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ABSTRACT 

Pion condensation is investigated in a self-consistent. relativistic 

mean field theory that is constrained to reproduce the bulk properties of 

nuclear matter. This constraint and self-consistency provide stringent 

constraints on the existence and energy of the condensate. 
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The theory of nuclear matter at densities higher than normal has 

attracted considerable interest in the last few years in the context of astro­

physics and relativistic nuclear collisions. As the density is increased, 

long-range correlations can develop, which manifest themselves in collective 

excitations and phase transitions involving new field configurations. 

Particular interest has focused on the topics of pion condensation and 

density isomer states. 1 At sufficiently high energy density, excitations of 

the internal structure of the nucleons become possible, 2 leading perhaps 

ultimately to a quark matter phase. 3 

In this note we focus on phase transitions in the intermediate density 

range between normal density and three or four times normal. 

Earlier estimates of the pion condensate energy and density isomer states 

were based on interaction Lagrangians (e.g. the chiral o-model) 4•5 whose form 

and parameters were fixed from elementary particle properties such as the nN 

scattering lengths and PCAC. One drawback of those calculations is that the 

theory was solved in the non-relativistic approximation which at higher densi­

ties and for finite pion momenta becomes suspect. However, the most disturbing 

aspect of those calculations is that the chiral Lagrangians used led to an 

unphysical equation of state for normal nuclear matter, as was shown by 

Kerman and Miller. 6 Accordingly in that approach, the condensate energy is 

defined as the difference in energy between two states of the theory with and 

without the condensate. It is hoped that the inherent large discrepancy 

between the calculated normal state and the measured nuclear matter properties 

cancels in the subtraction. We find that this hope is not justified and that 

the bulk properties of nuclear matter provide stringent constraints on the 



3-

condensate state. 

The approach to pion condensation that we follow here is to adopt 

a Lagrangian that describes correctly the saturation properties of nuclear 

matter at normal density. We believe that any theory that is used to extrapolate 

into the unknown intermediate density regime should at least reproduce the 

known properties of the nuclear equation of state. 

This note reports on a study that makes four contributions to the 

theory of abnormal states: 

l. We have formulated and solved self-consistently for all 

fields a mean field theory of the nucleus that possess 

pion condensate solutions. 

2. The theory is constrained to reproduce the known bulk properties 

of nuclear matter, namely its saturation energy, density, 

and compressibility. 

3. It is solved in its relativistically covariant form. 

4. A continuous class of space-time dependent pion condensate 

solutions is exhibited. 

Our starting point is the theory of Walecka. 7 Two representative 

fields, a chargeless scalar and vector meson. a and Vv• are introduced with 

Yukawa coupling to the nucleons. We incorporate also non-linear scalar 

interactions as did Boguta and Bodmer. 8 With such a theory the bulk properties 

of nuclei can be accounted for. We introduce also the pions with pseudo-

vector coupling to the nucleons. This coupling is used rather than the pseudo­

scalar one, since both S- and P-wave nN scattering lengths are then correctly given 

for symmetric nuclear matter. Using standard notation, the effective 

Lagrangian density is: 
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(1) 

where the scalar potential density is 

(2) 

Here mN is the nucleon mass. The field equations for £eff in the mean field 

approximation are 

( 3a) 

(3b) 

(D + m2
) <n(x)> = q 31J <~(x) y y T 1jJ(x) > n ~ -n s lJ~ 

(3c) 

(3d) 

where 0 =<a> and V =<V >are independent of x in homogeneous nuclear 
lJ lJ 

matter. 

Equations (3a-3d) pose a self- consistency problem since the ground 

state expectation values of the various source currents depend implicitly 
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on the mean field configurations. Writing the ground state wavefunctions as a 

single Slater determinant, this system of equations reduces to those in the 

Hartree approximation. 

Because eq. (3) is a nonlinear system of equations, multiple field 

configurations may be possible. For example,<'!!:>= 0 but o 'f 0 and V
0 

'f 0 

is a self-consiste~t field configuration that corresponds to the non-condensed 

phase studied in Refs. (7,8). Our interest here is to explore whether there 

are any self-consistent field configurations with <~(x) > 'f 0, which correspond 

to a pion condensed phase and which are compatible with nuclear matter properties. 

