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proach is capable of addressing important questions about ex-
isting models of simple dynamic decisions, though it could
undoubtedly shed light on an array of related problems.

Of course, there are limitations to this approach, many of
which are computational. The agents we used had only 16
nodes, 4 of which were reserved for inputs and outputs, mean-
ing that only 12 could be used for storing (memory) and pro-
cessing information. Although more nodes could be added –
and certainly an accurate model of even very simple nervous
systems would have many times more – this would severely
slow down the steps required for evolution. It might also lead
to problems that are analogous to the over-fitting that occurs
when more parameters are added to a model, though this is
itself a question worth exploring.

Conclusions

In this paper, we presented a computational evolution frame-
work that could be used to examine how environments lead to
different behaviors. This framework allowed us to examine
the strategies that might have arisen in organisms to address
the problem of dynamic decision-making, where agents re-
ceive information over time and must somehow use this input
to make decisions that affect their fitness.

We found that both the evolutionary trajectory and the
strategies ultimately implemented by the agents are heavily
influenced by the characteristics of the choice environment,
with the difficulty of the task being a particularly notable
influence. More difficult environments tended to encourage
the evolution of complex information integration strategies,
while simple environments actually caused agents to decrease
in complexity, perhaps in order to maintain simpler and more
robust decision architectures. They did so despite no explicit
costs for complexity, indicating that mutation load may be
sufficient to limit brain size.

Finally, we discussed these results in the context of exist-
ing models of human decision-making, suggesting that both
non-compensatory strategies such as fast and frugal heuris-
tics (Gigerenzer & Todd, 1999) and complex ones such
as sequential sampling (Link & Heath, 1975) may provide
valid descriptions – or at least serve as useful landmarks –
of the strategies implemented by evolved agents. In doing
so, we provided evidence that strategy use is environment-
dependent, as different decision environments led to differ-
ent patterns of information use. More generally, we have
shown that a computational evolution approach integrating
computer science, evolutionary biology, and psychology is
able to provide insights into how, why, and when different
decision-making strategies evolve.
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Abstract 

We examine the fan effect in overlapping data sets and logical 
inference. Three experiments are presented and modeled 
using the ACT-R cognitive architecture. The results raise 
issues over the scope of the memories that determine the fan 
effect and the use of search strategies to retrieve from 
memory.  

Keywords: ACT-R; spreading activation; fan effect 

Introduction 

We apply the ACT-R model of the fan effect (Anderson & 

Reder, 1999) to a more complex experimental paradigm. 

We analyze how the ACT-R memory retrieval theory is 

linked to higher-level cognitive processes by examining the 

fan effect in overlapping data sets and in logical inference. 

Our focus is on the memory retrieval aspect of logical 

inference and not on the construction of situation models 

(Graesser, Singer & Trabasso, 1994). 

The fan effect (Anderson, 1974) is the name for a 

collection of experimental results showing that people are 

slower to identify probes as facts that they have previously 

learned if the elements that make up the probe are also 

associated with other previously learned facts. For example, 

if asked about the fact (a probe) that the hippie is in the 

park, people will be slower to confirm they have previously 

learned this fact if they have also previously learned that the 

hippie was in other locations or that other people were in the 

park. Overall, the more associations there are, and the 

slower the retrieval of the correct matching fact from 

memory will be. The total number of associations for a fact 

is referred to as the fan of the fact. 

The focus of this paper is on the question of how the fan 

effect plays out in more complex scenarios where there are 

overlapping components. In real life, facts have overlapping 

components. For example, consider the facts that the apple 

is in the bucket and the bucket is in the yard. A person who 

learned both these facts should be able to judge the truth of 

“apple is in the yard” - a fact they had not previously 

learned. So, overlapping components can be used for logical 

inference (a restricted type of inference). 

