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ABSTRACT 

LBL-3036 

A technique for the solution of the Helmholtz equation together 

with as·sociated boundary conditions is described. This method is based 

on a generalization of that used for the solution of the Dirichlet 

problem of potential theory, in which a dipole distribution is 

introduced on the boundary of a region to generate the potential 

inside. In order that the boundary conditions be satisfied, the 

distribution must be found as the solution of an integral equation. 

If the boundary is smooth, the equation is of Fredholm type, but if it 

has a corner the equation is singular. 

The method is illustrated by applying it to a circular boundary, 

in which case the treatment can be given analytically. Then the 

problem of a sharp corner is analyzed, and properties of the solution 

are developed using the theory of singular integral equations. A few 

results are given for the numerical evaluation of eigenvalues of the 

Laplacian for same polygons which can also be solved analytically • 
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I. INTRODUCTION 

In dealing with a wide variety of physical wave phenomena, one 

is often faced with the problem of finding a wave motion in a medium 

which is inhomogeneous overall, or has finite boundaries, but in which 

the medium is locally homogeneous and has finite discontinuities 

across various boundaries. In such cases one must typically find a 

solution to the equation 

o, (1) 

where Ki will be a different constant in each region, i, together 

with certain matching conditions for t at the boundaries of the 

region. 

Aside from a few special cases which can be treated analyt-

ically, such problems must be solved numerically, usually with the aid 

of a high-speed computer. Commonly applied techniques of wide 

applicability in such calculations are the finite difference and finite 

element techniques. The former directly approximates the derivatives 

in Eq. (1) by finite differences, and the latter is best based on a 

Lagrangian variational principle from which Eq. (l) can be deduced. 

These techniques are generally applicable, independently of whether 

subregions are homogeneous or not. On the other hand, although boundary 

conditions at finite distances are easily treated, boundary conditions 

"at infinity" which arise in scattering problems are difficult to 

impose. 

In this paper we consider a different method for the solution 

of such problems which is closely related to the classical solution of 

the Neumann and Dirichlet problems of potential theory. In this 

-· 

...... 
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technique, the solution of Eq. (1) in a given region is achieved by 

the introduction of a dipole distribution on the boundary of that 

region. The boundary conditions can then be determined in terms of 

that distribution and one is led to integral equations for the boundary 

condition which must be solved. The method has two immediate advan

tages over the previously noted methods: 1. boundary conditions "at 

infinity" are easily introduced; and, 2. it is only necessary to 

consider points on the boundary to obtain the solution, thereby 

reducing the dimensionality of the problem by one. The storage 

requirements for a computer can thereby be reduced significantly. On 

the other hand, the method does have the disadvantage that the matrices 

which are generated have relatively few nonzero elements as compared 

to the former techniques which can have a small "band-width," and the 

elements of the matrices typically require calculation of more 

complicated functions. It is also true, of course, that the boundary 

distribution method can only be applied if individual regions are 

homogeneous. Thus for differing problems different techniques may be 

most efficacious. Although we believe that the method can be developed 

for use in three-dimensional problems, in this paper we will only 

consider the two-dimensional case, so that we will deal with a one

dimensional distribution on the boundary. 

In Section II of this paper we will develop the general 

integral equation to which the boundary method leads. In Section III, 

we apply the technique to a simple but illuminating example which can 

be treated analytically. This case, in which the boundary is a circle, 

leads to an integral equation in which the kernel is completely 

continuous. On the other hand, we would like to apply the method to 
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boundaries which have sharp corners, and in this case the integral 

equation is singular. Thus in Section IV we de~ the necessary 

mathematical analysis for dealing with such cases. Finally, in 

Section V to illustrate the method we give results for the numerical 

determinat~on of eigenmodes for a few two-dimensional polygons which 

have analytically known eigenfunctions, though the boundary dis-

tributions are not so known. From these results, it is easiiy seen 

that application of the method is quite feasible and can give good 

results. 

II. THE DIPOLE DISTRIBilliON INTIDRAL EQUATION 

The famous Dirichlet problem of potential theory is the 

determination of a solution of Laplace's equation in a region in which 

the potential takes a given value on the boundary. This problem has 

been solved for the inside of a closed region by the introduction of 

a Green's function and a continuous dipole distribution on the boundary. 

Thus, one writes 

= f D(J!•) '7'G(J!, J!•)·d0'. 

sv 

(2) 

In this expression D(;) is the dipole distribution at-;,G(;,;') is the 
I 

potential at 
~ ~ 

r owing to a unit charge at r', 
-+ 

and dcr' is the surface 

element directed along the outward normal. The integral is carried 

over the surface SV which encloses the volume. V, and ¢(;) is 

thereby determined throughout V. In the two-dimensional case, in which 

we shall be interested in this paper, 

= (3) 

I • 

~· 
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and of course V becomes an area, and SV its bounding contour. The 

solution of the Dirichlet problem is then reduced to finding the 

solution of an integral equation for D(;). 

