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Introduction
Esophageal adenocarcinomas (EACs) are devastating cancers with high mortality (5% 5-year survival) (1). 
Barrett’s metaplasia of  the esophagus (BE) is the only known precursor lesion; it is not fully understood 
why only a small proportion of  BE lesions progress to EACs (1). Also unknown is why EACs display racial 
disparity (2); EAC is approximately 4- to 5-fold less likely to develop in African Americans (AAs) than 
in White individuals. In fact, risk factors for EAC (e.g., long-segment BE and dysplastic BE) are also less 
frequent in AAs than in White individuals (2).

Although we now know that BE displays early genomic instability and different patterns of  progres-
sion, these genomic insights are yet to translate into prognostic biomarkers of  the risk of  BE→EAC pro-
gression and answers to fundamental questions (e.g., what drives cellular transformation in BE and if  some 
of  those drivers are racially influenced).

To answer these questions, we used a network-based approach involving artificial intelligence (AI) to 
identify continuum states (of  tissues, cell types and processes, and signaling events and pathways) during 
the process of  disease initiation and progression. Modeling human diseases as networks simplifies complex 

Although Barrett’s metaplasia of the esophagus (BE) is the only known precursor lesion to 
esophageal adenocarcinomas (EACs), drivers of cellular transformation in BE remain incompletely 
understood. We use an artificial intelligence–guided network approach to study EAC initiation and 
progression. Key predictions are subsequently validated in a human organoid model, in patient-
derived biopsy specimens of BE, a case-control study of genomics of BE progression, and in a cross-
sectional study of 113 patients with BE and EACs. Our model classified healthy esophagus from BE 
and BE from EACs in several publicly available gene expression data sets (n = 932 samples). The 
model confirmed that all EACs must originate from BE and pinpointed a CXCL8/IL8↔neutrophil 
immune microenvironment as a driver of cellular transformation in EACs and gastroesophageal 
junction adenocarcinomas. This driver is prominent in White individuals but is notably absent in 
African Americans (AAs). Network-derived gene signatures, independent signatures of neutrophil 
processes, CXCL8/IL8 expression, and an absolute neutrophil count (ANC) are associated with risk 
of progression. SNPs associated with changes in ANC by ethnicity (e.g., benign ethnic neutropenia 
[BEN]) modify that risk. Findings define a racially influenced immunological basis for cell 
transformation and suggest that BEN in AAs may be a deterrent to BE→EAC progression.

https://insight.jci.org
https://doi.org/10.1172/jci.insight.161334
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multicellular processes, helps identify patterns in noisy data that humans cannot find, and thereby improves 
precision in prediction. Once built, the network model can help discover fundamental progressive time-se-
ries events underlying complex human diseases and guides the formulation of  hypotheses and predictions. 
We validate key predictions using numerous patient-derived data sets, models, and cohorts to reveal a sur-
prising basis for race- and/or ethnicity-influenced driver of  the risk of  EAC initiation (Figure 1).

Results
An AI-assisted study design. We chose a Boolean approach to building transcriptomic networks (3); this 
approach has been used to create maps of  evolving cellular states along any disease continuum and iden-
tify cellular states in diverse tissues and contexts with high degrees of  precision (see Methods for details). 
The Boolean approach relies on invariant relationships that are conserved despite heterogeneity in the 
samples used for the analysis, which often represent maximum possible diversity (i.e., the relationships can 
be thought of  as general relationships among pairs of  genes across all samples irrespective of  their origin 
[normal or disease], laboratories or cohorts, or different perturbations). It is assumed that such “invariants” 
are likely to be fundamentally important for any given process.

We used the Boolean approach to build maps of  continuum states first during metaplastic progression 
in the normal esophagus (NE) (NE→BE) and, subsequently, during neoplastic transformation of  the met-
aplastic epithelium (BE→EAC). Gene signatures were identified from each map, using machine-learning 
approaches, and validated in independent cohorts (Figure 1, step 1). Validation studies included using 
various experimental approaches on human tissues or tissue-derived organoids (Figure 1, step 2). Gene 
signatures were used as precise and objective tools to navigate new biology and to formulate and rigorously 
test new hypotheses, which led to a few notable findings (Figure 1, steps 3–5).

A Boolean map of  BE reveals an epigenetic cascade with loss of  keratinocyte identity. We used Boolean Net-
work Explorer (BoNE) (4) to create a model of  progressive gene regulatory events that occur during meta-
plastic transition (Figure 2A). For model training and development, we used the largest (to our knowledge), 
well-annotated transcriptomic data set (series GSE100843; n = 76) derived from BE and proximal matched 
normal mucosa from squamous esophagus from 18 patients with BE.

As expanded on in the Supplemental Methods (supplemental material available online with this arti-
cle; https://doi.org/10.1172/jci.insight.161334DS1), a set of  2 clusters emerged as most robust, and these 
were further refined by an additional filtering step through a second “training data set” (GSE39491; see 
Supplemental Methods and Supplemental Table 1) which comprises BE and matched samples of  NE from 
43 patients. Both training data sets were analyzed independently throughout the process. The resultant 
model of  metaplastic transition pinpointed a time series of  BE-associated invariant events in which down-
regulation of  expression of  220 genes (SPINK7 cluster; Figure 2, B and C) was invariably associated with 
a concomitant upregulation of  24 genes (SLC44A4 cluster; Figure 2, B and C) in all samples in the training 
data sets. The pattern of  gene expression signature was sufficient to classify samples in 7 independent 
validation cohorts and performed consistently well when doing so (receiver operating characteristics AUC 
[ROC AUC], 0.88–1.00; Figure 2D). A complete list of  genes in these clusters and the biological processes 
that they control (Supplemental Figure 1, A and B) are displayed in Supplemental Table 2. Not surpris-
ingly, the downregulated pathways were enriched for cellular processes that are inherently associated with 
squamous epithelium.