To experiment with this type of inference, the complex 

fan paradigm was created. In this paradigm, subjects learn a 

series of related and overlapping relationships and are tested 

on the fan effect at various intervals. Subjects completed the 

first three experiments in one sitting and completed the 

fourth experiment ten months later. Subjects first learned a 

list of objects in various containers and were then tested to 

confirm the basic fan effect (Experiment 1). Next, the same 

subjects learn a list of the same containers in various 

locations. Following this they were again tested to confirm 

the basic fan effect (Experiment 2). Then, subjects were 

presented with a previously learned object in a previously 

learned location and asked if it is a true fact, based on what 

they had previously learned (Experiment 3). Finally, after 

ten months, subjects returned to the lab to learn to associate 

colors with the objects from Experiment 1 and were tested 

on that (Experiment 4). 

Fan Equations 

The equations used in ACT-R for calculating reaction times 

for the fan effect (Schneider and Anderson 2012) are shown 

in Equations 1-4. In ACT-R, the retrieval of a proposition 

from declarative memory is based on its activation level. 

Activation (Equation 1) is central to the model: 

 

�� = 	�� +	∑ �	
	�	      (1) 

 

�� 	is the activation for fact i, which is the sum of the base-

level activation ��  of fact i and ∑ �	
	�	  which is the 

associative activation for fact i. �� 	represents the influence 

of practice, time-based decay, and recent accesses to fact i. 

In the ACT-R analytical model of the fan effect (Anderson 

& Reder 1999), ��  is an estimated constant. The concepts in 

a fact are indexed by j. 
	�	is the associative activation 

strength between fact i and constituent concept j.	
	� 	is a 

function of how many other facts (�) are associated with the 

concept j. If there are �facts connected to j, � is the fan of �. 
The conditional probability of retrieving fact i given concept 

j	will be l/�. We calculate 	
	� 	as: 

 


	� = 	
 − ln(�)						(2) 

 

where S is a scaling parameter. 	�	 is the attentional weight 

for concept j. The sum of 	�	s is equal to 1. It is generally 

assumed that attention is equally distributed over all the 

concepts in the fact; therefore	�	 is equal to 1 divided by m, 

the number of concepts in a fact: 

 

	�	 = 1/m (3) 
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Equation (4) is the ACT-R analytical model for fan effect: 

 

	�� = � + �����      (4) 

 

The latency of recognizing a fact i (	��) is an exponential 

function of its activation level (	��). F is a scaling 

parameter. The value of F depends on the scale of the units 

of time used by the model (seconds or milliseconds). I 

represents the estimated time for all other productions in the 

model, such as probe encoding, memory retrieval, and 

motor operations. Based on Anderson’s 1974 experimental 

data, the values for I and F are estimated to be 845 and 613 

milliseconds (ms.) respectively and S is set to 1.45 

(Anderson & Reder, 1999).  

Experiment 1: Replicating the fan effect 

The purpose of Experiment 1 was to replicate Anderson’s 

(1974) fan effect result and show that the original ACT-R 

fan model (Anderson & Reder, 1999) can be applied 

accurately. For this we used Anderson & Reder’s (1999) 

parameter values, so this was a zero parameter model. That 

is, we did not fit the models to the data, all model 

predictions for all of the experiments were calculated before 

the experiments were run.  

Experiment 1 was not an exact replication of Anderson’s 

(1974) fan effect task. In Anderson’s task, participants 

learned 26 propositions of the form “person in place”. 

Experiment 1 used propositions of the form “objects in 

containers” and had fewer conditions. This was due to the 

need to link the propositions in Experiment 1 to the other, 

subsequent experiments. 

Method 

Participants 

Six male and four female volunteers were tested. All were 

graduate students in cognitive science. 

Materials 

A single integrated system for learning and testing was 

developed (in Python) to support the execution and data 

collection for the experiments. We also developed software 

(in Python) to make sure all of the items produced the 

required fans and were correctly counterbalanced, including 

the foil (this is difficult to do by hand and it is easy for 

errors to occur). The test data consisted of 30 two-term 

propositions that each paired an object with a container. The 

propositions were designed with different fan combinations: 

1-1 (the object and container occur uniquely in that one 

sentence), 2-1, (object occurs in one other sentence), 1-2 

(the container occurs in one other sentence), 2-2, and 3-1. 

