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Abstract

The responses of plants to their environment often hinge on the spatiotemporal dynamics of 

transcriptional regulation. While live-imaging tools have been used extensively to quantitatively 

capture rapid transcriptional dynamics in living animal cells, lack of implementation of these 

technologies in plants has limited concomitant quantitative studies. Here, we applied the PP7 

and MS2 RNA-labeling technologies for the quantitative imaging of RNA polymerase II activity 

dynamics in single cells of living plants as they respond to experimental treatments. Using this 

technology, we count nascent RNA transcripts in real-time in Nicotiana benthamiana (tobacco) 

and Arabidopsis thaliana (Arabidopsis). Examination of heat shock reporters revealed that plant 

tissues respond to external signals by modulating the number of cells engaged in transcription 

rather than the transcription rate of active cells. This switch-like behavior, combined with cell-to

cell variability in transcription rate, results in mRNA production variability spanning three orders 

of magnitude. We determined that cellular heterogeneity stems mainly from the stochasticity 

intrinsic to individual alleles. Taken together, our results demonstrate that it is now possible to 

quantitatively study the dynamics of transcriptional programs in single cells of living plants.

Introduction

Plant growth and development depends on rapid and sensitive signaling networks that 

monitor environmental fluctuations and transduce this information into transcriptional 

changes that lead to physiological adaptation. Gene regulation in plants can be extremely 
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fast, with changes in mRNA abundance detectable in seconds to minutes, for example 

in response to modulations in light intensity (Suzuki et al., 2015; Crisp et al., 2017), 

light quality (Leivar et al., 2009), the axis of gravity (Kimbrough et al., 2004), nutrient 

concentration (Krouk et al., 2010) or temperature (Zandalinas et al., 2020).

A first step toward understanding how plant transcriptional programs unfold in time and 

space is to quantify gene activity in individual living cells as they respond to external 

stimuli. Protein reporters have been used in plants to measure the dynamics of single-cell 

gene activity in live tissues over hours to days (Gould et al., 2018). However, fluorescent 

proteins mature at timescales that are long (>30 min) compared to the rates that characterize 

stress-responsive transcription (~1 min) (Kollist et al., 2019), particularly in organisms 

grown at moderate temperatures such as plants (Balleza et al., 2018). In addition, protein 

reporter signals convolve processes such as transcription, RNA processing, RNA transport, 

translation, and protein degradation, often making it challenging to precisely identify where 

and how regulatory control is being applied along the central dogma.

In the last few years, our understanding of transcriptional regulation in animals has been 

transformed by techniques that quantify transcriptional activity in single cells of living 

embryos (Ferraro et al., 2016; Lucas et al., 2013; Gregor et al., 2014; Garcia et al., 

2020) and adult mice (Das et al., 2018). Here, nascent RNA is fluorescently labeled by 

tagging genes of interest with RNA aptamers such as MS2 or PP7 that recruit fluorescent 

proteins to transcriptional loci, revealing real-time transcriptional activity at the single-cell 

level. However, research into the equally diverse and important gene regulatory aspects of 

plant development and physiology has remained relatively isolated from these technological 

breakthroughs.

Here we bridged this technological gap by developing and implementing the PP7 and 

MS2 technologies for labeling nascent RNA in Arabidopsis thaliana (Arabidopsis) and 

Nicotiana benthamiana (tobacco). Through state-of-the-art quantitative imaging, we counted 

the absolute number of elongating RNA polymerase II (RNAP) molecules at individual 

genes and measured how this number is regulated dynamically in response to heat stress. We 

used this stress response in leaf tissue as a model to determine how tissue-level patterns of 

mRNA accumulation arise from the dynamical transcriptional behavior of individual cells. 

We uncovered previously unknown modes of gene regulation in plants by which tissues 

respond to external signals by modulating the fraction of cells engaged in transcription, 

but leave the single-cell transcription rate unchanged. Further, we determined how these 

regulatory layers give rise to a surprising level of cellular heterogeneity. The resolution 

afforded by PP7 and MS2 made it possible to characterize the sources of this cell-to-cell 

variability, revealing that stochastic processes intrinsic to individual alleles contribute to 

differences of three orders of magnitude in mRNA production between neighboring cells. 

Together, these results highlight the potential of live-imaging techniques for uncovering 

and quantitatively describing regulatory processes with spatiotemporal resolutions that 

cannot be achieved with methods such as traditional protein reporters or single-cell RNA 

sequencing. We envision that this approach will open new avenues of inquiry in plant cell 

and developmental biology.
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Results

Establishment of the PP7 and MS2 systems for single-cell live imaging of transcription in 
plants

To quantitatively measure transcriptional dynamics in tobacco and Arabidopsis, we 

implemented an mRNA fluorescent-tagging approach previously used in animal cells in 

culture (Golding et al., 2005; Chubb et al., 2006; Darzacq et al., 2007; Larson et al., 2011), 

D. melanogaster embryos (Garcia et al., 2013; Lucas et al., 2013), the mouse brain (Park 

et al., 2014), and Caenorhabditis elegans (Lee et al., 2019) in which the gene of interest 

is tagged with tandem repeats of the PP7 DNA sequence that, when transcribed, form 

RNA stem-loops (Fig. 1A) (Chao et al., 2008; Larson et al., 2011). The PP7 loop RNA is 

bound by the PP7 bacteriophage coat protein (PCP) (Chao et al., 2008) expressed under a 

ubiquitous promoter. Fusing PCP to a fluorescent protein results in the fluorescent labeling 

of nascent RNA molecules. By virtue of the relatively slow movement of genomic loci in 

the nucleus and the accumulation of fluorophores in the diffraction-limited volume of the 

gene, sites of active transcription appear as bright fluorescent puncta over the background 

of nuclear PCP fluorescence in a laser-scanning confocal microscope. The fluorescence 

intensity of these spots reports on the number of RNAP molecules actively transcribing the 

gene at any given time (Garcia et al., 2013) and is proportional to the instantaneous rate of 

transcription (Lammers et al., 2020; Bothma et al., 2014).

To optimize this imaging strategy for plants, we generated two classes of constructs (Fig. 

1B): (1) coat protein constructs that fuse PCP to a fluorescent protein such as GFP under 

a constitutive and ubiquitously expressed Arabidopsis promoter, and (2) reporter constructs 

that contain a neutral DNA sequence consisting of a firefly luciferase-/3-glucoronidase 

fusion with 24 PP7 stem loop repeats inserted in the 5’ end of this gene, under the control of 

the promoter of interest. To aid in the automated segmentation of nuclei, reporter constructs 

also contain a nuclear label consisting of the mScarlet red fluorescent protein (Bindels et al., 

2016) fused to the Arabidopsis histone 2B coding region driven by a ubiquitous promoter 

(Federici et al., 2012). These two constructs confer resistance to different antibiotics, 

allowing sequential and combinatorial transformation into plants.

