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Cyanobacterial diazotrophs are considered to be the most impor-
tant source of fixed N2 in the open ocean. Biological N2 fixation is
catalyzed by the extremely O2-sensitive nitrogenase enzyme. In
cyanobacteria without specialized N2-fixing cells (heterocysts), mecha-
nisms such as decoupling photosynthesis from N2 fixation in space or
time are involved in protecting nitrogenase from the intracellular O2

evolved by photosynthesis. However, it is not known how cyanobac-
terial cells limit O2 diffusion across their membranes to protect nitroge-
nase in ambient O2-saturated surface ocean waters. Here, we explored
all known genomes of themajor marine cyanobacterial lineages for the
presence of hopanoid synthesis genes, since hopanoids are a class of
lipids that might act as an O2 diffusion barrier. We found that, whereas
all non−heterocyst-forming cyanobacterial diazotrophs had hopanoid
synthesis genes, none of the marine Synechococcus, Prochlorococcus
(non−N2-fixing), andmarine heterocyst-forming (N2-fixing) cyanobacteria
did. Finally, we conclude that hopanoid-enriched membranes are a
conserved trait in non−heterocyst-forming cyanobacterial diazotrophs
that might lower the permeability to extracellular O2. This membrane
property coupled with high respiration rates to decrease intracellular
O2 concentration may therefore explain how non−heterocyst-forming
cyanobacterial diazotrophs can fix N2 in the fully oxic surface ocean.

oxygen diffusion barrier | hopanoid lipids | nitrogen fixation | marine
cyanobacteria

Marine cyanobacterial diazotrophs, i.e., those capable of
reducing dissolved dinitrogen gas (N2) into ammonia

through N2 fixation, are key suppliers of bioavailable N, a lim-
iting nutrient for primary production in the ocean (1). Biological
N2 fixation is solely performed by the O2-sensitive nitrogenase en-
zyme (2), and understanding how low intracellular O2 concentra-
tions are maintained in fully oxic open waters is a long-standing
question that has attracted much interest (3–6).
Although, a priori, it would seem that N2 fixation is incompatible

with the O2-evolving photosynthetic lifestyle of cyanobacteria, it is
known that these microorganisms have evolved a variety of strate-
gies to protect nitrogenase from O2 inactivation. For example, some
filamentous cyanobacteria, including the symbionts of marine dia-
toms, form specialized cells called heterocysts (7). A microaerobic
environment is created inside heterocysts by inactivating oxygenic
photosynthesis, by maintaining or enhancing respiration, and by the
formation of an extra glycolipid cell envelope outside the cell wall
(8). In contrast, non−heterocyst-forming cyanobacteria such as the
filamentous Trichodesmium or the free-living unicellular Croco-
sphaera must separate photosynthesis and N2 fixation either spa-
tially or temporally to avoid exposing nitrogenase to the O2 that
they produce during the light hours (9, 10). In the unicellular
cyanobacterial symbiont UCYN-A, all of the genes for the synthesis
of the O2-evolving photosystem II (PSII) apparatus have been lost and
so UCYN-A doesn’t generate O2 (11). None of the aforementioned
strategies, however, can protect nitrogenase of non−heterocyst-
forming cyanobacterial diazotrophs from the O2 that diffuses
across cell membranes from the environment (including host pho-
tosynthesis in the case of UCYN-A). Mechanisms such as respira-
tion, the Mehler reaction, and/or other O2 scavenging strategies
have been proposed as potential ways to overcome this problem

(12), but whether these mechanisms are sufficient to lower the O2
concentration in the inner cell while N2 fixation takes place remains
unknown.
We have discovered a consistent pattern of distribution of

hopanoid synthesis genes among marine cyanobacteria that sug-
gests that they may play an important role in marine N2 fixation.
Hopanoids are a class of membrane lipids that have been shown to
confer special properties to cell membranes (13). Hopanoids can
intercalate into lipid bilayers of membranes due to their planar
and hydrophobic structure and might decrease their permeability
to O2 (14). Approximately 10% of bacteria, including plant-
associated diazotrophs, have the gene for the synthesis of hopanoids
(the squalene−hopene cyclase gene shc) (13). Interestingly, the
only direct evidence showing that hopanoids facilitate N2 fixation
comes from studies of the terrestrial N2-fixing heterotrophic
bacteria Frankia. In Frankia sp., hopanoids might serve as an
O2 diffusion barrier in their N2-fixing vesicles (15), with the
thickness of the vesicle envelope directly correlated to the
external O2 concentration (16). However, this linkage was later
questioned based on the observation of high proportions
of hopanoids in membranes regardless of the N status in
Frankia sp. (17).
We compiled data on hopanoid production and mined the

