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Abstract

Accurate protein structure predictions, enabled by recent advances in machine learning algorithms, 

provide an entry point to probing structural mechanisms and to integrating and querying many 

types of biochemical and biophysical results. Limitations in such protein structure predictions 

can be reduced and addressed through comparison to experimental Small Angle X-ray Scattering 

(SAXS) data that provides protein structural information in solution. SAXS data can not only 

validate computational predictions, but can improve conformational and assembly prediction to 

produce atomic models that are consistent with solution data and biologically relevant states. Here, 

we describe how to obtain protein structure predictions, compare them to experimental SAXS 

data and improve models to reflect experimental information from SAXS data. Furthermore, we 

consider the potential for such experimentally-validated protein structure predictions to broadly 

improve functional annotation in proteins identified in metagenomics and to identify functional 

clustering on conserved sites despite low sequence homology.

Keywords

CASP-SAXS; protein structure prediction; protein flexibility; hybrid method; FoXS; BILBOMD; 
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1. INTRODUCTION

Deciphering a protein’s functional mechanisms is enabled by accurate protein structure(s) 

and knowledge of the active site and interaction interfaces. In the past, the availability 
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of structures was a major bottleneck. Scientists were limited by proteins whose structures 

could be experimentally determined at high resolution by X-ray crystallography, nuclear 

magnetic resonance (NMR), and, more recently, cryo-electron microscopy (Cryo-EM). 

Protein structure predictions, particularly for proteins > 100 residues without a known 

orthologous structure, were not reliable, even for obtaining the correct topology [1]. After 

the 2020 Critical Assessment of Protein structure predictions (CASP14), it was clear that 

machine learning algorithms improved the accuracy of protein structure predictions to 

the level that predictions could be reliably used [2–8]. Scientists can input the amino 

acid sequence into a machine learning server and receive a protein structure prediction 

that is likely to be highly accurate. Among many factors that contribute to the structure 

prediction accuracy, we highlight several factors in the top protein structure prediction 

algorithm, AlphaFold2. 1) Use of evolutionary co-variance, which is the concept that 

residues that vary together in evolution are more likely than not to be close in tertiary 

structure, first implemented by Deborah Marks and Chris Sanders [9,10]. By default, 

evolutionary covariance depends on the quality and depth (how many sequences) in the 

multiple sequence alignments of the target. 2) Use of inter-residue probability distribution 

distograms that are a spreadsheet of probabilities of any one residue being within distance to 

other residues in the protein. First applied in CASP13 by the Deepmind team, this opened up 

the algorithms to better incorporate long-distance relationships, such as N- and C-capping of 

alpha helices. 3) Application of attention machine learning algorithms that prioritize parts of 

the input as being more significant, was an impactful change in CASP14 from the traditional 

convolutional neural networks applied in CASP13. 4) Inclusion of the 3D model within the 

machine learning algorithm, allowed a confidence assessment in the B-factor column of the 

coordinates. In our and others’ experience, low confidence regions often coincided with loop 

and other flexible regions and may be a means to efficiently identify such regions, as we 

show in our example below.

Yet, current protein structure prediction algorithms have limitations. (1) Exposed regions. 

Although globular regions with substantial contacts and strong evolutionary conservation are 

likely to be highly accurate in predicting, regions with fewer contacts or flexibility are likely 

to be mispredicted. (2) Proteins with few family members. The number of homologous 

sequences matters. Accuracy depends partly on the depth of the multiple sequence alignment 

and derived evolutionary covariances from sets of residues that mutate simultaneously. 

Thus, proteins with low sequence homology to other proteins will have a lower probability 

of obtaining an accurate structure. (3) Protein-protein, protein-DNA, and protein-RNA 

complexes. The latest machine learning algorithms have not been tested in CASP for 

the accurate prediction of complexes. Also, given that computational time is limited for 

many publicly available servers, the calculation for complexes is more complicated than 

for individual proteins. For complexes with RNA or DNA, machine learning algorithms 

cannot predict RNA and DNA conformations sculpted by protein interactions. (4) Bias 

towards deposited structures. Accuracy is a relative term as it depends on the standard. In 

its assessment of protein structure prediction algorithms, the CASP committee uses high 

resolution structures determined mainly by X-ray crystallography. However, we and others 

have shown that proteins in solution can be conformationally distinct from proteins trapped 

in crystal lattices and that sometimes may not adopt biologically-relevant conformations 
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[11,12]. As the machine learning algorithms use the PDB as their training database, their 

predictions are influenced by the presence of co-factors, nucleic acids, or ligands, in addition 

to the salt and aggregating conditions to form ordered crystallographic protein arrays. With 

the target being biologically relevant conformations, we and others anecdotally have found 

predictions to be closer to crystal structures than to the solution structures. (5) Small 

molecules and ligands. Current machine learning algorithms cannot predict the structural 

impact of bound ligands, which can be functionally important for allosteric binders and 

induced fits. (6) Impact of mutations. Machine learning algorithms minimize disagreements 

between multiple inputs but, by necessity, remove outliers. Thus, current algorithms are 

challenged to predict the structural consequences of a mutation.

