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Abstract

Background—Loss-of-function mutations in the GBA gene are associated with more severe 

cognitive impairment in PD, but the nature of these deficits is not well understood and whether 

common GBA polymorphisms influence cognitive performance in PD is not yet known.
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Objectives/Methods—We screened the GBA coding region for mutations and the E326K 

polymorphism in 1,369 PD patients enrolled at 8 sites from the PD Cognitive Genetics 

Consortium. Participants underwent assessments of learning and memory (Hopkins Verbal 

Learning Test–Revised), working memory/executive function (Letter-Number Sequencing and 

Trail Making A and B), language processing (semantic and phonemic verbal fluency), visuospatial 

abilities (Benton Judgment of Line Orientation), and global cognitive function (Montreal 

Cognitive Assessment). We used linear regression to test for association between genotype and 

cognitive performance with adjustment for important covariates and accounted for multiple testing 

using Bonferroni corrections.

Results—Mutation carriers (n=60; 4.4%) and E326K carriers (n=65; 4.7%) had a higher 

prevalence of dementia (mutations, odds ratio =5.1; p=9.7 × 10−6; E326K, odds ratio =6.4; p=5.7 

× 10−7) and lower performance on Letter-Number Sequencing (mutations, corrected p[pc]=9.0 × 

10−4; E326K, pc=0.036), Trail Making B-A (mutations, pc=0.018; E326K, pc=0.018), and Benton 

Judgment of Line Orientation (mutations, pc=0.0045; E326K, pc=0.0013).

Conclusions—Both GBA mutations and E326K are associated with a distinct cognitive profile 

characterized by greater impairment in working memory/executive function and visuospatial 

abilities in PD patients. The discovery that E326K negatively impacts cognitive performance 

approximately doubles the proportion of PD patients we now recognize are at risk for more severe 

GBA-related cognitive deficits.

Keywords

cognition; GBA; neuropsychological tests; visuospatial; working memory

INTRODUCTION

Cognitive impairment is common in Parkinson disease (PD) and has a major impact on 

quality of life, caregiver distress, and mortality.1–3 At the time of diagnosis, 19–24% of 

patients with PD meet criteria for mild cognitive impairment4, 5 and up to 80% develop 

dementia during the course of the disease.6, 7 The rate of cognitive decline and pattern of 

early cognitive deficits in PD are highly variable for reasons that are not well understood.8, 9 

The discovery of common genetic variants that contribute to this heterogeneity could shed 

light on the pathological processes that underlie cognitive impairment in PD. For example, 

the apolipoprotein E (APOE [OMIM 107741]) ε4 allele has emerged as an important genetic 

risk factor for cognitive impairment in PD. APOE ε4 carriers with PD are at higher risk for 

dementia10–12 and prior to the onset of dementia exhibit a cognitive profile characterized by 

impaired performance on word list learning and semantic verbal fluency.13

Loss-of-function mutations in the glucocerebrosidase gene (GBA [OMIM 606463]) result in 

Gaucher disease (GD), a recessive lysosomal storage disorder. Heterozygous GBA mutation 

carriers have a substantially increased risk for developing PD.14, 15 Furthermore, among 

patients with PD, GBA mutation carriers are more likely to develop dementia.16–19 

However, it is not clear whether PD patients with GBA mutations display a clear pattern of 

cognitive deficits as has been observed for APOE ε4 carriers. In addition, recent evidence 

from a meta-analysis of genomewide association studies (GWAS) suggests that the E326K 
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(rs2230288) single nucleotide polymorphism (SNP) in the GBA gene conveys a modest 

increase in risk for PD,20 but whether this SNP influences cognitive impairment among PD 

patients is unknown.

In this study we sought to determine whether GBA mutations and E326K are associated with 

a distinct cognitive profile in a large, multi-center sample of patients with PD.

METHODS

Participants

We enrolled and clinically assessed 1,424 participants with PD in studies at eight sites which 

together comprise the PD Cognitive Genetics Consortium (PDCGC; Appendix e-1). All 

participants met United Kingdom PD Society Brain Bank clinical diagnostic criteria for PD 

(modified so that having more than one affected relative was not considered an exclusion 

criterion), except those from UCLA who satisfied clinical diagnostic criteria for PD as 

described elsewhere.21

To better distinguish between pathogenic mutations and population-specific SNPs we also 

included 62 healthy African-American controls in the study population. These individuals 

were enrolled in studies at UCLA, University of Pennsylvania, University of Washington, 

and Veterans Affairs Puget Sound Health Care System.