We found that the network-derived signatures were recapitulated in a recently published organoid mod-
el of  BE (5) (Figure 2E); that is, overlaps between up- and downregulated differentially expressed genes 
were significant (P = 1.37 × 10–4 and 8.65 × 10–63, respectively; Figure 2F). This model emerged serendip-
itously during studies interrogating fate determinants of  human keratinocyte stem cells, using an unbi-
ased siRNA screen approach (6) (Supplemental Figure 1C). Loss of  transcription elongation factor SPT6 
emerged as a bona fide trigger for epithelial transcommitment from stratified squamous epithelium to a 
intestine-like lineage, which was attributed to stalled transcription and downregulated expression of  TP63, 
the master regulator of  keratinocyte fate and differentiation (7). This phenomenon of  transcommitment 
was later shown to faithfully recapitulate the metaplasia-specific signatures of  BE, and exposure to acidic 
pH was sufficient to inhibit the SPT6→TP63 axis in vitro (5).

To determine if  the SPT6→TP63 axis is downregulated in the squamous esophageal lining in patients 
with BE, we prospectively enrolled patients with or without BE presenting for routine care at UCSD and 
collected biopsy specimens from the distal esophagus, 2 cm above the gastroesophageal junction (GEJ) 

https://doi.org/10.1172/jci.insight.161334
https://insight.jci.org/articles/view/161334#sd
https://doi.org/10.1172/jci.insight.161334DS1
https://insight.jci.org/articles/view/161334#sd
https://insight.jci.org/articles/view/161334#sd
https://insight.jci.org/articles/view/161334#sd
https://insight.jci.org/articles/view/161334#sd
https://insight.jci.org/articles/view/161334#sd
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or the BE segment. IHC studies on FFPE biopsy specimens confirmed that, compared with specimens 
from participants without BE, both SPT6 and TP63 proteins were significantly suppressed in the esoph-
ageal squamous lining from patients whose disease had progressed to BE (P = 0.8 × 10–9 and 0.9 × 10–7, 
respectively; Figure 2G).

We hypothesized that SPT6 deletion may have altered the genome-wide chromatin accessibility to genes 
in the SPINK7/SLC44A4 clusters. Assay for transposase-accessible chromatin followed by high-throughput 
sequencing studies on the SPT6-depleted BE organoid model confirmed that the downregulated genes in 
the SPINK7 cluster (which includes TP63) are significantly affected when the histone chaperone SPT6 is 
depleted. Findings support our prior conclusions (6), in that the SPT6→TP63 axis maintains keratinocyte 
identity (pathways enriched in the SPINK7 cluster; Supplemental Figure 1D) and its loss permits transcom-
mitment or transdifferentiation to a metaplastic intestine-like fate.

A Boolean map of  EAC reveals an immune paradox during cell transformation. We next created a model 
of  progressive gene changes during BE→EAC transformation (Figure 3A). The following sequence was 
invariably encountered in all samples: a cluster of  471 genes (LNX1 cluster) was downregulated, with a con-
comitant and sequential upregulation of  2 clusters totaling another 61 genes (IL10RA and LILRB3 clusters) 
(Figure 3A, right, and Figure 3B). Machine-learning approaches pinpointed the LILRB3 and IL10RA clus-
ters as sufficient to classify EACs from BE and to do so reproducibly in 4 independent validation cohorts 
(Figure 3C). Although the IL10RA cluster is upregulated in nondysplastic BE (NDBE) (Figure 3D, left), the 
LILRB3 cluster is induced predominantly in EACs (Figure 3D, middle); the composite score of  the com-
bined EAC signature shows progressive increase throughout BE→EAC transformation (Figure 3D, right). 
The genes in these clusters are listed in Supplemental Table 3.

The degree of  induction of  the EAC signature was indistinguishable in EACs and GEJ adenocarci-
nomas (GEJ-ACs) (data set GSE74553; Figure 3E, left). This observation was reproducible in another 
independent data set (GSE96668; n = 60; Figure 3E, right).

Reactome pathway analyses of  these gene signatures revealed the set of  cellular types and states that 
are progressively gained or lost (Figure 3F). The overwhelming and progressively increasing processes were 
that of  innate reactive immune response and inflammatory cytokine signaling with a predominant neutro-
phil flare and receptors or ligands that specifically target the neutrophils (e.g., CXCL8/IL8, CXCR1, CXCL2; 
see the LILRB3 cluster in Supplemental Table 3) (Figure 3F, middle). These processes are followed by the 
induction of  an immunotolerant or suppressive immune response that is IL-10– and IL-4/IL-13–centric 
(Figure 3F, right). These paradoxical reactive and tolerant immune responses were associated with a con-
comitant loss of  IL-18 signaling and the TP53 pathway (Figure 3F, left).

Boolean logic confirms that all EACs must evolve through BE. We used the concept of  Boolean invariant 
logic to create a model that captures first the metaplastic and then the transformation steps of  cellular 
continuum states. First, we found that BE signatures (Figure 2B) are also induced in the EAC sam-
ples across diverse cohorts (Figure 4A). The Boolean implication SPINK7 high => SLC44A7 low, which 
defines metaplastic transition in the normal epithelium (Figure 2B), is an invariant relationship in the 
most diverse global human data set (i.e., GSE119087; Figure 4B), suggesting that this pattern may be 
fundamentally important. Using SLC44A4 as a seed gene in a data set that comprised NE, BE, and EAC 
samples, we found that SLC44A4 shares an invariant relationship with 1 of  the genes in the LILRB3 
cluster, CXCL8. CXCL8 high => SLC44A4 high is an invariant Boolean implication relationship (BIR) in 
NE, BE, and EAC samples, where each sample type is mostly confined to 1 quadrant (Figure 4C). This 
model suggests that if  EACs must originate from the esophagus, they must do so via the metaplastic BE 
intermediate; only 3 genes could nearly accurately classify the samples (Figure 4C) and show progressive 
expression changes along the continuum (Figure 4D). These findings were validated in a second cohort 
pooled from multiple independent data sets (Supplemental Figure 2A). By contrast, esophageal squa-
mous cell carcinomas (ESCCs; n > 400 samples pooled) did not conform to the Boolean logic–based 