Although there are limitations in protein structure predictions, comparison to experimental 

data, even if sparse, has the potential to test, validate, and guide protein structure predictions. 

In particular, Small Angle X-ray Scattering (SAXS) can provide global structural restraints. 

SAXS data contains information on the distances between all electron pairs. Unlike NMR, 

these distances are not assigned, and it is currently not sufficient to derive an atomic 

model. However, all distances are included, and it is possible to calculate the SAXS curves 

from atomic models – allowing a quantitative comparison between atomic models and 

experimental data [13–18]. One step further, atomic models can be altered and/or or used as 

an ensemble of multiple atomic models, to test against the SAXS data and gain information 

on the conformation(s) and dynamics in solution [19,17,16,15,14]. Here, we focus on how 

to use atomic models from protein structure algorithms with experimental SAXS data to 

validate prediction and/or to characterize the structure in solution. A match between the 

prediction and the SAXS data will support the validity of the protein structure prediction. 

We will show how to compare atomic models to experimental SAXS data. Similarity but 

with slight differences between calculated and SAXS data suggest that the solution structure 

is different, either in conformation, dynamics, or stoichiometry. We will show servers that 

can alter the predicted model structure and that can test ensembles of these altered atomic 

models.

The rationale for using SAXS data to validate structure predictions is that it has a major 

advantage compared to other structural methods such as X-ray crystallography. SAXS data 

collection is straightforward with minimal sample preparation and is essentially available 

without cost through synchrotron SAXS beamlines to any academic scientist with purified 

protein [20–23]. SAXS synchrotron data collection for research to be published is typically 

free. No labelling is required. The particle size limitation at our SIBYLS beamline in the 

Advanced Light Source Synchrotron ranges from 8 kD to 600 kD, within the range of most 

protein samples [24]. Importantly, oligomeric states [25,26], protein flexibility [27–29], 

and shape [30] can be calculated from SAXS data. In our experience, the stoichiometry is 

particularly important as it is often not recognized. Our structural genomics study of 50 

proteins, mostly from Pyrococcus furiosus showed that over half of the proteins studied 

formed homo-oligomers [20]. It is estimated that over half of the proteins in the PDB are 

multimerizing [31]. Although we focus primarily on protein models, SAXS data can be 

collected on protein, DNA, and RNA individually or as complexes and compared to relevant 

atomic models. The impact of mutations and small molecules can also be probed through 

SAXS [32,33].

Chinnam et al. Page 3

Methods Enzymol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SAXS data can effectively validate protein structure prediction since it contains structural 

information on the distribution of electron pair distances of proteins in solution [34,35]. 

Analogous to X-ray crystallography, SAXS data are collected in reciprocal space, with 

the Intensity (I) of the scattered X-rays plotted as a function of the scattering angle 

q. The scattering angle is typically calculated as momentum transfer q to incorporate 

beamline parameters and X-ray wavelength. The units can be in Å−1 or nm−1. Like X-ray 

crystallography, SAXS data can be converted to real space through the Fourier transform 

X-ray scattering relationship between reciprocal and real space [34,36]. In real space, SAXS 

data are represented as a histogram of relation proportion P of electron pairs at distance 

r, also known as P(r). Dmax is the longest electron pair distance in the P(r). SAXS data 

can be compared to protein structures in real or reciprocal space and is also called SAXS 

curves or SAXS profiles. Molecular envelopes can be calculated ab initio from experimental 

SAXS curves [30,37]. Although useful, ab initio envelopes are limited by the difficulty to 

differentiate between closely related models, so we find comparing SAXS data to atomic 

models directly more quantitative [38].

Here, we focus on comparing atomic models to SAXS data after the data has been collected 

and analysed. This comparison allows us to validate a protein structure prediction and/or 

alter the prediction to better fit the solution data. A single SAXS curve for each condition 

has been generated from available SAXS data. Recent reviews provide detailed protocols for 

SAXS sample preparation, data collection, and analysis [39,40]. At our SIBYLS beamline 

at the Advance Light Source synchrotron, SAXS data can be collected in two modes: 

in a sample cell in high throughput (HT) SAXS (30 μl of a 0.5–2 mg/ml) or via Size-

Exclusion Chromatography-coupled (SEC)-Multi-Angle Light Scattering (MALS)-SAXS 

(50–100 μl 5–20 mg/ml). HT-SAXS provides the best signal-to-noise. To compare SAXS 

to the atomic model, the sample ideally must be well behaved, have no aggregation, and 

be stoichiometrically monodisperse. SEC-MALS-SAXS will separate heterogeneity and 

provide a monodisperse sample for difficult samples but dilute the sample > 4-fold [41,42]. 