In particular we will study the following class of pion field configurations 

( IJ: (X) ) "' TI (~ COS k X + V X U Sin kX) ( 4) 

where u and v are two orthonormal isospin vectors. The case u = (1,0,0). 

~ = (0,0,1) corresponds to the usual charged running wave case: 
- - +i kx 12<-IT±> = 11 e- and <n

0
> = 0. The case~= (0,0,1), y = (0,1,0) corresponds 

to a standing wave~ <n±> = n sin kx and <n 0 > = 7r cos kx. 

The key to solving eq. (3d) with such a space-time dependent pion 

field is the identity 

where R (kx) is a unitary (local v 
_j_(kx)PV 2 ~ ~ 

Rv ( kx) = e 

( 5) 

gauge) operator of the form 

( 6) 



Defining the transformed Dirac field ~V by 

(7) 

eq. (3d) reduces to a space-time _i~.cJ~~fl.denJ:_ Dirac equation for ~V(x), 

j;,o- gj{- (mN- g50) +k~ • 0· ~ + g_rr iiy5 (~x~))ll'v(x) • 0 (8) 

Therefore, the space-time dependence of the transformed nucleons or quasi-

particle wavefunctions is a simple plane wave. On the other hand, the 

complicated spin-isospin vw.vefunctions, uv(p). satisfies eq. (8) with ;;; 

replaced by -ft. 

The quasiparticle propagator, Sv(p)~ is obtained by inverting the 

Dirac operator: 

X {jl"1 + m* + ,k'f • [ J V - Q Tiy V X U J} - 2 ~ n s ~ ~ 

where 

and 

(9a) 

( 10) 

Note that the shifted momentum p' = p - g V appears on the right-hand side 
1.1 1.1 v 1.1 

of eqs. (9) and (10) and that the effective nucleon mass m* depends on the 

self-consistent sigma field, 
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The quasiparticle spectrum, p = w(p), follows from the solution of 
0 

D(w(p) ,p) = 0. The bracketed terms in eq. (9a) contain all the information 

about the complicated spin-isospin dependence of the quasiparticle wavefunctions. 

The ground state is specified by filling all quasiparticle states of 

momentum p such that w(p) ~ EF' the Fermi energy. Note that the Fermi 

surface is non-spherical 5 if~ i 0. Once a Fermi energy is specified, the 

ground state expectation value of any current operator ~(x)r~(x) is evaluated 

by standard propagator techniques as 

where the trace is over spin and isospin labels. The first line follows from 

eq. (7) and "iSv(x,y) = < T(~v(x)1j}v(y)) >. In the second line, Sv is expressed 

in momentum space with S (p
0

,p) given by eq. (9). The sum in eq. (11) is over v ~ 

all quasiproton and quasineutron frequencies below the Fermi energy. The. 

condition w(p) > E indicates that quasi-antiparticle states are not to be 

included in the sum. Explicit evaluation of eq. (ll) will be given in detail 

elsewhere. To describe symmetric nuclear matter we must set k0 = 0, in which 

case one finds V::-:0. The important point to note here is that once a, V
0

, n 
are fixed, the right~hand side of eq, (11) is readily reduced to a one-dimensional 

numerical integration. In this way, the source currents in eqs. (3a-3c) are 

ca 1 cul a ted. 

Self-consistency of the pion field configuration in eq. (4) can be 

checked by evaluating eq. (11) for r = y 5 yll~ and inserting the result into 
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eq. (3c). vJe find that eq. (4) is a self-consistent solution provided that 

u•v = 0. In that case, all(i)J(x)y y 1: 1jJ(x) > = <n(x) > f(rr,Ci,k,EF)' and the 
5 ]J ~ ~ 

strength of the field is determined by 

( 12) 

The transcendental function f can be expressed as a one-dimensional integral 

whose form will be displayed elsewhere. Here we only note that nf + 0 as 

n + 0, and that for a certain range of EF, f has a logarithmic singularity 

at n=O. 

In general, only n = 0 will solve eq. (12). However, under suitable 

conditions there may be a 1T f 0 condensate solution as well. We now indicate 

under what conditions a condensate solution exists. 