We tested this system in tobacco by simultaneously infiltrating leaves with two 

Agrobacterium strains, one strain carrying a PCP-GFP plasmid and a second strain carrying 

a reporter plasmid lacking a functional promoter, yielding homogeneous GFP nuclear and 

cytoplasmic fluorescence (Fig. 1C, top left). When the strong and constitutive 35S promoter 

was used to drive the reporter construct, nuclear GFP puncta became visible (Fig. 1C, top 

right). These results suggest that spots correspond to sites of active transcription and rule out 

potential PCP-GFP nuclear aggregation artifacts. Analogous results were obtained in stably 

transformed transgenic Arabidopsis plants (Fig. 1C, bottom).

We next sought to confirm that spot fluorescence constitutes a dynamical readout of 

transcriptional activity. To this end, we asked whether spot fluorescence dynamics in 

tobacco qualitatively recapitulate previous observations performed on the same promoters 

in Arabidopsis with orthogonal techniques. This comparison is made possible by the strong 

conservation of transcriptional regulation in plants (Wilhelmsson et al., 2017), in particular 
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the heat shock response (Mittler et al., 2012). We measured the transcriptional activity 

of two well-known constitutive and heat shock-inducible Arabidopsis genes (GAPC2 and 

HSP70, respectively (Czechowski et al., 2005; Dong Yul Sung et al., 2001)) before and 

during a heat shock treatment. GAPC2-PP7 expression was detectable at 25 °C (Fig. 1D, 

top left, Movie S1). The presence of multiple spots per nucleus is likely due to multiple 

transgene transfer events; the number of spots did not change with treatment (Figure 1D, 

bottom left). Further, the fluorescence of one of these spots over time did not change 

upon heat shock (Fig. 1E), in accordance with the constitutive expression of GAPC2 in 

Arabidopsis (Czechowski et al., 2005). Consistent with the heat shock inducibility of the 

HSP70 gene in Arabidopsis (Dong Yul Sung et al., 2001), HSP70-PP7 transcription was 

hardly detectable at 25 °C in tobacco (Fig. 1D, top right). However, upon increasing the 

temperature to 39 °C, multiple fluorescent puncta rapidly appeared (Fig. 1D, bottom right, 

Movie S1), and their fluorescence increased with time (Fig. 1E). Thus, we conclude that the 

PP7 system reliably recapitulates previous qualitative knowledge of transcriptional dynamics 

in plants.

Simultaneously tagging multiple mRNA species or multiple locations of the same mRNA 

species with different fluorescent proteins has revealed regulatory and physical interactions 

between loci and uncovered the regulation of distinct steps of the transcription cycle in 

cells in culture and animals (Hocine et al., 2012; Coulon et al., 2014; Fukaya et al., 2016, 

2017; Lim et al., 2018b,a). To enable such multiplexing in plants, we also implemented the 

MS2 system, which is analogous and orthogonal to the PP7 system. Here, MS2 loops are 

specifically recognized by an MCP coat protein (MCP) (Bertrand et al., 1998). We tested the 

MS2 system in tobacco and obtained results comparable to those obtained for PP7 (Fig. S1), 

allowing us to track the expression dynamics of two transgenes in a single cell (Fig. 1F).

Quantitative characterization of the PP7 system in Arabidopsis

To study transcriptional regulation at the single-cell level in populations of genetically 

identical leaf cells, we next generated stably transformed lines of Arabidopsis carrying PCP

GFP and a PP7 reporter construct driven by the promoter of the stress-inducible HSP101 

gene. Stably transformed lines are preferable to the transient transformation in tabacco, 

because agroinfiltration inserts a variable number of transgenes randomly throughout the 

genome. A line carrying a single reporter locus (hereafter referred to as HSP101-PP7–1) was 

used for the following experiments unless stated otherwise; for details, see Materials and 

Methods: Generation of transgenic Arabidopsis lines.

A key step toward establishing PP7 as a reporter of single-cell transcriptional activity in 

Arabidopsis is to demonstrate that the observed spot fluorescence dynamics quantitatively 

recapitulate this activity. We therefore sought to cross-validate PP7 measurements with 

RT-qPCR quantifications of mRNA abundance in our stably transformed Arabidopsis plants. 

The HSP101 mRNA is hardly detectable across vegetative tissues under standard growth 

conditions (Queitsch et al., 2000) and rapidly accumulates to high levels upon treatments 

inducing cytosolic protein misfolding such as heat shock (Charng et al., 2007). As previous 

experiments have shown that, upon induction, HSP101 is expressed uniformly throughout 

plant tissues (Winter et al., 2007; Jean-Baptiste et al., 2018), we compared the average 
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transcriptional activity of a few hundred leaf cells obtained by microscopy with that of the 

whole plant in bulk reported by RT-qPCR.

As expected, we did not detect actively transcribing cells in HSP101-PP7–1 plants imaged 

for 1 h at room temperature (Fig. S2), but shifting the microscope stage from 22 °C to 39 

°C resulted in the rapid appearance of transcription spots (Fig. 2A, Movie S1). To compare 

the instantaneous metric of transcriptional activity reported by spot fluorescence with the 

number of accumulated reporter mRNA molecules captured by RT-qPCR, we converted spot 

fluorescence to number of produced mRNA molecules by integrating the fluorescence of all 

spots in the field of view over time (Fig. S3; Garcia et al. (2013).

Controls for GFP photobleaching ruled out the possibility that we underestimated the 

produced mRNA calculated by microscopy (Fig. S4). Finally, we measured HSP1010 

reporter mRNA abundance by RT-qPCR using whole plants treated with heat shock 

(see Materials and Methods: Heat shock treatments). These measurements were strongly 

correlated with each other (Fig. 2B), confirming that spot fluorescence directly reports on 

the rate of mRNA production. This conclusion held regardless of mRNA degradation rate 

(Fig. S5).

