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Abstract 

 Beyond linear sequence, higher order structure of the genome influences gene regulation 

and has been implicated in disease. Chromatin structure is the degree of chromatin compaction at 

genomic loci. Chromatin organization is the spatial, three-dimensional (3D) positioning of 

chromatin. Here, we adapt and apply methods for next-generation sequencing analyses of 

chromatin structure and organization based on chromatin immunoprecipitation-sequencing 

(ChIP-seq) and genome-wide chromosome conformation capture (Hi-C), respectively. First, we 

built on a previous study that sought to classify nucleosomes containing either H2A.Z or 

H2A/H4 arginine 3 symmetric dimethylation (H2A/H4R3me2s) from human ChIP-seq data. We 

hypothesized that appropriate data preprocessing – deduplication, normalization for sequencing 

depth, and position-finding – in conjunction with advanced algorithms for feature selection 

(Discriminatory Motif Feature Selection) and classification (Random Forest) would improve 

performance. We achieved dramatically improved classification accuracy and identified a 

significant and biologically meaningful DNA motif associated with H2A/H4R3me2s: 

“TCCATT”, which is part of the consensus sequence of satellite II and III DNA. Second, we 

tested our hypothesis that there are advantages to assessing the 3D co-localization of functional 

annotations (e.g., centromeres) using 3D genome reconstructions from Hi-C contact data because 

they enable detection of multi-level interactions (assessments using contact data are inherently 

limited to detecting strictly pairwise interactions). We found significant 3D co-localization of 

sets of genes with developmentally regulated expression in Plasmodium falciparum with 3D 

reconstruction-based assessment but not with contact-based assessment. Further, we developed a 

method for 3D reconstruction-based assessment that avoids the data dichotomization of previous 

approaches. Third, we tested our hypothesis that analyzing ChIP-seq data in combination with 
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3D reconstructions could identify functional 3D hotspots. We separately overlaid a 

Saccharomyces cerevisiae 3D genome reconstruction with three ChIP-seq inputs and contrasted 

two algorithms for identifying regions in 3-space — 3D hotspots – for which mean ChIP-seq 

peak height is significantly elevated: k-Nearest Neighbor (k-NN) regression and the Patient Rule 

Induction Method (PRIM). For each ChIP-seq input, both algorithms identified significant, 

corresponding and biologically meaningful 3D hotspots containing distal genomic regions. Our 

research demonstrates that applying appropriate data preprocessing and advanced supervised 

learning algorithms improves the interpretability of next-generation sequencing studies of 

chromatin structure and organization. 
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Chapter 1: Background 
 
 Great progress has been made in developing and applying next-generation DNA 

sequencing technologies (reviewed in1). This technological revolution has fostered the high-

throughput identification of transcribed regions (with RNA-sequencing2), non-coding regulatory 

regions (e.g., The Encyclopedia of DNA Elements (ENCODE) Project3,4), and population 

variation (e.g., The 1000 Genomes Project5,6). Alongside these technological and experimental 

advances, bioinformatics methodologies for predicting and interpreting functional DNA 

sequences have become increasingly refined. Sequence-based prediction methodologies have 

been advanced for identifying promoters7, exons8,9, splice sites10, transcription factor binding 

sites11,12, developmental enhancers13, and microRNAs14. 

 Considerably less progress has been made in understanding higher order structure of the 

genome, which also influences genome function and regulation. DNA in the nucleus does not 

exist as a naked linear string, but rather is compacted as chromatin — the basic unit of which is 

the nucleosome: ~147 base pairs of DNA wrapped around an octamer of histone proteins. 

Chemical modifications to DNA and histone tails (referred to collectively as the epigenome) 

influence chromatin structure: the degree of chromatin compaction at each genomic locus and, 

thus, accessibility to regulatory binding proteins15. Chromatin organization (also called nuclear 

architecture) is the three-dimensional (3D) spatial positioning of chromatin in the nucleus, which 

influences, for example, transcriptional activity16. In this dissertation, we adapt and apply 

analytic methods to improve the downstream biological interpretability of next-generation 

sequencing-based studies of chromatin structure and organization.  

 The compacted, generally transcriptionally repressed form of chromatin is called 

heterochromatin, while the open, transcriptionally accessible form of chromatin is called 
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euchromatin. It has been found that DNA methylation and certain histone modifications (e.g., 

histone H3 lysine 9 trimethylation (H3K9me3)) are associated with heterochromatin, while other 

histone modifications (e.g., histone H3 lysine 4 trimethylation (H3K4me3)) are associated with 

euchromatin17,18. Further, in some cases, the molecular mechanism whereby a histone 

modification affects chromatin accessibility has been elucidated, for example: H3K9me3 

provides a bind site for the scaffold protein HP1, which cross-links nucleosomes17,18. So far, 

modifications have been identified on over 60 histone residues19. That there are so many 

different histone modifications with differing genomic localization patterns and in some cases 

different downstream binding proteins has given rise to the “histone code” hypothesis that 

individual histone modifications may have specialized functions, such as “indexing” classes of 

genomic elements20. 

 Chromatin structure can influence gene expression independently of DNA sequence. 

Some of the earliest evidence of this was the phenomenon termed position-effect variegation 

(reviewed in21), which was first characterized in Drosophila and later studied in mouse 

(reviewed in22). Specifically, when a transcriptionally active gene that is normally located in 

euchromatin becomes relocated adjacent to a heterochromatic region by experimentally induced 

chromosomal rearrangement, the resulting tissue often has a mosaic phenotype: the gene 

becomes silenced stochastically in some of the cells (where heterochromatin has “spread” 21 over 

the gene) yet remains expressed in other cells (where heterochromatin has not spread over the 

gene). This phenomenon has also revealed the importance of establishing and maintaining 

chromatin boundaries with insulators (reviewed in23). 

 In addition, chromatin structure is one of the molecular mechanisms whereby the 

environment can influence phenotypes (reviewed in24), as many signal transduction pathways 
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have downstream effects on the epigenome (reviewed in25). Thus, even monozygotic human 

twins have differences in chromatin structure later in life26. These chromatin structure 

differences and de novo somatic mutations can result in some differing phenotypes in adult 

monozygotic twins. Recent genome-wide DNA methylation analyses of cohorts of such 

monozygotic twin that are discordant for disease have identified differential DNA methylation 

of, for example: a serotonin transporter gene (SLC6A4) in bipolar disorder27; a complement 

factor gene (CFI) in ulcerative colitis28; a hippocampal gene (ZBTB20) in major depressive 

disorder29; and an insulin pathway gene (MALT1) in type II diabetes30.  

 Beyond these findings from twin studies, there are many other examples of aberrant DNA 

methylation and histone modification patterns being associated with human disease and of 

mutations in the genes that regulate chromatin structure being associated with human disease 

(reviewed in31). Chromatin structure differences are also associated with inter-individual 

variation in drug response (termed pharmacoepigenomics; reviewed in32). For example, promoter 

hypermethylation of certain DNA repair genes (and attendant lower gene expression) in human 

tumors is associated with greater sensitivity to some chemotherapies (which function by inducing 

apoptosis via DNA damage). Moreover, a study found that promoter hypermethylation of the 

DNA-repair gene MGMT in the tumors of glioma patients was significantly associated with a 

clinical response (decrease in tumor size) to treatment with the alkylating agent carmustine33. 

Another study found that hypermethylation of the promoter of the helicase gene WRN in the 

tumors of colorectal cancer patients was associated with significantly higher median survival 

time to treatment with the topoisomerase inhibitor irinotecan34. 

 Similarly, chromatin 3D organization is important for genomic regulation, can affect 

transcription independently of DNA sequence, and has been implicated in human disease. 
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Microscopic analyses using chromatin stains or FISH probes have revealed that chromatin is not 

homogenously distributed in interphase nuclei, but rather is highly organized with some distinct 

hallmarks; for example, in S. cerevisiae: telomeres and heterochromatin tend to localize near the 

nuclear periphery, centromeres tend to cluster near the spindle pole body, and the chromosome 

12 ribosomal DNA (rDNA) repeat region tends to localize near the nucleolus35,36. Some of the 

molecular mechanisms contributing to this organization have been elucidated, for example: 

microtubule attachments from the centromere kinetochores to the spindle pole body, and the 

binding of telomeric proteins with nuclear membrane proteins (e.g., of Sir4 with Esc1)35.  

 Studies have also provided evidence that chromatin organization can affect gene 

expression independently of DNA sequence. For example, physically tethering a reporter gene to 

the nuclear membrane in S. cerevisiae (via a recombinant protein with an integral membrane 

domain and DNA binding domain) resulted in transcriptional repression of the reporter gene37. 

Chromatin organization has also been implicated in human disease. For example, lamins are 

nuclear membrane proteins in humans that normally bind heterochromatin, contributing to its 

localization near the nuclear periphery; a mutation in Lamin A causes human progeria (an 

accelerated aging disease), resulting from loss of constitutive heterochromatin and aberrant 

transcription of repeat regions38. Chromatin organization also likely influences the location of 

DNA breakpoints and gene fusions39, including those that drive certain cancers40. 

 The development of two next-generation sequencing-based protocols has enabled 

chromatin structure and organization to be inferred at high resolution: chromatin 

immunoprecipitation sequencing (ChIP-seq)41 and genome-wide chromosome conformation 

capture (Hi-C42,43), respectively. ChIP-seq is performed as follows. Cells are treated with 

formaldehyde to cross-link DNA with the proteins that are bound to it. The DNA (along with the 
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cross-linked proteins) is then fragmented with microccocal nuclease (MNase) digestion (or in 

some cases sonication). An antibody that specifically recognizes a histone modification (or 

chromosome associated protein) of interest is then used to immunoprecipitate (IP) the chromatin. 

The DNA and proteins are then reverse cross-linked and the DNA is analyzed with next-

generation sequencing. This process enriches the experimental sample for reads coming from 

DNA fragments associated with the histone modification of interest; however, much of the 

sample is still background reads44. If a control (“mock IP”) sample is prepared – by using a non-

specific antibody during the IP step and performing the same protocol — the experimental 

sample can be normalized to the control sample. 

 Hi-C is performed as follows. Genomic interactions are captured by cross-linking protein 

to DNA with formaldehyde (the logic being that if two regions of the genome are physically 

interacting, then that interaction is mediated by a protein). The DNA is then cut with a restriction 

enzyme, and re-ligated under dilute conditions to promote intramolecular ligations so that the 

two interacting pieces of DNA are now juxtaposed in a single circular fragment. The protein is 

then reverse cross-linked from the DNA and an adaptor is added to the circular DNA fragment, 

which is then paired-end sequenced. Unlike most paired-end sequencing experiments, in this 

case, we expect for each mate pair to map to a different part of the genome (corresponding to 

each of the two genomic regions that were physically interacting). The resulting contact data 

from Hi-C analysis list two genomic positions – each corresponding to a restriction enzyme site 

(or bin if the data are binned) – and the number of times they were paired-end sequenced 

together. The higher this interaction frequency, the smaller the physical distance should be 

between the two genomic sites. Using differing means for quantifying this relationship a variety 

of approaches for generating 3D genome reconstructions from the contact data have been 
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advanced. These include constrained optimization of a multi-dimensional scaling criterion43,45, 

where the constraints derive from prior biological and biophysical knowledge, e.g., chromatin 

contiguity and avoidance of steric clashes.  

 In this dissertation, we adapt and apply analytic methods to improve the downstream 

biological interpretability of next-generation sequencing studies of chromatin structure (based on 

ChIP-seq data) and organization (based on 3D genome reconstructions from Hi-C data).  In 

Chapter 2, we build on a previous analysis that applied classification algorithms to attempt to 

discriminate between histone modifications from a ChIP-seq dataset for 20 histone methylations 

and the histone variant H2A.Z46 and a ChIP-seq dataset for 18 histone acetylations47 using as 

features DNA sequence motifs in the nucleosomal DNA and co-occurrence with other histone 

modifications. Such a computational undertaking is exciting because it could reveal aspects of 

the histone code hypothesis, which has been difficult to probe experimentally because of genetic 

redundancy and enzyme promiscuity48. Specifically, Gervais and Gaudreau49 attempted to 

discriminate between nucleosomes containing the histone modification H2A/H4R3me2s 

(symmetric Arginine 3 dimethylation of histones H2A and/or H4; the antibody recognizes both) 

or the histone variant H2A.Z. H2A.Z and H2AR3me2s should be mutually exclusive because 

H2A.Z has a truncation relative to H2A, such that the R3 site is not present. However, the 

authors only attained modest classification accuracy and with limited downstream biological 

interpretation49.  

 We identified two potential analytic issues that could have contributed to the modest 

performance: inadequate preprocessing of the ChIP-seq data (they used raw reads), and the use 

of less sophisticated algorithms than are available, both for feature selection (they used 

enumerative feature generation, e.g. all k-mers, which restricts k to being relatively small for 
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computational reasons) and for classification (they used a C4.5 decision tree, which does not 

have the performance benefits of an ensemble classifier). Accordingly, we hypothesized that 

appropriate ChIP-seq data pre-processing in conjunction with more advanced feature selection 

and classification algorithms could improve performance both in terms of classification accuracy 

and interpretative yield.  