If we introduce the G(;, ;') of Eq. (3) into Eq. (2), we 

find: 

This expression would be useful for determining the potential at 

internal points of the region V , but if one wishes ¢(-+r) on the 

boundary the limit must be taken from the inside, since the ¢(-+r) 

obtained from this expression is discontinuous across the boundary. 

In the limit in which r approaches a point on the boundary where it 

is smooth, one can write 

l.!Jn 
r-+S v 

= nfl • P f n(J!' ) 

sv 

(;' - ;)·de;' 
27! ,; I - ; 12 • 

-+ -+ 
In this relation, the integrand is in general singular as r' -+ r but 

the integral can be defined as a princip3.l value integral. If the side 

containing r is straight, the contribution from that side wi~l vanish 

and the integral is then regular, but in any case, if the boundary 

satisfies a Liapunov smoothness condition, it can then be shown that 

the integral is in fact well-defined as a principal value integral 
l -+ -+ 

as r' ..... r. 

Thus, for a smooth boundary, a solution of the Dirichlet 

problem is obtained if one can solve the integral equation 



D(;) + 
2 
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(;' - ;)~d-;;' 
2rcl;'- ;12 

It can be shown
2 

that this equation does in fact have a uni~~e sol~tion 

and so the problem is solved. 

In our approach we use an extension of the preceding technique 

to the Helmholtz equation: 

_2 2 ... 
(v + K ) t(r) = 0 ( 4) 

In this case, we must choose G(;, ;. ) to be a solution of Eq. (4), 

with the result that: 

where J
0 

and Y0 are the usual regular and irregular Bessel functions 

of order zero, and, A and B must be determined using the limiting 
... ... ~ 

condition as r -+ r ', and, if applicable, the condition as r ~ co . 
... ... 

If r-+ r', G will approach the same limit as for K = 0, and so, 

since Y0(x) - (2/rc) log x, as x ... o, we find that B = 1/4. On 

the other hand, A will be determined for the specific problem 

considered: If one is dealing with the interior of a closed region, 

A can be chosen as zero. If, however, the region is open and r can 

approach infinity, A will then be chosen in such a way as to satisfy 

the asymptotic condition on t(;). 

In order to find the asymptotic condition, it is helpful to 

consider the time-dependent equation from which the Helmholtz equation 
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typically arises. Since we are considering wave propagation, we would 

have 

(5) 

.. 
where c is the propagation velocity for waves in the region. If we 

assume· ¢(;, t) = 1\1 (;) exp( -irut) , we get Eq_. ( 4 ), where K = m/ c . 

For a scattering situation, we consider as a typical case that a plane 

wave is incident on the scattering region, and write 

= 

Here, 1\1 (;) 
sc 

is the scattered wave and we req_uire that it must have 

only ''outgoing" parts. Further, we introduce the distribution D(;) 
-+ 

on the boundaries where r is finite and they will then be used to 

generate 1\1 only. 
sc 

A simple way of determining A so that only "outgoing" 

scattered waves occur, with the assumed time dependence, is to req_uire 

that 

(6) 

where 

" . - is the usual Hankel function. 3 This clearly gives the correct B, and 

if r -+ oo: 

i ( 2 )l/2 i(Kr - n/4) 
- 4 ·;:cr e , 

.... . 

which clearly represents outgoing waves, since asymptotically 
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r -+ oo 

An alternative more complete derivation of this form for G can be 

based on.a requirement that time-dependent wave propagation be causal, 

that is, that the wave amplitude be zero at a point before the wave can 

get to that point with the given velocity, c 

If we now introduce Eq. (6) for G(;, ; 1
), into Eq. (2), we 

have: 

or, since 

= 

H (1) (x)' 
0 

§
-

-+ I 
D(r 1 )'V 

sv 

~Is_ (1) (x) ' 

(1) ,..... ..... I -+, 
H ( K r 1 

- r ) • dcr 0 

(7) 

Clear~y the scattered wave given by Eq. (7) automatically gives only 

outgoing waves, and in fact we have 

-r -+ oo 

"' -+/ where er So r r • 

-iei(~~:r - 3rc/4) 

(8rcr)1/ 2 

If we let r approach the boundary, the resulting equation 

has the same small (; 1 
- ;) behavior as in the Dirichlet case, so that 

we may Write: 



"-

.. . 