While our measurements so far have shown that PP7 fluorescence is proportional to the 

number of actively transcribing RNAP molecules, it does not, by itself, report on their 

absolute number. Expressing measurements in terms of absolute number of active RNAP 

molecules instead of arbitrary fluorescence units is necessary for directly comparing data 

across microscopy setups and laboratories, and for integration with other quantitative 

measurements and theoretical models (Rosenfeld et al., 2005; Cai et al., 2006; Garcia and 

Phillips, 2011; Garcia et al., 2013; Xu et al., 2015). In order to turn the PP7 system into such 

a precision tool, we calibrated its arbitrary fluorescence units to report on the number of 

RNAP molecules actively transcribing the reporter gene. We followed a recently established 

approach to measure the fluorescence of individual GFP molecules arranged in 60-meric 

nanocages in vitro (Hsia et al., 2016) and in vivo (Akamatsu et al., 2020). We fused GFP to 

a monomer that forms these 60-meric nanocages and expressed it in tobacco leaves (Fig. 2C) 

to obtain a distribution of fluorescence intensity values for the resulting GFP punctae (Fig. 

2D, left).

Fusing two GFP molecules to each nanocage monomer yielded the fluorescence distribution 

of nanocages containing 120 GFP (Fig. 2D, left). A linear fit of the means of these 

distributions passing through the origin shows that the mean fluorescence of 120 GFP 

is almost exactly twice that of 60 GFP (Fig. 2D, right), confirming the validity of this 

approach. The slope of this fit is an estimate of the average number of arbitrary units of 

fluorescence corresponding to a single GFP molecule in our microscopy setup, making it 

possible to report PP7 measurements in absolute units.

Our absolute calibration also provided the opportunity to determine the limits of 

applicability of the PP7 technology. Specifically, there is a minimum number of actively 

transcribing RNAP molecules below which no reliable detection is possible. Figure 2E 

compares histograms of the calibrated number of RNAP molecules in the weakest detectable 
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spots and the corresponding fluctuations in background fluorescence in the data from Figure 

1F. Consistent with previous measurements (Garcia et al., 2013; Lammers et al., 2020), these 

histograms overlap at approximately 3 RNAP molecules, marking the level at which PP7 

fluorescent spots become undetectable. The average gene length in Arabidopsis is about 

2 kbp (The Arabidopsis Genome Iniative, 2000) and the footprint of an elongating RNAP 

molecule is ≈ 35 bp (Tornaletti et al., 1999). As a result, an average gene can accommodate 

a maximum of 2 kbp/35 bp≈60 RNAP molecules, well above the minimum 3 RNAP 

molecules that constitute this detection limit. An alternative way to view this detection limit 

is to consider the minimum detectable rate of transcription initiation. Given an elongation 

rate of 1.5 kbp/min (Ardehali and Lis, 2009), an RNAP molecule takes 3 min to transcribe 

an average Arabidopsis gene. Thus, to ensure at least 3 RNAP molecules on the gene and 

signal detectability at any time point, transcription needs to initiate at a minimum rate of 1 

RNAP/min.

Uncovering single-cell transcriptional responses to heat shock

While static snapshots of tissues have provided profound lessons about the spatial control of 

transcription in animals and plants alike (Birnbaum, 2018; Taylor-Teeples et al., 2011), these 

approaches have not revealed how single-cell transcriptional dynamics dictate the temporal 

modulation of gene expression patterns. We sought to bridge this gap between single-cell 

and tissue-wide transcriptional dynamics by tracking individual nuclei and measuring the 

fluorescence of their corresponding transcription spot over time. To expand our range of 

inquiry, we generated two additional reporter lines under the control of a second heat shock

inducible promoter (HsfA2-PP7, Movie S1) or of a constitutive promoter (EF-Tu-PP7, 

Movie S1). In order to simplify the experiment, we imaged diploid cells of hemizygous 

Arabidopsis derived from the first generation of single-insertion transgenic plants (i.e., T2 

individuals) such that each nucleus contained at most one spot (See Materials and Methods: 

Microscopy setup and image acquisition).

A striking feature of the single-cell response is the existence of a reproducible fraction 

of nuclei that does not show detectable expression throughout the experiment in all three 

assayed promoters (Fig. 3A, Fig. S6). The presence of these transcriptionally refractory 

cells was surprising given that endogenous HSP101 and HsfA2 are strongly induced and 

are necessary to survive heat stress in a dose-dependent manner (Queitsch et al., 2000; 

Charng et al., 2007). Similarly, as a highly expressed constitutive gene, EF-Tu would also be 

expected to be transcribed in every cell. Yet, this constitutive gene also presents a substantial 

fraction of refractory cells (Fig. 3A, right). Such refractory cells have also been identified in 

live-imaging studies of the early development of the fruit fly (Garcia et al., 2013; Lammers 

et al., 2020; Berrocal et al., 2020) and in in vitro cultures of animal cells (Hafner et al., 

2020).

To confirm that the presence of refractory cells was not an artifact of our construct or 

of the PP7 technology, we examined a transgenic plant containing a HSP101-GFP fusion 

driven by the HSP101 promoter that fully complements the heat-susceptibility phenotype of 

a hsp101 knockout (McLoughlin et al., 2016). Treatment of HSP101-GFP plants with the 

conditions used in our PP7 experiments revealed the presence of two types of cells: cells 
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whose fluorescence was close to that of untreated cells and highly induced cells (Figure 

S7). These low-fluorescence cells, which can be located right next to highly expressing 

ones, support the existence of transcriptionally refractory cells and the ability of the PP7 

technology to detect them.

Within responsive nuclei, we also found substantial heterogeneity in the instantaneous 

number of actively transcribing RNAP molecules. For example, at any given time, not 

all responsive nuclei harbored fluorescent spots; the fraction of active nuclei is modulated 

in response to heat shock, but remains constant for the constitutive promoter (Fig. 3B). 

Interestingly, individual spots do not turn on synchronously and present periods of high 

transcriptional activity interspersed by periods of low to no activity (Fig. 3C). This single

cell behavior is consistent with the presence of transcriptional bursts, which have been 

identified across organisms and are believed to emerge from the intrinsically stochastic 

nature of the biochemical process of transcription (Nicolas et al., 2017). Interestingly, 

the only plant gene probed in such detail before (to our knowledge) lacked such bursts 

(Ietswaart et al., 2017).