For the recognition test there were 30 target and 30 foil 

probes. 

Procedure 

Experiment 1 consisted of three-phases. In Phase I, 

participants studied 30 propositions. Propositions are 

presented in sequences of three interspersed with fill-in-the-

blank tests. Participants need to correctly fill in all the 

blanks to proceed to the next set of three propositions. 

Phase II was the qualification test, where participants 

were tested for accuracy on a fill-in-the-blank test for the 

entire set of test data. Participants must achieve 90% 

accuracy before they can proceed to the recognition test.  

Phase III, the recognition test, was similar in design to the 

recognition test in Anderson’s 1974 experiment procedure. 

For the recognition test, 30 target and 30 foil probes were 

presented to each participant; participants had to respond as 

quickly as possible by pressing a key labeled in green (“L” 

key) if he or she recognized the probe from the study set, or 

pressed the red labeled key (“A” key) if the probe did not 

belong to the study set. The test begins with a screen of 

instructions. It is followed by a 2 seconds fixation cue. After 

each key-press there is a 2 seconds pause before the next 

probe appears. Reaction time is measured. 

Model construction 

All the ACT-R models in this paper are analytical models 

based on the previously described ACT-R equations and the 

analytical approach used in Anderson and Reder (1999). 

These models are fully ACT-R compliant. The models were 

constructed with MS Excel spreadsheets and the Spreading 

Activation Modeling Environment (Kwok, West, 2010).  

 

Figure 1:  Model and human data for Experiment 1. 

Results  

Figure 1 shows the human results, with a small number of 

outliers removed, compared to the model predictions. The 

outliers were defined as RTs more than two standard 

deviations from the mean. All of the outliers were above the 

mean, indicating they were due to hesitation or second-

guessing. All of the parameters in the model were taken 

from Anderson & Reder (1999). 

Reaction time in the ACT-R model of the fan effect is a 

function of the product of the fans of each term that make 

up a proposition. For example, a two-term proposition with 

a term with a fan of 1 and a term with a fan of 4 is predicted 

to take the same amount of time to recall as a proposition 
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with two fans of 2 because 1 x 4 = 2 x 2 = 4. Therefore, to 

maximize power we combine all fan combinations for 

which ACT-R makes the same prediction into the same 

condition. Participant reaction times are averaged together 

for all propositions where the fans of the terms that make up 

that proposition have the same product. In Figure 1, the 

conditions on the x-axis are the products of the fans of the 

two terms. The results show a good fit between the model 

and the human data demonstrating a successful replication 

of the fan effect. Given that this fit is obtained using 

Anderson and Reder’s (1999) parameters without 

adjustment, this result demonstrates the accuracy of the 

ACT-R fan model. 

Experiment 2: Overlapping data sets 

In ACT-R, a chunk refers to a set of related elements, 

constituting a fact or proposition. According to the ACT-R 

theory of spreading activation, activation spreads from the 

constituent elements of a target chunk to the chunks stored 

in memory. The more spreading activation received, the 

higher the activation of the chunk in memory. During 

retrieval, the chunk with the highest activation is chosen and 

the retrieval time is proportional to its activation level. The 

amount of activation spread from an element in the target to 

a chunk in memory is theorized to be based on prior 

experience. Specifically, the amount of activation spread 

reflects the extent to which the element can be used to 

uniquely identify a chunk. For example, if prior exposure 

was equal (i.e. counterbalanced), a target element with a fan 

of 2 would have half the predictive power of a target 

element with a fan of 1. But, if prior exposure was not 

equal, e.g., the hippie was often seen in the park but only 

rarely in the bank, then the spreading activation cannot be 

determined from the fan of the target. The fan can only be 

used when prior experience with the co-occurrence of the 

elements has been counterbalanced, as in the current 

experiment and other fan experiments. 