Figure 1. Study design. Step 1: Numerous transcriptomic data sets from both human (n = 863) and mouse (n = 69) samples were mined to build a validated 
Boolean implication network–based computational model of disease continuum states during the metaplastic→dysplastic→neoplastic cascade in the 
squamous epithelial lining of the esophagus. Gene signatures derived from the network-based model are first prioritized by machine-learning approaches 
and used subsequently to discover cell types and cellular states that fuel the cascade. Step 2: Network predictions were validated in 4 different models 
and approaches. Steps 3–5: Summary of key conclusions. ATAC seq, assay for transposase-accessible chromatin followed by high-throughput sequencing; 
EAC/GEJ-AC, esophageal adenocarcinoma/gastroesophageal carcinoma.

https://doi.org/10.1172/jci.insight.161334
https://insight.jci.org/articles/view/161334#sd
https://insight.jci.org/articles/view/161334#sd
https://insight.jci.org/articles/view/161334#sd
https://insight.jci.org/articles/view/161334#sd
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model of  the BE→EC continuum and, as expected, the model confirms that ESCCs do not transition 
through metaplastic BE states (Supplemental Figure 2B).

Prior work had reported that 274 genes are aberrantly methylated, and indistinguishably so, in 6 indepen-
dent EAC and/or BE methylation studies (8). Significant overlaps were seen between those 274 genes and the 
BE-associated SLC44A4 cluster (P = 1.59 × 10–10), but not the EAC-associated LILRB3- and IL10RA-clusters 
(Figure 4E), suggesting that the methylome in EAC is imprinted early during evolution through BE.

Two waves of  an IL-8↔neutrophil-centric inflammation is encountered during cell transformation. We noted 
that the LILRB3 cluster contained the cytokine CXCL8 (henceforth, IL-8) and its receptor, CXCR1. Dis-
covered as the first chemokine activator of  neutrophils, IL-8 displays a distinct target specificity for neu-
trophils, with only weak effects on other blood cells (9). The LILRB3 cluster also contained CXCL2; the 
CXCL2-CXCR2 axis helps in the recruitment of  tumor-associated neutrophils (TANs) (10). We asked how 
this IL-8↔neutrophil-centric inflammation varies during the metaplasia–dysplasia–neoplasia cascade by 
comparing pairwise each sequential step (i.e., NE vs. NDBE; NDBE vs. dysplastic BE [BE-D]; BE-D vs. 
EAC). The BE and EAC map-derived signatures, as well as IL-8 and its 2 signaling receptors (CXCR1/2) 
(Figure 4F, left) and numerous pathologic neutrophil processes (Figure 4F, right; Supplemental Figure 3) 
were significantly induced in EACs (Figure 4F, row iv) and in GEJ-ACs (Figure 4F, row vi). The patterns 
of  induction of  all the gene signatures (see Supplemental Table 4 for gene lists) were virtually indistin-
guishable between EACs and GEJ-ACs (Figure 4F, row v). Upregulation was observed in 2 phases: early 
during metaplastic transformation from NE to NDBE (Figure 4F, row i) and later during transformation 
from BE-D to EACs (Figure 4F, row iii) but not during transformation from BE to BE-D (Figure 4F, row ii) 
(see also Supplemental Figure 3 for violin plots). These results show that the normal→metaplasia→dyspla-
sia→neoplasia cascade is associated with a staircase waveform of  IL-8 and neutrophil processes.

Gene signatures reveal a protumor neutrophilic immune microenvironment. We next asked if  the increased 
neutrophil processes were reflective of  immunostimulating (antitumor) or immunosuppressive (protu-
mor) TANs. To this end, we analyzed a TAN (11) signature that measures the protumor N2 TANs. Both 
EACs (Figure 4F, far right, last column, row iv) and GEJ-ACs (Figure 4F, far right, last column, row 
vi) were associated with an induction of  TAN signature. Similarly, upregulation in TAN signature was 
noted in pairwise comparisons of  NE versus NDBE (Figure 4F, far right, last column, row i) and NDBE 
versus DBE (Figure 4F, far right, last column, row ii). ROC AUC and P values are displayed for each 
pairwise comparison in Figure 4F (right).

The induction of  protumorigenic TAN signatures was associated also with the pan-cancer marker 
of  adaptive immune resistance, an 18-gene tumor inflammation signature (TIS) (12) and its 5-gene 
subset (Figure 4F, left, last 2 columns), which predicts benefit of  anti–PD-1 therapy in various cancers. 
EAC signatures, neutrophil processes, and TIS signatures positively and strongly correlated across all 
EAC and GEJ-AC data sets analyzed (r range, 0.8–0.99 for TIS vs. EAC signatures; Supplemental Fig-
ure 4). These findings suggest that protumorigenic neutrophils may drive adaptive immune resistance. 
Furthermore, we found that this tumor immune microenvironment was rarely recapitulated in the cur-
rently available animal models of  BE→EAC transformation (Supplemental Figure 5; see Supplemental 
Methods for analyses of  animal models).

ANC and neutrophil signatures prognosticate outcome in BE and EAC. Next, we retrospectively analyzed a cohort 
of patients with BE (NDBE, n = 72; DBE, n = 11) diagnosed between 2013 and 2017 and patients with EACs 
(n = 30) diagnosed between 2005 and 2017 at a tertiary care center in Brazil, with a complete blood cell count 
within 6 months of diagnostic endoscopy (see Methods for details; Figure 5A and Supplemental Figure 6A). 