Tissue-wide transcriptional dynamics arise from the switch-like regulation of the 
instantaneous fraction of transcribing cells

How do tissue-level patterns of mRNA arise from the transcriptional activities of individual 

cells? Such tissue-level control could be implemented in two possible ways (Ko, 1992; 

Walters et al., 1995; Blackwood and Kadonaga, 1998; Fiering et al., 2000). One strategy 

consists of modulating the single-cell rate of transcription in a graded fashion (Fig. 4A, 

top). Alternatively, transcriptional control could work like a switch, where the fraction 

of actively transcribing cells is modulated across the tissue (Fig. 4A, bottom). Several 

Drosophila enhancers invoke both strategies simultaneously (Garcia et al., 2013; Bothma et 

al., 2014; Lammers et al., 2020; Berrocal et al., 2020). Single time-point measurements in 

plants(Turco et al., 2019; Angel et al., 2011) and live-imaging studies in cell culture (Hafner 

et al., 2020) have also provided evidence for switch-like control.

We found that, as transcriptional induction ensues, the instantaneous fraction of cells 

actively transcribing increases (Fig. 3B). In addition, the level of transcription in active 

cells can also fluctuate (Fig. 3C). We therefore sought to determine the extent to which each 

regulatory strategy gives rise to tissue-wide control of the mean mRNA production rate. 

To this end, we expressed the total bulk transcriptional activity in terms of the quantitative 

contribution of each regulatory strategy as

∑ifluoi(t)
Ntotal

mean tissue
transcription rate

=
∑ifluoi(t)

Nactive
mean transcription rate

of active cells

× Nactive
Ntad

instantaneous fraction
of active cells

(1)

Here, fluoi(t) is the fluorescence of the i-th cell at time point t, Nactive is the instantaneous 

number of active cells, and Ntotal is the total number of cells.
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In order to determine how the resulting tissue-level transcriptional dynamics arises from 

the two contributions on the right side of Equation 1, we first determined the tissue-wide 

transcription rate at each time point by adding the fluorescence of all spots in each frame 

and then dividing by the total number of nuclei in the field of view (Eq. 1). The tissue-wide 

transcription rate of HSP101-PP7–1 and HsfA2-PP7–1 rose upon induction, while that of the 

constitutive EF-Tu-PP7 reporter remained constant throughout the experiment (Fig. 4B, left).

To determine whether the graded modulation of the transcription rate among active cells 

contributes to the mean tissue transcription rate, we calculated the mean spot fluorescence 

across actively transcribing cells. Further, to determine the contribution of the switch-like of 

regulation, we computed the instantaneous fraction of cells actively transcribing the reporter. 

Our calculations revealed that the temporal modulation of the transcription rate among active 

cells remained relatively constant throughout induction (Fig. 4B, middle). In contrast, the 

fraction of active nuclei was strongly modulated as a result of induction (Fig. 4B, right). 

Interestingly, these dynamics of the fraction of active cells were qualitatively comparable to 

the mean tissue transcription rate (compare Fig. 4B left and right).

To quantify the relative contribution of each of these regulatory strategies to the overall 

transcriptional dynamics, we measured the fold-change of each term in Equation 1. We 

defined this fold-change as the ratio between the value of each magnitude at peak induction 

(blue and green arrowheads in Fig. 4B) and at 10 min, shortly after the beginning of the 

response (grey arrowhead in Fig. 4B). For both heat-inducible promoters, the fold-change 

in the mean transcription rate across active cells was close to one (Fig. 4C). In contrast, the 

fold-change in the instantaneous fraction of active cells was almost identical to that of the 

total activity (Fig. 4C).

Thus, the duration of the treatment does not impact the rate of transcription of individual 

actively transcribing cells—when an individual cell transcribes, it tends to do so, on average, 

at a characteristic, relatively stable level regardless of induction time (Fig. S8). Instead, the 

time under stress modulates the tissue-wide transcription rate by increasing the probability 

that each individual cell engages in transcription.

Allele-specific regulation underlies most tissue-wide heterogeneity in mRNA production in 
living plants

Although physiological responses occur at the tissue level, each cell must bear the 

phenotypic consequences of its individual gene regulatory behavior in response to stress. 

Studies of microorganisms and mammalian cells in culture have revealed that single-cell 

transcriptional responses to outside stimuli are often highly variable, leading researchers to 

posit that organisms possess mechanisms to buffer this “noise” or to leverage variability 

to drive the adoption of cellular fates that, for example, provide resistance against 

environmental insults such as antibiotics Raj and van Oudenaarden (2008); Maheshri and 

O’Shea (2007); Eldar and Elowitz (2010). However, remarkably little is known about the 

level, functional roles, and underlying molecular mechanisms of transcriptional noise in 

shaping stress responses in multicellular systems like plants (Cortijo and Locke, 2020).
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Although, on average, the rate of transcription of our heat-responsive reporters did not 

change with the duration of the heat treatment (Fig. 4C), at any given time point, the 

levels of activity across cells spanned more than two orders of magnitude (Fig. 5A). This 

behavior, combined with asynchronous activation (Fig. 3A) and the presence of cells that 

are transiently or permanently inactive transcriptionally (Fig. 4B,D), gives rise to a wide 

distribution in the predicted mRNA produced per cell (Figure 5B). This distribution spans 

more than three orders of magnitude, with a coefficient of variation (CV, standard deviation 

divided by the mean) of approximately 1.6.

What are the molecular sources of this cell-to-cell variability in the amount of mRNA 

produced (Figure 5C)? It could be the result of stochastic processes intrinsic to the allele

specific biochemical reactions that mediate transcription. In addition, a large fraction of 

this noise may be due to processes extrinsic to the allele itself, such as differing molecular 

compositions of neighboring cells. A previous measurement of gene expression noise in 

Arabidopsis using constitutively expressed fluorescent proteins found that extrinsic noise 

explains most of the cellular heterogeneity (Araújo et al., 2017). However, it is unclear how 

this noise in accumulated protein relates to transcriptional variability, and whether there are 

differences between constitutive and regulated promoters.

To determine whether variability is intrinsic or extrinsic to the allele, it is necessary to 

compare the expression of alleles belonging to the same cell with that of alleles in nearby 

cells (Elowitz et al., 2002). To make this possible, we imaged Arabidopsis individuals 

homozygous for the reporter, which display up to two fluorescent spots per nucleus in 

diploid cells (Fig. 5D, top, Movie S1). Four traces originating from two nuclei indicate that 

the transcriptional activity of alleles in the same nucleus can be much more similar to each 

other than the activity of alleles in different nuclei (Fig. 5D, bottom), suggesting a prominent 

role of extrinsic noise in transcriptional variability. However, our measurements also 

revealed that not all alleles in all nuclei are transcriptionally active: nuclei are approximately 

equally divided between populations presenting two, one, or even no transcription spots 

(Fig. 5E). The presence of nuclei with only one active allele suggests that the decision of 

alleles to become active is intrinsic to each allele. Thus, qualitatively, we have identified 

both potentially meaningful intrinsic and extrinsic contributions to the total transcriptional 

noise.