= 

-+ 
D(r) iK p 

2 + 4 
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IS_ (l)(K ,;, - ;I) 

I;' - ;; I 
(8) 

The same considerations as in the Dirichlet case with regard to the 

singular nature of the equation apply. It is this integral equation 

which we propose to investigate. 

There is one important difference between the potential problem 

and the Helmholtz problem that should be mentioned. Although the 

interior Dirichlet problem has a unique solution, the exterior problem 

does not, and in fact will only have a solution at all if 

ff<;l [d;;' I = o . 

This-follows from the fact that the homogeneous form of the exterior 

integral equation (in which ; approaches the boundary from outside), 

f(;;) D(;;) p f D(;; I) {;;' - ;;)·d-;' 
= + --2- 2rr 1;; 1 -+12 ' - r 

sv 

has a solution. (It is easily seen that a constant satisfies the 

homogeneous equation.) Consequently, as follows from the Fredholm 

-+ 
theory of this self-adjoint equation, only if f(r) is orthogonal to 

the solution of the homogeneous equation is there a solution of the 

inhomogeneous equation. In the Helmholtz case, the homogeneous equation 

will not generally have a solution, so both the inner and outer problems 

have a unique solution. 
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III. CASE OF A CIRCULAR BOUNDARY 

Although the boundary integral equation, Eq. (8 ), must 

generally be solved numerically, in the case of a circular boundary 

the equation can be treated analytically, and some insight can thereby 

be obtained. Before going on to more complicated cases, we will thus 

explore this case first. 

If the radius of the circular boundary is R, Eq. (8) can be 

written as: 

f(S) ;;; D~9) + i~ [" 

0 

~ (l)(2KR sin I e' - e e' e 
2 1)D(9')sinl ; Ide' • 

If D(e) is expanded in a Fourier series, 

00 

D(e) I 
n=-co 

in9 
a e n J 

we then have the integral, I , to evaluate: 
n ( ) J:rr (1) (r 19' - e 1) sin le' ; 9 I eine' de' In t<R · = !1_ \2KR sin 2 

0 
4 

This integral may be evaluated to give 

Thus we find: 

f(9) ~ l ~ a {1 -i:rrKR [H (l)(KR) J (KR) 1'} 
2 L n 2 n n .J . 

n=-co 

in9 e 

(9) 

, 

. . ... 



.... 
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-ll-

.. · 
and, on making use of the Wronskian relation between· 

we get: 

r(e) i:n:ttR 
-2-

n=-oo 

H (l) and 
n 

This result can be used to solve specific problems. For 

J , 
n 

example, if one wishes the eigenmodes for the interior of a circular 

region in which ¢(r, e) is zero .on the boundary, one immediately 

obtains the relation: 

J ( KR ) H ( l ) ( KR ) I = 0 • 
n n . 

The modes associated with J (~~:R) are well known, but the apparent 
n 

modes for Hn(l) (~~:R)
1 

are not, 5 and we will now demonstrate that for 

such tt 1 s, even though the dipole distribution does not vanish, the 

associated t(;) is zero everywhere inside the circle, so such 

solutions of the integral equation in this case are not useful. On 

the other hand, such solutions could arise in a numerical calculation 

of the integral equation, and one must be careful not to confuse them 

with nontriVial solutions. The distinction between solutions ~ would 

only be noticeable away from the boundary. 

To find t(r, e) once D(;) is known, we can use 

~(r, e) = ~In ~ (l:(.w) D(e') 

0 . 

I 
cos x de 

where 

w = [ r 2 
+ R

2
- 2rR cos(9- e•)r/2

, 

an4 X is the angle between the vector and 
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(See Fig. 1.) We again express, D(8) in a Fourier series, Eq. (9), 

and, for 
. 6 

r < R 1 we use Graf 1 s addition theorem for Bessel functions 

to give: 

00 L. 1\nii)(ttR) Jm(ttr) cos m(9- 8
1
). 

m=-oo 

Thus one easily finds: 

¢(r, e) = ~ a {'H (ll) ( ttR) J (ttR) 
n n+ n 

n=-ro 

Using the relations: 7 

in9 
e 

n 
J (z) = ( -1) J (z ), 

-n n 
H(l)(z) = (-l)n H (l)(z), and 
-n n 

- H(l)(z) = - 2 H (l)(z)
1 

, 

n-1 n 

we find: 

(X) 

v(r, e) inttR 
= --2- I ina ( (1) 1 a e · J ttr ) H ( ttR ) 

n n n 

n=-oo 

Thus, for the eigenmodes, we see that 

v(r, e) = 
inttR 

2 
ina -in9 (1) 1 

(a e + a e ) J (ttr) H (ttR) 
n -n n n 

The a , a are arbitrary, and, as stated earlier, we see that if 
n -n 

J (ttR) = 0 we get the well-known eigenmodes, whereas if 
n 

~ (l)(ttR)
1 

= 01 v(r, 9) = 0 for all r 

' - . 