 For ChIP-seq data preprocessing we: deduplicated reads to eliminate PCR amplification 

bias50,51, normalized for unique read number via down-sampling to control for bias from variable 

sequencing depth51, and identified stable nucleosomes with significant enrichment over the 

background using NPS44. Though the Barski dataset46 is a very rich resource of histone 

modification ChIP-seq data from a human primary cell line, it does not have a mock IP control 

sample. However, the fact that we are performing comparative analyses across experimental 

samples somewhat circumvents the problem of a lack of mock IP control sample (i.e., any 

systematic biases should be the same in both experimental samples and thus will not contribute 

to a discriminative signal between the samples). For feature selection, we used Discriminatory 

Motif Feature Selection (DMFS)52, which generates a small set of motifs that discriminate 

between the two classes a priori using a partition of the data (such that a different data subset is 

used for motif discovery than for classification, with the latter subset further partitioned into a 

training set and validation set). In contrast to enumerative feature generation, DMFS avoids the 

generation of extensive noise features– which can degrade classifier performance53 – and allows 

longer, potentially more informative motifs to be evaluated. For classification, we used Random 

Forests54, which has performance gains as result of averaging over ensembles of classification 

trees. An additional advantage of Random Forests is that it still emphasizes interpretation by 

allowing features to be ranked by importance. This is possible because each tree is constructed 
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from a bootstrap sample of the data, and thus the data points that were not sampled at each tree 

(so-called “out-of-bag” (OOB) data points) can then be used to evaluate feature importance. 

 In Chapter 3, we sought to improve the interpretability of methods for assessing the 3D 

co-localization of functional annotations (e.g., centromeres and long terminal repeats) from 3D 

genome reconstructions. These analyses make use of Saccharomyces cerevisiae and the malaria 

parasite Plasmodium falciparum because these organisms are haploid and because their 

relatively smaller genomes (compared to human) enable higher resolution Hi-C data and the 

generation of 3D genome reconstructions (a mammalian 3D genome reconstruction has not yet 

been generated for computational reasons). Previously, Witten and Noble55 assessed functional 

annotation 3D co-localization in S. cerevisiae from the contact data (but not from the 3D genome 

reconstruction), while Ay et al.45 performed such assessments in P. falciparum from the 3D 

genome reconstruction (but not from the contact data).  

 The first novel contribution we made was to make a side-by-side comparison of contact-

based and 3D reconstruction-based assessment of functional annotation 3D localization in each 

organism because we hypothesized that there are advantages to analyzing the 3D reconstructions: 

(i) while the contact data is inherently limited to detecting strictly pairwise interactions, the 3D 

reconstructions enable detection of multi-level interactions; (ii) the 3D location of sites for which 

there is missing contact data is readily determined from neighboring points in the reconstruction 

because of chromatin contiguity; and (iii) biological and biophysical constraints about genome 

organization are imposed (e.g. avoidance of steric clashes). Thus, emergent properties of the 3D 

reconstructions may reveal significant co-localization of some functional annotations that were 

not co-localized in the (pairwise) contact data.  
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 Another potential drawback of both previous analyses is that they dichotomized data 

point pairs as “close” or “far” based on some threshold (e.g., 10%, 20%, or 40% of the nuclear 

diameter in 3D reconstruction-based assessment) and then tested for enrichment of “close” pairs 

for each functional annotation. In some cases, this led to significance that varied by 

dichotomization threshold, and it is not obvious what constitutes a biologically meaningful 

threshold choice. We hypothesized that reconstruction-based assessment of functional annotation 

3D co-localization using a summary statistic (the Median of Pairwise Euclidean Distances 

(MPED)) could replicate some of the key biological findings without producing threshold-

sensitive results. We chose to use the median (because of its robustness and resistance 

properties) of all pairwise distances (because this does not require tuning as, for example, would 

be necessary with k nearest neighbor distances). 

 In Chapter 4, we hypothesized that analyzing ChIP-seq data in combination with 3D 

genome reconstructions from Hi-C data could enable the detection of functional nuclear 

hotspots. First, we separately superposed three ChIP-seq inputs (normalized to a mock IP 

control) onto a 3D genome reconstruction. Then we adapted, applied, and contrasted two 

algorithms for identifying regions in 3-space – “3D hotspots” – for which the mean ChIP-seq 

peak height is significantly elevated: k-Nearest Neighbor (k-NN) regression56 and the Patient 

Rule Induction Method (PRIM)57,58. While a couple of previous studies superposed functional 

genomic data onto 3D genome reconstructions, they did so solely for visualization59 or to assess 

global concordance of the functional genomic data with the 3D genome reconstruction45. An 

advantage of our novel focal analyses is that assessment of the gene membership of so elicited 

3D hotspots can then reveal valuable downstream biological information. The ChIP-seq inputs 

were: Swi6, a transcription factor; RNA polymerase II phosphorylated at Serine 5 (Pol2Ser5p), 
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the active transcriptional machinery; and Tup1, a repressor. An advantage of k-NN regression is 

that it is invariant to rotations of the 3D reconstruction (which is coordinate-free). On the other 

hand, PRIM is arguably more robust to parameter tuning and, though it is not invariant under 

rotations of the 3D reconstruction, its rotational dependence can be assessed by analyzing 

(disparate) rotated 3D reconstructions. 
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Chapter 2: Preprocessing ChIP-seq data and applying advanced feature selection and 
classification algorithms to discriminate between histone modifications   

 

2.1 Citation 

Capurso D, Xiong H, Segal MR (2012). A histone arginine methylation localizes to nucleosomes 

 in satellite II and III DNA sequences in the human genome. BMC Genomics, 13:630. 

 

2.2 Abstract 

Background  

 Applying supervised learning / classification techniques to epigenomic data may reveal 

properties that differentiate histone modifications. Previous analyses sought to classify 

nucleosomes containing histone H2A/H4 arginine 3 symmetric dimethylation (H2A/H4R3me2s) 

or H2A.Z using human CD4+ T-cell chromatin immunoprecipitation sequencing (ChIP-seq) data. 

However, these efforts only achieved modest accuracy with limited biological interpretation. 

Here, we investigate the impact of using appropriate data pre-processing —deduplication, 

normalization, and position- (peak-) finding to identify stable nucleosome positions — in 

conjunction with advanced classification algorithms, notably discriminatory motif feature 

selection and random forests.  Performance assessments are based on accuracy and interpretative 

yield. 

 

Results  

 We achieved dramatically improved accuracy using histone modification features 

(99.0%; previous attempts, 68.3%) and DNA sequence features (94.1%; previous attempts, 

<60%).  Furthermore, the algorithms elicited interpretable features that withstand permutation 
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testing, including: the histone modifications H4K20me3 and H3K9me3, which are components 

of heterochromatin; and the motif TCCATT, which is part of the consensus sequence of satellite 

II and III DNA. Downstream analysis demonstrates that satellite II and III DNA in the human 

genome is occupied by stable nucleosomes containing H2A/H4R3me2s, H4K20me3, and/or 

H3K9me3, but not 18 other histone methylations. These results are consistent with the recent 

biochemical finding that H4R3me2s provides a binding site for the DNA methyltransferase 

(Dnmt3a) that methylates satellite II and III DNA. 

 

Conclusions  

 Classification algorithms applied to appropriately pre-processed ChIP-seq data can 

accurately discriminate between histone modifications. Algorithms that facilitate interpretation, 

such as discriminatory motif feature selection, have the added potential to impart information 

about underlying biological mechanism. 

 

2.3 Background 

 Chromatin compaction is one of the critical factors regulating gene expression. The basic 

unit of chromatin, the nucleosome, consists of 147 base pairs (bp) of DNA wrapped around an 

octamer of histone proteins (H2A, H2B, H3, H4). Many histone post-translational modifications 

contribute to establishing compacted, transcriptionally repressed heterochromatin (e.g., histone 

H3 lysine 9 trimethylation (H3K9me3)) or open, transcriptionally poised euchromatin (e.g., 

H3K4me3)15,17. However, it is currently unknown why so many modifications — on at least 60 

histone residues19 — are necessary18,19. One possibility is that individual modifications have 

specialized properties, such as “indexing” classes of genomic elements60. Nevertheless, such 
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discriminating properties remain largely unknown, as redundancy and enzyme promiscuity for 

non-histone targets have limited the amenability of histone modifications to genetic 

experimentation48.  

 A potential solution to this problem is to apply supervised learning / classification 

techniques to high-throughput epigenomic data, such as chromatin immunoprecipitation 

sequencing (ChIP-seq) data, for histone modifications. Encouragingly, these approaches have 

had success in the related task of predicting the nucleosome occupancy of DNA sequences: they 

have elicited predictive features with biological (e.g., Rap1 transcription factor binding sites61,62) 

and biophysical (e.g., GC content, DNA propeller twist61,63,64) interpretations. Nevertheless, 

attempts to apply classification techniques to histone modifications have been less forthcoming. 

This is, in part, because such analyses require richer, thus less readily available, datasets, which 

correspond to many ChIP-seq experiments in the same cell type. As notable exceptions, Barski et 

al.46 have generated a ChIP-seq dataset for 20 histone methylations and the histone variant 

H2A.Z in human CD4+ T cells, and Wang et al.47, of the same research group, have generated a 

similar dataset for 18 histone acetylations. A recent study by Gervais and Gaudreau49 applied 

classification techniques to histone modifications using these datasets. 

 In particular, Gervais and Gaudreau49 attempted to predict whether a nucleosome 

contains histone H2A.Z or H2A/H4 arginine 3 symmetric dimethylation (H2A/H4R3me2s; the 

authors refer to this as just “H2A”, though it is a methylated form65).  Importantly, these two 

classes are likely mutually exclusive:  H2A.Z lacks the R3 methylation site and localizes near 

active transcription start sites15, while H2A/H4R3me2s localizes with repressed 

heterochromatin19. The authors49 first performed classification with histone modification features 

(co-localization with 37 other modifications from ChIP-seq) and, then, with DNA sequence 
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features (frequency of 6-mers in 147bp nucleosome-bound DNA sequences). However, these 

analyses only achieved modest prediction accuracies of 68.3% and <60%, respectively (here, a 

trivial classifier would have an accuracy of 50%)49. Furthermore, there was limited biological 

interpretation for histone modification features and no interpretation for DNA sequence 

features49. 

 A partial explanation for this modest performance may be insufficient data pre-

processing. First of all, Gervais and Gaudreau49 used raw, aligned (25 base pair) ChIP-seq reads, 

and simply extended these to 147 base pairs to generate what they consider to be nucleosome-

bound DNA sequences. However, this approach is problematic. Because ChIP-seq is only a 

slight enrichment (not a purification) for sequences bound to the protein of interest50, it is 

notoriously noisy. The majority (estimates upward of 90% 66) of ChIP-seq reads are instead from 

the background. Therefore, we, and others44,50,51, advocate using position- (peak-) finding 

algorithms, such as Nucleosome Positioning from Sequencing (NPS)44 (see Methods), that 

identify stable nucleosome positions, with statistically significant enrichment over  background, 

prior to analysis. Here, stable nucleosomes can be defined as those that are located at roughly the 

same chromosomal position across a population of cells and can therefore generate a signal peak 

when ChIP-seq reads are aligned. Such nucleosomes are also referred to as being relatively well 

positioned or phased, and there is evidence for their regulatory importance15,66. While using 

stable nucleosome positions might limit the analysis to a subset of nucleosomes (and thus 

influence interpretation), we still believe this approach is preferable to using raw, aligned reads 

— of which only a small minority were likely even bound to the nucleosomes of interest. This 

approach of using stable nucleosomes was also utilized in a recent study67. 
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 Aside from this issue of the handling of signal and background, the approach used in 

Gervais and Gaudreau49 might not adequately control for systematic biases present in ChIP-seq 

data. Because of PCR amplification bias in ChIP-seq data, it may be advisable to collapse 

duplicate reads prior to analysis50,51, especially in datasets such as Barski et al.46 and Wang et 

al.47 where sequencing depth is relatively low, such that there is a lower likelihood of sequencing 

independently-precipitated fragments with the same start site. Even in the case of stable 

nucleosomes, the positioning is often blurry, with nucleosomes not having precisely the same 

start site across cells68. However, it is important to note that as future datasets begin to have 

much higher sequencing depth as a result of decreasing sequencing costs, more refined 

techniques are needed to control PCR bias than simply collapsing duplicate reads.  In addition to 

PCR bias, coverage and the ability to detect peaks vary with sequencing depth, so ChIP-seq 

experiments need to be normalized for the number of reads prior to analysis51. Refined 

normalization approaches are emerging69 for ChIP-seq datasets that contain a mock 

immunoprecipitation (IP) sample; however, for otherwise rich ChIP-seq datasets that lack such a 

mock IP, including 46 and 47,  we believe data should still be normalized for the number of reads, 

in the absence of a more delicate normalization method for this type of data (see Discussion). 