In order to determine the quantitative contribution of each source of variability to the 

single-cell distribution of mRNA produced, we followed Elowitz et al. (2002) (see Section 

S2 .1). To show that the results from this analysis do not depend on the number of transgene 

copies per insertion, we identified additional single insertion Arabidopsis lines for which 

we confirmed the presence of a single transgene copy per insertion locus using qPCR (see 

Figure S9 and associated calculations in Section S2 .2).

Figure 5F presents the integrated spot fluorescence of alleles pairs belonging to the same 

nucleus in homozygous plants of HSP101-PP7–1 and two additional lines with a single 

transgene copy per insertion. Our calculation of the noise components revealed that intrinsic 

sources explain most (~ 2/3) of the variability in all of the lines tested (Fig. 5G).
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In contrast to investigations of cell-to-cell variability of protein expression in constitutive 

promoters (Araújo et al., 2017), our results demonstrate that most of the cellular 

heterogeneity in the transcriptional response to heat shock is not due to cells having a 

different chemical composition. Instead, stochastic processes at the level of each individual 

allele explain most of the cell-to-cell differences in the amount of mRNA produced per cell. 

Importantly, while here we have focused on the noise in the amount of produced mRNA, 

further insights can be drawn from examining the sources of molecular variability in, for 

example, instantaneous transcriptional activity (Fig. S10).

Discussion

Over the last few decades, it has become clear that the averaging resulting from bulk tissue 

sampling obscures important details about the spatial control of cellular processes in plants 

and animals alike. In plants, this limitation has motivated recent advances in single-cell RNA 

sequencing (McFaline-Figueroa et al., 2020). However, these measurements depend on the 

previous history of RNA transcription and degradation and thus obscure information about 

regulatory dynamics. Further, single-cell sequencing technologies tend to sacrifice spatial 

information. While enabling technologies to light up the process of transcription and its 

control in real time, in single cells or whole animals, have been developed (Munsky et al., 

2012; Tutucci et al., 2018), plants have remained surprisingly sidelined.

Here, by implementing the PP7 and MS2 systems to fluorescently label nascent RNA 

molecules in plants, we have shown, to our knowledge for the first time, that it is possible 

to count the number of RNAP molecules actively transcribing individual alleles in single 

living cells of tobacco and Arabidopsis as they respond to their environment. This technical 

advance yielded unprecedented access to the temporal history of activity of individual 

alleles, making it possible to uncover distinct modes by which single-cell transcriptional 

activity in plants leads to tissue-wide gene expression dynamics.

Using this technique, and consistent with similar observations in other systems (Garcia 

et al., 2013; Lammers et al., 2020; Hafner et al., 2020), we discovered a fraction of 

transcriptionally refractory cells that do not transcribe regardless of induction conditions 

(Fig. 4 D). Single-molecule RNA FISH experiments in Arabidopsis roots found that at any 

given time ≈ 20% of cells are transcriptionally inactive for the constitutively expressed 

PP2C gene (Duncan et al., 2016). However, unlike the live-imaging approach developed 

here, single-molecule RNA FISH relies on fixed samples; it cannot determine whether this 

inactive state was transient or stable.

We also found that tissue-wide transcriptional induction dynamics are the result of the 

temporal modulation in the fraction of cells that switch to a transcriptionally active state, 

and not of the graded control of the transcription rate of active cells (Fig. 4C). This form of 

regulation has been hypothesized to be at play in the regulation of the FLC gene in response 

to temperature (Angel et al., 2011) and in the commitment to xylem cell fate in response to 

the VND7 transcription factor (Turco et al., 2019). Using our technologies, it should now be 

possible to directly test these models.
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Gene expression can vary significantly from cell to cell in microbial and animal species (Raj 

and van Oudenaarden, 2008). By making it possible to measure cell-to-cell transcriptional 

variability in real time in living plant cells, we confirmed that plants are no exception to this 

widespread presence of transcriptional variability. The single-locus resolution of our method 

allowed us to determine that cell-to-cell variability in mRNA production arises mainly from 

stochastic processes instrinsic to each allele (Fig. 4 G). Studies in in-vitro cell cultures have 

found that gene-expression noise can have profound consequences for cellular survival (El 

Meouche et al., 2016; Shaffer et al., 2017); however, the role of transcriptional noise in plant 

stress responses remains an open question (Cortijo and Locke, 2020; Roeder, 2018). We 

envision that the strategy applied here to systematically dissect transcriptional heterogeneity 

in Arabidopsis and tobacco will shed light on this interplay between transcriptional 

variability and stress response. Further, it will be interesting to examine how some unusual 

aspects of plant cell biology and genetics can buffer transcriptional noise. For example, 

cytoplasmic connections could play a role in short-range sharing of gene products (Faulkner, 

2018), averaging out extrinsic noise; multiple genome copies per nucleus in mature plant 

cells may provide further opportunities to average out intrinsic noise across alleles (Lee 

et al., 2019). Similarly, we speculate that the conspicuous retention of large numbers of 

seemingly redundant gene paralogs in plants may also help buffer intrinsic fluctuations in 

individual genes (Li et al., 2015).

Our approach requires access to a confocal microscope and to transgenesis tools, and should 

therefore be relatively easy to apply to many biological problems in plant development and 

physiology. However, imaging deep into tissues with the resolution necessary to resolve 

diffraction-limited spots remains a challenge, particularly in plants. Advances such as 

multiphoton imaging, lattice light-sheet microscopy, and adaptive optics will overcome this 

limitation (Liu et al., 2018).

Lacking single-polymerase resolution currently limits the applicability of MS2 and PP7 

to genes transcribed at relatively high rates. A transcription initiation rate of 1 RNAP/

min, corresponding to our detection limit of 3 elongating RNAP molecules on an average 

Arabidopsis gene, could be sufficient to sustain slow transcriptional processes operating at 

long developmental timescales. For example, the FLC gene, a key seasonal developmental 

regulator in Arabidopsis is rarely occupied by more than one elongating RNAP at a time 

(Ietswaart et al., 2017) which may explain why previous attempts at visualizing nascent FLC 

mRNAs in live Arabidopsis plants have failed (Wu et al., 2016). A growing interest in live 

imaging of transcription combined with advances in fluorophore chemistry (Iwatate et al., 

2020) as well as in the PP7 and MS2 technologies themselves (Wu et al., 2012) offer hope 

for breaking this detection threshold.