. . ., 



' 
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We can also use the circular case to illustrate the application 

of the integral equation to a wave scattering problem. We consider the 

scattering of a plane wave incident on a circular scatterer for which 

w(r, e) = 0 on the boundary, r = R. We now set 

+ w (r, e) sc 

as in Section II, where Wine is the incident plane wave, and w is sc 

the outgoing scattered wave. In this case the wave amplitude is given 

as: 

w(r, e) iKZ :;::; e 

ittz = e 

2rc 

+ ¥ [ HJ. (l)(~~:w) n(e') cos X d9
1 

·0 

(10) 

In the limit r - co, the scattered wave is given explicitly 

as: 

W (r, 9) sc r-eo 

1/2 
i(~~:/8rcr) 

I 

-i~~:Rcos(9 - e) 
e 

x cos(e' - e) D(e') de' , 

since X , the angle in the (r, R, w) triangle opposite r , is 
I 

rc - (9 - e), as in Fig. 2. 

Equation (10) for D(e) can be solved similarly to the 

previous case. Here we require that: 
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1Jr(R, e) = 
ittz ( e + 1jr R, Q) sc = 0 J 

and since
8 

iKZ ittr COS 9 
e = e 

+ 2 

we require as the boundary condition on 1jr (R, 9): sc 

:r(e) - 2 in J (KR) cos n9 • n . 

The boundary integral equation, Eq. (8), must be modified beca,use 

r > R. This requires that the sign of the term, D(;)/2 must be 

reversed. If we again use Eq. (9) to express D(e), we find for the 

coefficients 

= 

The integral 

-in J (ttR) 
n 

a : 
n 

a 
- ....!!. + 

2 
iKR [:rr 
To 

I 

HJ.(l)(2KR sinl 
9 

; 9 I) 

is the same as 

{- ~- i:rrKR 
~ 

in(e' -e) 
x a e sin 

n 

in the previous problem, 

1 
~H (1)(<R) J (<R) r }a 
t n n . n 

/ 

I 

9 - 8 I de' 
2 

and we get: 

Once more using the Wronskian relation, we find 

-
,.- "<< 

. 
• ;>' 



I 

.of .. _ 

. . . 

and 

n(e) = 

= -2i 
!!KR 
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' 

n=-oo 

Having obtained D(9) we can calculate 

in9 e 

1jr (r, 9) 
sc by 

integration over the boundary. Thus, as in the interior problem, we 

have: '-

v (r, e) 
sc 

= i~R ~~ ~{l){•w) cos X D(e') ' de 

As before, we can use Graf's addition·theorem, but since the angle which 

enters that theorem is the angle opposite the smaller of the sides r 

and R we must first express cos X = cos ~ cos(g' - e) 

- sin ~ sin (g' - e), where ~ is the angle needed for Graf's theorem 

(see Fig. 2). (In the interior problem, since r < R , X was the 

correct angle.) If we now choose a particular term in D(9)- cos n9, 

we find 
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2rr 
iKR ( H

1
(l) (Kw) [cos ~ cos(e' - e) -I - 2 jo 

sin ~ n 

I I 

X COS ne dQ 

= 

If this is combined with the result for a , we obtain 
n 

\jr (r, e) 
sc = 

J
0 

(KR) 

H
0 
(l) (KR) 

(X) 

L 
n=l 

(e 
I 

sin -

a result which is easily obtained by using the Helmholtz equation 

directly in the usual fashion. 

IV. ANALYSIS OF THE PROBLEM OF BOUNDARY WITH SHARP CORNERS 

g) l 

Although the boundary distribution technique can be applied 

directly to cases in which the boundary is smooth, i.e.,. satisfies a 

Liapunov condition, some additional analysis must be given if the 

boundary has sharp corners. In the former case, the kernel of the 

equation can be shown to be completely continuous and so the usual 

Fredholm theorems apply. On the other band, if there are corners the 

kernel is singular. 

To deal with this situation, we will consider a corner in a 

boundary and for simplicity we will assume that the sides of the corner 

are straight. The angle between these two sides will be called a. 

Further, since the singular nature of the equation comes about because 

of the small-distance behavior of the kernel, we divide the kernel 

. . . 
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into a leading term which includes the most singular part, and a 

remainder which is completely continuous. Thus we write: 

. fL (l)(x) ;;;; 2i R( ) 
-~ - rrtXT + X 1 (11) 

and we will focus attention principally on the first term. 