 Here, we employ appropriate ChIP-seq data pre-processing and sequence-customized, or 

otherwise advanced, algorithms to investigate their impact on the accuracy and interpretability of 

classifying nucleosomes containing H2A/H4R3me2s or H2A.Z. For data pre-processing, we 

perform deduplication, normalization, and position-finding. Further, for DNA sequence-based 

classification, we utilize the recently developed Discriminatory Motif Feature Selection 

(DMFS)52, which, in addition to achieving impressive accuracy, emphasizes interpretability, 

unlike so-called “black-box” classifiers. Specifically, DMFS elicits a small set of a priori 
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discriminatory features (motifs) on a subsequently withheld data partition. This eliminates many 

noise features, which can comprise prediction and interpretation53, and loosens restrictive feature 

length prescriptions (e.g., 6-mers in49), which could otherwise fail to generate key, longer 

features. For classification based on histone modification features, we utilize an ensemble 

method, random forests54, which have been widely demonstrated to improve on individual 

classification trees54,58, as were deployed by Gervais and Gaudreau49. Finally, we perform 

extensive downstream analysis. Importantly, in addition to achieving dramatically improved 

accuracies, our classification algorithms elicit predictive, interpretable features that are consistent 

with recent biochemical findings70.   

  

2.4 Results 

 We pre-processed the Barski et al.46 ChIP-seq datasets for 20 histone methylations and 

the histone variant H2A.Z to reduce bias. The percentage of duplicate reads in each experiment 

ranged from 2.1% to 25.1% (median = 5.6%), suggesting the potential for substantial PCR bias 

in some of the samples. We therefore collapsed duplicate reads into single reads. Additionally, 

the number of unique reads in the experiments varied by more than 3-fold, indicating the 

potential for considerable sequencing depth variation (and thus coverage bias) across the raw 

samples. We therefore normalized experiments for sequencing depth by down-sampling to the 

lowest number of unique reads observed (see Methods). 

 Using this filtered data, we identified stable nucleosome positions as signal peaks with 

statistically significant enrichment over the background by applying NPS44 (see Methods). This 

yielded 1845 and 46235 stable nucleosomes containing H2A/H4R3me2s and H2A.Z, 

respectively (Table 2.1). Next, we down-sampled H2A.Z nucleosomes to match the number of 
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H2A/H4R3me2s nucleosomes for two reasons. First, this creates a balanced dataset (i.e., where a 

trivial classifier has an accuracy of 50%) for subsequent classification and yields accuracies 

directly comparable to those of 49 (who performed analogous down-sampling). Indeed, using 

“class-imbalanced” data can result in classifier that is biased toward the larger class, as is 

discussed and investigated in 71; the authors also demonstrate that, in the case of high-

dimensional data, down-sampling the larger class is preferable to over-sampling the smaller 

class. Second, down-sampling emphasizes features associated with H2A/H4R3me2s, which is 

relatively under-studied compared to H2A.Z. An added benefit of this approach is its reduction 

of the computational burden. All reported performance results are the mean of (cross-validated or 

out-of-bag) performance summaries over 10 different random down-samplings of H2A.Z 

nucleosomes — this, to ensure our balanced approach did not bias the results.  
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Histone 
Modification 

Number of Sequence Reads 
 

Number of 
Stable 

Nucleosomes 
 Sequencing 

Barski et al., 
2007 

Alignment 
Barski et al., 

2007 

Deduplication 
Present study 

Normalization 
Present study 

Position-
finding 

Present study 
H2A/H4R3me2s 25,128,493 7,357,597 7,140,521 4,330,278 1,854 

H2A.Z 14,641,244 7,536,100 6,726,630 4,330,278 46,235 
H2BK5me1 21,230,477 8,942,880 7,938,208 4,330,278 42,165 
H3K4me1 37,461,698 11,322,526 9,921,429 4,330,278 74,544 
H3K4me2 13,088,174 5,447,902 5,234,477 4,330,278 56,403 
H3K4me3 39,872,596 16,845,478 13,344,169 4,330,278 64,453 
H3K9me1 16,446,697 9,311,627 8,824,220 4,330,278 32,385 
H3K9me2 19,712,420 9,782,127 9,411,727 4,330,278 282 
H3K9me3 12,284,114 6,348,997 5,941,216 4,330,278 4,923 
H3K27me1 20,481,466 10,047,279 9,705,780 4,330,278 2,132 
H3K27me2 20,998,788 9,070,882 8,862,687 4,330,278 458 
H3K27me3 28,475,252 8,970,141 8,632,665 4,330,278 689 
H3K36me1 12,898,612 8,077,127 7,907,199 4,330,278 410 
H3K36me3 30,015,905 13,572,575 12,362,519 4,330,278 14,495 
H3K79me1 19,253,958 5,137,886 4,979,854 4,330,278 32,936 
H3K79me2 4,341,935 4,712,875 4,448,350 4,330,278 84,571 
H3K79me3 21,024,126 5,929,782 4,440,702 4,330,278 72,059 
H3R2me1 16,465,425 9,560,224 9,195,984 4,330,278 602 
H3R2me2a 14,743,869 6,521,560 5,953,869 4,330,278 571 
H4K20me1 20,396,442 11,015,873 9,640,668 4,330,278 70,084 
H4K20me3 18,380,292 5,720,089 4,330,278 4,330,278 17,962 

 

Table 2.1: Number of sequence reads (or stable nucleosomes) for histone methylations and 

H2A.Z at each data pre-processing step.  

In the columns labeled “Sequencing” through “Normalization”, cells indicate the number of 25-

base pair sequence reads (from Barski et al.46) that are retained at each data pre-processing step. 

In the final column, cells indicate the number of signal peaks that correspond to stable 

nucleosomes, identified using NPS.  

 

 



! 19 

Classification using additional histone modification features 

 The presence of one type of histone modification in a nucleosome can increase or 

decrease the likelihood of a second type17. Therefore, to identify such potential interactions, we 

attempted to discriminate between stable nucleosomes containing H2A/H4R3me2s or H2A.Z by 

using the co-localization with 19 remaining histone methylations and 18 histone acetylations 

(Table 2.2) as features for classification. For each stable nucleosome, we generated an array of 

length 37 (for 37 feature modifications), where each entry is the number of deduplicated 

sequence reads for a feature modification that map within the nucleosome boundaries in a strand-

specific manner (see Methods). The motivation for using deduplicated sequence read counts for 

scoring overlap with feature modifications is that it results in a richer (i.e., less sparse) feature 

matrix than scoring binary overlap with stable nucleosomes for the feature modifications. We 

still use stable nucleosomes, however, for the outcome modifications (H2A/H4R3me2s, H2A.Z) 

and in downstream analyses.   
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Histone 
Modification 

Number of Sequence Reads 

 Sequencing 
Wang et al., 

2008 

Alignment 
Wang et al., 

2008 

Deduplication 
Present study 

H2AK5ac 9,260,603 3,442,542 3,400,544 
H2AK9ac 4,228,439 2,070,246 1,882,070 
H2BK5ac 7,635,650 3,330,268 3,066,338 
H2BK12ac 9,438,261 3,615,226 3,515,350 
H2BK20ac 7,868,594 4,083,727 3,929,081 
H2BK120ac 7,693,057 3,444,551 3,280,474 

H3K4ac 7,255,253 3,546,672 3,438,276 
H3K9ac 9,357,424 3,950,661 3,726,987 
H3K14ac 8,987,513 3,799,058 3,755,104 
H3K18ac 9,227,062 4,249,604 4,046,345 
H3K23ac 7,313,742 2,527,421 2,510,612 
H3K27ac 8,529,409 3,433,165 3,198,818 
H3K36ac 8,934,172 4,374,235 4,196,023 
H4K5ac 8,829,494 4,118,574 4,020,280 
H4K8ac 8,350,731 4,278,905 4,176,246 
H4K12ac 6,641,441 3,677,187 3,602,609 
H4K16ac 19,471,237 7,059,753 6,921,635 
H4K91ac 5,087,302 3,191,156 3,016,564 

 

Table 2.2: Number of sequence reads for histone acetylations at each preprocessing step.  

Cells indicate the number of 25-base pair sequence reads (from Wang et al.47) that are retained at 

each data pre-processing step.  

 

 

 We attained highly accurate random forest (see Methods) prediction performance using 

histone modification features, with an accuracy of 99.0% ± 0.1% and an area under the Receiver 

Operating Characteristic curve (auROC) of 0.999 ± 0.0002 (Figure 2.1a). This is a substantial 

improvement over the corresponding accuracy of 68.3% that Gervais and Gaudreau49 report. To 

determine which features were “driving” the classification, we evaluated random forest feature 
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importance by mean decrease in Gini index (MDG; Figure 2.1b; see Methods). Several features 

ranked prominently and withstood estimation of statistical significance by permutation testing 

(see Methods): H4K20me3, H3K9me3, H3R2me2a, H3K36me3, H3K18ac, H3K9me2, and 

H3K27ac had a permutation p < 1e-05 (Bonferroni-adjusted p < 3.7e-04; Figure 2.1b). The 

remaining histone modification features were not significant.  

 To further explore how these features relate to H2A/H4R3me2s, we built a single 

classification tree (Figure 2.1c)72, which, compared to the random forest ensemble of trees, may 

more readily reveal interpretable rules, albeit at the cost of decreased classification accuracy. 

Consistent with the random forest feature importance ranking, the feature that best separated the 

data in the single tree is H4K20me3 (Figure 2.1c). Indeed, 1737 out of 1854 stable nucleosomes 

containing H2A/H4R3me2s were classified at the first split, based on overlapping with greater 

than two deduplicated, H4K20me3 sequence reads (with a misclassification rate of only 1.67%). 

Three of the four remaining splits were also based on features that had significant random forest 

feature importance (H3K18ac, H3K27ac, and H3R2me2a; H2BK5me1 did not have a significant 

random forest feature importance, yet was the basis for the second split). H3K9me3, which had 

the second highest random forest feature importance, was not the basis for a split in the single 

tree; however, this may occur if, for example, the stable H2A/H4R3me2s nucleosomes that 

overlap with H3K9me3 are a subset of those that overlap with H4K20me3 (and so they are 

already classified at the first split). 

 Encouragingly, the top two modifications by random forest feature importance, 

H4K20me3 and H3K9me3, are more frequent in stable nucleosomes containing H2A/H4R3me2s 

than those containing H2A.Z (Figure 2.1b). Because H4K20me3 and H3K9me3 have been 
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shown to contribute to the formation of heterochromatin15,17 – which is where H2A/H4R3me2s 

localizes — this initial finding supports the biological relevance of our classifier.   

 

 

Figure 2.1: Classifying stable nucleosomes containing H2A/H4R3me2s or H2A.Z using 

histone modification features 

(a) Receiver Operating Characteristic (ROC) curve, demonstrating classifier performance. (b) 

Random forest feature importance by mean decrease in Gini index. Features have a higher 

frequency in H2A/H4R3me2s nucleosomes (red) or H2A.Z nucleosomes (blue). The dashed, 

vertical line shows the estimated (permutation-based) significance threshold after multiple 

testing correction. (c) A classification tree with splits (no borders) and leaves (borders), below 

which is the number of nucleosomes classified correctly and, in parentheses, incorrectly at that 

stage. Leaves show the predicted class labels of nucleosomes partitioned there.  Splits show the 

condition that best separates the data. Branch labels indicate the directions in which the split 

condition is true (“yes”) and false (“no”).  
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Classification using DNA sequence features 

 DNA sequence likely influences the genome-wide distribution of histone modifications, 

as sequence-specific transcription factors and microRNAs can bind and recruit histone-

modifying enzymes73. Thus, we used DNA sequence motifs as features for classifying 

H2A/H4R3me2s and H2A.Z nucleosomes for two reasons: first, to identify such potential 

targeting sequences, and second, to identify classes of genomic elements that the histone 

modification potentially regulates. Using DMFS52, we identified <300 a priori discriminatory 

motifs with lengths between 5 and 10 bp from a subsequently withheld partition of the data (see 

Methods). 

 As above, we attained highly accurate random forest prediction performance using DNA 

sequence features (discriminatory motifs), with an accuracy of 94.1% ± 0.3% (auROC = 0.968 ± 

0.001; Figure 2.2a). This is a dramatic improvement over the corresponding accuracy of <60% 

that Gervais and Gaudreau49 report. We next evaluated random forest feature importance by 

MDG (see Methods). The top 20 features (Figure 2.2b), all of which occur more frequently in 

DNA corresponding to stable H2A/H4R3me2s nucleosome positions, withstand estimation of 

statistical significance by permutation testing, with permutation p < 1e-05 (Bonferroni-adjusted p 

< 2.7e-03). Interestingly, 12 of these 20 sequence features contain the motif TCCATT (Figure 

2.2b). We therefore analyzed the frequency distribution of the number of occurrences of this 

motif in the DNA sequences corresponding to stable nucleosome positions (Figure 2.2c, Table 

2.3). Indeed, while the motif TCCATT is present in only ~7% of stable H2A.Z nucleosomal 

DNA sequences (max = 3 occurrences per sequence), it is present in ~72% of stable 

H2A/H4R3me2s nucleosomal DNA sequences (max = 23 occurrences per sequence; median = 

7; Figure 2.2c). That this 6-mer occurs so abundantly in many of the stable H2A/H4R3me2s 
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nucleosomal DNA sequences is suggestive of it being a repetitive element, or component thereof 

– an observation we explore in downstream analysis.  

 For thoroughness, however, we first performed a combined classification that utilized 

histone modification features and DNA sequence features. This resulted in a classification 

accuracy of 98.6 % ± 0.1% (auROC = 0.999 ± 0.0002). Feature importance analysis by MDG 

yielded many of the same top features as in the separate classifications, namely: H4K20me3, 

H3K9me3, H3R2me2a, H3K36me3, and sequences containing the motif TCCATT. 