Figure 2. Generation and validation of Boolean network map of BE. (A) Schematics outline the workflow (steps 1–4) and training data sets used to create a 
Boolean map of NE to BE transition using BoNE(4). (B) Graph showing invariant patterns of gene expression changes during NE→BE progression. Gene clusters 
identified by machine learning are indicated in bold. (C) Gene clusters in B were refined by filtering through a second data set (GSE39491). The resultant signature 
involves progressive downregulation of SPINK7 cluster with a concomitant upregulation of SLC44A4 cluster. (D) Bar plots show sample classification accuracy 
across diverse data sets, with corresponding ROC-AUC values. The sample numbers for healthy (H) and BE analyzed in each data set are annotated on the left 
margin. (E and F) Summary (E) of a published SPT6-depleted organoid model of BE. Hypergeometric statistical analyses (F) show significant overlaps in both 
up- and downregulated genes between gene signatures identified in the BE maps in B and C and differentially expressed genes in the SPT6-depleted organoid 
model of BE (5). (G) Esophageal biopsy specimens from men with (Eso from BE) or without (Eso from non-BE) BE were analyzed for SPT6 and TP63 expression 
by IHC. Red and black arrowheads point to crypts staining positive. Interrupted circles highlight crypts with little or no expression. Fields representative from 3 
participants are shown; boxed regions above are magnified below. Scale bar: 100 μm. Violin plots display the percentage of cells positive for staining in regions of 
interest in G, as determined by the ImageJ plug-in, IHC profiler. P values were determined by 2-tailed Mann-Whitney test. DEG, differentially expressed gene.

https://doi.org/10.1172/jci.insight.161334
https://insight.jci.org/articles/view/161334#sd
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Figure 3. Generation and validation of Boolean network map of BE to EAC progression. (A) Schematic outline the workflow and training data sets used to 
create a Boolean map of BE to EAC transition using BoNE (4). (B) Graph showing invariant patterns of gene expression changes during BE→EAC transfor-
mation. Gene clusters identified by machine learning are indicated in bold. (C) Bar plots show sample classification accuracy across diverse data sets, with 
corresponding ROC-AUC values. The sample numbers for BE and EAC analyzed in each data set are annotated on the left margin. (D) Violin plots show the 
composite scores of upregulated gene clusters in NE, NDBE, DBE, and EACs. P values indicate comparison of each sample type against the NE, as determined 
by Welch’s t test. (E) Violin plots show the composite scores of upregulated gene clusters in NE, normal gastric (NG), normal GEJ (GEJ) and GEJ-ACs. P values 

https://doi.org/10.1172/jci.insight.161334
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The neutrophil to lymphocyte ratio progressively increased during NDBE→DBE→EAC progression (Supple-
mental Figure 6B); this was largely driven by increasing ANCs (Figure 5B) and not due to reduced absolute 
lymphocyte counts (Supplemental Figure 6C). Platelet (Supplemental Figure 6D) and total leukocyte (Supple-
mental Figure 6E) counts were significantly increased in patients diagnosed with EACs. ANC remained the 
most significant variable that tracked the risk of NDBE→DBE→EAC progression in both univariate (Figure 
5C) and multivariate (Figure 5D) analyses.

Next, we analyzed in EAC data sets curated from The Cancer Genome Atlas the prognostic role of  a 
panel of  signatures (Supplemental Figure 7, A–E): the EAC signature, the neutrophil degranulation (signa-
ture derived from the EAC cluster), CXCL8/IL8, and neutrophil abundance, as estimated in tumor tissues 
by transcripts of  the marker CD16 (13) (Fc gamma receptor IIIa and IIIb [FCGR3A/B]). Although the EAC 
and neutrophil signatures retained their prognostic impact also in ESCCs (Figure 5E and Supplemental 
Figure 7, A–E), CXCL8 did not (Figure 5F). None of  these signatures prognosticated outcome in gastric 
adenocarcinomas (Supplemental Figure 7, A–D, right column).

Findings show that ANC and high intratumoral CXCL8/IL8 and neutrophil-activation signatures may 
be disease drivers in EAC and that IL-8–driven neutrophil chemotaxis may be a unique driver in EAC but 
not in ESCC or gastric adenocarcinomas.

White individuals, but not AAs, mount IL-8– and neutrophil-centric inflammation. Next, we leveraged a 
unique data set containing histologically normal esophageal squamous lining derived from White and AA 
patients who were either normal (N; i.e., did not have BE or EAC) or were diagnosed with having BE or 
EAC (data set GSE77563; Figure 6A) to ask how our findings differ along the race or sex divides. Previous-
ly, this data set was used to reveal that differential expression of  glutathione S-transferase theta 2 (GSTT2), 
an enzyme that catalyzes the conjugation of  reduced glutathione, may protect AAs compared with White 
individuals from oxidative stress–induced DNA damage (14) (Supplemental Figure 9A). We found that the 
BE (Figure 6B, left) or EAC (Figure 6B, right) signatures were not different in the squamous lining of  the 
esophagus at baseline (comparing AA-N vs. White-N); however, a diagnosis of  BE in White individuals, 
but not AAs, was associated with an induction of  the EAC signatures in the histologically normal proximal 
squamous lining (Figure 6B, right; compare AA-BE vs. White-BE). When these signatures and all other 
signatures of  tumor microenvironment and neutrophil processes were analyzed systematically, we found 
that the changes in gene signatures were seen in both sexes (Figure 6, C and D, compare bottom 3 rows; 
Supplemental Figure 8); however, White men accounted for the most significant changes in the signatures 
across the board, indicative of  progressive inflammation and cell states identified by our network approach. 
The TIS (12) was induced in White patients with BE, but not AA patients (Figure 6C), suggesting that 
response to checkpoint inhibitors may differ between the races.

We also noted that (a) GSTT2 was differentially expressed in AAs compared with White individuals 
regardless of  whether they were healthy or had BE or EAC (Supplemental Figure 9B), and (b) GSTT2 
inversely correlates with the EAC signature (Supplemental Figure 9C) and its subset of  neutrophil degranu-
lation signature (Supplemental Figure 9D). Findings suggest that low GSTT2 (at baseline) and high neutro-
phil-centric inflammation (in BE and EAC) may synergize as risk factors in White individuals.

