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Abstract. In the past few years, attention has been drawn to the fact that a precision analysis
of two-neutrino double beta decay (2⌫��) allows the study of interesting physics cases like
the emission of Majoron bosons and possible Lorentz symmetry violation. These processes
modify the summed-energy distribution of the two electrons emitted in 2⌫��. CUPID is a
next-generation experiment aiming to exploit 100Mo-enriched scintillating Li2MoO4 crystals,
operating as cryogenic calorimeters. Given the relatively fast half-life of 100Mo 2⌫�� and the
large exposure that can be reached by CUPID, we expect to measure with very high precision the
100Mo 2⌫�� spectrum shape, reaching great sensitivities in the search for distortions induced by
the physics beyond the Standard Model. In this contribution, we present the CUPID exclusion
sensitivity for such New Physics processes, as well as the preliminary projected background of
CUPID.



17th International Conference on Topics in Astroparticle and Underground Physics

Journal of Physics: Conference Series 2156 (2022) 012233

IOP Publishing

doi:10.1088/1742-6596/2156/1/012233

3

0 500 1000 1500 2000 2500 3000
Energy[keV]

0

50

100

150

200

250

300

C
ou

nt
s/

(k
eV

 k
g 

yr
) n = 1

n = 3
n = 7
CPT

ββν2

CUPID preliminary

Figure 1: Standard 2⌫�� decay com-
pared to bSM spectra.
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Figure 2: CUPID projection of the �/�
spectrum.

1. Introduction
Although the discovery of neutrinoless double beta decay (0⌫��) is the primary target of
CUPID [1], other interesting physics cases can be investigated, in particular those beyond the
Standard Model (bSM) processes that can induce a deviation of the 2⌫�� spectral shape. Indeed,
the phase space factor G depends on the spectral index n through the relation G ⇠ (Q�� � T )n

where Q�� is the Q-value of the decay and T is the summed kinetic energies of the two emitted
electrons. For standard 2⌫DBD n = 5, while for bSM processes the spectral index assumes
di↵erent values inducing a shift of the maximum of the spectrum as shown in Fig. 1. An accurate
background projection of CUPID is crucial to perform the sensitivity studies on the 2⌫�� spectral
shape. In Sec 2 the preliminary CUPID Background Budget is shown in details, while in Sec 3
we explain the analysis method used to evaluate the CUPID exclusion sensitivity for the CPT
violating 2⌫�� and for several Majoron emitting decays.

2. The CUPID Background Budget
The Background Budget (BB) is composed by a series of Monte Carlo simulations aiming to predict
the CUPID background spectrum. We simulate radioactive contaminations using a Geant4 [2]
based software. Our knowledge about radioactive contaminants in CUPID comes mainly from
material assays, previous bolometric experiments and cosmogenic activation calculations. Since
CUPID will be hosted in the same cryogenic infrastructure of CUORE, the CUORE background
budget [3] provides a clear picture of contaminations in the detector holders and the cryostat,
while the CUPID-Mo data describe the impurities of Li2MoO4 crystals [4]. Combining these
models, we have the possibility to assess almost all the background sources, having a reliable
estimate of the CUPID background in a wide energy region. Besides, we introduced in the BB
also contaminations due to cosmogenic activation in the Li2MoO4 crystals and copper holders
that were calculated with the ACTIVIA code [5]. The simulations are then processed with a
custom software to implement experimental features on simulated data, like the energy and the
time resolution, the coincidence window and the particle identification. The projection of the
CUPID �/� spectrum is shown in Fig. 2.

3. Exclusion sensitivity results
Using the same software tools, we simulate the energy spectrum of bSM processes starting from
the exact phase space calculation for 2⌫�� [6], obtaining the results reported in Fig. 1. To
evaluate the CUPID sensitivity for a given bSM process after 1 yr of data-taking, we simulate the
corresponding statistics according to the BB. Performing a combined Bayesian fit on CUPID-like
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Table 1: List of decays with one (�0) and two (�0�0) Majoron emission.

n mode exclusion sensitivity on T1/2 [yr] current limit [yr] (NEMO-3)

1 �0 7.4 ⇥ 1023 4.4 ⇥ 1022 [8]
3 �0 2.4 ⇥ 1021 4.4 ⇥ 1021 [9]
3 �0�0 2.4 ⇥ 1021 4.4 ⇥ 1021 [9]
7 �0�0 7.3 ⇥ 1021 1.2 ⇥ 1021 [9]

data including the New Physics hypotheses, we set limits on the half-life of bSM processes.
The fitting procedure is accurately described in Ref. [7]. One of the critical points in this fit is
represented by the pure �-decaying isotopes which can correlate with 2⌫�� and bSM spectra
in the fit. 90Sr is an anthropogenic radioactive isotope that decays with a half-life of 28.8 yr in
90Sr ! 90Y ! 90Zr emitting two subsequently �-decays with Q-values, respectively, of 546 keV
and 2.3 MeV. The preliminary CUPID-Mo background model assessed that the 90Sr activity
in Li2MoO4 crystals is ⇠ 10�4 Bq/kg, but the presence of 90Sr in the actual CUPID crystals
is not certain. To estimate the e↵ect of the pure �-decays on the sensitivity, the analysis was
repeated in two cases: the 90Sr is included in the simulated spectrum but not considered in the
fit (underestimation) and, on the contrary, the 90Sr is considered in the fit but not included in
the simulated spectrum (overestimation).

Several grand unification theories predict that one or two Majorons could be emitted in the
0⌫�� [10] producing a continuum spectrum similar to 2⌫�� but with di↵erent spectral indexes.
The preliminary exclusion sensitivities are shown in Tab. 1. We report the less stringent exclusion
sensitivity obtained for each process in the 90Sr overestimated and underestimated fits.

The Standard Model Extension (SME) provides a general framework for Lorentz Invariance

Violation (LIV) [11]. The parameter å(3)of is related to the time-like component of the LIV operator
in the neutrino sector. The preliminary predicted exclusion limit of the Lorentz-violating term is

å(3)of . 10�8 GeV at 90% C.I., while the current limit was set by NEMO-3 å(3)of < 3.5⇥ 10�7 GeV
at 90% CL. [9].
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