 

 

 

Figure 2.2: Classifying stable nucleosomes containing H2A/H4R3me2s or H2A.Z using 

DNA sequence features 

(a) Receiver Operating Characteristic (ROC) curve, demonstrating classifier performance. (b) 

Random forest feature importance by mean decrease in Gini index. Features have a higher 

frequency in H2A/H4R3me2s nucleosomal DNA (red) or H2A.Z nucleosomal DNA (blue). (c) 

Frequency histogram of the number of occurrences of the motif TCCATT in H2A/H4R3me2s 

nucleosomal DNA (red) or H2A.Z nucleosomal DNA (blue).  
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Histone 
Modification 

Sequence reads (%) containing the motif “TCCATT” 
 

Sequencing 
Barski et al., 

2007 

Alignment 
Barski et al., 

2007 

Deduplication 
Present study 

Normalization 
Present study 

Position-
finding 

Present study 
H2A/H4R3me2s 3.70 2.96 2.52 2.51 56.79 

H2A.Z 1.11 1.38 1.42 1.42 0.91 
H3K9me3 4.41 2.48 1.95 1.95 9.24 
H4K20me3 20.44 11.34 4.59 4.59 10.53 

 

Table 2.3: Percentage of sequence reads at each data pre-processing step that contain the 

motif “TCCATT”  

Cells indicate the percentage of 25-base pair sequence reads that contain at least one occurrence 

of the motif “TCCATT”. The column labeled “Position-finding” uses the 25-base pair sequence 

reads that contribute to the signal peaks of stable nucleosomes, identified using NPS. 

 

 

 

Downstream feature analysis 

 Having elicited important, predictive features (particularly H4K20me3, H3K9me3, and 

the sequence motif TCCATT), we pursued downstream analysis in an attempt to determine how 

they relate functionally to H2A/H4R3me2s. First, given the abundant occurrence of the motif 

TCCATT, we referenced the DNA sequence composition of repetitive elements in the human 

genome. Indeed, TCCATT is part of the consensus sequence of satellite II and III DNA (Table 

2.4)74,75, which are types of transcriptionally competent, tandem repetitive elements located 

primarily in pericentromeric regions74.  
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Satellite Type  Consensus Sequence 

 satellite II DNA  [(atTCCATTcg)2 + (atg)1-2]n 

 satellite III DNA  [(ATTCC)7-13 + (ATTcgggttg)1]n 

 

Table 2.4: Satellite II and III DNA consensus sequences  

Subscripts indicate the number of occurrences of a subsequence in the consensus sequence. The 

motif TCCATT is displayed in uppercase. For satellite III DNA, the motif also appears when two 

instances of the first subsequence are juxtaposed. Adapted from74,75. 

 

 

 To determine if satellite II and III DNA are the source of the TCCATT motif detected, 

we analyzed the percentage of the total DNA sequence bound to stable nucleosomes containing 

various histone modifications that is annotated as satellite II and III DNA (or other repetitive 

elements; Figure 2.3a). Indeed, around 63% of the total DNA sequence bound to stable 

H2A/H4R3me2s nucleosomes is satellite II and III DNA, while none of the stable H2A.Z 

nucleosome -bound DNA is (Figure 2.3a). Satellite II and III DNA also contribute to the DNA 

sequence bound to stable nucleosomes containing H4K20me3 or H3K9me3, though they 

comprise a lower percentage (around 7% and 8%, respectively; Fig 2.3a). Thus, stable 

H2A/H4R3me2s nucleosomal DNA is enriched for TCCATT motifs derived from satellite II and 

III DNA. As an interesting aside, we find that a substantial portion of the DNA bound to 

nucleosomes containing stable H4K20me3 or H3K9me3 is retrotransposons; this is not the case 

for stable nucleosomes containing H2A/H4R3me2s.  

 Finally, we explored further the relationship between satellite II and III DNA and various 

histone modifications. For each histone modification, we calculated occupancy76 over aligned 

satellite II (or III) DNA sequences, where occupancy is defined as the fraction of sequences at a 
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position that are bound to a stable nucleosome containing that histone modification (see 

Methods). We found that H2A/H4R3me2s and H4K20me3 had the highest occupancy over 

satellite II DNA sequences (0.266 and 0.289, respectively) and satellite III DNA sequences 

(0.159 and 0.142, respectively). H3K9me3 followed closely with occupancies of 0.140 and 0.045 

over satellite II and III DNA, respectively. On the other hand, H2A.Z and 18 other histone 

methylations in the Barski et al.46 datatset had no or almost no occupancy over these satellites (1 

methylation, H3R2me2a, had low occupancy). These findings are depicted in Figure 2.3b.  

 Thus, downstream analysis functionally relates the elicited features to H2A/H4R3me2s 

and to each other: H2A/H4R3me2s, H4K20me3, and H3K9me3 all occur on stable nucleosomes 

in satellite II and III DNA sequences, from which the motif TCCATT is derived. These 

interactions are consistent with recent biochemical experimental results, a point we return to in 

the Discussion.  
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Figure 2.3: Relationship between stable nucleosomes containing histone modifications and 

satellite II and III DNA sequences 

(a) The percentage contributions of types of repetitive elements to the total DNA sequence bound 

to nucleosomes containing the indicated histone modification. (b) The fraction of start site -

aligned satellite II (upper) or III (lower) DNA sequences occupied by stable nucleosomes 

containing the indicated histone modification 

 

 

2.5 Discussion 

 Emerging, high-throughput epigenomic data, including ChIP-seq data, may provide 

insight into mechanisms of chromatin structure and gene regulation. However, realizing the full 

potential of this data requires a computational framework that reduces bias; maximizes algorithm 

accuracy; and elicits predictive and biologically interpretable features. To this end, we classified 

nucleosomes containing H2A/H4R3me2s or H2A.Z, as in49, but instead employed appropriate 

data pre-processing and advanced classification algorithms, resulting in greatly improved 

accuracy and interpretative yield. 



! 29 

 Indeed, interpretation of ChIP-seq is challenging because of the magnitude and 

complexity of the data (issues of quality and pre-processing, aside). This is particularly true 

when comparing multiple histone modifications (or transcription factors).  Encouragingly, 

approaches aiming to improve ChIP-seq interpretation, albeit not directly applicable to our 

analyses, appear in the recent literature. For example, Fernandez et al.77 use a genetic algorithm 

to identify the optimal number of histone modification profiles to combine to identify 

transcriptional enhancers, while Beck et al.78 aim to improve ChIP-seq interpretation by 

incorporating information about peak shape via linear predictive coding. 

 In light of these challenges, and given the problems with enumerative feature approaches 

(e.g., all 6-mers; discussed in detail below), we decided to employ a recently devised pipeline for 

sequence-based classification, DMFS52, that focuses on feature interpretation. DMFS elicits a 

small set of a priori discriminatory features (motifs) using a subsequently withheld data 

partition. Using DMFS, we evaluated a feature length range between 5 and 10 bp by eliciting     

< 300 a priori discriminatory motifs. In contrast, evaluating this length range with enumerative 

approaches would require a burdensome, if not prohibitive, Σ 4k = 1397760 features. Thus, 

feature length often needs to be highly restricted for enumerative approaches, which can then fail 

to elicit longer, potentially important (interpretable) features. Even with feature length 

prescriptions, enumerative approaches still employ multitudes of noise features, which can 

degrade performance53 and complicate determination of feature importance and interpretation. 

Thus, using DMFS to eliminate univariately unimportant features at the outset has advantages; 

however, it can miss features whose effects are strict (second or higher order) interactions. 

 Some attempts have been made to improve interpretation of enumerative feature 

classification. Most existing enumerative techniques rely heavily on support vector machine 
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(SVM) classifiers that employ sophisticated, problem-specific kernels, notably the spectrum 

kernel79 and variants thereof80,81, such as the so-called “blended spectrum” kernel used 

previously49 to analyze the data considered here. Determining feature importance for such 

approaches is arguably very challenging (it is challenging, in general, for SVMs), given inherent 

feature dependencies (overlaps at neighboring positions) and kernel complexity. Some inventive 

methods have been developed to address these issues82,83. Nevertheless, these methods are 

necessarily constrained: input sequences need to be the same length and only select SVM kernels 

are supported. Thus, another advantage of the DMFS approach is that it provides a modular, all-

purpose, pipeline applicable to any (binary) classification problem with any sequence inputs. 

 In the current study, we employed DMFS for sequence-based classification using pre-

processed data. For the sake of comparability, we also tried applying DMFS to raw, aligned, 

extended ChIP-seq reads as used in49, which resulted in a classification accuracy similar to that 

of Gervais and Gaudreau49. Thus, while DMFS provided the benefits of ready interpretation, 

modularity, and computational efficiency, the improvements in performance that we achieved 

are largely attributable to data pre-processing. Indeed, several authors50,51 have advocated ChIP-

seq data pre-processing based on observations of bias and extensive background reads. Peak-

finding methods have also been specifically designed for histone modification ChIP-seq data: 

SICER84 identifies broad chromatin domains enriched for a histone modification, while NPS44 

identifies individual, stable nucleosomes that contain a histone modification. Our study is 

valuable in that it demonstrates empirically the gains in classification performance that result 

from ChIP-seq data pre-processing, thus substantiating the advocacy thereof.  

 Another valuable aspect of our study is that the identified features are consistent with 

recent biochemical experimental results. Our classification approaches identified the motif 
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TCCATT (derived from satellite II and III DNA sequences) and the histone modifications 

H4K20me3 and H3K9me3 as predictive of H2A/H4R3me2s nucleosomes. Consistent with this, 

Zhao et al.70 recently demonstrated that H4R3me2s provides a direct binding site for the DNA 

methyltransferase (Dnmt3A) that methylates satellite II and III DNA85-87. The enzyme that 

mediates H3K9me3 also interacts directly with Dnmt3A88. Furthermore, the proper occurrence 

of H4K20me3 and H3K9me3 has been shown to be partially dependent on Prmt5, the enzyme 

that mediates H2A/H4R3me2s89. Interestingly, the aberrant expression of satellite II and III 

DNA, which is observed in senescent cells90 and epithelial cancers87,91, may promote genomic 

instability via chromosomal rearrangements92. Thus, our finding that H2A/H4R3me2s, 

H4K20me3, and H3K9me3 occur in stable nucleosomes in satellite II and III DNA sequences 

genome-wide may be consequential in terms of understanding how these genomic elements are 

normally repressed in healthy, differentiated tissue.  

 In future work, we will extend our analyses to classifying the 19 other histone 

modifications in the Barski et al.46 dataset. This could be realized using an iterative one-against-

all approach, which would be more high-throughput (albeit at the potential cost of diluting 

discriminatory signals), or using a targeted, biologically motivated approach. With respect to the 

latter, of particular interest would be discriminating between histone modifications that localize 

with facultative (e.g., H3K27me3) and constitutive (e.g., H3K9me3) heterochromatin. Indeed, 

DNA elements capable of recruiting the facultative heterochromatin machinery have not been 

identified in the human genome so far, though they have been in the Drosophila genome (i.e., 

Polycomb Response Elements93). Additionally, we will explore the impact of alternative ChIP-

seq normalization approaches, including some more refined, emerging methods69. However, 

because such methods often rely on a mock immunoprecipitation (IP) sample, which many 
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otherwise rich ChIP-seq datasets lack (including Barski et al.46), it would be worthwhile to 

pursue developing a method for identifying the background in datasets with multiple 

experimental IPs but no mock IP. Similarly, it would be a great advance to develop an algorithm 

that could identify and remove read buildups that correspond to PCR amplification bias without 

collapsing “biological” duplicate reads – especially as the latter will be common in newer 

datasets with very high sequencing depth.  Finally, we could pursue, though more ambitious, 

developing an algorithm for multi-class classification with a similarly discriminatory 

framework52. 

 

2.6 Conclusions 

 Our study demonstrates that applying advanced classification algorithms to appropriately 

pre-processed ChIP-seq data results in greatly improved prediction accuracy and feature 

interpretative yield in genome-wide discrimination between histone modifications. The 

discriminatory motif feature selection approach that we employed has the added potential to 

facilitate interpretation of the biological mechanism underlying the classifier performance. 

Finally, and perhaps most importantly, the findings presented here demonstrate that statistical / 

machine learning analyses of epigenomic data can identify interpretable, biologically meaningful 

properties of histone modifications, which have been difficult to study by traditional genetic 

experimentation. 
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2.7 Methods 

ChIP-seq data pre-processing 

The Barski et al.46 ChIP-seq dataset for 20 histone methylations and H2A.Z in human CD4+ T 

cells was downloaded as BED files of mapped ChIP-seq reads from: 

<http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcell.aspx>.  In each sample, duplicate reads 

were collapsed into single reads to eliminate PCR amplification bias50,51. Samples were 

normalized for unique read number via down-sampling, in order to eliminate bias from 

sequencing depth variation51. Stable nucleosomes with statistically significant enrichment over 

the background were identified, using NPS44, for each of the 20 histone methylations and H2A.Z. 