It will undoubtedly be of interest to correlate the activities of genes by visualizing their 

transcription simultaneously. This multiplexing is already possible for two genes using MS2 

and PP7. A third color could be added by implementing interlaced MS2 and PP7 loops 

(Hocine et al., 2012). To further extend the palette, it should be possible to engineer other 

orthogonal RNA-binding proteins-RNA aptamer pairs (Daigle and Ellenberg, 2007; Katz et 

al., 2018).
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Finally, and more generally, the random integration of transgenes in plants makes it 

challenging to dissect the role(s) of regulatory sequences at their endogenous genomic 

locations. Delivery of DNA with CRISPR/Cas9 or site-specific recombinases promises to 

unleash the potential of quantitative reporters of gene expression.

In this study, we focused on a simple step in the plant’s use of temperature as a signaling 

input. More complex treatments have been previously used to show that plants can mount 

specific responses to inputs, such as memory in response to pulses of heat shock (Charng 

et al., 2007) and nonlinear integration of combinations of high light and temperature stress 

(Zandalinas et al., 2020). By administering experimental treatments while simultaneously 

measuring their effects on gene regulation, it will be possible to determine how these 

operations are performed at the cellular level. In addition, the sub-nuclear resolution of 

nascent RNA tagging could make it possible to resolve long-standing issues in plant 

signaling, such as the role of protein aggregates or “nuclear speckles” that are pervasive 

in light-responsive signaling pathways in plants (Ronald and Davis, 2019).

In conclusion, by enabling the measurement of transcription at high spatiotemporal 

resolution, the PP7 and MS2 methods introduced here close a critical technological gap 

in plant biology. These new technologies open new avenues of inquiry and will make it 

possible to quantitatively interrogate transcriptional control in living plants and to engage 

in the discourse between theory and experiment that has characterized the study of gene 

regulation in single cells and animal tissues over the last two decades.

Materials and Methods

Plasmids and Agrobacterium strains

All plasmid sequences used in this study can be accessed from a public Benchling folder. 

Plasmids will be made available at Addgene. All vectors were based on pCambia derivatives 

(Hajdukiewicz et al., 1994) and transformed into the GV3101::pMP90 Agrobacterium 

strain by electroporation. Plasmids confering Kanamycin resistance in plants (i.e reporter 

constructs) were based on pCambia2300. Plasmids confering Hygromycin resistance in 

plants (i.e PCP, MCP and nanocages constructs) were based on pCambia1300. A list of 

the plasmids used in this study can be found in table S1. The Arabidopsis gene identifiers 

associated with genomic sequences used in these plasmids are listed in table S3.

Plant growth conditions

Nicotiana benthamiana (tobacco) plants were grown in a greenhouse under natural light 

conditions prior to agroinfiltration. Following infiltration, tobacco plants were kept under 30 

μE of constant light. Arabidopsis plants used for experiments were grown in 1/2 strength MS 

agar containing 50 μg/μl of Kanamycin under short day conditions (8 hours of 30 μE light 

per day) for four to six weeks prior to imaging.

Agroinfiltration

Agrobacterium glycerol stocks were streaked on LB plates containing 50 μg/μl Kanamycin 

and 50 μg/μl Gentamycin. Fresh colonies were grown overnight in liquid LB containing 
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the same antibiotic concentrations, spun down and resuspended in an equal volume of 

infiltration buffer (10 mM MES pH5.6, 10 mM MgCl2, 150 μM Acetosyringone). Cells were 

incubated for 2–4 hours in infiltration buffer shaking at room temperature after which the 

cultures were diluted 1:3 to an OD600 of approximately 0.3. In experiments that required 

combining strains, coat protein and reporter strains were mixed in a 3:1 ratio (the exact 

ratio does not qualitatively affect the results). In PP7 and MS2 experiments, infiltrated leaves 

were imaged approximately 2 days after infiltration. For absolute calibration experiments, 

plants were imaged 12–18 hours after infiltration.

Generation of transgenic Arabidopsis lines

To generate lines carrying both PCP-GFP and PP7 reporters we followed a sequential 

transformation approach. We first selected PCP-GFP lines in 35 μg/ml of Hygromycin and 

kept lines exhibiting moderate levels of fluorescence and no obvious growth phenotype. 

Next, we transformed T1 or T2 PCP-GFP individuals with PP7 reporter Agrobacterium 

strains and selected transformants in 50 μg/ml Kanamycin and 35 μg/ml Hygromycin. 

Individuals T1 for the PP7 construct were screened for nuclear mScarlet fluorescence 

and presence of transcription spots matching previous knowledge about the activity of the 

corresponding endogenous gene. In all cases, to select for antibiotic resistance we followed 

the protocol by Harrison et al. (2006). A list of the lines used in this study can be found in 

table S2.

Determining the number of unlinked reporter transgene insertions

To select lines carrying a single insertion reporter locus we plated approximately 60 T2 

seeds in MS plates containing Kanamycin and counted the ratio of survivors. This ratio 

was divided by the survival ratio in plates containing no antibiotics. A x2 test was used 

to determine whether the product of these two ratios was statistically different from the 

expected ratio of 3/4. To confirm the absence of two or more unlinked reporter loci we 

examined transcription spots in guard cells. Unlike other leaf cell types, these cells are 

exclusively diploid (Melaragno et al., 1993) and therefore the presence of a single spot per 

guard cell nucleus in a T1 individual confirms the absence of unlinked insertions.

Heat shock treatments

To control the sample temperature in the microscope stage we used an OkoLabs H101

LG temperature chamber calibrated to achieve a maximum of ≈ 39°C. The temperature 

experienced by the sample was determined once using an electronic probe. The heat shock 

treatment used for the RTqPCR experiment in Figure 2A was performed as follows: whole 

4–6 week-old plants were placed in 1.7 ml plastic tubes containing 200 μl of water. The 

sample corresponding to time = 0 minutes was immediately taken out of the tube, quickly 

tapped dry, transferred to a new tube containing silica beads and frozen in liquid nitrogen. 

The rest of the samples were transferred to a 39°C heat block and removed at set times. 