If Eq. (11) is now introduced into Eq. (8), we find: 

-+ 
-+ D(r) 

f(r) = + 2 f (-+1 ) ( ... 1 ... ) ... 1 
P D rr - r ·do 

1
-+1 -+ 12 2rr r - r 

Let us now introduce the notation that D1 ( s) is ' D(;) on the side 1 
. 

of the corner, where s is the distance from the corner, and D2 (s) 

is D(;) on side 2. With this notation, the equation is divided into 

pieces, 

f 1 (s) = 

and we find 

D
1 

(s) s sin a t D (s 1) ds' 2 
+ 2rr 12 i) 2 (s - 2s 

I 
s cos 0: + 

0 

t2 r· 2 2 .1_ 

iK. + 4 s sin a 
( RlK(s 1 - 2s 1 s cos a+ s )2 

J 2 2 2 

+¥-f 
·c~ 

0 (s' - 2s 1 s cos a + s ) 

~ (1) (K ,; I - ; I) 

!;~ -;I 

D ( s 1
) ds 1 

2 

, 



where f' 
1 

(s) is the boundary value on side 1. · For a straight side 

there is no contribution f'rom the distribution D1 (s) to the potential 

on that side except f'or the term D1 (s)/2, because the vector 
~ ... 
r' - r 

is perpendicular to the surf'ace element. The length of side 2 is t 2 . 

The integral over C' is the contribution from the distribution other 

than the part on sides 1 and 2. This last integral is analytic as a 

function of s, since it is a finite integral and 1;• - ;1 > 0 for 
... ... 
r' on C' and r on side 1. 

Similarly, for side 2 we have: 

where the ••• 

+ 
s sin a 

2rr t 
indicates terms similar 

D (s')ds' 
1 

to the R, C' terms 

To analyze the corner singularity, we introduce 

D±(s) = D1 (s) ±D2 (s), and we then obtain 

D±(s) s sin a t D±(s' )ds' 
± F±(s) 2 2rr 2 2 = 

(s 1 
- 2s 1 s cos a + s ) 

0 

+ . . . ' 

f'or f'l. 

' 

where t is the lesser of' \ and t2, and F ±(s) includes the m 

contributions of f. (s) and the remainder.of the e~uations coming 
l. 

f'rom R, C', and the integral for the larger t. beyond t . 
l. m 

Obviously, these integral e~uations have a singular kernel as s,s'--. 0, 

and so some care must be used in dealing with them, either f'or analytic 

or numerical purposes. 

To proceed, we make a Mellin transformation of the e~uations 

to obtain 

.• 



. ... . ~ 

. ,. . 

± sin a 

(2rr )2 i 

c+ico 

! 
c-~oo 

·f 
0 
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( S I)-S I dS I 

12 I 12 s - 2s s cos a + s 

In this equation, 6(§) ;;; r D(s)s§-l ds. To obtain Fq. (12), 
0 

(12) 

we have made the direct Mellin integration and have used the inverse 

relations: 

D(s) = (2:d)-l rc+ico D.(s)s-s ds. 

/_ico 

The choice of the constant c will be discussed 1ater. The transform 

of the function F±(s) is jf±(s) • In arriving at this equation we have 

interchanged the order of integrations, but this can be justified 

a posteriori. Next we can evaluate9 the right-most integral in Eq. (12 ): 

[ 2 2 s - 2s s 1 cos a+ s 1 

where 0 <a < 2rr, and -1 < Re s < 1. 

integral: 
t 

(t )s-s I Lm {sl)s-s~-1 dsl m 
= 

s - sl 
0 

where we require that Re(s - S I ) > o. 

Then we 

' 

Thus the 

sin[(rr - a)g] 

sin a sin(rrs) ' 

can carry out the next 

equations become: 



+ 
r ( ~) 

where 

r( ~) -

c+ioo 

f 
c-ioo 

sin(:rr - a); 
sin :rr ; 
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(s- ~') 
(13) 

This equation is in standard singular integral equation form, 

and thus may be dealt with using known techniques.10 We begin by 

considering the homogeneous equation, and introduce a function 

c+ioo 
(t );-~' 6(o)(;')d~' 

l f H( ~) 
m 

= 2:rri ' (~- ;') 
c-i<I> 

where 6 (0) is a solution of the homogeneous equation. Clearly H(s) 

is an analytic function in the finite half-planes defined by 

Re(s) ~ c , and it has a discontinuity in crossing the contour of 

integration. If we define H(±)(s) to be the functions obtained from 

the integral in which Re(~) ~ c, respectively, together with their 

analytic continuations, we then easily find that 

and so 

0 . (14) 

This equation can be used to deduce the analytic structure of 

6/0)(s) • 

j ... 



t,r-· 

. 
~- . 