SNPs that increase or decrease ANC are oppositely enriched during BE→EAC progression. We next asked if  race 
and/or ethnicity may intersect directly with ANC and the risk of  BE→EAC progression. AAs are known to 
have low ANCs (15), whereas people of  Hispanic/Latino descent have high ANCs compared with non-His-
panic White individuals (16). SNPs that either increase (the US Hispanic/Latino population; ref. 17) or 
decrease (the US AA population; ref. 18) ANCs have been identified. In the case of  AAs, the homozygous 
SNP rs2814778, which disrupts a binding site for the GATA1 erythroid transcription factor, resulting in a 
ACKR1-null phenotype (Figure 7A), is known to cause low ANC (18, 19). We used a case-control study (20) 
that included 80 patients with BE (n = 40 who progressed to EACs and 40 who did not [nonprogressors]); 
this cohort was selected from a larger case-cohort study within the Seattle Barrett’s Esophagus Program 
at the Fred Hutchinson Cancer Research Center. Germline data from this cohort were analyzed for the 
occurrence of  10 SNPs that increase or decrease the ANC, as determined in various studies in the United 
States (Supplemental Methods). All 3 genes (DARC/ACKR1, ABCC1, and HMMR), influenced by 3 of  the 

indicate comparison of each sample type against the NE (left) or GEJ (right), as determined by Welch’s t test. (F) Pathway analyses of gene clusters derived 
from the map in B. Red type indicates likely epithelial processes. DBE-LG, dysplastic BE, low-grade dysplasia; LBP, ligand-binding protein; Lig-binding receptor, 
ligand-binding receptor; MMP, Matrix metalloproteinase; WASP, Wiskott–Aldrich syndrome protein; WAVE, WASP-family verprolin-homologous protein.
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Figure 4. A Boolean logical model of cellular states during NE→BE→EAC progression. (A) Bar plots show that BE signatures (Figure 2, B and C) can 
distinguish NE and EAC samples. (B) A scatterplot for SPINK7 and SLC44A4 expression in the global human GSE119087 (N = 25,955) data set. Boolean 
implication SPINK7-high => SLC44A7-low (S = 8.3; P = 0.0; FDR < 0.001) is an invariant relationship in the most diverse data set. (C) A scatterplot of CXCL8 
and SLC44A4 expression in the E-MTAB-4054 data set. Boolean implication CXCL8-high => SLC44A4-high (S = 2.5; P = 0.0; FDR <0.001) is an invariant 
relationship in NE, BE, and EAC samples. (D) A schematic to visualize the mathematical model of NE→BE→EAC progression based on MiDReG analysis 
using BIRs. The model suggests that BE (SLC44A4 high, CXCL8 low) must precede EAC (CXCL8 high, SLC44A4 high). (E) Venn diagram shows the overlaps 
between the gene clusters from the BE and EAC maps with the genes reported to be methylated in multiple independent studies (n = 274 of 22,178 genes 
tested in total). Only significant P values, as determined using hypergeometric analyses, are displayed. (F) The human EAC immune microenvironment is 
visualized as bubble plots of ROC-AUC values (radius of circles are based on the ROC-AUC) demonstrating the direction of gene regulation (upregulation, 
red; downregulation, blue) for the classification of samples (gene signatures in columns; data set and sample comparison in rows). P values based on 
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6 tested risk alleles, including rs2814778 (the allele maximal risk, across studies, and the 1 that confers the 
risk of  BEN; ref. 19) were significantly enriched among nonprogressors, whereas 2 of  the 4 protective alleles 
were significantly enriched among the progressors (Table 1). Among other SNPs that are associated with 
drug-induced neutropenia in the non-US population, only 1 was significant (i.e., CYP39A1; Supplemental 
Table 6). The opposing patterns of  enrichment and de-enrichment of  neutropenia-protective and risk alleles, 
respectively, among BE→EAC progressors was significant (Welch’s t test P = 0.03978; Table 1). As expected, 
the frequency of  somatic mutations in genes within the EAC clusters (Supplemental Figure 10A) or on genes 
associated with neutrophil function or number (Supplemental Figure 10B) was higher in BE progressors 
compared with BE-nonprogressors and tracked tumor mutation burden.

Ethnic neutropenia may reduce EAC risk. We noted that the race with the lowest incidence of  BE/EAC 
(i.e., AA), also have the highest incidence of  BEN (19), the most common form of  neutropenia worldwide. 
In BEN, a homozygous SNP (rs2814778) affects the functions of  DARC (only in RBCs), which encodes a 
7-transmembrane receptor (21) that selectively scavenges inflammatory chemokines (e.g., IL-8 and CCL5, 
both of  which enhance neutrophil recruitment) (Figure 7A). BEN due to Duffy polymorphism has explained 
many mysterious racial disparities in modern medicine (19) but is most prominently known for protecting 
AAs against Plasmodium vivax malaria (18). We looked for the Duffy negativity phenomenon, which was 
first described in malaria (22); this phenomenon refers to the geographic distribution of  the Duffy-negative 
genotype, Fya–/b–, predominantly in sub-Saharan Africa (≥95% Duffy negativity frequency; CI, 75%–95%; 
Figure 7B), which coincides with the phenotype of  near-complete protection from P. vivax in the same 
regions (Figure 7C, bottom). It is noteworthy that Duffy negativity does not offer protection from P. fal-
ciparum (Figure 7C, top). A strikingly similar contrasting pattern was seen when we compared the global 
age-adjusted incidence rates of  ESCCs (Figure 7D, top) and EACs (Figure 7D, bottom). The African and 
Saudi Arabian regions, which have the Duffy-negative Fya–/b genotype (Figure 7B), also have a low incidence 
of  EACs but moderate to high incidence of  ESCCs. These findings suggest that BEN could offer selective 
protection from EACs (just as it does for P. vivax) in individuals of  African descent. Findings also suggest 
that BEN, which is widely prevalent in other races and ethnicities (e.g., Africans, AAs, Arabs, Yemenite 
and black Ethiopian Jews, and, to a lesser extent, also in Latinos) but <1% in the non-Hispanic White pop-
ulation in the United States (16), is a possible risk modifier (protective) for BE→EAC progression.