Plants were then quickly tapped dry and frozen in liquid nitrogen.
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Microscopy setup and image acquisition

In tobacco experiments, a piece of infiltrated leaf spot was mounted in water between a glass 

slide and a glass coverslip with the abaxial (bottom) side facing the objective. To image the 

GFP nanocages in mesophyll cells, the abaxial epidermis was first removed. In Arabidopsis 

experiments, full 2–4 day old leaves from 4–6 week old plants were mounted in tap water 

between a gas permeable cellophane membrane (Lumox film; Starstedt) and and a glass 

coverslip with the adaxial (top) side facing the objective. All samples were imaged close to 

the base of the leaf blade immediately after mounting. All data was taken in a Leica SP8 

confocal microscope with a white light laser using a 63X oil objective. The dimensions of 

the field of view were 92.26 × 46.09 μm using 1052 × 512 pixels, resulting in a pixel size 

of 90 nm. Z stacks consisting of 25 slices of 0.5 μm each were taken every 60 seconds 

accumulating fluorescence 3 times over lines. The beginning of each stack was set to the 

upper-most nucleus in the leaf epidermis. For GFP, excitation 488 nm and emission 498559 

nm. For mScarlet, excitation 569 nm, emission 579–630 nm. For Chlorophyll, excitation 488 

nm, emission 665–675 nm. To ensure quantitative consistency across experiments, the 488 

nm laser power at was calibrated to 10.5 μW (≈ 5% laser power) at the beginning of each 

imaging session using a power meter. The percentage intensity of the 569 nm laser line was 

kept consistent across experiments at 5%.

RT-qPCR

Total RNA was extracted using the Quiagen RNeasy kit following the manufacturer 

instructions. Reverse transcription was performed using the Qiagen Omniscript 

kit with a primer mix of random 10mers (10 μM final concentration) and 

15mer oligo dT primers (1 μM final concentration). mRNA abundance was 

calculated by the delta CT method. Primers for endogenous HSP101 were 

5’GGTCGATGGATGCAGCTAAT and 5’CTTCAAGCGTTGTAGCACCA from Yoshida 

et al. (2011). Primers for the Actin2 standard were 5’CGCTCTTTCTTTCCAAGCTCAT 

and 5’GCAAATCCAGCCTTCACCAT from Liu and Ma (2011). Primers for the reporter 

mRNA were 5’GGGTTCATCAGAGTGCCAGAG and 5’AGGCAGAGCGACACCTTTAG. 

A negative control was performed under identical conditions replacing the RT enzyme with 

water.

Image analysis: spot fluorescence and tracking

Raw image stacks of the coat protein channel were used to identify fluorescent punctae 

corresponding to transcription spots using the ImageJ implementation of the 3D Trainable 

Weka Segmentation toolbox (Arganda-Carreras et al., 2017). Following Lammers et al. 

(2020), after segmentation, spots in each z-slice were fitted to a 2D Gaussian. The z-slice 

with the largest Gaussian amplitude was selected for the spot fluorescence calculation. 

Spot fluorescence corresponds to the sum of pixel intensity values in a circle with a 

radius of 1.08 μm centered around the center of the fitted Gaussian minus the background 

fluorescence offset. Per pixel background fluorescence is calculated from the baseline of the 

spot Gaussian fit. The imaging error associated with each spot trace is determined from the 

fluctuations over time in the per pixel offset multiplied by the spot integration area. A spline 
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is fitted to the offset time trace to calculate offset error as the standard deviation around this 

spline. False negative and false positive spots were corrected manually.

Image analysis: nuclear segmentation and spot tracking

Maximum intensity projections of the nuclear marker channel were used for nuclear 

segmentation using the ImageJ implementation of the 2D Trainable Weka Segmentation 

toolbox (Arganda-Carreras et al., 2017) or a custom-written Matlab pipeline. False negative 

and false positive nuclei were then manually corrected. Spots were assigned to nuclei 

based on physical overlap. Tracking of spots over time was based on nuclear tracking and 

manually corrected whenever errors were found.

Image analysis: nucleus fluorescence

A binary mask of segmented nuclei was applied to the PCP-GFP or Histone 2B- mScarlet 

channel. For each z-slice and frame, the mean fluorescence across pixels within each 

nucleus area was calculated. Then, for each frame, we took the intensity of the z-slice 

with the maximum mean fluorescence as the metric for fluorescent protein concentration in 

that given frame.

Determining transgene copy number by qPCR

Genomic DNA was extracted from leaf tissue using CTAB and 

phenol:chlorophorm precipitation. Primers used to amplify the reporter transgene 

were 5’gacgcaagaaaaatcagagagatcc and 5’ggtttctacaggacggaccatacac. Primers used to 

amplify a region near the Lhcb3 gene used as an internal genomic control were 

5’acaggtttggtcaagtcaattacga and 5’atggtttccatgaatactgaacacg. The final concentration of 

genomic DNA per reaction was 0.75 ng. For a more detailed explanation of the calculations 

and controls related to this experiment see Section S2 .2.

Absolute calibration using nanocages

Tobacco leaves were infiltrated with agrobacterium strains containing plasmids where the 

promoter of the Arabidopsis UBC1 gene (1138bp upstream of the AT1G14400 start codon) 

was used to drive the 60mer monomer fused to either one or two mGFP5 coding sequences. 

The N terminus of the rabbit Cytochrome P450 CII1 was added as an N terminal tag to 

target the protein fusions to the cytosolic side of the ER. Mesophyll cells were imaged no 

later than 15 hours after infiltration since longer incubation resulted in the appearance of 

large GFP aggregates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Fluorescence labeling of nascent RNA in tobacco and Arabidopsis reveals single-cell 
transcriptional dynamics in real time.
(A) Schematic of the live-imaging experimental setup in leaves and diagram of the PP7 RNA 

labeling system. (B) Schematic of the constructs used in this study. (UBQ10, Arabidopsis 

ubiquitin 10 promoter; 35S, CaMV 35S promoter; HygR, hygromycin resistance; Luc-GUS, 

firefly luciferase-/3-glucoronidase fusion; H2B, Arabidopsis histone 2B coding sequence; 

KanR, kanamycin resistance; L, T-DNA left border; R, T-DNA right border). (C) Maximum 

projection of snapshots of cells expressing PCP-GFP and the reporter construct with or 
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without the constitutive 35S promoter driving expression of the PP7-tagged Luc-GUS gene. 