However, determining the size of the fan depends on the 

boundaries of the study set. This is because the probability 

that an element can uniquely identify a chunk depends on 

how many other chunks the element occurs in. Although we 

will not discuss the learning mechanism for this, any 

mechanism used would need to define the scope of the fan. 

Therefore, for Experiment 2, the scope could be all the facts 

in Experiment 2 (stand alone) or all the facts in Experiments 

1 and 2 (combined). Note that the fan could still be used to 

calculate the effect because Experiment 2 alone and 

Experiments 1 and 2 combined were both designed to be 

counterbalanced. If the scope of the fan in Experiment 2 

included the facts from Experiment 1 then it would raise the 

fan of the containers resulting in higher reaction times.  

Method 

In Experiment 2 the same subjects were asked to memorize 

a second set of 26 propositions that pair the containers from 

Experiment 1 with locations 

Participants 

The participants were the same six male and four female 

volunteers from Experiment 1. 

Materials 

The test data consisted of 26 two-term propositions.  Each 

proposition paired a container from Experiment 1 to a 

location. The facts were designed with different fan 

combinations. For the recognition test phase there were 26 

target and 24 foil probes. 

Procedure and Model Construction 

The procedures and model building process for Experiment 

2 were the same as described in Experiment 1. Reaction 

time was recorded for each probe. 

Results 

Figures 2 and 3 respectively show the results for the stand-

alone model and the combined model. A small number of 

outliers were removed in according to the same criterion as 

Experiment 1 the outliers were due to hesitation or second-

guessing. As in Experiment 1, the conditions are defined by 

the model predictions. Specifically, the conditions are 

defined by the product of the fans of the two terms in a 

proposition. Here it is important to note that both the human 

data and the model predictions are different in the two 

graphs. The reason that the human data looks different is 

that boundaries for how it lines up with the two models are 

different. Since the two models predict different fans, the 

conditions differ for the two models. This can be seen in 

that the combined model divides the task into six conditions 

whereas the stand-alone model divides it into five. 

The graphs clearly show a better fit for the combined 

model. To test this statistically, the RT scores for each 

subject were contrasted with the model predictions. This 

was done by subtracting the human RT scores from each 

model’s predicted RT scores for each trial. This produced 

two difference scores for every trial, for every subject. The 

mean difference score for the stand-alone model was 358.61 

and the mean difference score for the combined model was 

276.20. Using a pairwise t-test we found that the difference 

scores for the combined model were significantly (P<0.001) 

lower than the difference scores for the stand-alone model 

(note, we took a conservative approach and did not exclude 

the outliers from this analysis).  

Experiment 3: Logical inference 

Experiment 3 was conducted immediately after Experiment 

2. In Experiment 3, participants were presented with probes 

that described an object in a location and they were asked to 

respond if it was true or not. Explicit instructions were 

given to the participants that the objects and locations were 

the same ones they learned about in Experiment 1 and 2 and 

that they can determine the answer by retrieving which 

container the object is in and then checking if the container 

is in the location.  
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Figure 2. The stand-alone model predictions and the human 

data for Experiment 2. 

 

 
 

Figure 3. The combined model predictions and human data 

for Experiment 2. 

Method 

Participants 

The participants were the same six male and four female 

volunteers from experiments 1 and 2. 

Materials 

The test data consisted of 24 targets and 25 foils for a total 

of 49 probes for the inference test. 

Procedure  

The procedure for Experiment 3 was the same as the 

recognition test procedure described in Experiment 1. 

Reaction time was measured for each probe. 

Models 

ACT-R has two ways to retrieve facts from memory. The 

first is to retrieve a match for a fact that has been presented 

(as in the models for Experiments 1 and 2). The second is to 

construct a query by using a partial fact as a cue to retrieve a 

complete fact. For example, if the apple was in the bucket, 

the retrieval cue apple ? would retrieve apple bucket. In this 

case the fan is based on the elements present in the query 

(so the fan of apple). 