Discussion
The major discoveries we report here are insights into the cellular continuum states during the metapla-
sia→dysplasia→neoplasia cascade in EACs and GEJ-ACs, revealed using AI (Figure 7E). Our findings 
enable us to draw 4 major conclusions, some with immediate and impactful translational relevance.

The origin of  BE and EACs. Our Boolean logic–based model supports a long-suspected tenet that all 
EACs arise in BE, which was recently substantiated via multiscale computational modeling studies (23) 
and through single-cell genomics and lineage tracking studies (24). These 3 approaches independently 
verify that BE is the invariant precursor to EACs. Our model also confirmed that, unlike EACs, ESCCs 
do not transition through metaplastic BE states (as expected). TP63 and SPT6 were suppressed in the 
squamous lining of  the esophagus proximal to the BE segment (Figure 2F), and BE/EAC signatures 
and the neutrophil inflammatory milieu were similarly observed in the normal squamous lining of  
the esophagus proximal to BE and EAC lesions (Figure 6, A and B), suggesting that the histologically 
so-called normal esophageal lining is abnormal by all molecular (i.e., protein and gene expression) 
metrics among patients with BE or EAC. This evidence lends support to a transcommitted esophageal 
keratinocyte being a cell of  origin of  BE and EAC/GEJ-ACs, as has been suggested by others (25–28). 
By showing that the loss of  TP63 occurs early during the BE→EAC continuum, our model captures 
the key molecular trigger for keratinocyte transcommitment reported previously by others (29). Finally, 
because key features of  the human disease is recapitulated in the IL-1β–tg murine model of  BE-like 
tumorigenesis (30) (Supplemental Methods), where the glandular epithelia at the GEJ/cardia gave rise 
to BE, these glandular cells could serve as an alternative cell of  origin of  BE and EAC/GEJ-ACs.

Welch’s t test (of composite score of gene expression values) are provided using standard code (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001) next to the ROC-
AUC. Left: Panel displays the classification of NE, NDBE, DBE, EAC, and GEJ-AC based on the indicated gene signatures (top) in 2 independent data sets 
(E-MTAB-4054, GSE74553). Right: Panel displays the classification of the same samples based on neutrophil signatures. Violin plots for selected neutro-
phil signatures are displayed in Supplemental Figure 5.
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Figure 5. Peripheral neu-
trophilia and signatures of 
tumor neutrophil infiltration 
prognosticate risk of EAC 
progression. (A) Schematic 
summarizing the cohort com-
position of a cross-sectional 
study that is analyzed in panels 
B–D. (B) Violin plots display 
the neutrophil (NEUT) counts 
in various patients within each 
diagnostic group shown in A. 
P values indicate comparison 
of each subgroup against the 
NDBE group, as determined by 
Welch’s t test. See Supplemen-
tal Figure 6 for other hema-
tologic parameters. (C and D) 
Univariate (C) and multivariate 
(D) analyses model the risk 
of BE to EAC progression as 
a linear combination of sex 
and the indicated hematologic 
parameters. Coefficient of 
each variable (at the center) 
with 95% CIs (as error bars) 
and the P values are illustrated 
in the bar plot. The P value 
for each term tests the null 
hypothesis that the coefficient 
is equal to zero (no effect). **P 
≤ 0.01; ***P ≤ 0.001. (E and 
F) Kaplan-Meier plots display 
the overall survival of patients 
with tumors stratified based 
on the high vs. low composite 
scores of 2 genes (FCERG3A, 
FCERG3B) and the high vs. low 
expression values of CXCL8. 
P values were determined by 
log-rank analysis. ALC, abso-
lute lymphocyte count. PLAT, 
platelets.
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Figure 6. White individuals, but not AAs, mount IL-8– and neutrophil-centric inflammation. (A) Schematic displays the study design in data set 
GSE77563. Microarray studies were conducted on histologically normal squamous mucosa from self-identified AA or White participants, who were healthy 
(normal control participants), or those diagnosed with BE and/or EAC (AA-BE or White-BE). (B) Violin plots showing the composite scores of upregulated 
gene clusters (Left, BE signatures; Right, EAC signatures) in control participants (AA-N and White-N) and those diagnosed with BE/EACs (AA-BE and 
White-BE). P values indicate comparison of each sample against the normal samples, as determined by Welch’s t test. (C and D) The human EAC immune 
microenvironment is visualized as bubble plots of ROC-AUC values (radius of circles are based on the ROC-AUC) demonstrating the direction of gene regu-
lation (upregulation, red; downregulation, blue) for the classification of samples (gene signatures in columns; data set and sample comparison in rows). P 
values (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ =0.001) based on Welch’s t test (of composite score of gene expression values) are provided next to the ROC-AUC. (C) 
The classification of AA vs. White samples from control (AA/White-N) or BE/EAC participants (AA/White-BE) in male (M) or female (F) participants are 
shown based on the indicated gene signatures (top) in GSE77563. (D) The classification of same samples in C based on neutrophil signatures. Violin plots 
for selected neutrophil signatures in AA-BE vs. White-BE samples are displayed in Supplemental Figure 8. neu inflamm., neutrophil inflammation.
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Figure 7. Ethnic neutropenia may reduce the risk of transformation in BE. (A) Schematic summarizing the ligands that bind the RBC-localized 
DARC/ACKR1 scavenger and the impact of the African polymorphism on RBC-specific loss of DARC. (B) Global prevalence of the African Duffy-null 
polymorphism that causes BEN. (C and D) The prevalence of malaria (C) and the age-adjusted incidence of esophageal cancers (D) are displayed side 
by side. Black interrupted circles (C and D) highlight how Africans in Duffy-null zones (see B) are protected from Plasmodium vivax (C, bottom) but 
not from P. falciparum (C, top). (E) Summary and working model. Left: A vicious IL-8↔neutrophilic storm may be critical for driving the metaplasia–
dysplasia cascade during NE→BE→EAC progression. Because of the AA Duffy-null polymorphism that manifests as neutropenia and low IL8, some 
races or ethnicities (e.g., AA, Hispanic/Latino) are protected. Right: As for what permits NE→BE transition, a epithelium intrinsic mechanism may be 
triggered by suppressed expression of Spt6 in the setting of acid, which, in turn, stalls tp63 function and expression, and a resultant loss in keratino-
cyte cell fate and gain in metaplastic features. These epithelium-intrinsic mechanisms are likely to be fueled by the vicious IL-8↔neutrophilic storm. 
HGD, high-grade dysplasia; LGD, low-grade dysplasia.
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Neutrophilic assault assists cell transformation. We found that an IL-8–neutrophil-centric immune 
microenvironment is increased first during metaplastic transition and more prominently later during 
neoplastic transformation (Figure 7E). This biphasic-wave pattern may explain why long-standing BE 
carries low risk of  EAC (31), presumably because a second wave of  immune storm is required for cell 
transformation. Induction of  IL-8 and high neutrophils in BE tissues (32) and circulation (33) has been 
reported; however, in showing that this immune microenvironment is prominently induced in White 
individuals but not in AAs, which mirrors the approximately 4- to 5-fold higher risk of  EACs in White 
individuals compared with AAs (34), our findings suggest that this inflammatory microenvironment 
is likely to be a driver event. We also showed that a high ANC in circulation is an independent deter-
minant of  NDBE→DBE→EAC progression and provides epidemiologic evidence that low ANC is a 
possible risk modifier (protective) for BE→EAC progression in AAs, Arabs, and other races and eth-
nicities. The fact that peripheral neutrophilia and intratumoral signatures of  neutrophil processes are 
aligned with risk of  EAC is not unusual, because such alignment is observed and carries poor prognosis 
in diverse cancers (35). These insights lend support to the prioritized testing of  a class of  neutrophil-tar-
geted therapeutics; such drugs could prove beneficial as both single-agent and adjuvant therapy. Because 
high neutrophil counts with high tumor mutation burden in diverse cancers (including esophageal) is 
known to reduce the efficacy of  the checkpoint inhibitors (36), our results predict that neutrophil-target-
ed therapeutics may synergize with checkpoint inhibitors.