Making it a relatively inexpensive and available structural method, protein sample(s) can be 

mailed in at the SIBYLS beamline; the SAXS data are collected by experienced staff, and 

the SAXS data are made available to users.

The basic process for SAXS validation of protein structure predictions is to obtain atomic 

models from a publicly accessible server, predict the SAXS curves from the atomic models, 

compare these predicted SAXS curves to experimental SAXS data, and, if necessary, modify 

the models (e.g. change oligomerization state, change the protein conformation) to improve 

fit to the SAXS data (see Figure 1A).

2. OBTAINING A PROTEIN STRUCTURE PREDICTION.

2.1 Overview.

Currently, of the many servers in protein structure prediction available, we are most familiar 

with RosettaFold [8] created by David Baker’s group, and AlphaFold2 [4] by the Deepmind 

Technologies company and recommend these programs here. However, accurate structure 

predictions can be obtained from other servers as well. We recommend experimental SAXS 
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validations for any atomic model, regardless of source including crystallographic models 

[39].

In terms of accuracy of your protein structure prediction, it is our experience and 

documented in CASP14 that the accuracy of individual domains for most protein predictions 

and, in particular, confidence for their topology are high [2]. However, caution should 

be taken for domain-domain orientation, for proteins with low sequence homology and 

for regions that are predicted to be disordered. For the latter, likely due to their lack of 

representation in the PDB training database for the machine learning algorithms, there is 

currently failure for regions predicted to be disordered and these regions are predicted 

simply as random coil. Although SAXS-based atomic analyses can be informative with 

these type of proteins [42,43,24,44–47,29], care should be taken in conclusions as these 

regions adopt multiple conformations. It is also unclear how loop regions involved in 

domain swaps will be predicted, but they can play critical mechanistic roles as found for 

p62 in the TFIIH core 7-subunit complex that extends from the XPD ATPase site to its 

DNA binding groove [48]. Another cautionary note for protein structure predictions is the 

possible presence of conformational changes, induced by small molecules or intrinsic to the 

protein domain. SAXS later on in the chapter can assess conformational flexibility and guide 

selection of alternative conformations.

Structures for homo- and heteromeric complexes can also be predicted using these protein 

structure prediction machine learning algorithms but have not yet been assessed by CASP 

[49,50] (See Note 1). Predictions of complexes can be tested against experimental SAXS 

data similar to single chain models. For nucleic acid complexes, RNA prediction servers will 

also be helpful for this category of predictions and that SAXS will be of use for validation 

and tweaking the atomic RNA models to be more consistent with solution data.

2.2 Protein structure prediction Servers

Follow the instructions for each server to obtain the prediction. Be sure that the sequence 

exactly matches the SAXS sample, including tags. Tags can also be added to already 

predicted models in the databases in modelling programs such as Modeller within 

CHIMERA, as previously described [19]. Follow the instructions for each site. These 

programs will typically output multiple models. All models can be compared to the SAXS 

data. As mentioned earlier, potential pitfalls are for proteins with little or no sequence 

homology to other proteins, as sometimes found for viral or bacterial proteins.

2.2.1  https://robetta.bakerlab.org/ —This site hosts the RosettaFold protein structure 

prediction server. Homo-oligomeric and heteromeric complexes can also be predicted as 

described in RosettaFold’s frequently asked questions (FAQ) [49].

2.2.2  https://alphafold.ebi.ac.uk/ —In collaboration with EMBL-European 

Bioinformatics Institute (EMBL-EBI), this is a database of AlphaFold2 protein 

Note 1.As with any atomic model for complexes, interfaces should be assessed for high sequence conservation and charge/
hydrophobic complementarity. The PISA server (https://www.ebi.ac.uk/pdbe/pisa/) provides an automated assessment for the latter 
[61]. Even in crystal structures, it is not unprecedented for interfaces to be mis-assigned, as we found for the repulsive interface 
between PCNA and sumo [47]. It should be noted that SAXS
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structure predictions for 20 model organisms including Homo sapiens, Escherichia coli, 
Saccharomyces cerevisiae, Schizosaccharomyces pombe, Mus musculus, Rattus norvegicus, 
Caenorhabditis elegans, Danio rerio, and Drosophila melanogaster. Alternatively, these 

models can be obtained on https://www.uniprot.org/ under individual protein entries. Besides 

the predicted structure in PDB format, the database also provides a per-residue confidence 

score (pLDDT) for each residue between 0 and 100. The regions below 50 pLDDT may be 

unstructured in isolation. Consequently, these values can be used to guide conformational 

sampling, as described in section 5. We note that the Swiss-Model also adds in structure 

predictions for complexes [51].