Standard protocol approvals, registrations, and patient consents were obtained. All study 

procedures were approved by the institutional review boards at each participating site.

Neuropsychological assessment

All participants with PD underwent detailed psychometric testing in the “on” state (if 

receiving medication). Seven tests that were administered by at least seven of the eight sites 

(with the exception of the Montreal Cognitive Assessment [MoCA] which was administered 

at six of the eight sites) were defined as the “core battery” (Table 1). We selected (a priori) 

nine variables for analysis from the core battery that represent the primary measures most 

commonly used in a clinical setting. These “core variables” were: total scores for MoCA, 

Letter-Number Sequencing Test (LNST), Trail Making Test (TMT) B-A , semantic and 

phonemic verbal fluency, Benton Judgment of Line Orientation (JoLO), Hopkins Verbal 

Learning Test-Revised (HVLT-R) total recall, HVLT-R delayed recall, and HVLT-R 

recognition discrimination index. Data from participants enrolled at six PDCGC sites 

(Appendix e-1) were reviewed at diagnostic consensus conferences, and participants were 

classified as demented or non-demented as previously described.19, 22, 23 The non-demented 

group included participants with either no cognitive impairment or mild cognitive 

impairment.

Mutation screening

Genomic DNA was extracted from peripheral blood or saliva by standard techniques. Using 

a new method (Appendix e-2), we PCR amplified the entire GBA gene in a single 7,050 base 

pair fragment, rather than three separate fragments as has been done in previous studies,15 
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and sequenced all 11 exons and intron-exon boundaries. The sequencing success rate was 

99.0%.

A mutation was considered “pathogenic” if it was previously reported in at least one patient 

with GD24–27 in the homozygous or compound heterozygous state, or if it was predicted to 

have a clearly deleterious effect on function (e.g. frameshift or nonsense mutations). 

Previously published variants, such as E326K, which are not known to cause GD were 

classified as polymorphisms. Rare nonsynonymous substitutions that have not been reported 

in GD were classified as variants of unknown significance.

Statistical analysis

To reduce the influence of floor effects on cognitive test scores in patients with advanced 

dementia, we excluded participants who completed less than half of the tests in the core 

battery (n=41) as previously described.13 Fourteen participants failed genotyping at the PCR 

stage. The final dataset included 1,369 patients with PD (Table 2).

We tested for association between genotype and each of the nine core psychometric 

variables using linear regression under a dominant genetic model adjusting for sex, years of 

education, disease duration, age at testing, and site. Disease duration was calculated as the 

difference between age at testing and either age at diagnosis (at UCLA where age at onset 

was not collected) or age at onset (at all other sites). We used a Bonferroni correction to 

adjust for the nine comparisons that were performed. Histogram and quantile-quantile plots 

were created for each cognitive variable and for those that were non-normally distributed 

(MoCA, JoLO, and HVLT-R recognition discrimination index) a squared transformation 

was employed to improve the fit to normality. Regression analyses were then repeated using 

the transformed data. We tested for differences between genotype groups for other clinical 

characteristics using logistic (proportion with dementia) or linear regression (age at onset, 

actual or calculated Movement Disorder Society Unified Parkinson's Disease Rating Scale 

Part III [MDS-UPDRS III] score) adjusting for appropriate covariates. All analyses were 

performed using Stata version 10.0 (StataCorp, College Station, TX).

RESULTS

A total of 22 pathogenic mutations, 10 variants of unknown significance, and 3 

nonsynonymous SNPs were observed among PD patients (Table 3 and Table e-1). Sixty 

participants (4.4%) carried one or more pathogenic mutations; 58 of these individuals were 

simple heterozygotes and 2 (both known to also have GD) were compound heterozygotes. 

Sixty-nine participants were heterozygous for E326K. Four individuals carried both a 

pathogenic mutation and E326K, and for the purpose of analysis were assigned exclusively 

to the “mutation carrier” group. The demographic features of the genotype groups are 

presented in Table e-2. K(−27)R has been considered a pathogenic mutation in some 

previous studies of PD15 and we found this variant in six patients in our PD sample. 