Ethnic disparity in EACs/GEJ-ACs may stem from DARC polymorphism. Our studies shed valuable insights 
into how DARC polymorphism rs2814778 may shape the risk of  EACs. For example, gene expression signa-
tures of  neutrophil infiltration and activation are induced in both EACs and ESCCs; however, the existence 
of  a Duffy-negativity phenomenon in EACs (i.e., that the Fya–/b– genotype is associated with low incidence 
of  EACs, but not ESCCs) suggests that the Duffy polymorphism influences EACs through mechanisms 
other than being the most important genetic determinant of  BEN. DARC polymorphism rs2814778 affects 
serum levels of  IL-8 (37). Because EACs, but not ESCCs, significantly induce IL-8, it is possible that the 
infiltration of  TANs in EACs is gradient driven and that gradient is maintained by the RBC-localized scav-
enger of  IL-8, DARC (i.e., a cytokine “sink”) (21).

EACs and GEJ-ACs are similar. Our study objectively establishes the degree of  similarity between EACs 
and GEJ-ACs at a fundamental molecular level. This finding is in keeping with the fact that, much like 
EACs, GEJ-ACs are also associated with short and long segments of  BE, suggesting that they arise from 
underlying metaplastic epithelium (38). It is possible that much like EACs, GEJ-ACs evolve through the 
intestinal metaplastic continuum and that neutrophil-targeted therapies that emerge in EACs are expected 
to have crossover benefits in GEJ-ACs.

Table 1. Frequency of neutropenia risk or protective alleles among patients with BE that progressed (n = 40) or not (n = 40) to EAC

Risk alleles

rsID Gene Chr Position NP Count P Count Binomial Test Diff (P-NP)
rs2814778* DARC/ACKR1 chr1:159204893:T:C 1 0 0.00000 -1

rs246221 ABCC1 chr16:16044465:T:C 24 14 0.001397823 -10
rs4148350 ABCC1 chr16:16076620:G:T 2 5 0.227479554 3
rs299293 HMMR chr5:163482208:C:T 16 9 0.012693315 –7
rs299313 HMMR chr5:163486945:G:A 16 11 0.10880832 –5
rs299314 HMMR chr5:163487994:T:C 16 11 0.10880832 –5

75 50 –25

Protective 
alleles

rs445 CDK6 chr7:92779056:C:T 7 11 0.213844802 4
rs2380606† SLCO5A1 chr8:69828661:T:C 29 29 1 0
rs35272691† PSMD3-CSF3 chr17:40001588:T:C 14 29 8.43E-07 15
rs7882966† CPXCR1 chrX:88727152:T:C 1 6 0.024075999 5

51 75 24

Patients were part of the Seattle BE program (N = 80). For each SNP, statistical significance was determined using Fisher’s test with binomial probability 
distribution. *SNP causative of BEN in AA, Arab, and Middle Eastern populations and in Yemeni and Ethiopian Jews. †SNPs protective of neutropenia in 
Hispanic/Latino ethnicities. Chr, chromosome; Diff, difference; NP, nonprogressor; P, progressor; rsID, Rapid Stain Identification Series.
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Methods
Detailed methods for computational modeling, AI-guided prediction and validation, and description of  
validation models are presented in Supplemental Methods and mentioned in brief  here.