-
... Ll 
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We eventually wish to deduce the analytic structure of D(s) , 

which will require using the inverse transform on 6(~). For the 

latter step, in the limit s ~ 0, the contour in the inverse transform 

can be closed on the left, and so the behavior of D(s) is determined 

by singularities on the left of the contour. In this region H(-)(~) 

is analytic, and so we can solve for H(+)(~) in terms of H(-)(~) 

using Eq. (14) to analytically continue H(+)(~) to the left of the 

contour. Thus we find: 

= 

A solution of this equation can be obtained by taking the logarithm of 

the equation and then noting that log H(~). is a function with a given 

discontinuity on the contour. The solution of this problem (the 

II ") 11 Hilbert problem then can be written: 

/c+ioo 
c-ioo 

tn[l ± r(~')] 
~I - ~ 

d~ I 

We then see that H~-)(~) i.s analytic and nonzero on the left of the 

contour, and if we use Eq. (14) to analytically continue H+(+)(~), 
it is evident that H ( +) ( ~) will also be analytic unless 

± 

1 + r(~) = 0 . 

At such points, will generally have poles. Thus 

also has poles at such points. 

The solution of Eq. (13) may now be obtained by introducing 



to get 

Using 

l 
2:rri I 

c-ioo 

this equation can be written: 
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c+ioo 

( ~' - s) ' 

(15) 

Again we have a discontinuity equation to satisfy and we obtain as the 

solution: 

J! (~) = 
± 

Hence l! (- \ ~) 
t 

c+ioo 

I d~' 
~ t - ~ 

c-iro 

is analytic on the left of the contour, and if we use 

Eq. (15) to obtain the analytic continuation of l! + ( + )( ~ ), we finally 

find that 
( -_) 

+ r( ~) Ji+ ( ~) + 2 p( ~) 
l ± r( ~) 

Thus, we can generally expect poles in L(~) in the left half plane 

wherever l ± r(s) = 0 on the left of the contour. 

To complete the discussion, it is necessary to specify the 

contour; i.e., to determine c • In the first place, from the 

.... 

. . . 
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restriction on Re( ~ ), we require that -1 < c < .1. In addition, the 

preceding development will only give a meaningful expression for H(~) 

if tn[l t r(~)J -• 0 as /Im ~~- ro. It is easily seen that 

r(~)- exp[(/n- ai- n)/Im ~/] as /Im ~~-+ ro, so r(~) ._. 0. 

Thus the logarithm will approach zero at ro, unless it has a.n in:B.gina.ry 

p3.rt of the form inn • To guarantee that this does not happen, we can 

choose c = 0, since r(~) is real and nonzero on the imaginary axis. 

Any other c satisfying the limit restriction is equally acceptable 

as long as the contour would not thereby be distorted from the 

imaginary axis by going p3.st a zero of 1 ± r(~), since in such a case 

the logarithm would acquire an imaginary p3.rt at ro. 

We now can conclude that D(s) will behave as 
-~ "'n 

s as 

s-+ O, where sn is a pole in the transform, 6(~). Such poles will 

appear if 

or 

1.= ~ 

sin(n - a)~ 
n 

' 

sin n ~ = ; sin(n - a); n n 

if ~ ~ 0. In the case of 6+, the solutions of this equation are 

s ( +) 
n = 

(2n - l)n 
a ., 

and in the case of 6 , 

= 
2nn 

-a' 

2nn 
; 

2n - a 

(2n - l)n 
2n - a ' 

where n is any positive integer. 
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In addition to these poles, we must consider other possible 

singularities in 6(~). Since ~(-)(~) is analytic, the only other 

possibility would be singularities in j(~). In fact, p(~) in part 

comes from contributions to f(s) arising from distributions on the 

other boundaries, C', and since these contributions will be analytic 

near s = 0, this part of j ± ( ~) will be the transform of functions 

which have power series expansions; i.e., they have poles at the 

12 
negative integers. There will also be a pole in }+(~) at ~ = 0, 

but because f _ ( 0) = O, } _( ~) has no such pole. Thus, to the ,poles 

already given, we have additional poles at the integers. 