First we note that the binding energy per nucleon, B/A, as a function 

of density depends on the following five parameters 

The last four parameters are constrained by requiring that the saturation 

-3 binding and density be 8/A = 15.96 MeV and p
0

"' 0.145 Fm , which are known to 

high precision, 9 and that the compressibility lies in the range K = 200-300 MeV. 

Further, the binding is required to vanish somewhere in the range of 2 to 3 

times p
0

• The last constraint is a statement of the softness of the equation 

of state at higher densities. The free space nN coupling, g = 1.41 fm, gives 
1T 

the correct P-wave scattering length. However, we have also varied gn below 

this vacuum value to take into account effectively nucleon-nucleon correlations 

and 633 intermediate states as in Ref. 10. 
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In Figs. 1 and 2 we show the results for two sets of parameters 

which yield reasonable equations of state in the normal phase, <n> = 0. 

Their essential difference is their high density behavior. Self-

consistent pion condensate solutions,<~> f 0, are also found that lower the 

ground state energy. The phase transition density is a strong function of gn' 

as is the condensate energy. We consider variations in the effective g to 
TI 

simulate the effect of short-range correlations and 6 production. It is known 

that these comper~ing effects tend to drive the critical density to higher 

values. 10 In our model this is accomplished by lowering g below 1.41 fm. 
TI 

Moreover since there is no conclusive evidence that the normal state is a 

condensed state, we insist that g be chosen so that the critical density is 
TI 

greater than normal saturation density. For the two equations of state shown 

this implies, as shown, that g < 1.2 fm in Fig. land g < 1.14 fm in Fig. 2. 
TI TI 

We draw attention to the extreme dependence of the condensate energy, 

for fixed gn• on the softness at high density of the equation of state, even 

though the two cases we show are only moderately different at higher density 

in the normal state. There is another respect in which the condensate solution 

behaves differently in the two cases. For the case in Fig. 1, the condensate 

solution exists only over a finite range of density, with<~> going to zero at a 

lower and upper density, depending on g . f~oreover no condensate solution 
TI 

exists for g < 1.177 fm in Fig. l. 
TI ~ 

In contrast, for the somewhat softer (at high 

density) equation of state, the condensate energy is an increasing function of 

density, at least up to p = 10p
0

• beyond which internal nucleon degrees of 

freedom must certainly be considered anyway. As g is decreased in this case, 
TI 

the onset of condensation is shifted to higher density rather than disappearing. 

We have found that the main reason for this difference in dependence of the 

condensate energy in the two cases is that the effective nucleon mass for the 
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parameters in Fig. 1 is smaller than for the parameters in Fig. 2. This 

sensitivity to the effective mass is in accord with the observations of Ref. ll. 

The new feature here is that the effective mass we use is determined self-

consistently as a function of density. As usual, the condensate energy is 

maximized for condensate momentum jkj ~2m . 
TI 

The extreme sensitivity of the condensate energy to even modest 

changes in acceptable nuclear equations of state implies that the commonly 

employed procedure of grafting a condensate energy onto a non-self-consistently 

calculated equation of state is unreliable. 

In summary, we find that self-consistency of the theory, and 

compatibility with the bulk properties of nuclear matter are very strong 

constraints on the existence and persistence of the condensate phase and on 

the magnitude of the pion condensate energy. As concerns the possible 

existence of new phases of matter, it is encouraging that at least a weak 

condensate is compatible with these constraints. The condensate energy 

consistent with the constraints is less than 15 MeV up to density p = 4p , 
0 

in contrast to other estimates of 75 MeV at p = 4p 0 found in a calculation5 

that is not constrained to reproduce nuclear matter properties. 

Future work along these lines should include nucleon correlations and 

6 production self consistently. In addition similar calculations for neutron 

stars including the p meson field are underway. Here again we expect that 

self-consistency and compatibility with nuclear matter properties are crucial 

constraints. 
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Fig. L Binding energy as a function of density in the absence of a pion 
condensate (n = 0) and for several self-consistent condensate solutions. 
The coupling constants and potential parameters are 9s/ms = 15/mN• 
gv/mv = 11/mN• b = 0.004, c = 0.008, where mN = 4.77 fm-1 is the nucleon 
mass. The pion momentum that minimizes the energy is /~/ = 1.5 fm-1. 
The effective mass at the saturation density is indicated on figure. 
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