Computational approach. An overview of  the key approaches is shown in Figure 1. Modeling continuum 
states within the metaplasia→dysplasia→neoplasia cascade were performed using BoNE (4). We created 
an asymmetric gene expression network, first for metaplastic progression from NE to BE and separately for 
the dysplastic→neoplastic cascade during BE to EAC progression, using a computational method based on 
Boolean logic (3). To build the BE/EAC network, we analyzed 2 publicly available transcriptomic data sets 
(GSE100843 and GSE39491 for BE and E-MTAB-4054 for EACs; Supplemental Table 1). These 2 data 
sets (our test cohorts) were independently analyzed and the resultant signatures were kept separate from 
each other at all times. The BoNE computational tool (Supplemental Methods) was introduced, which uses 
asymmetric properties of  BIRs (as in MIDReG algorithm; ref. 3) to model natural progressive time-series 
changes in major cellular compartments that initiate, propagate, and perpetuate cellular-state change and 
are likely to be important for BE/EAC progression. BoNE provides an integrated platform for the con-
struction, visualization, and querying of  a network of  progressive changes much like a disease map (in this 
case, BE and EAC-maps) in 3 steps. First, the expression levels of  all genes in these data sets were converted 
to binary values (high or low) using the StepMiner algorithm (39). Second, gene expression relationships 
between pairs of  genes were classified into 1 of  6 possible BIRs and expressed as Boolean implication state-
ments; 2 symmetric Boolean implications — “equivalent” and “opposite” — are discovered when 2 diago-
nally opposite sparse quadrants are identified, as well as 4 asymmetric relationships, each corresponding to 
1 sparse quadrant. Although conventional symmetric analysis of  transcriptomic data sets can recognize the 
latter 2 relationships, such an approach ignores the former. BooleanNet statistics is used to assess the sig-
nificance of  the BIRs (3). Prior work (4) has revealed how the Boolean approach offers a distinct advantage 
from currently used conventional computational methods that rely exclusively on symmetric linear rela-
tionships from gene expression data (e.g., differential, correlation network, coexpression network, mutual 
information network, the Bayesian approach). The other advantage of  using BIRs is that they are robust 
to the noise of  sample heterogeneity (i.e., healthy, diseased, genotypic, phenotypic, ethnic, interventions, 
disease severity), and every sample follows the same mathematical equation and hence is likely to be repro-
ducible in independent validation data sets. The heterogeneity of  samples in each of  the data sets used in 
this study is highlighted in the Supplemental Methods. Third, genes with similar expression architectures, 
determined by sharing at least half  the equivalences among gene pairs, were grouped into clusters and 
organized into a network by determining the overwhelming Boolean relationships observed between any 2 
clusters. In the resultant Boolean implication network, clusters of  genes are the nodes, and the BIR between 
the clusters are the directed edges; BoNE enables their discovery in an unsupervised way while remaining 
agnostic to the sample type. All gene expression data sets were visualized using Hierarchical Exploration of  
Gene Expression Microarrays Online framework (4).

Data availability. All data are available in the main text or the supplemental material. Publicly available 
data sets used are enlisted in the Supplemental Methods. The software codes are publicly available at the 
following links: https://github.com/sahoo00/BoNE (9def8120b60ec962b2508d5a5c65c9837ed79df9) 
and https://github.com/sahoo00/Hegemon (51c50b7ae0dff7b76a5e48cef737e17bc141d76f).

Statistics. P values were computed using the 2-tailed Welch’s t test. Gene signature is used to clas-
sify sample categories, and the performance of  the multiclass classification is measured by ROC-AUC 
values. A color-coded bar plot is combined with a density plot to visualize the gene signature–based 
classification. All statistical tests were performed using R, version 3.2.3 (2015-12-10). Standard t tests 
were performed using the Python scipy.stats.ttest_ind package (version 0.19.0) with Welch’s 2-sample 
t test (2-tailed, unpaired, unequal variance [equal_var=False], and unequal sample size) parameters. 
Multiple hypothesis correction was performed by adjusting P values with statsmodels.stats.multitest.
multipletests (fdr_bh: Benjamini–Hochberg principles). The sample number of  each analysis is pro-
vided with associated plots beside each GSE accession number or sample name. Pathway analysis 
of  gene lists was carried out via the Reactome database. Reactome identifies signaling and metabolic 
molecules and organizes their relationships into biological pathways and processes. Kaplan-Meier 
analysis was performed using the Python lifelines package, version 0.14.6. The statistical significance 
of  Kaplan-Meier plots was assessed by log-rank test. The Cox proportional-hazard models was used 
to evaluate the association between the survival time of  patients and 1 or more predictor variables. 
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Violin, swarm, and bubble plots were created using the Python seaborn package, version 0.10.1. Hyper-
geometric-tests were performed to evaluate the significance of  overlaps between 2 list of  genes. Both 
binomial and Fisher exact tests were performed to test the significance of  SNPs. StepMiner analysis 
(39) was performed to binarize numerical data, and BooleanNet statistic (3) was used to test the sig-
nificance of  BIRs.

Study approval. For assessing the impact of  ANC on BE/EAC diagnosis and outcome of  EACs, we 
retrospectively analyzed patients with biopsy specimens indicating BE between 2013 and 2017 and with a 
complete blood cell count within 6 months from the endoscopy, as well as patients with EAC at a tertiary 
care center in Brazil (Hospital de Clínicas de Porto Alegre). Cases (n = 113) were classified as NDBE (n = 
72), DBE (n = 11), and EAC (n = 30) (33). The study was approved by the Brazilian National Committee 
on Research Ethics (registration no. CAAE-81068617.2.0000.5327).

For collecting esophageal biopsy specimens for IHC, we enrolled patients undergoing endoscopies as a 
part of  their routine care and follow-up at UCSD’s Center for Esophageal Diseases. Patients were recruited 
and consented using a study proposal (project identification no. 200047) approved by the UCSD Human 
Research Protection Program IRB (project identification no. 200047).

Human keratinocyte-derived BE-like organoids were created, characterized (by morphology and 
molecular level) (6) and validated computationally (5) previously using an approved IRB (project identifica-
tion no. 190105) that covers human subject research at the UCSD HUMANOID Center of  Research Excel-
lence. For all the deidentified human participants, information including age, sex, and previous history of  
the disease was collected from the participants’ charts following the rules of  Health Insurance Portability 
and Accountability Act of  1996. The study design and the use of  human study participants was conducted 
in accordance with the criteria set by the Declaration of  Helsinki.
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