Finally, we must consider singularities related to the 

remainder from li:L (l) (x), aside from the most singular p:trt which 

has already been treated. For this we assume that D(s) ~ s~, and 

then deduce the form of 

t 

i•s sin a J 
0 

where, as in Sec. III, w = (s' 2 - 2s' s cos a+ s2 )' This integral 

can be evaluated using Gegenbauer's addition theorem: 13 

2 sin a (m + 

, ((s')S-lJ 
1
. (•s')ds' + J 

1
(Ks) J(t(s')!-lH(l

1
)(Ks')ds'l 

1 m+ m+ m+ 
~ s 

where C (l)(cos a) is a Gegenbauer polynomial. The Hankel function 
m 

can be divided into two parts: 

'( 

• 

.... 



, ... 

..... 

. . " 

where 

= 
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2i 
---logs- J 1 (.Ks) + v (s) rc m+ · m+l ' 

-m-1+2n a s 
n 

If the series for tm+l(s) and Jm+l(Ks) are introduced into the 

expression for I~(s), it is then easily found that log s does not 

occur in I~(s), and that the powers of s which occur are s + 2n, 

and n + 1, where n is an integer ~ 0 • Thus each of the poles, 

~i' generates a series of poles spaced at even _integers from S,. 
1. 

This completes the determination of the analytic form of the solutions 

of the boundary integral equation at a sharp corner. 

A few comments are appropriate at this point: In deducing the 

analytic form of the solution, we have assumed that the unknown 

functions on the remainder of the boundary away from the corner of 

interest can be treated as if they were known. The legitimacy of this 

approach can be rigorously established following the complete treatment 

of singular equations, but we did not feathat such an approach, which 

mainly only increases the complexity of notation and the bulk of the 

equations, was particularly illuminating and so we have chosen the more 

heuristic approach given above. We refer the interested reader to the 

. 10 rigorous treatments for a full d1.scussion • 

In .the above analysis, we have assumed also that the poles 

which appear are simple. While this is generally the case, in special 

cases, poles may come together. For example, if a = 2rc/3 we find 
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that two poles occur at In such a situation, the 

s-space function then has a term of the form s-~ logs as well as 

the usual -s s . 

V. NUMERICAL EXAMPLES 

To illustrate the effectiveness of the boundary distribution 

method, we have used it to find approximate eigenvalues for a number 

of polygons in which the eigensolutions for ~(;) and K are known. 

Thus we look for solutions of the integral e~uation in which f(;) = 0. 

To our knowledge, the corresponding distributions, D(;), cannot be 

obtained analytically in these cases so a direct comparison of the 

numerical results for them cannot be made. 

At the outset, it should be noted that we do not feel that the 

boundary method is necessarily the best choice for finding such eigen-

values, and it is not for such problems that we ultimately wish to use 

it. A distinct disadvantage as compared with the finite element method, 

for example, is that it does not seem to satisfy an extremum condition, 

and, for the lowest eigenvalue, a minimum principle. Thus, by changing 

certain parameters in the calculation it is possible to find values for 

K which change from below the analytic value to above it, and for a 

suitable choice one can get as accurate a result as desired. In the 

calculations to be described, this happens as the balance between the 

corner regions and the central regions is varied, even with the total 

number of points fixed. Thus the accuracy of the calculated K is not 

completely satisfying as an indicator of the overall accuracy of the 

calculation. 

Another disadvantage of the method for finding eigenvalues is 

that K occurs in the kernel of the integral e~uation so that the 

.. 
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approximating matrix must be recalculated for each choice of K • In 

the finite element method, such iterative complexity is not necessary. 

In addition, the kernel is a complicated function, and the ensuing 

matrix has few, if any, zero elements. Thus, although fewer points 

need be used in the boundary method, it is not clear that overall 

efficiency is obtained. There is generally a trade-off between storage 

requirements and the complexity involved. On the other hand, for 

scattering problems it is not necessary to iterate the matrices, and 

the automatic satisfying of the outgoing scattered wave boundary 

condition seems to us a great advantage. 

We have used the method of this paper to obtain the eigen

solutions for a square, for an equilateral tria~, for a 45° isosceles 

triangle, and for a 
0 0 0 

30 -60 -90 triangle. In each case the 

eigensolution for K and V(;) can be obtained analyticallY,• 

In reducing the integral equation to an approximate finite 

form we have approximated the integrals in the integral equation in 

-+ 
two ways: For r' near a corner, we have assumed that D(s) can be 

expanded in a finite series of terms of the form ss , in which the 

s's chosen are the lowest values in the set of allowed s's. Then 

the kernel was broken into two parts, of which the first included the 

most singular terms as K IX:• - X: I -+ 0 , and the second was the 

remainder. The first part together with the various (ss)'s was 

integrated analytically using various rapidly convergent series, while 

the second :r:art of the kernel was assumed to be approximated by a 

quadratic form, and this was then integrated exactly in conjunction 

with the factors ss. The method used for this :r:art of the kernel was 

quite analogous to that used in obtaining Simpson's rule. On the other 
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..... 
hand, for r' away from a corner the entire kernel times D(s') was 

assumed to be approximately a quadratic form in s ', and then this 

function was integrated exactly, again analogously to Simpson's rule. 