One way to extend the ACT-R fan model to model 

Experiment 3 is to use a query to first retrieve a container 

for the object and then check to see if it’s in the location. 

For example, if the target fact is apple in the yard, use apple 

? to retrieve apple bucket, then use bucket yard to retrieve a 

match. The time for this would be the sum of the two 

retrieval times, as determined by the fan, plus the time for 

the associated productions (50 ms each) to direct the 

actions, plus the times for perceptual and motor actions. We 

will refer to this as the dual retrieval model. 

However, although the facts were learned separately in 

Experiments 1 and 2, that does not necessarily mean they 

were stored separately. Subjects could have realized that the 

new information learned in Experiment 2 was related to the 

information learned in Experiment 1, leading them to store 

the new information as three element chunks (i.e., object 

container location). In this case, both the object and the 

location can be used as a cue to retrieve a container. This 

would require only one retrieval and, since activation would 

spread from both the object and the location, this single 

retrieval would be faster than the query retrieval in the dual 

retrieval model. We will refer to this as the single retrieval 

model. 

The single retrieval model follows the logic of other ACT-

R fan models so only one retrieval is needed to determine if 

the probe is a target or a foil. In the dual retrieval model, the 

situation is more complex. Anderson and Reder’s (1999) 

foil identification strategy was meant for matching and the 

logic would not apply to queries. Therefore, in the dual 

retrieval model, there is no way to know if the first query 

retrieved the right container until the result of the 

subsequent match is evaluated. Under these conditions it 

makes sense to consider an ACT-R model that uses a search 

strategy. That is, if it fails to make a match it goes back and 

tries a different retrieval until either it correctly identifies 

the probe as a target or the search is exhausted.   

The single retrieval model predicts a faster retrieval time 

than the dual retrieval model. We did not model the search 

strategy but instead modeled the dual retrieval process as if 

subjects always retrieved the correct chunk on the first 

query. This produced a baseline of the fastest possible time 

for responding. We expected that the search strategy would 

add time beyond this, with the exception of the lowest fan 

condition. This is because a fan of 1 guarantees that the 

initial query will produce the correct result. 
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Figure 4. Human data (blue) from the logical inference task, 

compared to results from dual retrieval (green) and the 

single retrieval (red) model. The confidence intervals on the 

human data are set at 95%. 

Results 

As in Experiments 1 and 2, all of the models were 

constructed using the original perception/motor estimates 

from Anderson and Reder (1999), along with the times for 

the minimum necessary productions (Anderson and Reder's 

original model combined the times for perception, motor 

actions and production firing, however, it is possible to 

separate these out). Figure 4 shows the predictions of the 

single retrieval model and the dual retrieval model 

compared to the human data. The results indicate that the 

single retrieval model is too fast, whereas the dual retrieval 

model baseline prediction is plausible. As predicted, it is a 

close match on the lowest fan condition and slower on the 

other conditions that would involve additional search times 

if the first retrieval was incorrect. Since search is 

unnecessary for the single retrieval model we conclude that 

the dual retrieval model plus search is the more likely to be 

correct. Overall, this result is consistent with the hypothesis 

that people store the individual pairings they have learned 

(i.e., object-container and container-location) as separate 

chunks and do not construct integrated chunks (i.e., object-

container-location) 

Experiment 4: Long Term Memory 

Experiment 4 was done 10 months after Experiment 3, using 

the same subjects. None of the subjects were aware that this 

would happen. In Experiment 4 the list of objects that the 

subjects had previously learned were paired with colors 

(e.g., the red pen). They were then tested for the fan effect 

in exactly the same way as in the other experiments. As in 

Experiment 2 we could construct two models, a stand-alone 

model, that assumed only what they studied and were tested 

on was relevant for calculating the fan effect, and a 

combined model, that assumed that the previously learned 

information about what containers the objects were in was 

still relevant for calculating the fan.  