 NPS extends reads in the 3’ direction to 150bp, corresponding to the length of the 

MNase-digested mononucleosomal DNA44,46. NPS then employs signal sampling and wavelet 

denoising to improve signal resolution and reduce background, and Laplacian of Gaussian 

methods to detect peak edges44. We only accepted peaks that pass quality control filtering and 

statistical significance testing, as in 44, to reduce false positives. Specifically, peaks must have 

had a width 80bp ≤ w ≤ 250bp, a strand ratio s ≤ 3, and a significant number of reads (Poisson p 

≤ 1e-05). For each such nucleosome peak, we extended the midpoint to 147bp for use in 

classification.  

 

Classification / Feature elicitation 

 H2A.Z nucleosomes were down-sampled to match the number of H2A/H4R3me2s 

nucleosomes to create a balanced classification scheme71. All performance evaluations are based 

on the mean of ten random samples of H2A.Z nucleosomes to ensure sampling did not impact 

the results. Classification was performed using random forests54, an algorithm that averages over 
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an ensemble of classification trees. Briefly, each tree is constructed from a bootstrap sample of 

the data. Unlike conventional trees, where each node is split using the overall most predictive 

feature, each node in random forest trees is split using the most predictive feature from a subset 

of features randomly sampled at that node. This additional injection of randomness serves to de-

correlate trees in the ensemble, so that subsequent averaging over the ensemble more effectively 

decreases prediction variance and thereby improves prediction performance58. An unbiased 

estimate of the prediction error rate is obtained as follows: first, for each tree in the ensemble, 

classify the data points not included in the bootstrap sample for that tree (so-called out-of-bag 

(OOB) data); then, average the predictions across all trees where a given data point was 

OOB54,58,94. 

 Random forests have two primary parameters: for the number of trees, we used ntree = 

500; and for the subset of features sampled at each node, we used the default classification value 

mtry = sqrt(p), where p is the number of features. Compared to other classifiers, random forests 

have the advantage of being relatively resistant to overfitting and relatively insensitive to 

parameter tuning, as long as ntree is sufficiently large54,94. All reported area under the Receiver 

Operating Characteristic curve (auROC) values are for random forests, though, for thoroughness, 

classifications were repeated using support vector machines (SVMs); comparable results were 

obtained. Fitting of both random forests and SVMs made recourse to the corresponding R 

packages94,95 and to the ROCR package96. 

 Classification was performed using two distinct feature types: histone modification 

features and DNA sequence features. For histone modification features, we used the 19 histone 

methylations remaining in the Barski et al.46 dataset, as well as 18 histone acetylations from the 

Wang et al.47 dataset, which was generated by the same research group and in the same cell type. 
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The latter dataset was downloaded from: 

<http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcellacetylation.aspx>. To create the overlap 

matrix, an array of length 37 (for 37 histone modification features) was created for each stable 

H2A/H4R3me2s or H2A.Z nucleosome. Each entry in the array indicates the number of de-

duplicated sequence reads for the given feature modification that co-localize with the stable 

nucleosome boundaries in a strand-specific manner. Specifically, to be scored: ‘+’ strand feature 

reads must map within ± 50 bp of the 5’ stable nucleosome boundary, and ‘-’ strand feature reads 

must map within ± 50 bp of the 3’ stable nucleosome boundary. 

 To generate DNA sequence features, we used DMFS: 

<https://bitbucket.org/haoxiong/dmfs-code/>52. DMFS elicits a small set of a priori informative 

motifs that discriminate between positive (here, H2A/H4R3me2s) and negative (here, H2A.Z) 

classes. Unlike enumerative (e.g., all 6-mers) approaches, DMFS avoids the generation of 

abundant noise features, which can compromise prediction and interpretation53. Additionally, it 

allows longer, potentially informative features to be evaluated. To avoid data reusage, DMFS 

requires an additional level of data partitioning, utilizing a discovery set for initial discriminatory 

motif finding and a classification set for subsequent random forest (or SVM) analysis. For the 

fraction of nucleosomal sequences allocated to the discovery set, we used the recommended52 

value f = 0.2; we ultimately evaluated five instances of the data being randomly partitioned as 

such, to ensure partitioning did not impact the results. A key component of the DMFS pipeline is 

the tool employed for eliciting discriminatory motifs. We used the default tool – Wordspy97,98 – 

selected in view of its impressive performance in benchmarking studies98. Remaining DMFS 

parameter settings were: minimum motif length l = 5, maximum motif length m = 10 (with both 
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DNA strands being searched); and at most M = 2 mismatches, when aligning elicited motifs to 

classification set sequences.  

 

Feature importance and downstream analysis 

 To identify the most individually predictive features, random forest feature importance 

was assessed using the mean decrease in Gini index (MDG). Briefly, the Gini index is a measure 

of statistical impurity. Every time a node is split in a tree, the daughter nodes become more 

homogenous and, thus, have a lower Gini index than the parent node. A robust measurement of 

feature importance can obtained as follows: for each feature, average across all random forest 

trees the decrease in Gini index that results from splitting a node on that feature58. Permutation 

testing was performed to estimate the statistical significance of variable importance: MDG scores 

were compared to the distribution of scores from 100,000 classifications using data with 

permuted class labels. 

 Downstream analysis was performed for a motif found in many of the elicited sequence 

features. The genomic coordinates of repetitive DNA sequences were downloaded from the 

RepeatMasker track of the Table Browser99 of the UCSC Genome Browser (build hg18). Based 

on Repbase Update100 annotations, satellite II DNA (repName = HSATII) and satellite III DNA 

(repName = (CATTC)n , (GAATG)n) coordinates were extracted. For each histone modification, 

we calculated the percentage of its total stable nucleosome-bound DNA sequence that consists of 

satellite II or III DNA. Additionally, for each histone modification, we calculated its occupancy 

along satellite II DNA, or satellite III DNA, sequences aligned by start site — where 

occupancy76 is defined as the fraction of sequences bound to a stable nucleosome, in this context, 

with the histone modification.  



! 37 

2.8 Acknowledgments 

 Some computations were performed using the UCSF Biostatistics High Performance 

Computing System. DC was supported in part by NIH Training Grant T32 GM007175. We thank 

Alain Gervais, Dustin Schones, and Keji Zhao for clarifying details of previous analyses through 

correspondence. We thank Richard Tabor for assisting with the data storage of Sequence Read 

Archive files. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! 38 

Chapter 3: Distance-based assessment of the localization of functional annotations in         
3D genome reconstructions 

 

3.1 Citation 

Capurso D & Segal MR (2014). Distance-based assessment of the localization of functional 

 annotations in 3D genome reconstructions. BMC Genomics, 15:992. 

 

3.2 Abstract  

Background 

 Recent studies used the contact data or three-dimensional (3D) genome reconstructions 

from Hi-C (chromosome conformation capture with next-generation sequencing) to assess the 

co-localization of functional genomic annotations in the nucleus. These analyses dichotomized 

data point pairs belonging to a functional annotation as “close” or “far” based on some threshold 

and then tested for enrichment of “close” pairs. We propose an alternative approach that avoids 

dichotomization of the data and instead directly estimates the significance of distances within the 

3D reconstruction. 

 

Results 

 We applied this approach to 3D genome reconstructions for Plasmodium falciparum, the 

causative agent of malaria, and Saccharomyces cerevisiae and compared the results to previous 

approaches. We found significant 3D co-localization of centromeres, telomeres, virulence genes, 

and several sets of genes with developmentally regulated expression in P. falciparum; and 

significant 3D co-localization of centromeres and long terminal repeats in S. cerevisiae. 

Additionally, we tested the experimental observation that telomeres form three to seven clusters 
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in P. falciparum and S. cerevisiae. Applying affinity propagation clustering to telomere 

coordinates in the 3D reconstructions yielded six telomere clusters for both organisms.  

 

Conclusions 

 Distance-based assessment replicated key findings, while avoiding dichotomization of the 

data (which previously yielded threshold-sensitive results).  

 

3.3 Background 

 Recent studies42,43,45 employed chromosome conformation capture with next-generation 

sequencing (Hi-C101) to systematically identify genomic regions in physical, three-dimensional 

(3D) proximity. The resulting contact data lists two genomic positions—each corresponding to a 

restriction enzyme site—and the frequency with which they were paired-end sequenced together. 

The smaller the 3D distance between two genomic positions, the larger their interaction 

frequency should be. Given this relationship, 3D genome reconstructions have been generated 

from the contact data via constrained optimization for several organisms including  

Saccharomyces cerevisiae43 and the asexual stages of Plasmodium falciparum45, the causative 

agent of malaria. Both of these are eukaryotic, haploid, and have relatively small genomes 

(compared to human). The constraints used in the reconstruction optimization derive from 

external biological knowledge about genome organization43,45. 

 Both contact data and attendant 3D genome reconstructions are exciting developments 

because they provide relatively high resolution, genome-wide information on chromosome 

organization — which previously could only be probed with low-throughput, low-resolution 

techniques such as fluorescent in situ hybridization (FISH; contrasted in 102). There is now 

widespread interest in using this data to gain insight into the 3D nuclear localization of 
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functional genomic annotations (e.g. centromeres, gene ontology (GO) sets). This interest is 

based on the hypothesis that genome function is linked to its organization55. For example, co-

regulated genes may be physically co-localized in the nucleus during transcription103. Similarly, 

3D genome organization likely influences genome stability39 and the location of DNA 

breakpoints and gene fusions39, including those that drive certain cancers40. 

 Ay et al.45 recently assessed the co-localization of functional annotations in P. falciparum 

3D genome reconstructions; however, their approach led to results that were difficult to interpret. 

Their assessment was performed as follows. For all data point pairs belonging to a given 

functional annotation, they dichotomized (Euclidean) distances  as “close” or “far” based on 

prescribed thresholds (10%, 20%, or 40% of the nuclear diameter). Then, they assessed 

enrichment of “close” pairs in that functional annotation using methods developed for contact 

data 55. In the results of this analysis, some functional annotations were significant across all 

thresholds; however, many functional annotations were significant for only one (or two) 

threshold(s) but not the other(s). Further, there was often no consistent relationship with respect 

to threshold. This makes interpretation difficult, especially since it is not obvious what 

constitutes a good choice for a biologically meaningful threshold. We refer to this approach as 

“dichotomized distance enrichment” throughout the paper.  

 Similar analyses have been performed in S. cerevisiae55,104,105 using  contact data rather 

than the 3D genome reconstruction. Here, pairs of data points belonging to a functional 

annotation were dichotomized as “close” if they were observed together (i.e. if their interaction 

frequency passed (False Discovery Rate106) filtering); otherwise they were “far”. Then, the 

enrichment of “close” pairs in the functional annotation was tested. We refer to this approach as 

“dichotomized contact enrichment” throughout the paper. 
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 Rather than dichotomizing the data, we propose directly assessing the significance of 

distances derived from the 3D reconstruction. This approach is potentially an improvement over 

previous analyses since it avoids dichotomization of distances (which could incur information 

loss) and does not require (arbitrary) thresholding or tuning. For a given functional annotation, 

we computed the median of pairwise Euclidean distances (MPED) between data points 

belonging to that functional annotation and then assessed the significance of this test statistic by 

resampling. We also expanded to two-tailed analyses in order to enable tests for dispersion of 

functional annotations since, for example, localization near the nuclear periphery is functionally 

relevant36. Our approach provided novel findings, replicated key results from prior analyses and 

provided unambiguous inference for functional annotations that previously reported significance 

levels that varied by dichotomization threshold. We refer to our approach as “MPED 

assessment” throughout the paper.   

 

3.4 Results 

 We performed MPED assessment of functional annotation localization in 3D genome 

reconstructions (see Methods) for P. falciparum Ring stage45 and S. cerevisiae43 from two 

different restriction enzyme libraries, HindIII and EcoRI (Figure 3.1). We also tested 

dichotomized contact enrichment (as in 55; see Methods) and compared the results. Results for 

dichotomized distance enrichment have been reported in detail previously (see Table S5 in 45). 
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Figure 3.1: 3D genome reconstructions 

(a) P. falciparum Ring stage 3D genome reconstruction. S. cerevisiae 3D genome 

reconstructions from (b) HindIII or (c) EcoRI restriction enzyme libraries. The diameter of the   

P. falciparum reconstruction is 70 nm. The diameters of the S. cerevisiae reconstructions are 200 

nm.  

 

 

3D localization of P. falciparum functional genomic annotations 

 For P. falciparum Ring stage, we assessed the localization of the following functional 

annotations: centromeres, telomeres, virulence (VRSM) genes, rDNAs, and 15 clusters of genes 

with developmentally regulated expression45,107. We used normalized108 P. falciparum Ring stage 

contact data and the (extensively validated) 3D genome reconstruction inferred from these data45.  

 Centromeres, telomeres, and VRSM genes were significantly co-localized under MPED 

assessment (Table 3.1). These functional annotations were also significantly co-localized under 

dichotomized contact enrichment (Table 3.1) and under dichotomized distance enrichment at all 

three thresholds examined (10%, 20%, or 40% of the nuclear diameter; see Table S5 in 45). 