However, all of these participants were African-American (out of a total of 29 African-

American PD patients in our sample) which raised the question of whether this variant might 

be a SNP that is specific to populations of African origin. To address this we genotyped 

K(−27)R in a sample of 62 healthy African-American controls and found that 6 of them 
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(9.7%) carried the R allele, including one who was homozygous. Thus, we classified 

K(−27)R as a SNP rather than a pathogenic mutation (Table 3).

A comparison of important clinical characteristics in PD patients across GBA genotype 

groups is presented in Table 4. Age at onset of motor symptoms occurred 5.4 years earlier in 

mutation carriers in comparison to non-carriers (p=1.6 × 10−4). Mutation carriers had more 

severe motor symptoms, as assessed by the MDS-UPDRS III, than non-carriers (p=0.016). 

There was no significant association between E326K and either age at onset or MDS-

UPDRS III score. The proportion of participants with dementia was substantially higher in 

both the mutation-positive group (odds ratio [OR]=5.1; 95% confidence interval [CI]=2.5–

10.4; p=9.7 × 10−6) and the E326K group (OR=6.4; 95% CI=3.1–13.3; p=5.7 × 10−7).

After correction for multiple testing, mutation carriers exhibited lower performance on three 

psychometric tests in comparison to non-carriers: LNST (corrected p [pc]=9.0 × 10−4), TMT 

B-A (pc=0.018), and JoLO (pc=0.0045) (Table 5). Participants who carried E326K had 

significantly worse performance on the same tests: LNST (pc=0.036), TMT B-A (pc=0.018), 

and JoLO (pc=0.0013). The effect sizes, as indicated by the β coefficients, were similar for 

the mutation-positive and E326K groups across all three tests. For example, the expected 

increase in mean TMT B-A time was 28.1 seconds for mutation carriers and 25.6 seconds 

for E326K carriers, given the same values for all other covariates. The association with 

scores for LNST, TMT B-A, and JoLO remained significant for both the mutation-positive 

and E326K groups when the analyses was restricted to whites only (n=1,284) or when 

APOE ε4 carrier status was included as a covariate (data not shown). For test scores that 

deviated from normality (MoCA, JoLO, and HVLT-R recognition discrimination index) 

analyses of the transformed data yielded similar results (data not shown).

We also compared the cognitive performance of each genotype group within the PD cohort 

to that of controls by calculating z-scores using published, age-adjusted normative data 

(Appendix e-1). As expected, the overall performance of PD patients, regardless of genotype 

group, was below that of controls for nearly every test (Table e-3).

DISCUSSION

Using a cross-sectional design in a multicenter sample of patients with PD we observed that 

both pathogenic mutations and a polymorphism (E326K) within the GBA gene were 

associated with a higher prevalence of dementia and lower performance on measures of 

working memory/executive function and visuospatial abilities. In addition, GBA mutations, 

but not E326K, were associated with an earlier age at onset and a higher MDS-UPDRS III 

score. While other studies have shown that GBA mutations increase risk for dementia in 

PD,16–18 our study is novel in that it demonstrates (1) a link between a common GBA 

polymorphism and cognitive performance in PD, and (2) a specific cognitive profile in PD 

patients who carry GBA mutations or E326K. Because the frequency of patients with E326K 

or a pathogenic mutation is similar, adding E326K to the list of GBA variants that influence 

cognitive performance in PD essentially doubles the proportion of patients who are at risk 

for more severe GBA-related cognitive dysfunction.
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Our findings provide further evidence that genetic variation influences the heterogeneity in 

cognitive profiles observed in patients with PD. This is particularly well illustrated by 

comparing data from the present study with those from a recent analysis of the APOE gene 

in the PDCGC cohort which utilized the same cognitive test variables.13 APOE ε4 was 

primarily associated with lower performance on semantic verbal fluency (animals) and 

word-list learning (HVLT-R total recall), and these were the only two significant test 

variables in the subset of patients who were not demented. This pattern is more typical of the 

cognitive deficits seen in early Alzheimer disease (AD) than PD. In contrast, we observed 

that GBA mutations and E326K were associated with poorer performance on tests of 

working memory/executive function (LNST, TMT B-A) and visuospatial abilities (JoLO). 