White arrows indicate nuclear fluorescent puncta corresponding to transcription spots. Inset: 

magnification of PP7 fluorescence. (D) Maximum projection snapshots of tobacco cells 

expressing PCP-GFP and reporter constructs driven by the promoters of the Arabidopsis 

GAPC2 and HSP70 genes. Time under heat shock is indicated. White arrowheads indicate 

the fluorescent spots quantified in (F). (E) Fluorescence time traces of single nuclear GFP 

puncta in tobacco leaf epidermis cells expressing PCP-GFP and reporter constructs driven 

by various Arabidopsis promoters. Prior to spot detection, spots are assigned a fluorescence 

value of zero. Error bars represent the uncertainty in the spot fluorescence extraction 

(Materials and Methods). (F) Maximum projection snapshot of tobacco leaf epidermal 

cell expressing PCP-mCherry, MCP-GFP, H2B-tagBFP2, and two reporter constructs driven 

by the 35S promoter and tagged with PP7 (magenta) or MS2 (green). Open and closed 

arrowheads indicate MCP-tagged and PCP-tagged nascent RNAs, respectively.
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Figure 2. Cross validation, absolute calibration, and sensitivity of the PP7 reporter system.
(A) Maximum fluorescence projections of leaf epidermal tissue of an Arabidopsis line 

stably transformed with PCP-GFP and a reporter construct driven by the HSP101 promoter 

under heat shock. Time stamps indicate time under heat shock. Arrowheads point to 

transcription spots. (B) Comparison between total mRNA produced as reported by RT-qPCR 

and PCP-GFP. PCP-GFP error corresponds to the standard error of the mean over 10 

biological replicates; RT-qPCR error corresponds to the standard error of the mean (SEM) 

across three biological replicates. Data are normalized to each corresponding signal at 60 
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min. The solid black line shows a linear fit to the data going through the origin. The 

inset shows the normalized mean and SEM of expression level as a function of time for 

RT-qPCR and microscopy. (C) Maximum fluorescence projection of a tobacco mesophyll 

cell expressing a construct encoding a 60 GFP nanocage tethered to the outer membrane 

of the endoplasmic reticulum (ER). (D, left) Absolute calibration of GFP fluorescence. 

Histograms and Gaussian fit of single-nanocage fluorescence distributions for the 60-GFP 

(blue) and 120-GFP (black) nanocages transiently expressed in tobacco leaves. The mean of 

each distribution is shown next to each histogram. As expected, the means are related by 

a factor of two. (D, right) Mean and standard error of the mean (SEM) of the nanocage 

fluorescence as a function of number of GFP molecules per cage. The red line is a linear 

fit passing through the origin, revealing a calibration factor of 0.076 ± 0.002 a.u./GFP 

molecule (error reporting on the 95% confidence interval). (E) Histograms of the calibrated 

number of transcribing RNAP molecules in the dimmest three frames of the weakest half of 

HSP101-PP7 fluorescence time traces (purple) and their associated fluorescence background 

fluctuations (green). The point where the distributions overlap, at 3 RNAP molecules 

(vertical dashed line), can be considered the detection threshold.

Alamos et al. Page 24

Nat Plants. Author manuscript; available in PMC 2021 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Single-cell control of transcriptional activity in response to heat shock in Arabidopsis.
(A) Heat maps of spot fluorescence in all nuclei (rows) over time (columns) across the 

the field of view in HSP101-PP7–1, HsfA2-PP7–1, and EF-Tu-PP7–1 plants. Dark blue 

represents the absence of detectable signal. The size of the colorbar on the right of each 

heatmap shows the proportion of nuclei that exhibited activity in at least one frame during 

the experiment (>68 min) to refractory cells that presented no spots. (B) Instantaneous 

fraction of actively transcribing nuclei measured as the number of nuclei with spots 

divided by the total number of nuclei in the field of view. (C) Representative single-spot 

fluorescence time traces. Upon induction, transcriptional onset can occur asynchronously 

and transcriptional activity occurs in bursts, modulating the instantaneous fraction of 

transcriptionally active nuclei in (B).
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Figure 4. Single-cell regulatory strategies determining tissue-wide transcriptional dynamics.
(A) Tissue-wide transcriptional control can be achieved through two non-exclusive 

regulatory modes: the graded modulation of the rate of transcription across cells, or 

the switch-like regulation of the fraction of actively transcribing cells. (B) Mean tissue 

transcription rate (left), transcription rate of active cells (middle), and instantaneous fraction 

of actively transcribing cells (right) for Arabidopsis lines carrying inducible promoters 

HSP101-PP7–1 (green) and HsfA2-PP7–1 (blue), and a line with the constitutive reporter 

EF-Tu-PP7–1 (red). Time t = 0 corresponds to the frame at which spots were first detected. 

(C) Fold-change in the mean tissue-wide transcription rate compared to the fold-change 

in the mean transcription rate of active cells and in the fraction of active cells, defined 

Alamos et al. Page 26

Nat Plants. Author manuscript; available in PMC 2021 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as the ratio between the value at its peak and at t = 10min for HSP101-PP7–1 (gray vs. 

green arrowheads in B) and HsfA2-PP7 (gray vs. blue arrowheads in B). The horizontal 

dashed line indicates a fold change of 1. (A-C, shaded regions and error bars are SEM 

calculated across 10, 5, and 3 experimental replicates for HSP101-PP7–1, HsfA2-PP7–1, 

and EF-Tu-PP7–1, respectively.)
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Figure 5. Allele-specific processes explain most of the cellular heterogeneity in produced mRNA 
in Arabidopsis.
(A) Histograms of spot fluorescence over time for the combined replicates of Figure 4. The 

dashed line indicates the detection threshold determined in Figure2D. (B) Histograms of 

predicted total produced mRNA per cell across all replicates from Figure 4. (C) Schematic 

of extrinsic (left) and intrinsic (right) sources of transcriptional noise. Extrinsic noise arises 

from cellular differences in the abundance of regulatory molecules (purple triangles) while 

intrinsic noise captures differences among cells with identical composition. (D) Two-allele 
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experiment to decompose the total transcriptional variability into intrinsic and extrinsic 

noise. Top: guard cells (obligate diploids) expressing HSP101-PP7. White arrowheads 

indicate transcription spots corresponding to one or two alleles of the reporter transgene in 

homologous chromosomes. In the homozygote it is possible for only one allele to be active 

in different cells. Bottom: spot fluorescence traces from homozygous cells shown on top. (E) 
Fraction of nuclei with zero, one, or two spots in heat shock-treated homozygous plants at 

the frame with the maximum number of visible spots. (F) Scatter plot of the integrated spot 

fluorescence normalized by the mean for alleles belonging to the same nucleus. Undetected 

spots were assigned a value of zero and plotted on the x- and y-axes. (G) Decomposition 

of the total variability in (F) into extrinsic and intrinsic components shows comparable 

contributions of both components to the total noise, with the intrinsic component explaining 

most of the variability. Error bars in (E) and (G) are bootstrapped errors.
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