Furthermore, experimental FISH data supports the nuclear clustering of telomeres in P. 

falciparum109,110. 
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 Eight out of 15 clusters of genes with developmentally regulated expression (including 

several with Ring stage expression) were significantly co-localized under MPED assessment, but 

only 1 was significantly co-localized under dichotomized contact enrichment (Table 3.1). Of the 

8 expression clusters significantly co-localized under MPED assessment, only 2 were significant 

across all three thresholds under dichotomized distance enrichment (see Table S5 in 45); the other 

6 had threshold-dependent significance under dichotomized distance enrichment (and thus 

ambiguous interpretation in the previous study 45). In the Discussion, we comment on why 

assessing localization at the 3D reconstruction level (with MPED) may reveal significant co-

localization for some functional groups that was not detected using contact level data .  
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Functional annotation MPED 
q-values 

Contact 
enrichment 

q-values 
Centromeres 6.0e-05 8.4e-05 
Telomeres 6.0e-05 8.4e-05 
VRSM (all) 6.0e-05 8.4e-05 
VRSM (subtelomeric) 6.0e-05 8.4e-05 
VRSM (internal) 1.6e-04 8.4e-05 
rDNA genes 0.42 0.10 
Cluster 1  0.73 ↓ 0.17 
Cluster 2  4.4e-02 0.70 ↓ 
Cluster 3  0.18 0.45 ↓ 
Cluster 4 (Ring)  6.0e-05 1.0e-02 
Cluster 5 (Ring) 0.24 0.45 ↓ 
Cluster 6 (Ring 6.0e-05 0.70 ↓ 
Cluster 7 (Ring) 6.0e-05 0.39 ↓ 
Cluster 8 4.0e-02 0.86 ↓ 
Cluster 9 1.0e-02 0.39 ↓ 
Cluster 10 2.1e-03 0.81  
Cluster 11 0.10 0.74 ↓ 
Cluster 12 9.2e-03 0.11 ↓ 
Cluster 13 6.5e-02 0.44 ↓ 
Cluster 14 0.11 0.70 ↓ 
Cluster 15 5.2e-02 0.81 ↓ 

 

Table 3.1: Assessment of the 3D localization of functional annotations in P. falciparum Ring 

stage  

MPED: the median of pairwise Euclidean distances in the 3D reconstruction.  Contact 

enrichment: enrichment of dichotomized “close” pairs in the Hi-C contact data. Gray shading 

indicates q-value <0.05. Down arrow indicates dispersion (otherwise co-localization). All 

functional annotations that were tested are included. “Cluster N” refers to genes with life cycle -

regulated expression, which were clustered in Le Roch et al.107. Clusters that have high gene 

expression in the Ring stage are indicated in parentheses.   
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3D localization of S. cerevisiae functional genomic annotations 

 For S. cerevisiae, we assessed the localization of 264 GO terms and 17 other functional 

annotations, including centromeres, telomeres, retrotransposon long terminal repeats (LTRs), 

classes of non-coding RNAs, classes of replication origins, classes of DNA breakpoints, and 

classes of cell cycle -regulated genes (full list in Methods). We report functional annotations that 

were significant under MPED assessment with both restriction enzyme libraries (HindIII and 

EcoRI) or significant with both libraries under dichotomized contact enrichment.  

 There is no indication that the S. cerevisiae Hi-C data was normalized in previous 

studies43,55 prior to generating the 3D genome reconstructions or assessing functional annotation 

localization: the original study43 preceded the formalization of Hi-C data normalization 

pipelines108,111,112 that redress biases due to factors such as fragment length, GC content and 

mappability. Accordingly, we normalized the S. cerevisiae Hi-C contact data (see Methods) and 

then generated new reconstructions, as in 43, from the normalized contact data (Figure 3.1) before 

assessing functional annotation localization.  

 Centromeres and LTRs were significantly co-localized under MPED assessment and 

under dichotomized contact enrichment (Table 3.2). Previous analyses of this S. cerevisiae Hi-C 

data also found significant co-localization of centromeres55 and LTRs113. Furthermore, 

experimental FISH data support the nuclear clustering of centromeres114 and LTRs115 in S. 

cerevisiae. Several GO terms that map to LTRs (e.g., retrotransposon nucleocapsid, 

transposition) were also significantly co-localized under both analyses but are not included in 

Table 3.2 because of the redundancy in the mapping.  

 Telomeres were significantly co-localized under dichotomized contact enrichment, but 

not under MPED assessment (Table 3.2). Experimental FISH data support nuclear clustering of 
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S. cerevisiae telomeres116,117. In the Discussion, we comment on why assessing localization at the 

3D reconstruction level (with MPED) may not detect significant co-localization for some 

functional groups that were detected at the contact data level (particularly the difficulty of 

generating a null distribution for telomeres).  

 The previous study that analyzed S. cerevisiae functional annotation localization under 

dichotomized contact enrichment reported significant co-localization of certain functional groups 

(e.g., early replication origins (Clb5 and Rad53), and tRNAs)55 that were not replicated in our 

analysis under dichotomized contact enrichment. This difference may be due to our testing a 

much larger number of functional groups (and the corresponding multiplicity correction) and/or 

our normalization of the data prior to assessment. Experimental FISH data supports tRNA 

clustering in S. cerevisiae118. Under dichotomized contact enrichment, our q-values for tRNAs 

were 2.4e-02 (HindIII) and 0.55 (EcoRI). Under MPED assessment, our q-values for tRNAs 

were 0.64 (HindIII) and 2.0e-03 (EcoRI).  

 

Functional annotation MPED 
 q-values 

Contact enrichment 
 q-values 

HindIII EcoRI HindIII EcoRI 
Centromeres 4.0e-04 3.7e-04 2.8e-03 5.6e-03 
Long terminal repeats 4.0e-04 3.7e-04 2.8e-03 1.9e-02 
Telomeres 0.86 ↓ 0.13 ↓ 5.0e-02 5.6e-03 

 

Table 3.2: Assessment of the 3D localization of functional annotations in S. cerevisiae 

MPED: the median of pairwise Euclidean distances in the 3D reconstruction.  Contact 

enrichment: enrichment of dichotomized “close” pairs in the Hi-C contact data. Gray shading 

indicates q-value <0.05. Down arrow indicates dispersion (otherwise co-localization). Functional 

annotations are included if they were significant for both restriction enzyme libraries (HindIII 

and EcoRI) in either analysis.   
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Generating a null referent distribution 

 In our MPED assessment of functional annotation localization above, we generated a null 

referent distribution by resampling points from the same chromosome as observed (i.e. 

preserving the chromosome structure of the data).  An alternative approach is to resample 

preserving the distance that a data point is from the center of the nucleus (within a range), but not 

preserving the chromosome structure. Such a resampling scheme may detect functional groups 

that are co-localized given the Rabl configuration of the S. cerevisiae 3D genome 

reconstructions43. To perform such a resampling scheme, we divided the radius of the nucleus 

into fifths and created a series of concentric spheres at each partition. Points were then resampled 

from the 3D annulus (ring) between concentric spheres. The results under MPED assessment 

with annulus resampling were similar to those with chromosome resampling for both organisms 

(Tables 3.3 and 3.4). 
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Functional annotation Chromosome 
resampling  

q-values 

Annulus (Rabl) 
resampling 

q-values 
Centromeres 6.0e-05 7.0e-05 
Telomeres 6.0e-05 7.0e-05 
VRSM (all) 6.0e-05 7.0e-05 
VRSM (subtelomeric) 6.0e-05 7.0e-05 
VRSM (internal) 1.6e-04 7.0e-05 
rDNA genes 0.42 0.22 
Cluster 1  0.73 ↓ 0.77 ↓ 
Cluster 2  4.4e-02 2.6e-03 
Cluster 3  0.18 3.3e-04 
Cluster 4 (Ring)  6.0e-05 2.6e-04 
Cluster 5 (Ring) 0.24 3.5e-03 
Cluster 6 (Ring 6.0e-05 7.0e-05 
Cluster 7 (Ring) 6.0e-05 7.9e-02 
Cluster 8 4.0e-02 0.45 
Cluster 9 1.0e-02 2.7e-03 
Cluster 10 2.1e-03 6.3e-03 
Cluster 11 0.10 2.5e-02 
Cluster 12 9.2e-03 1.2e-04 
Cluster 13 6.5e-02 1.0e-03 
Cluster 14 0.11 3.8e-04 
Cluster 15 5.2e-02 0.22 

 

Table 3.3: Comparison of resampling schemes for distance-based assessment  of the 

localization of functional annotations in P. falciparum Ring stage  

Points were resampled within the same chromosome or within the same annulus. Gray shading 

indicates q-value <0.05. Down arrow indicates dispersion (otherwise co-localization). All 

functional annotations that were tested are included. “Cluster N” refers to genes with life cycle -

regulated expression, which were clustered in Le Roch et al.107. Clusters that have high gene 

expression in the Ring stage are indicated in parentheses. 
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Functional annotation Chromosome  
resampling q-values 

Annulus (Rabl) 
resampling q-values 

HindIII EcoRI HindIII EcoRI 
Centromeres 4.0e-04 3.7e-04 5.1e-04 0.21 
Long terminal repeats 4.0e-04 3.7e-04 5.1e-04 4.0e-04 
Telomeres 0.86 ↓ 0.13 ↓ 0.88 ↓ 0.39 ↓ 

 

Table 3.4: Comparison of resampling schemes for distance-based assessment  of the 

localization of functional annotations in S. cerevisiae  

Points were resampled within the same chromosome or within the same annulus. Gray shading 

indicates q-value <0.05. Down arrow indicates dispersion (otherwise co-localization). Functional 

annotations from Table 2.2 are shown. 

 

 

Affinity propagation clustering applied to 3D telomere coordinates 

 Experimental FISH data indicate that telomeres form 4 to 7 clusters in P. falciparum109,110 

and 3 to 7 clusters in S. cerevisiae116,117. To determine if we could recapitulate this property of 

telomere organization from the 3D genome reconstructions (and to identify which telomeres are 

close to each other) we applied affinity propagation (AP) clustering119 to telomere coordinates in 

the 3D genome reconstructions. Unlike many other clustering algorithms (e.g. k-means) where 

the number of clusters needs to be specified from the outset, AP clustering optimizes the number 

of clusters within the algorithm. Applying AP clustering yielded 6 telomere clusters for both P. 

falciparum (Figure 3.2) and S. cerevisiae (Figure 3.3), consistent with the FISH data.  This also 

revealed which telomeres are close to each other in the 3D genome reconstructions (Figures 3.2 

and 3.3). 
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Figure 3.2: Affinity Propagation clustering applied to 3D telomere coordinates for  

P. falciparum Ring stage 

(a) Heat map of Euclidean distances between telomeres. The clustering is indicated. (b) Positions 

of telomeres in the 3D reconstruction plotted as the cluster number. Upper: side view. Lower: top 

view, a 90-degree rotation forward about the z-axis relative to the side view. (c) The 

chromosome arm lengths of telomeres in each cluster.  



! 51 

 

 

Figure 3.3: Affinity Propagation clustering applied to 3D telomere coordinates for  

S. cerevisiae (HindIII) 

(a) Heat map of Euclidean distances between telomeres. The clustering is indicated. (b) Positions 

of telomeres in the 3D reconstruction plotted as the cluster number. Upper: side view. Lower: top 

view, a 90-degree rotation forward about the z-axis relative to the side view. (c) The 

chromosome arm lengths of telomeres in each cluster.  
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3.5 Discussion 

 In this study, we propose using MPED to assess functional annotation localization and 

applied this approach to P. falciparum and S. cerevisiae 3D genome reconstructions. We argue 

that, if functional annotation localization assessment is to be performed at the 3D genome 

reconstruction level, then MPED assessment offers advantages over dichotomized distance 

enrichment45 because it avoids dichotomization of the data (which could incur information loss) 

and does not require (arbitrary) thresholding or tuning thereby providing unambiguous results.  

 However, as with any statistic and associated inferential assessment, MPED embodies 

specific choices and assumptions. For the statistic, we have employed the median (because of its 

robustness and resistance properties) of all pairwise distances (because this does not require 

tuning as, for example, would be necessary with k nearest neighbor distances).  Evaluation of 

alternative formulations (mean rather than median; k nearest neighbor distances rather than 

pairwise distances) had comparable results (when k ≥ 2). For inferential assessment, we have 

used two approaches to generating null referent distributions (as described above); other 

potentially organism-specific possibilities could be entertained.  A strength of methods imposing 

dichotomization is that obtaining reasonable referent distributions is relatively straightforward. 

 There are other putative advantages of assessing functional annotation localization at the 

3D reconstruction level: (i) while the contact data is inherently pairwise, the 3D reconstructions 

exploit higher order relationships; (ii) the 3D location of sites for which there is missing contact 

data is readily determined from neighbouring points in the reconstruction because of chromatin 

contiguity; and (iii) biological and biophysical constraints about genome organization are 

imposed (e.g. avoidance of steric clashes). Thus, emergent properties of the 3D reconstructions 
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may reveal significant co-localization of some functional annotations that were not co-localized 

in the (pairwise) contact data (e.g. P. falciparum gene expression clusters). 