2.2.3. ColabFold.—AlphaFold2 can be run on this installation on a Google Colaboratory 

site. There are limitations in runtime, so large proteins may not be accurately predicted. 

AlphaFold-Multimer can be run at this site for atomic models of complexes, with the same 

time limit restrictions [50]. https://colab.research.google.com/github/sokrypton/ColabFold/

blob/main/AlphaFold2.ipynb

2.3. Pitfalls to look out for.

Atomic models should have secondary and tertiary structure in their predictions for ordered 

regions. If the prediction server has stopped in the middle because of a time limit given for 

the prediction (not uncommon occurrence for large proteins or complexes), these predicted-

to-be-ordered regions will look garbled. To assess if these regions are predicted to be 

disordered or ordered, there are a number of highly accurate disorder prediction servers 

publicly available including PONDR and DisProt [52–55] that predict disordered regions 

within the sequence. If the protein is homo-oligomerizing, there may be regions that overlap 

within the oligomer and that will need to be adjusted.

3. PREDICTION OF SAXS CURVE FROM AN ATOMIC MODEL.

3.1 Overview.

To validate structure predictions, we compare experimental SAXS data to the SAXS curve 

calculated from the structure prediction. Multiple programs can calculate a SAXS curve 

from atomic models of protein, DNA, and/or RNA [13–17,56]. We recommend FoXS, that 

uses the Debye formula to explicitly compute all inter-atomic distances including a predicted 

hydration layer and taking into account the displaced solvent [17] (Figure 2). When input 

with experimental SAXS data, there are additionally two constants, c1 and c2, that adjust 

the total excluded volume and the density of the hydration layer, respectively, to better fit 

the experimental data (see note 2 for potential issues with c1 and c2). The FoXS server is 

readily available and can be conveniently input with multiple atomic models uploaded as a 

compressed folder. A recent Methods paper gives a detailed review [19].

Note 2.For the prediction of SAXS from atomic models, it is best to input the protein structure predictions with the experimental data, 
to improve the estimation of the hydration layer. The FoXS program uses two fitting constants, c1 and c2, to fit the experimental 
SAXS data. Note that a c2 constant close to 4, indicates overfitting to the experimental SAXS data. Often this occurs when the 
protein is adopting multiple conformations in solution and is reduced by analysing against an ensemble of multiple structures (via 
MultiFoXS).
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3.2 Server for Prediction of SAXS curve from an atomic model.

The server is located at https://modbase.compbio.ucsf.edu/foxs/

3.3 Inputs for FoXS server.

Use default parameters.

3.3.1 Atomic model(s) input for FoXS.—The sequence should match the SAXS 

sample. Tags and missing sequence could be added to the atomic model by creating a 

homology model based on the protein structure prediction with Modeller implemented in 

Chimera. Atomic model(s) can be uploaded as a single structure or multiple structures as a 

zip-compressed file.

3.3.2 Experimental SAXS data input for FoXS.—Only one SAXS profile can be 

uploaded. The SAXS profile should have three columns: q, I(q), and error, where q is 

the momentum transfer. q=4πsin (θ/2)/λ in Å−1, θ is the scattering angle, λ is the X-ray 

wavelength, and I is scattering intensity as a function of q. Typically, most beamlines 

provide the SAXS curve calculated with q and considering beamline-specific parameters, 

including X-ray wavelength and distance from detector. One potential pitfall is that the 

scattering angle should be in Å−1 and not in nm−1. Our SIBYLS beamline provides the 

scattering data in Å−1.

3.4 Output from the FoXS server.

Graphs showing fit of atomic models to experimental SAXS data. Below the graphs is a 

table of atomic models, calculated χ2, c1, and c2 constants, ranked by the goodness of fit 

χ2. The predicted SAXS curve for the atomic model can be obtained by clicking on the link 

on the right.

3.5 Processing of reciprocal space SAXS curves predicted from structure predictions.

The output fit file has columns 1 to 4 for scattering angle q, Iexp, errorexp, and Imodel. To 

use the Imodel, the experimental column (Iexp) need to be removed. One can use the Linux 

command “awk ‘{print $1,$4}’ fox.fit >model.dat” where foxs.fit is the FoXS-generated .fit 

file, $1 and $4 refer to the column # from left to right, and output file model.dat. Note that 

some programs output the model Intensity in column 3, so it is advised to check the output 

fit file to double check. In a basic text editor that does not add any hidden text to the file, 

remove unnecessary headers and tail text. The new file called model.dat can be compared to 

experimental data by VR implemented in the SAXS similarity analysis (see below).

3.6 Generation of real space SAXS curves predicted from structure predictions.

To generate the experimental and model SAXS curves in real space, use GNOM in the 

ATSAS package [36,57], as previously described [39]. For the model, the experimental data 

must be removed, such that q and Imodel are in the first two columns, as shown for the 

model.dat file in the previous section. Dmax must be input into the GNOM program but 

may differ for experimental and predicted SAXS data. See Note 3, for issues in experimental 

data.
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4. COMPARISON OF EXPERIMENTAL AND PREDICTED SAXS CURVES.

