∈ A0 with degree zero.

Note that this process that adjusts t to s is only changing factors not in uiA0, so

thus the uni sequence is the same in both expressions of the ring.

Say dtz in our ring. Then for sufficiently large i we have

aunitidtz = aσi(d)uniti+z ⊂ auni+zA0t
i+z. (5.17)

So in particular, we have σi(d) ∈ A0u
ni+z−ni = A0u

c, for some c ≥ 0. Thus, to

each ai in A, we can associate some ci such that aiu
ci ∈ A0. Likewise, to each bi

we can associate some di such that biu
di ∈ A0.

Now, we will construct the ring R. Let R = (
⊕

umiA0t
i) ∩ (

⊕
umiA0s

i),

for the mi sequence induced by the ni. We claim R is an equivalent order for A.

By Theorem 5.6, we know that mi − ni is at most some constant δ. Suppose we

know An = auniti for i > N+, and An = bunisi for s < N−. Then, multiplying R

by

q = u−δ
N+∏
i=N−

aiu
cibiu

di (5.18)

we see that qR ⊂ A. From above we showed that A ⊂ R, so they are equivalent

orders.

Also note that by the theorem that cσ(c) · · ·σn(c) ∈ TA0 for n � 0. We

have freedom to change c by a unit in TA0, and also have knowledge that c only
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permutes the factors in each structure constant which are not σ-fixed. So in par-

ticular, we can adjust c so deg(c) = 0, by adding an appropriate factor of uk, so

that c is a product of irreducibles in A0 that do not include 1
u
. Now we have that

cσ(c) · · ·σn(c) has degree zero and is in TA0, so necessarily it must be in A0. Fur-

thermore, this shows that for i� 0, Rn = umiA0t
i, and for i� 0, Rn = umiA0s

i.

Now consider a homogeneous ideal J < R. Consider i � 0, so that

Ri = umiA0t
i. Then Ji = Hiu

miA0t
i, for some ideal Hi < A0. Take i = nk,

where n is the periodic constant induced by the sequence. Note that since mnk =

bkyc = ky, mnk+c = mnk + mc. Now, we have that umnktnk ∈ Rnk, so we get that

Hnku
mnkA0t

nkumnktnk ⊂ J2nk. Noting that umnkσ−nk(umnk) = εum2nk , for some

unit ε ∈ A0, we get Hnk < H2nk. Repeating this argument, we get a sequence of

A0 ideals:

Hnk < H2nk < · · · < Hmnk < · · · (5.19)

and since A0 is Noetherian, this sequence eventually stabilizes to an ideal I. Now

note that umnktnkIumnktnk = σnk(I)um2nk ⊂ Ium2nk , so I is σnk closed. However, by

3.8, we see I must have form
(

1
uc

)
, for some c ≥ 0. Next, consider a homogeneous

element q = dtz ∈ EndA(J, J), with d ∈ k(u). Note that if we have Iq ⊂ I, Iqn ⊂ I

as well. So for now, take z to be a multiple of n. We know that for some l � 0,

we have
1

uc
A0u

mlntlndtz ⊂ 1

uc
A0u

mln+ztln+z. (5.20)

Note we know Hln+z = I as z is taken to be a multiple of n. So thus we have,

−c+mln + deg(d) ≤ −c+mln+z = −c+mln +mz. (5.21)

We know mln+z = mln + mz as the floor function splits cleanly when at least one

argument is an integer, as it is here. But now we see that deg(d) ≤ mk. Moreover

d must have poles only in S, else the containment in 5.20 could not work. Indeed,

umln−cσ−ln(d) ∈ umln+z−cA0, so if d has some pole not in S, so does σ−ln(d), but no

element in umln+z−cA0 has this property. So thus dtz ∈ umzA0t
z, if k is a multiple

of n. So now, we have shown that if Iq ⊂ I, then qn ∈ R.

Now, in the general case, if Iq ⊂ I, note that by the above argument, q must

have denominators in the permissible set. Thus, Iq ⊂ I is only dependent on degree
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considerations. We know that n deg(d) ≤ mnz. But mnz = yz, so deg(d) ≤ yz
n

.

However, deg(d) is an integer, so we can freely write deg(d) ≤
⌊
yz
n

⌋
= mz. Thus

we have q ∈ umzA0t
z in general, as needed. Repeating this entire argument in

negative degrees, writing everything in terms of umiA0s
i for i � 0, we arrive at

exactly the same conclusions, and we get that our homogeneous element q = d′sz

also belongs to
⊕

umiA0s
i. Thus, this element is in the intersection, as needed.

So by Lemma 2.31, as EndA(J, J) ⊂ R, R is a maximal order.
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