 The advantage of assessing functional annotation localization at the contact data level is 

that resampling to generate a null distribution makes recourse to only chromosome labels, while 

at the 3D reconstruction level, resampling makes recourse to the (more complex) chromatin 

structure. The 3D reconstructions for S. cerevisiae have low chromatin density near the nuclear 

periphery and large chromatin voids in the nucleus (Figure 3.1). Given that S. cerevisiae 

telomeres are in the periphery, resampling making recourse to the chromatin structure thus 

samples points from more internally than the telomeres de facto (even with annulus resampling), 

which may make it difficult to detect co-localization. Resampling points without making 

recourse to the chromatin structure (i.e. any X,Y,Z coordinate within an annulus) would not be 

stringent enough. S. cerevisiae telomeres may be co-localized given a spherical 3D nucleus (and 

ignoring the chromatin structure within); however, MPED assessment does not detect significant 

co-localization of S. cerevisiae telomeres by generating a null distribution by resampling points 

making recourse to the (complex) chromatin structure. 

 It is important to note that there are caveats to the use of Hi-C data (whether at the 

contact data level or 3D genome reconstruction level). Most current Hi-C data represents 

averages over many cells. The first example of single cell Hi-C in mouse has recently been 

reported120; however, a 3D mammalian genome reconstruction has not yet been generated for 

computational reasons. Mammalian Hi-C analysis is complicated further by diploid genomes, 

though methods related to Hi-C have been developed for deconvolving sequence data for 

homologous chromosomes121. Finally, Hi-C is a snapshot of highly dynamic chromatin 

organization; these dynamics are important to understand, but difficult to capture.  For the 3D 
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reconstruction-based approach to be meaningful requires that the reconstruction provides an 

adequate representation of dynamics and between-cell variation.  Methods for making such 

assessments and devising and contrasting reconstruction algorithms are active research areas122-

124. 

 In the current study, we assessed the 3D localization of genomic annotations (point data). 

Each data point has an X,Y,Z coordinate; co-localization is assessed by estimating the 

significance of distances between points. In future research, we will expand to assessing the 3D 

localization of continuous, functional genomic data – for example, by overlying chromatin 

immunoprecipitation sequencing (ChIP-seq) peak height on top of the 3D reconstructions. While 

our current research provides a framework for such an analysis, future research will require 

developing and/or applying methodology suited to detect co-localization of data that has an 

X,Y,Z coordinate paired with a continuous outcome (peak height).  

  

3.6 Conclusions 

 When assessing functional annotation localization at the 3D reconstruction level: MPED 

assessment, as proposed and applied here, offers advantages over the existing approach 

(dichotomized distance enrichment). MPED assessment replicated key findings from previous 

analyses, as well as providing novel results, and provided unambiguous significance estimates 

for functional annotations that previously had significance levels that varied by threshold. 
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3.7 Methods 

P. falciparum data and annotations 

 The P. falciparum Ring stage contact data and 3D reconstruction were obtained at: 

<http://noble.gs.washington.edu/proj/plasmo3d/>. This data has already been normalized and 

filtered45. Various functional annotations were assessed: centromeres, telomeres, rDNA genes, 

VRSM genes, and developmentally regulated gene expression clusters107. All of these 

annotations are available at the same link as for the P. falciparum contact data (above). 

 

S. cerevisiae data and annotations 

 S. cerevisiae contact data (pre-FDR, no masking) for HindIII and EcoRI43 were obtained 

at: <http://noble.gs.washington.edu/proj/yeast-architecture/sup.html>. We normalized this 

contact data for GC content, mappability, and fragment length by applying HiCNorm112 genome-

wide (chromosome by chromosome). We then filtered to retain the top contacts by interaction 

frequency. We generated new 3D genome reconstructions43 for HindIII and EcoRI based on this 

normalized and filtered contact data. 

 Various functional annotations were assessed. Annotations for centromeres, telomeres, 

retrotransposon long terminal repeats (LTRs), transfer RNAs (tRNAs) and small nucleolar RNAs 

(snoRNAs) were obtained from the Table Browser of the UCSC Genome Browser99. 

Annotations for early Clb5-independent replication origins, late Clb5-dependent replication 

origins, early Rad53-regulated origins, and late Rad53-regulated origins from125 were obtained 

at: <http://noble.gs.washington.edu/proj/yeast-architecture/sup.html>. Gene Ontology (GO) term 

annotations were obtained from the Gene Ontology Website126 and corresponding gene 

coordinates were obtained from the Table Browser of the UCSC Genome Browser99. We filtered 
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GO terms by membership: 264 terms with between 25 and 120 genes were retained for analysis. 

Cell cycle-regulated genes (5 clusters of genes with expression that peaks during M/G1, G1, S, 

S/G2, or G2/M) from 127 were obtained at:  

<http://genome-www.stanford.edu/cellcycle/data/rawdata/>. Annotations for DNA breakpoints 

from 125 were obtained at: <http://gbe.oxfordjournals.org/content/1/350/suppl/DC1>. Genomic 

positions in these files were for the sc1 assembly of the S. cerevisiae genome, so we converted to 

sc2 assembly positions using the Batch Coordinate Conversion (liftover) tool from the UCSC 

Genome Browser128. Three categories of DNA breakpoints were used in the analyses: 

experimentally-induced (mutagenized) breakpoints, evolutionary breakpoints compared to 

Kluyveromyces waltii, and evolutionary breakpoints compared to the hypothetical/inferred 

ancestor that S. cerevisiae and K. waltii share125,129. 

 

MPED assessment 

 The 3D genome reconstruction data consists of a series of “beads” spaced throughout the 

linear genome. Each bead has a genomic position and a 3D coordinate (X,Y,Z). To map 

functional annotations to the 3D reconstruction data, we assigned each centromere, for example, 

to its nearest bead in linear, genomic space.  

 We assessed functional annotation localization at the 3D genome reconstruction level as 

follows. We employed the median of pairwise Euclidean distances (MPED) –applied 

interchromosomally, in order to avoid detection of annotations simply clustered in linear, 

genomic space55. To estimate MPED significance, we generated a null referent distribution by 

resampling 1e05 times with preservation of the chromosome structure of the data. For example, 
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for centromeres—where there is one centromere per chromosome—we randomly selected one 

bead from each chromosome during each resampling, and computed and saved the MPED.  

 Results from preservation of the chromosome arm structure of the data (not shown) were 

very similar to those obtained from preserving the chromosome structure of the data. We also 

tried preserving the annulus structure of the data – in other words, preserving the approximate 

distance that a bead is from the center of the nucleus, but not preserving the chromosome 

structure of the data. For annulus resampling, we divided the radius into fifths and created 

concentric spheres at each partition; we then resampled beads from the appropriate annulus 

(ring) between concentric spheres.  

 We estimated p-values as follows. When the test statistic was greater than the mean of the 

null referent distribution (of MPEDs from resampling), the p-value was based on comparison to 

the upper tail of the distribution (and, if significant, would indicate dispersion). When the 

statistic was less than the mean of the null referent distribution, the p-value was based on 

comparison to the lower tail of the distribution (and, if significant, would indicate co-

localization). We used False Discovery Rate (FDR)106 for multiple testing corrections and 

accepted an FDR q-value of <0.05 as significant.  

 

Dichotomized contact enrichment 

 The contact data lists two genomic positions— each corresponding to restriction enzyme 

site (or bin, if the data is binned) — and the frequency with which the two interact (are 

sequenced together). The normalized contact data was filtered to retain only the top contacts by 

interaction frequency43. We mapped functional annotations to the filtered contact data as in43: for 

a given centromere, for example, all restriction sites within a window are assigned to that 
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centromere (along with the attendant contact data). The window sizes were 5kb for S. cerevisiae 

and 10kb for P. falciparum, in line with the resolution/binning of the respective 3D 

reconstructions43,45.   

 To assess functional annotation localization from the contact data, we used dichotomized 

contact enrichment55. Pairs of elements belonging to a functional annotation were considered 

“close” if the restriction enzyme sites to which they map were present together in the filtered 

contact data. The test statistic is the (genome-wide) ratio of the number of observed, 

interchromosomal “close” pairs (k) to the number of possible, interchromosomal pairs (m). To 

estimate k:m significance, we generated a null referent distribution by resampling 1e05 times as 

follows. For each chromosome, we resampled the same number of restrictions sites as were 

assigned on that chromosome and then computed and saved the statistic. We estimated p-values 

by comparing the test statistic to the null referent distribution, as described above for the 

reconstruction-based assessment. Our analysis differs from 55 in that we perform a two-tailed 

assessment. We again used FDR for multiple testing correction with a q-value of <0.05 accepted 

as significant. 
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Chapter 4: Identifying hotspots in functional genomic data superposed on 3D chromatin 
configuration reconstructions 

 

4.1 Citation 

Capurso D, Bengtsson H, Segal MR. Identifying hotspots in functional genomic data superposed 

 on 3D chromatin configuration reconstructions. In review. 

 

4.2 Abstract 

Background 

 The spatial organization of the genome influences cellular function, notably gene 

regulation. Recent studies have assessed the three-dimensional (3D) co-localization of functional 

annotations (e.g. long terminal repeats) using 3D genome reconstructions from Hi-C (genome-

wide chromosome conformation capture) data; however, corresponding assessments for 

(continuous) functional genomic data are lacking. Here we advance such techniques. We 

overlaid a Saccharomyces cerevisiae 3D genome reconstruction with three chromatin 

immunoprecipitation-sequencing (ChIP-seq) inputs and contrasted two algorithms for identifying 

regions in 3-space — “3D hotspots” – for which mean ChIP-seq peak height is significantly 

elevated: k-Nearest Neighbor (k-NN) regression and the Patient Rule Induction Method (PRIM).  

 

Results 

 The ChIP-seq inputs were: Swi6, a transcription factor; RNA polymerase II 

phosphorylated at serine 5 (Pol2Ser5p), the active transcriptional machinery; and Tup1, a 

repressor. For each input, the algorithms identified a significant and corresponding 3D hotspot. 

For Swi6, the hotspot contains MSB2 and ERG11 – known Swi6 target genes on different 
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chromosomes. For Pol2Ser5p, the hotspot contains regions from multiple chromosomes with 

genes that function in vacuole transport and RNA binding/processing. For Tup1, the hotspot 

contains NRG1 and YAP6  – known Tup1-regulated genes.  

 

Conclusions 

 Both algorithms identified significant, corresponding and biologically meaningful 3D 

hotspots containing distal genomic regions. k-NN regression has the advantage of being invariant 

to rotations of the (coordinate-free) 3D reconstruction, while PRIM is arguably more robust to 

parameter tuning and sensitivity to orientation can be assessed over (disparate) rotations. 3D 

reconstructions are critical to such hotspot detection: attempting to find them using precursor Hi-

C contact data is computationally prohibitive.  

 

4.3 Background 

 The three-dimensional (3D) configuration of chromosomes within the eukaryotic nucleus 

is consequential for several cellular functions including gene expression regulation and 

epigenetic patterning130 and is also strongly associated with translocation events and cancer 

driving gene fusions16,40. While visualization of such architecture remains limited to low-

resolution, low-throughput, targeted techniques such as Fluorescent In Situ Hybridization 

(FISH)102, the ability to infer structures at high resolution has been enabled by recently-devised 

assays derived from chromosome conformation capture (3C) techniques131. In particular, when 

coupled with next generation sequencing, such methods  (hereafter termed Hi-C42,43) yield an 

inventory of genome-wide chromatin interactions which, in turn, provide a basis for 

reconstructing 3D configurations, as described below.  Such 3D reconstructions are crucial for 
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discovering functional nuclear compartments35,36,132,133, since without such a guiding structure 

the search space is prohibitively large. 

 The contact data from Hi-C analysis lists two genomic positions — each corresponding 

to a restriction enzyme site (or bin if the data are binned) – and an “interaction frequency”: the 

number of times the two positions were ligated and paired-end sequenced together. This 

interaction frequency is inversely related to the physical 3D distance between the two genomic 

positions in the nucleus43,45. 

 By quantifying the relationship between interaction frequency and physical distance, 

Duan et al.43 proceeded to generate a 3D reconstruction of the Saccharomyces cerevisiae genome 

(16 chromosomes, 12.2 Megabases (Mb), and ~6,275 genes) by solving a multi-dimensional 

scaling criterion43,45,122,123,134 via constrained optimization – with constraints based on prior 

biophysical and biological knowledge (e.g. imposition of within-chromosome contiguity, and 

avoidance of steric clash). A 3D genome reconstruction has also been generated45 for 

Plasmodium falciparum 3D7 (14 chromosomes, 23.3 Mb, and ~5,300 genes), the causative agent 

of malaria, using a similar approach. Additional methods for generating 3D genome 

reconstructions using alternate approaches to inferring distances from interaction frequencies and 

differing optimization methods have been advanced122,123,134, as have methods for gauging the 

concordance of 3D genome reconstructions124. 

 Several recent studies have used the contact data55, the 3D genome reconstructions45, or 

both135 to test the hypothesis that functionally related genomic annotations co-localize in 3-space 

the nucleus. Centromeres, telomeres, and long terminal repeats were detected as significantly co-

localized in S. cerevisiae135. Interestingly, in P. falciparum, sets of genes with developmentally 

regulated expression were detected as significantly co-localized in 3D-reconstruction-based 
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assessments but not in contact-based assessments135. This finding illustrates a potential 

advantage of 3D reconstructions: they enable the detection of multi-level co-localizations (i.e. of 

multiple (inter)chromosomal regions), whereas the contact data are inherently limited to 

detecting strictly pairwise co-localization.  For example, reconstruction-based analyses may 

detect if a set of elements occupies a smaller subset of the nucleus than expected by chance even 

if no two individual elements are exceptionally close together. Another advantage of the 3D 

reconstruction is that for genomic regions that have missing contact data, their position in the 3D 

genome reconstruction is inferred from neighboring genomic regions via chromatin contiguity.  