4.1 Overview.

SAXS curves can be compared in both reciprocal space and real space. Quantitative 

comparison of experimental and predicted SAXS curves is an ongoing area of development 

in SAXS analyses, and we expect further improvements in this area.

4.2 Experimental SAXS data.

SAXS data can be collected readily from any synchrotron, as described in other methods 

reviews [39,40]. Data should be of high quality. Our SIBYLS beamline provides users 

preliminary assessment on data quality. Experimental data pitfalls include uninterpretable 

data caused by aggregation, bubbles in the sample cell, poor buffer subtraction (likely culprit 

when data are cut off at low q), too low protein concentration, contribution of detergent 

micelles, or inter-particle repulsion. We show examples of these pitfalls at our beamline 

web page. (https://bl1231.als.lbl.gov/htsaxs/statistics) [23]. In contrast, stoichiometric and 

conformational flexibility are amenable for the SAXS analysis programs using ensemble 

methods and can be dealt with using ensembles of atomic models. For example, in a study of 

SARS-CoV-2 replication machinery, we could detect multiple and distinct oligomerization 

states of Nsp7, Nsp8, and RNA [44]. Although mixtures do lower the resolution of what can 

be concluded from a SAXS curve, information can still provide valuable insights – in this 

example, we determined that the assembly of the viral replication/transcription complex was 

not linear and was RNA-dependent.

4.3 Comparison metrics (Figure 2).

4.3.1. χ2 in reciprocal space.—The most common comparison metric and one that 

is implemented in FoXS is χ2, a statistical test that quantitates the difference between the 

experimental and predicted data as a function of q, divided by the experimental noise. The 

lower the number, the better the model matches the experimental data. (See note 4 for 

caveats in χ2 applications in SAXS analysis). It is automatically generated in many of the 

SAXS modeling programs.

4.3.2. VR in reciprocal space.—A volatility ratio, originally developed for stock 

market analyses, uses a ratio to normalize the curves and spreads the weight of 

the comparison through the whole curve [38]. VR has been implemented in https://

bl1231.als.lbl.gov/saxs-similarity/ and is described in detail in Chapter 14. As many as 100 

SAXS curves (experimental or calculated) can be uploaded by drag-and-drop into the input 

box, and the web server automatically compares the similarity of each curve. As described 

Note 3.In the GNOM analysis, aggregation of the SAXS sample may cause an artificial increase in Dmax. SEC-SAXS data should 
not have any aggregation; sometimes, there’s been an accumulation of damaged protein on the sample cell window. Processing of the 
SEC-SAXS data with RAW can help minimize this type of aggregation [62].
Note 4.As applied in SAXS, the χ2 comparison metric does not evenly compare the reciprocal space curves from low to high q but is 
biased towards curves at the low q region. As SAXS is an exponentially decaying function with a 100 to 1000-fold difference in signal 
over the typical curve, the difference between curves of Intensity as a function of q (Iexp − Ipred) will be more significant at low q 
compared to high q, where a 1% difference would be 2–3 magnitudes smaller. How the curves are scaled will also bias χ2. Another 
critical factor is that experimental noise or uncertainties of the data is in the denominator of χ2, making noisier data appear to have 
a lower and better χ2 fit (higher χ2 scores) than better quality data with less noise. Thus, different models can be compared to one 
experimental data, but χ2 fits to different experimental data to one model cannot be compared.
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on the web page, SAXS .dat files (reciprocal space) must be in plain text and simple file 

names are required. The SAXS .dat files must contain two columns, q (Å−1) and Intensity. 

A third column containing the experimental errors is optional and can be used for χ2 

calculations on the SAXS-Similarity server. The default q range analysed is 0.015 – 0.2 Å−1, 

but the q range can be adjusted. A pairwise similarity plot is output with colors representing 

the Volatility ratio. Clicking on single cells shows the pairwise overlay and relative radius 

of gyration (Rg). An alternative view as a force plot is useful for visualizing curves grouped 

based on similarity.

4.3.3. SAXS data can also be compared in real space visually.—Plots are 

normalized based on the area under the curve. Quantitative metrics have been tested [58], 

but none have been established. Nonetheless, it is useful to compare reciprocal and real 

space (see note 5). In the real space curve, shoulders after the prominent peak indicate 

separated domains (beads on a string with varying distances).

4.4 A cautionary note is the possibility for SAXS to validate a completely inaccurate 
protein structure prediction.

In CASP13, atomic models were distorted to fit to the SAXS data in reciprocal space, with 

completely incorrect protein topology and geometry [12]. However, in comparison of real 

space curves, there was clear differences between experimental SAXS data and the structure 

prediction. Thus, it is good practice to consider SAXS-validated structure predictions as a 

testable atomic model, look at plots in both reciprocal and real space and to make sure that 

geometry makes sense.