Thus, GBA mutations/E326K and APOE ε4 are associated with distinct cognitive profiles in 

PD. This raises the question of whether there is a greater burden of pathologic changes in the 

temporal lobe, which subserves declarative memory28 and semantic fluency,29 in APOE ε4 

carriers, and in the frontal and parieto-occipital areas, which mediate working memory/

executive function30 and visuospatial abilities,31 in GBA carriers. Furthermore, since APOE 

ε4 is associated with more severe AD neuropathologic changes among patients with AD,32 

one might expect to see the same relationship in patients with PD. However, a recent PD 

autopsy series in the US found no correlation between APOE genotype and measures of AD 

neuropathologic changes across several brain regions.33 Some authors have hypothesized 

that GBA mutations might be associated with more extensive cortical Lewy body disease in 

patients with PD.16 A PD clinicopathological study from the UK34 that compared brains 

from 17 GBA mutation carriers and 16 non-carriers found that a higher proportion of carriers 

fulfilled the McKeith criteria for diffuse neocortical Lewy body pathology, and the 

difference was marginally significant (p = 0.049). However, Lewy body scores (a 

semiquantitative measure of the overall cortical burden of Lewy bodies) did not differ 

between the two groups. Furthermore, a subsequent and more detailed analysis of these 

same cases using actual cortical densities of Lewy bodies concluded that there was no 

significant difference in “Lewy body pathology” between GBA mutation carriers and non-

carriers.35 Thus, it remains to be determined whether the pathological substrates that 

underlie cognitive impairment in PD differ among GBA carriers, APOE ε4 carriers, and non-

carriers.

Several studies have reported an association between dementia and GBA mutations in PD 

cohorts. A longitudinal analysis of 262 PD patients from two independent community-based 

incidence studies in the UK found that GBA mutations substantially increased risk of 

conversion to dementia (relative risk, 5.45; p=0.003).18 The projected median time to 

dementia for carriers was 46.0 months whereas fewer than half of the non-carriers developed 

dementia over the median follow-up period of 82 months. A cross-sectional study of 225 

patients with PD in Spain observed a greater prevalence of dementia in mutation carriers 

than non-carriers (adjusted OR, 5.8; p=0.001).17 In a cross-sectional analysis of 26 GBA 

mutation carriers and 39 non-carriers matched for age and disease duration who participated 

in the Consortium on Risk for Early Onset Parkinson’s Disease (CORE-PD) Study, the 

frequency of mild cognitive impairment or dementia was significantly higher in carriers than 

non-carriers (adjusted OR, 6.2; p=0.021).16 The CORE-PD Study also compared 21 carriers 

and 46 non-carriers on 13 variables from 8 psychometric tests that assessed attention, 
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executive function, memory, and visuospatial abilities. The authors reported that carriers had 

lower performance for 4 test variables, but only 2 variables (Wechsler Memory Scale-R 

[WMS-R] Visual Reproduction I [immediate] and II [delayed]) within the “memory” 

domain would have remained significant if a Bonferroni correction for multiple testing had 

been applied. However, though the authors classified WMS-R Visual Reproduction as a test 

of memory, the deficits they observed among GBA carriers on this test could represent an 

impairment of memory and/or visuospatial abilities since both are required for performance 

of the task. In contrast, we observed associations with visuospatial abilities (measured 

independently from memory) and working memory/executive function, but not memory. 

There are several possible reasons for the discordance in findings between studies including 

major differences in the psychometric tests and statistical methods used, and the fact that our 

study had substantially greater power because of a much larger sample size. Finally, in a 

small cross-sectional study of PD patients who underwent a serial order task, GBA mutation 

carriers (n=15) showed significantly greater deficits in visual short-term memory/working 

memory than non-carriers (n=15).36 Again, this study provides evidence for greater 

impairments in visual working memory among GBA mutation carriers, but does not provide 

a comparison between visuospatial abilities and aspects of memory mediated more by 

temporal lobe structures.