publicly available genomes of marine cyanobacteria to provide
an exploration of the presence of hopanoid biosynthetic and mod-
ification genes across all of the major marine cyanobacterial line-
ages, including both diazotrophs and non-diazotrophs (Fig. 1). We
found that the shc gene for synthesizing hopanoids was consistently
present in all of the non−heterocyst-forming cyanobacterial diazo-
trophs, including unicellular cyanobacterial symbionts with ex-
tremely reduced genomes such as UCYN-A. In contrast, none of
the non-diazotrophic marine Synechococcus and Prochlorococcus,
which are the dominant cyanobacteria in the ocean (18, 19), nor the
heterocyst-forming marine cyanobacteria Calothrix rhizosoleniae
SC01 and Richelia intracellularis HH01 had the shc gene in their
genomes. The same pattern was observed for almost all of the
hopanoid modification genes except for the hpnK and hpnP genes
(Fig. 1). These observations suggest that, whereas the capacity of
allocating hopanoids into cell membranes may be universal across
all marine non−heterocyst-forming diazotrophic cyanobacteria, it is
absent from all marine Synechococcus and Prochlorococcus (which
do not fix N2) and from heterocyst-forming marine cyanobacteria
(which already protect nitrogenase from O2 by heterocysts). Fur-
thermore, in Crocosphaera and Cyanothece, the transcription of the
shc gene peaks right before the nitrogenase-encoding gene (nifH)
starts increasing its expression level (data collected from ref. 20),
and simultaneous expression of both markers has also been
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detected in UCYN-A (21). These patterns are further supported by
previous observations of hopanoid production in the cyanobacterium
Crocosphaera watsoniiWH8501 in the context of N2 fixation (22, 23).
However, the role of hopanoids in N2 fixation was discarded because
C. watsoniiWH8501 showed constant levels of hopanoids regardless
of light−dark periods or the availability of fixed N (23).
We thus propose that the presence of hopanoids in the whole-

cell membrane is a conserved trait in marine non−heterocyst-
forming cyanobacterial diazotrophs that might confer protection
to nitrogenase by reducing the rate of diffusion of extracellular
O2 into the cell. In parallel, as shown for Cyanothece (24),

increases in respiration rates can presumably lower the intracellular
O2 concentration to levels suitable for nitrogenase activity while
fulfilling the adenosine 5′-triphosphate (ATP) demand required for
N2 fixation. Although the constant levels of hopanoids to total lipids
has previously been argued to discount a role of hopanoids in
marine N2 fixation (23), we believe that hopanoids reduce O2

membrane permeability that limits the diffusion rate and facilitates
respiratory protection of nitrogenase. It is also possible that
hopanoids can form rafts, i.e., membrane microdomains with high
hopanoid content that promote dynamic changes in membrane
permeability based on redistributions of hopanoid molecules in
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Fig. 1. Hopanids in marine cyanobacteria. (Upper) A schematic representation of the hopanoid biosynthesis and modification pathways, including enzymes and
products. (Lower) Summary of the presence/absence of the genes involved in the synthesis and modification of hopanoids across a selection of the major marine
cyanobacterial lineages. All of the available marine cyanobacterial genomes in NCBI (May 2019) were screened for this analysis, yet only 21 are shown, for simplification.
Asterisk (*), experimentally tested in refs. 20 and 21 (n.t., not tested). Enzymes participating in hopanoid pathways: squalene−hopene cyclase (SHC), hopanoid
biosynthesis-associated radical SAM protein (HpnH), hopanoid-associated phosphorylase (HpnG), hopanoid biosynthesis-associated glycosyltransferase protein (HpnI),
hopanoid biosynthesis-associated protein (HpnK), hopanoid biosynthesis-associated radical SAM protein (HpnJ), aminotransferase (HpnO), hopanoid 2-methyltransferase
(HpnP), and hopanoid C3 methylase (HpnR); 3-methylhopanoid production has never been found in marine cyanobacteria (28); hpnO was absent in all of the screened
strains. Dashed arrows indicate that enzymes driving intermediate steps are unknown. See ref. 13 for further details on hopanoid biosynthesis.
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the membrane (13). Hopanoid rafts have been detected in C.
watsonii (25), which suggests that Crocosphaeramight have such
dynamic changes in membrane permeability.
Since members of non−heterocyst-forming freshwater cyanobac-

teria (e.g., Aphanothece, Pleurocapsa, endosymbionts of the diatoms
Rhopalodia gibberula and Epithemia turgida) and noncyanobacterial
diazotrophs (e.g.,Azotobacter) also have the shc gene, we believe that
our hypothesis, which provides a mechanism that restricts O2 diffu-
sion analogous to the heterocyst, may provide an important research
direction for future studies devoted to understanding N2 fixa-
tion in different environments (marine, freshwater, terrestrial)

as well as other O2-sensitive processes (e.g., methanogenesis)
when happening in well-oxygenated environments (26, 27).
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