5. FITTING OF THE PROTEIN STRUCTURE PREDICTION(S) TO THE 

EXPERIMENTAL SAXS DATA.

5.1 Overview.

Flexibility is a common component in protein mechanisms, and so many proteins will adopt 

multiple conformations. Flexibility can be disordered regions, particularly at tails or shifts 

in domains relative to each other. Based on our experiences, it is also more likely than 

not that the protein structure prediction is in a different oligomeric state, conformational 

state, or requires an ensemble of structures consistent with what is occurring in solution. 

Several programs will generate alternative conformations or complexes and score the output 

structures on their agreement to input SAXS data. More detail on these programs can be 

found in a recent methods paper [19]. A limitation is that these servers for these programs 

only work on proteins; small molecules and nucleic acids cannot be readily input. However, 

advanced molecular dynamic users can adapt these programs as needed. It should also be 

noted that one program, AllosMod, can include glycosylation.

Note 5.In CASP13, computational scientists used experimental SAXS data to fit protein structure predictions[12]. At that time, 
prediction scientists had the wrong topology for large proteins with no known structural templates, the most challenging targets. Their 
programs squashed the incorrect topology to fit the overall shape, and the reciprocal space fits were almost perfect. Yet, a comparison 
of these models in real space showed significant differences, showing that comparison in both reciprocal and real space is of value.
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5.2 Software to adjust protein model conformations or stoichiometry.

5.2.1 BILBOMD (https://bl1231.als.lbl.gov/bilbomd/) is a stand-alone web server 

that will generate a large population of conformally diverse models [59,15]. It 

performs all the multistate modeling stages: conformational sampling, SAXS profile 

calculation, and multistate models enumeration. The conformational sampling is 

based on the minimal molecular dynamics (MD) simulation using CHARMM. 

SAXS profile calculation and enumeration of multi-state models use FoXS [17,16] 

and MultiFoXS [15] programs, respectively. The entire protocol is fully automated 

and does not require user interaction [19]. More generally, BILBOMD explores 

conformational space based on molecular dynamics by keeping domains as rigid 

bodies and allowing flexible regions to move. Bond distances are maintained, but the 

temperature is set high, and bond angles are allowed to change to generate the most 

conformationally diverse population efficiently. As required input into BILBOMD, 

each segment or polypeptide is uploaded separately, plus the experimental SAXS 

data (see note 6 for potential pitfalls). A Rg range is input, typically 10–20 Å below 

and above the experimentally defined Rg. The program uses the minimal ensemble 

algorithm and will output an ensemble of conformations most consistent with the 

experimental SAXS data.

5.2.2 AllosMod-FoXS is a combination of AllosMod and FoXS servers [60] and 

generates a population of conformation by altering non-bonded distances in the 

input pdb and compares the altered atomic model to the experimental SAXS data. 

It differs from BilboMD, where defined regions are kept rigid. Instead, AllosMod 

uses molecular dynamics of the entire protein to generate an energy landscape of 

conformations around the atomic model. Practically, most conformational changes 

are in regions that have few contacts (e.g. linkers, thin regions) more than in 

well-folded globular regions, providing a means to generate conformational changes 

within the domain region itself. AllosMod has different sampling options, which can 

be tested. The higher temperature levels offer the most exploration of conformational 

space, but which is best is based on the individual protein structures. The AllosMod 

server is at the Sali lab website (https://modbase.compbio.ucsf.edu/allosmod-foxs/). 

The initial output is a list of models, ranked based on fit to the input experimental 

data and a link to a compressed folder with all models. An option for ensemble 

analysis by MultiFoXS (see below) is available on this output page. A potential 

pitfall is that the protein’s geometry can become overly distorted; loss of secondary 

structure elements indicates that this has occurred.

5.2.3 MultiFoXS is built on the minimal ensemble algorithm in BILBOMD [59] 

and is effective when an ensemble of conformations or different assembly states 

(e.g. a mix of monomer, dimer) fit the scattering data [15]. MultiFoXS uses a 

minimalist approach and identifies the minimum number of conformations needed 

to agree to the experimental SAXS data and their relative population in the sample. 

Note 6.For BilboMD, keep file names short and with no special characters. Input files may have to have unneeded headers and tails 
removed. Numbering is reset to the number one for the first residue in the file, so the residue number for the rigid domains may need 
to be adjusted accordingly. There is a 999 residue limit in the BILBOMD server.
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These conformations are meant to serve as representative members of a larger 

population and should not be over-interpreted as “the true conformations” in the 

solution. The easiest way to use MultiFoXS is to input the multiple structures as a 

zip-compressed file in FoXS and then select further MultiFoXS analysis in the FoXS 

output window. If FoXS outputs high c2 constants near 4 for single structures, then 

use of ensembles in MultiFoXS can reduce the c2 constant, indicating that the protein 

is adopting multiple conformations in solution. The Porod exponent, determined 

from the reciprocal space SAXS curve, can provide additional corroboration for the 

presence of multiple conformations and flexibility [39,29,27,28].