In the calculations reported here, we are dealing with a closed ·~· 

region, and hence in the kernel no asymptotic condition as r ..... oo is 

needed. Thus we have chosen the Neumann function Y1 instead of the 

Hankel function H (1) 
1 in the kernel. This has the advantage that 

-+ 
the kernel and D(r) become real. Further, we have chosen to reflect 

the distribution about one of the sides. This automatically satisfies 

the ~(;) = 0 boundary condition on that side, and no distribution is 

needed along it. We-also find that the results for K depend on which 

side is used for reflection in the 
0 0 0 

30 -60 -90 ' and isosceles 

triangles, and so the differences between solutions gives an indication 

of the accuracy of the numerical calculations. 

14 
A few results are presented in Table 1, but a fuller discussion 

of these and other calculations will be published elsewhere. The 
-

analytic lowest eigenvalues in the various cases are:15 

K (square) 

K (equilateral triangle) == 

0 
K (45 -isosceles triangle) == 

and 

0 0 0 . 
K (30 -60 -90 tr1.angle) 

where in each case the longest side was chosen of unit length. In view 

of the lack of some variational principle, it is perhaps surprising 

that the eigenvalues are. found as accurately as they are. This is the 
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more surprising when the solutions for ~(;) are considered. In the 

cases given in the table, we have used the distribution found to 

calculate ~(;) at points inside the boundary using essentially the 

same integration approximations as were used in the integral equation 

itself. At points far from the boundary, the calculated ~(;)'s agree 

quite well with the analytic values which are given in the Appendix. 

On the other hand, for points · r near a boundary, the calculated 

errors were found to be These errors varied from point 

to point, of course, and decreased as the number of points per side 

was increased, but in all cases the errors in ~G~) compared to those 

in K seemed more what one might expect if K satisfied a variational 

principle than if it did not. 

At any rate, the results clearly show that it is feasible to 

solve problems numerically by making use of distributions on the 

boundary, and hence an alternative to the finite-element or finite-

difference methods is available. 
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APPENDIX 

In the numerical analysis we have made comparisons with 

various analytic eigensolutions of Helmholtz' equation. The solutions ~ 

for the square are well known. For the various triangles they are: 

~uilateral triangle 

w(x, y) = • 21C ( .. r:-3 .) i 21C ( ',3- ) i 41( 
s~n ... r::;

3
. V 5 x + y - s n --=-- y x - y - s n 

1
_ y, 

VJ Y3 "\3 

Isosceles right triangle 

\)r(x,y) = sin m1CX sin n1Cy - (-l)m+n sin n1CX sin m1Cy, 

and 

w(x,y) = cos ~1( (5x +-{3y)- cos ~1( (5x- ·{3y) 

+ 
21C .. [';" 21C ' ,----

cos - ( -x - 3 v 3 y) - cos - ( -x + 3\' 3 y) 
3 3 

21C ... r:;- 21C -· + cos 
3 

(-4x + 2 v3 y) - cos 3 (-4x - 2"V3 y). 

. . " 
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TABLE 1 

4.. Case PPS Refl. Side K Error 

Square 26 Any 4.442853185 -2 •9753 X 10-5 ,, 
38 4. 442881485 -1.453 X 10-6 

46 4. 442882851 -8.7 
. -8 

X 10 

Equilateral 26 Any 7.255218367 2.091 X 10-5 
Triangle 

X 10-6 
36 7.255198910 1.453 

46 7.255197164 2.93 X 10-7 

66 7.255197276 1.81 X 10-7 

45°-45°-90° 26 Long side 7. 02 4 773683 -4.1047 X 10-5 

26 Short side 7.024231683 -5.83047 X 10-4 

46 Long side 7.024815759 1.029 X 10-6 

46 Short side 7. 024783389 -3.1341 X 10-5 

30°-60°-90° 26 Short side 11. o819o852 -5.8866 X 10-4 

26 Middle side 11. 082 96905 4.7187 X 10-4 

26 Long side 11.08244263 -5.455 X 1@-5 

46 Short side 11.08253880 4.162 X 10-5 

46 · Middle side 11.08245430 -4.288 X 10-5 

46 Long side 11.08240105 -9.613 X 10-5 

.,...(. 

'•'- · ... 
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FIGURE CAPI'IONS 

Fig. 1. Illustration of variables used for points inside a circle. 

Fig. 2. Illustration of variables used for points outside a circle. 
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