The effect of GBA variants on human glucocerebrosidase activity varies across a broad 

spectrum. In the homozygous state, “null” or “severe” mutations are thought to result in 

little or no activity and a severe GD phenotype, while “mild” mutations have a lesser impact 

on activity and cause a more benign GD phenotype.26 Individuals homozygous for E326K 

do not develop GD, so it is considered a polymorphism rather than a mutation,37 but in vitro 

studies suggest that it does decrease glucocerebrosidase activity to some degree.38, 39 The 

effect of GBA variants on PD risk varies along a similar continuum: null/severe mutations 

(e.g. L444P) have the highest risk (ORs of 10–21),40 mild mutations (e.g. N370S) confer an 

intermediate risk (ORs of 3–5),40 and E326K has the lowest risk (OR of 1.7).20 Thus, our 

observation that GBA mutations (which were roughly equally divided between null/severe 

and mild categories) and E326K had a similar effect on cognition (Tables 4 and 5) was 

unexpected. This suggests potential heterogeneity in the effects of different GBA variants on 

motor and cognitive phenotypes in PD and merits further investigation in future studies.

Our study had some limitations. Some of the cognitive measures used rely in part on motor 

function and thus motor symptoms might have interfered with performance on these tests. 

However, this was not an issue for LNST and JoLO which do not require drawing/writing 

and are not timed. Furthermore, we corrected TMT B for motor impairment by subtracting 

the TMT A score. Therefore, it is unlikely that motor symptoms impacted our findings for 

these three tests. In addition, participants taking medications completed testing in the “on” 

state to lessen the impact of motor dysfunction on test performance. Anxiety and depression 

can adversely affect performance on cognitive testing, and one study reported a higher 

prevalence of both problems in GBA-related PD,40 though several other studies found no 

difference in measures of depression between GBA carriers and non-carriers.16, 18, 41 

Because we did not have adequate data on anxiety or depression in our cohort, we were not 

able to assess whether these non-motor features differentially impacted cognitive 
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performance across genotype groups. Participants in our study had a higher than average 

level of education, a known contributor to performance across most cognitive measures. 

Thus, our sample might not be fully representative of all patients with PD. Because the 

diagnosis of PD in our cohort was based strictly on clinical information without autopsy 

confirmation, some participants might have been misdiagnosed. Such non-differential 

misclassification would likely bias towards the null.

Further studies are needed to understand the neural basis of the cognitive profile we have 

observed in GBA-related PD. This work should include large clinicopathological studies that 

compare both traditional histopathological markers (e.g. Lewy bodies, neurofibrillary 

tangles, neuritic plaques) and molecularly specific measurements of key proteins (e.g. α-

synuclein, Aβ42, paired helical filament tau) across multiple brain regions in different GBA 

genotype groups. Neuroimaging studies, stratified by genotype, using functional MRI to 

examine resting-state connectivity and PET to measure regional hypoperfusion and brain 

amyloid (and α-synuclein if a suitable radiotracer becomes available) would provide highly 

complementary data. Longitudinal studies examining the rate of decline in performance 

within individual cognitive domains would also be useful. Knowledge gained from such 

endeavors could substantially accelerate progress in developing improved treatment 

strategies for cognitive dysfunction in PD.
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Refer to Web version on PubMed Central for supplementary material.
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Table 3

GBA variants observed

Varianta n

Pathogenic mutations

  IVS2+1G>A (splice site) 2

  84dupG (frameshift) 3

  S125N 1

  T134P 1

  D140H 2

  R163X (premature stop) 1

  N188S 1

  S196P 1

  G202R 1

  F216Y 1

  914delC (frameshift) 1

  S271G 1

  R359X (premature stop) 1

  N370S 18

  Rec3 (c1263-1317 del, D409H, L444P, A456P, V460V) 1

  D409H 1

  L444P 16

  Rec1 (L444P, A456P, V460V) 2

  Rec L444P + V460V 1

  V460M 1

  R463C 3

  R496H 2

  Variants of unknown significance

  R(−32)T 1

  P(−28)S 1

  R44C 1

  G193E 1

  R262H 1

  F316I 1

  G344S 1

  D443N 1

  V460L 1

  S488T 1

  Nonsynonymous polymorphisms

  K(−27)R 6

  E326K 69

  T369M 30
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a
Classification of variants as “pathogenic mutations,” “variants of unknown significance,” and “nonsynonymous polymorphisms” was based on the 

role of each variant in causing Gaucher disease, not Parkinson disease.
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