5.2.4. FoXSDOCK is a valuable program for two-component systems [15]. Two 

structures can be rotated and translated around each other. Models are scored 

based on the interface, on the agreement to the experimental SAXS data, and/or 

a composite of the two. FoXSDOCK is available at the Sali lab website (https://

modbase.compbio.ucsf.edu/foxsdock/). FoXSDOCK does not consider sequence 

conservation, so localization of conserved residue at the interface is expected and 

can serve as an additional check on accuracy (see Note 1).

5.2.5. Chimera offers a manual structure adjustment for proteins with multiple 

domains or oligomers. For beginners, this method leads to a more intuitive 

understanding of domain placement and the consequence to the scattering 

curve. Chimera can be downloaded from UCSF (https://www.cgl.ucsf.edu/chimera/

download.html). The SAXS calculator can be found in the Tools->Higher Order 

Structure->Small Angle X-Ray Profile.

6. EXAMPLE: XRCC1 SOLUTION STATE

Here we provide an example of how to determine the solution state of the transient dimer of 

scaffold-like protein XRCC1 [42] by integrating the AlphaFold2 model, crystal structure of 

XRCC1-BRCT2 domain, and SAXS fitting.

6.1. AlphaFold2 model of human XRCC1.

Initially, we obtained the AlphaFold2 model of human XRCC1 monomer from the 

database (https://alphafold.ebi.ac.uk/) in PDB format. (Figure 3A). We used the per-residue 

confidence scores (pLDDT) below 50 to suggest regions unstructured in isolation (Figure 

3A) and to guide conformational sampling implemented in BILBOMD [59,19].

6.2. Conformational sampling of XRCC1 monomer by BILBOMD.

The XRCC1 rigid and flexible regions that drive conformational sampling were assigned 

based on pLDDT value taken from AlphaFold2 initial model. While residues with pLDDT 

< 50 are flexible, the residues with pLDDT > 50 were keep rigid (Figure 3A). The 

BILBOMD server include an app that allowed interactive selection of regions within 

the AlphaFold2 model that create a constraints file, “const.inp” for the control of the 

conformational sampling. In the web app, rigid bodies are displayed as circles with the 

circle size proportional to the number of residues. At the same time, the flexible regions are 

shown as lines connecting to the circles (Figure 3B). BILBOMD outputs contain top-scoring 
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multistate models for 1–4 states delivered by email. Additional output includes foxs_rg.out 

the file with the list of Rg and maximal dimension (Dmax) values for all generated models. 

In the XRCC1 monomer, the χ2 value of the best-scoring one-state model is 22.3 (Figure 

3C), and the best multistate model (4-states) is 2.9. As can be validated by residual of the 

SAXS fit, none of the single-models (Figure 3C) or multistate models satisfactory represent 

the solution state. This is most likely due to the presence of XRCC1 dimeric state in solution 

[42] therefore, we performed the subsequent conformational sampling of XRCC1-dimer.

6.3. Conformational sampling of XRCC1 dimer by BILBOMD.

SEC-MALS shows that the XRCC1 coexists as a monomer and dimer in solution [42]. 

Thus, we perform conformational sampling of dimeric state using the BILBOMD approach 

as described in step 7.2. The initial XRCC1 dimer model was built by superimposing two 

AlphaFold2 models at its BRCT2 interface. In the XRCC1 dimer, we would like to maintain 

the dimer interface at the BRCT2 domains (the XRCC1-BRCT2 crystal structure PDB 

3PC8, [42]) as one rigid body during conformational sampling. As expected, the XRCC1 

dimer single state or multistate model does not fit experimental SAXS data well (Figure 3C). 

Therefore, we fit the SAXS data with a mixture of monomer and dimer models.

6.4. Determining XRCC1 monomer/dimer solution state by MultiFOXS.

In the final step, we determined a multistate model for XRRC1 that represents the 

coexistence of monomeric and dimeric states in solution. As shown in Figure 3D, the 

XRCC1 is a disordered scaffold-like protein and adopts a mixture of monomers and dimers 

through its BRCT1-BRCT1 domains interaction [42]. We initially compress (zip file) four 

monomer and four dimer models found in the BILBOMD outputs’ four-state model from 

steps 6.2 and 6.3. We upload the zip file into the FoXS web server [17] and fit experimental 

SAXS data used in steps 6.2 and 6.3, respectively. Initially, we obtained fit for all eight 

models with the χ2 values between 17.6 and 59.0 (Figure 3 D). By performing multistate 

model fit using the MultiFoXS option in the FoXS webserver [15], we obtain an excellent fit 

to the SAXS data with the χ2 values of the three-state model 1.6 (Figure 3C and 3D).