Results 

Figures 5 and 6 display the results. Outliers were not an 

issue in this experiment so no trials were removed. Also, 

note that although the number of conditions was the same in 

each model, the internal boundaries between conditions 

were different across the models. 

 

 
 

Figure 5. The stand-alone model predictions and the human 

data for Experiment 4. 

 

 
 

Figure 6. The combined model predictions and the human 

data for Experiment 4. 

 

To test this difference we used the same method as in 

Experiment 2 to generate and test difference scores. The 

mean difference score for the stand-alone model was 72.69 

and the mean difference score for the combined model was -

11.65. These results were significantly different according 

to a pairwise t-test (P=0.001), and indicate that facts learned 

10 months ago were still relevant in the retrieval process. 

Discussion 

The results of these experiments results confirm that a zero 

parameter ACT-R fan model can be used to accurately 

predict the results of different types of fan experiments (see 
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also West et al, 2010). However, the results of Experiments 

2 and 4 show that recently learned facts and even facts 

learned 10 months earlier contribute to the fan effect as 

though they had been part of the learning set. In contrast, 

when ACT-R fan models assume that facts can be treated as 

counterbalanced because the material presented in the 

experiment is counterbalanced, it creates an implicit 

assumption that there is no effect of background experience 

on the fan. For example, the fact that you may have had 

more prior exposure to hippies in parks than in banks is not 

taken into consideration. Likewise, the fact that you may 

have seen more different types of people in parks than in 

banks (i.e., park has a higher real life fan than bank) is also 

not taken into consideration. Given that real life experience 

is much more extensive than in the experiments, real life 

experience should dominate and the assumption of 

counterbalanced exposure should not hold. One reason that 

it still works could be that the counter-balanced design of 

the test data corresponds roughly to the average human 

experience. Another possibility is that while the scope of the 

fan effect extends beyond individual experiments, it may 

still only apply to a limited set of data defined by the 

context of being in a set of related experiments. That is, 

there is a powerful effect of context that is undiminished 

with time. However, this would be problematic to model in 

the current version of the ACT-R fan model. More research 

is needed to explore these issues. 

However, more generally, the results of Experiments 2 

and 4 indicate that the strengths of association do not 

automatically decay with time. However, since it is unlikely 

that subjects thought about the facts between experiments it 

is still possible that in real life strengths of association can 

be eroded through interference. Therefore, these results are 

supportive of an interference-based account of memory as 

opposed to a decay-based account. This finding is consistent 

with other memory studies that found an effect of stimuli 

learned a year ago (e.g., Kolers, 1976; Salasoo, Shiffrin, & 

Feustel, 1985). The current ACT-R account of spreading 

activation is consistent with the interference view (although 

the ACT-R account of the effect of the passage of time in 

memory recall experiments is not consistent with this view). 

The results of Experiment 3 show how the fan effect plays 

a role in logical inference. These results suggest that people 

do not combine logically related facts at the time of 

encoding but instead used sequential retrievals to do logical 

inference. This does not mean that people cannot combine 

logically related facts in memory. In fact, it seems clear that 

this does happen. However, these results indicate that it does 

not happen automatically. Experiment 3 also indicates that 

people use a search strategy to find the appropriate 

overlapping chunks to do logical inference. As we can see 

from the first point in Figure 4, when fan=1 there is no 

search. Arguably, the fan also plays an important role in 

determining the length of the search. In figure 4, the longest 

search times occur when the object and location both have a 

fan of 2 or more. Although we instructed subjects to first 

use the object to recall the container, this result suggests that 

at least some subjects started by using the location to recall 

the container. The most efficient search strategy is to 

remember which objects and locations had a fan of 1 and to 

start the search with them. Some subjects may have used or 

partially used this strategy. Unfortunately, given the high 

variability in the results, it is possible that subjects were 

using different strategies from each other, in which case the 

averaged data is of limited use.  
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