7. SUMMARY AND CONCLUSIONS

Machine learning algorithms have just started to solve protein structure prediction problems. 

Current limitations for homomeric and heteromeric complexes and complexes with nucleic 

acids and small molecules (ATP, drugs) will likely be addressed in the near future. Thus, 

it is important that SAXS can contribute and guide development of experimental models 

for conformations occurring in solution. Opening up the possibility for a SAXS-guided 

model being used as an AlphaFold2 template, Thomas Terwilliger has found that input 

of a crystallographic density-modified template into AlphaFold2 leads to a significantly 

improved output model that better fits the experimental density and shifts the register of 

a loop region [63]. Accurate solution structures will provide atomic models for testable 

hypotheses on substrate specificity, catalytic mechanisms, and regulation.

Although it is currently considered that an atomic structure cannot be determined from 

SAXS data alone, is this the point in history that we can consider SAXS validation of 
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structure predictions as saying that an atomic structure can be determined by SAXS? With 

the exception of the highest resolution data, we could not derive atomic structures from 

crystallography, NMR, and cryo-EM data, without geometric constraints from knowledge of 

bond angles, bond length, secondary structures, etc. Indeed, low resolution crystallography 

and cryo-EM data is greatly aided by prior atomic models, either from other techniques 

and/or more recently, structure prediction algorithms. Given this use of structure predictions 

in other structural fields, can we now say that an atomic structure can be derived from SAXS 

data alone?

The potential application for accurate protein structure predictions goes beyond individual 

proteins with known functions. Multiple sequence alignments have been transformative 

in identifying critical residues but are dependent on sequence conservation. Although 

currently requiring deep sequence conservation, accurate protein structure predictions have 

the potential to provide a semi-orthogonal perspective for alignments. Proteins with only 

low sequence identity are challenging for sequence alignments, but if those critical residues 

co-localize in similar patterns, then better functional assignment and annotation can be 

achieved. High throughput structural techniques such as SAXS and SANS could validate 

predictions of proteins with shallow sequence depth. We have found co-localization of 

significant Evolutionary Tracing Scores mapped onto structures can pinpoint active sites 

and allosteric sites [64,65]. This will be especially critical in the metagenomic sequence 

space that is growing exponentially every year [66]. The Integrated microbial genomes and 

microbiomes (IMG) database holds ~ 70 billion genes, at the time of submission (https://

img.jgi.doe.gov/cgi-bin/mer/main.cgi). Many viral and bacterial proteins currently have no 

or little sequence identity to other proteins, making accurate annotation difficult; anecdotally 

as much as 80% of a viral genome could not be annotated. As there are intensive efforts to 

mine the microbiome and viral metagenome for bioenergy, biomedicine, and environmental 

applications [67], opening up this area of genome science with accurate protein structure 

predictions, validated by experimental SAXS data, could accelerate finding solutions for 

global and health-related problems. It is also feasible that accurate and validated protein 

structure predictions for microbes or viruses associated with desired activity, could be 

run through metabolite docking programs to help identify proteins with that activity. The 

sensitivity of SAXS to induced domain movements o nnotation in the metagenome through 

functional clustering of conserved sites.
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Figure 1. From predictions to solution structures.
A. Schematic showing overall strategy. Shown are representative protein predictions from 

AlphaFold2 and modification of that model using BILBOMD. The AlphaFold2 prediction 

is colored from blue to red based on confidence. Note that BILBOMD improved the fit 

to the experimental SAXS data and suggests that a low confidence helix (see red arrow) 

does not occur significantly in solution. B and C. Corresponding SAXS data in reciprocal 

and real space, respectively for experimental, AlphaFold2 protein structure prediction, and 

BILBOMD model.
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Figure 2. Equations used for comparison of SAXS curves in reciprocal space.
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Figure 3. XRCC1 solution state as identified by integrating AlphaFold2 protein structure 
prediction and SAXS modeling.
(A) AlphaFold2 model colored by per-residue confidence score (pLDDT) values. (B) 

Building of restraining file that controls BILBOMD conformational sampling of XRCC1 

dimer by selecting rigid domain regions based on pLDDT values. (C) FoXS web server 

output shows multiple SAXS fit, residual, χ2 values, and Radius of gyration for four 

XRCC1 monomers and four dimer models derived from BILBOMD modeling. Bottom 

panel-MultiFoXS implementation in FoXS web server show χ2 values for one-, two- and 

three state model. The plot show comparison of SAXS fit and fit-residual for the one- and 
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three-state model. (D) Three state model is shown together with the percentage of each 

model used to fit the SAXS data shown in panel C. Rigid body domains are highlighted.
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