 Here, we extend such downstream, functional analyses of 3D genome reconstructions to 

high-throughput, functional genomic data. We started by (separately) overlaying an S. cerevisiae 

3D genome reconstruction with the peak height of three chromatin immunoprecipitation-

sequencing (ChIP-seq) inputs from136: Swi6, RNA polymerase II phosphorylated at serine 5 

(Pol2Ser5p), and Tup1.  

 One previous study superposed high-throughput functional genomic data (microarray 

gene expression data) on a model-based 3D structure59; however, this was solely for visualization 

purposes. Another used an unsupervised learning approach to identify gene expression profiles 

that exhibit (global) coherence with the 3D reconstruction45. Our study makes the novel 

contribution of adapting, applying and comparing select supervised learning techniques for 

analyzing 3D genome reconstructions overlaid with high-throughput functional genomic data 

with the objective of eliciting focal regions in 3-space  – “3D hotspots” – for which the overlaid 

outcome is extreme.  An important motivation for searching for focal 3D hotspots is that 

downstream analyses of their gene membership can then reveal valuable biological information 

in contrast to global assessments.  
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 The outcomes analyzed here derive from ChIP-seq as mentioned; however the methods 

can be applied irrespective of outcome type.  The two methods used for identifying 3D hotspots 

are k-Nearest Neighbor (k-NN) regression56,58 and the Patient Rule Induction Method 

(PRIM)58,137. As noted in the Conclusions, few if any existing methods seem suited to this task. 

 

4.4 Results and Discussion 

Data normalization and integration 

 We normalized the S. cerevisiae contact data from43 using HiCNorm112 (see “Methods”) 

and then generated a new 3D genome reconstruction from the normalized contact data via the 

constrained optimization approach from43 as per135 (the original study43 preceded the 

formalization of pipelines for normalizing Hi-C contact data108,111,112,138). 

 Next, we aligned to the reference genome the sequencing reads for the ChIP-seq inputs 

(Swi6, Pol2Ser5p, and Tup1) and the mock IP control, and then log2-normalized the signal of 

each ChIP-seq input to the control (see “Methods”). We applied quality control filters, performed 

read de-duplication, and obtained residuals from smoothing the signal along each chromosome 

arm (see “Methods”) – this constitutes the final “ChIP-seq peak height” that we proceeded to 

analyze. 

 We (separately) superposed the ChIP-seq peak height of each input on the 3D genome 

reconstruction (Figure 4.1). The 3D genome reconstruction consists of a series of “beads” spaced 

along each chromosome, with each bead having a genomic position and an (X,Y,Z) coordinate. 

For each ChIP-seq input, we binned the peak height data at the same genomic spacing 

(resolution) as that of the beads (see “Methods”). The result is that each bead now has a genomic 

position, an (X,Y,Z) coordinate, and a ChIP-seq peak height value. We applied k-NN regression 
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and PRIM to these data, with ChIP-seq peak height as outcome and (X,Y,Z) coordinates as 

covariates, to identify 3D hotspots. 

 

 

Figure 4.1: ChIP-seq peak height superposed on the 3D chromatin configuration 

reconstruction  

The 3D reconstruction is colored by (a) chromosome, or by ChIP-seq peak height for (b) Swi6, 

(c) Pol2Ser5p, and (d) Tup1. For (b-d), regions are colored red if their log2-normalized ChIP-seq 

peak height is greater than 1, otherwise they are colored yellow (except for the masked chr12 

rDNA repeat region, which is colored blue). 
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k-NN regression and PRIM 

 We adapted k-NN regression to the task of identifying 3D hotspots as follows. At fixed 

intervals along each chromosome (seed_interval), a bead is selected and is grouped with the k 

beads closest to it in Euclidean distance (see “Methods”). The mean ChIP-seq peak height is 

computed for each group and the groups are then ranked by mean ChIP-seq peak height. We 

performed inference as follows. We saved the top 10 hotspots by mean ChIP-seq peak height. 

Then, we permuted the ChIP-seq peak height values along each chromosome and re-ran k-NN 

regression on the permuted data and again saved the top 10 hotspots. We repeated the 

permutation process many times, and then compared the mean ChIP-seq peak height of the top 

10 hotspots for the observed data to that of the top 10 hotspots for the permutated data – 

comparing across each rank (see “Methods”). 

 The key tuning parameter is k, which governs the extent of local averaging, which we 

tuned as follows: take the setting (out of k = 25, 50, 75, 100, 125, or 150 beads) where the 

median Holm-adjusted p-value of the top 10 hotspots is lowest and where the mean “fraction 

interchromosomal” of the top 10 hotspots is greater than zero (“fraction interchromosomal” is 

the proportion of each hotspot that is not composed of the predominate chromosome). We started 

with k=25 as the smallest option since the 3D hotspots elicited for smaller values of k were 

mostly comprised of single genomic regions. Similarly, we conditioned that the selection of k 

must have a mean fraction interchromosomal of the top 10 hotspots greater than zero so that at 

least some interchromosomal 3D hotspots could be recovered.   

 PRIM seeks to identify hotspots by sequentially and strategically paring away data 

regions so that the average outcome over the remaining data is elevated. At each iteration, a 

fraction of the beads (peel.alpha) are peeled off the reconstruction by evaluating the extremal 
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slices orthogonal to each of the coordinate axes and removing data from whichever slice results 

in the highest mean ChIP-seq peak height for the remaining beads. This process is continued 

until a prescribed minimum number of beads (min_beads) remains. The resultant region can be 

enlarged to correct potential overshoot by pasting additional beads on to the region (via 

paste.alpha, which is smaller than peel.alpha) if that increases the mean ChIP-seq peak height 

(see “Methods”). At this point, a PRIM region or “box” has been identified. The beads 

comprising this box are then excluded and the entire procedure is repeated to identify additional 

boxes. We performed inference as follows: for each PRIM box, we preserved the beads 

comprising that box, then permuted ChIP-seq peak height values along each chromosome, and 

computed the mean ChIP-seq peak height of the box with the permuted data to generate a null 

referent distribution for estimating a p-value (see “Methods”). We tuned min_beads for PRIM 

using the same procedure as for tuning k for k-NN regression. 

 

3D hotspots identified for Swi6 

 Swi6 is a component of two different transcription factor complexes: SBF (composed of 

Swi6 and the sequence-specific transcription factor Swi4) and MBF (composed of Swi6 and the 

sequence-specific transcription factor Mbp1)139,140. SBF and MBF regulate genes that function in 

G1/S (e.g. cell growth genes, DNA synthesis genes)139,140.  

 In accordance with our criterion we selected k=50 for k-NN regression of Swi6 peak 

height on the 3D genome reconstruction. Table 4.1 lists the top 10 resulting Swi6 3D hotspots, of 

which three were significant after multiple testing correction (see “Methods”). We focus on one 

of these significant Swi6 3D hotspots to illustrate the potential of such hotspot elicitation.  
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 The 1st-ranked Swi6 3D hotspot from k-NN (k=50) regression contains a region from 

chromosome 7 (chr7) and a region from chr8 (Figure 4.2). Notably, each of these regions 

contains one of the 207 Swi6 target genes previously identified in a Swi6 ChIP-on-chip 

analysis139. The first region contains the cell adhesion mucin gene MSB2141. The second region 

contains the ergosterol (cell membrane sterol) biosynthesis gene ERG11142. 

 Next, we applied PRIM (min_beads=25, selected in accordance with the tuning criterion 

above) to the 3D genome reconstruction overlaid with Swi6 peak height. Table 4.2 lists the top 

10 resulting Swi6 3D hotspots, all of which were significant after multiple testing correction. 

Encouragingly, two of the genomic regions in the 1st-ranked (tied) Swi6 3D hotspot from PRIM 

(Figure 4.3) are the same as those in the 1st-ranked Swi6 3D hotspot from k-NN regression 

(MSB2 on chr7 and ERG11 on chr8). 

 Thus, k-NN regression and PRIM both identified a significant and corresponding Swi6 

3D hotspot. This 3D hotspot is comprised of genomic regions from different chromosomes that 

contain known Swi6 target genes. As noted, identification of such regions absent a 3D 

reconstruction – in particular from the native interaction frequencies – is prohibitive due to the 

vastness of the attendant search space.  
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Rank Beads Genomic regions 
(by chromosome)  

Mean ChIP-seq 
Peak Height 

p-value 
(Holm) 

1 50 chr 7;8    0.37 3.3e-02* 
2 50 chr 4;4;4 0.36 3.3e-02* 
3 50 chr 9;11 0.37 4.3e-02* 
4 50 chr 4;12 0.37 6.9e-02 
5 50 chr 15 0.39 8.9e-02 
6 50 chr 4;4 0.38 8.9e-02 
7 50 chr 7;8;8 0.42 8.9e-02 
8 50 chr 15 0.40 8.9e-02 
9 50 chr 4;12 0.43 9.5e-02 

10 50 chr 2 0.44 1.5e-01 
 

Table 4.1: The top 10 Swi6 3D hotspots from k-NN (k=50) regression  

The top 10 hotspots (ranked by raw p-value). Holm-adjusted p-values are shown (asterisks: 

p<0.05). Genomic regions comprising the hotspot are listed by chromosome. Regions from the 

same chromosome are listed separately when their gap is greater than 50 kilobases. 
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Figure 4.2: Genomic regions comprising the 1st-ranked Swi6 3D hotspot from k-NN (k=50) 

regression 

This 3D hotspot contains one region from chr7 and one region from chr8. For each region, the 

top panel shows the log2-normalized ChIP-seq peak height in that region (gray background) and 

in 1-kb of flanking sequence (white background). For each region, the bottom panel shows the 

genes in that region by their names, genomic positions, and orientations. The genes MSB2 and 

ERG11 (highlighted in red) were previously identified as significant Swi6 target genes in a 

ChIP-on-chip analysis139. 
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Rank Beads Genomic regions 
(by chromosome) 

Mean ChIP-seq 
Peak Height 

p-value 
(Holm) 

1 25 chr 7;8;16 0.82 6.4e-04* 
1 29 chr 10;10;15 0.74 6.4e-04* 
1 25 chr 12;15;15 0.92 6.4e-04* 
1 31 chr 6;6;14 0.68 6.4e-04* 
1 25 chr 12 0.87 6.4e-04* 
6 31 chr 2;2;2;2 0.64 3.2e-03* 
7 25 chr 14;14;14 0.69 1.1e-02* 
8 30 chr 15;15;15 0.62 1.4e-02* 
9 25 chr 1;2 0.66 1.6e-02* 

10 28 chr 13;15 0.63 2.8e-02* 
 

Table 4.2: The top 10 Swi6 3D hotspots from PRIM (min_beads=25) 

The top 10 hotspots (ranked by raw p-value). Holm-adjusted p-values are shown (asterisks: 

p<0.05). Genomic regions comprising the hotspot are listed by chromosome. Regions from the 

same chromosome are listed separately when their gap is greater than 50 kilobases. 
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Figure 4.3: Genomic regions comprising the 1st-ranked Swi6 3D hotspot (chr 7;8;16) from 

PRIM (min_beads=25) 

This 3D hotspot contains one region from chr7, one region from chr8, and one region from 

chr16. For each region, the top panel shows the log2-normalized ChIP-seq peak height in that 

region (gray background) and in 1-kb of flanking sequence (white background). For each region, 

the bottom panel shows the genes in that region by their names, genomic positions, and 

orientations. The genes MSB2 and ERG11 (highlighted in red) were previously identified as 

significant Swi6 target genes in a ChIP-on-chip analysis139.  
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3D hotspots identified for Pol2Ser5p   

 Pol2Ser5p is a marker of the active transcriptional machinery143. We applied k-NN 

regression (k=75, as selected by our tuning criterion) to the 3D genome reconstruction overlaid 

with Pol2Ser5p peak height. Table 4.3 lists the top 10 resulting Pol2Ser5p 3D hotspots, all of 

which were significant after multiple testing correction. We showcase one of the most significant 

of these Pol2Ser5p 3D hotspots. This 3D hotspot contains three genomic regions from chr10 and 

one genomic region from chr13 (Figure 4.4). Notably, the latter three of these four regions 

contain genes that function in vacuole transport or vesicle transport126,144: PEP8 (region 2)145, 

VPS55 (region 3)146, and TVP18 (region 4)147 (Figure 4b-d). The second region (Figure 4b) also 

contains snR60148, a non-coding RNA that functions in RNA binding/processing126,144. 

 Next, we applied PRIM (min_beads=75, as selected by our tuning criterion) to the 3D 

genome reconstruction superposed with Pol2Ser5p peak height. Table 4.4 lists the top 10 

resulting Pol2Ser5p 3D hotspots, of which seven were significant after multiple testing 

correction. Again there is concordance between methods with three of the genomic regions in the 

1st-ranked Pol2Ser5p 3D hotspot from PRIM (Figure 4.5) being the same as those in the 1st-

ranked (tied) Pol2Ser5p 3D hotspot from k-NN regression.  

 This top ranked Pol2Ser5p 3D hotspot from PRIM also contains multiple genes that 

function in vacuole transport or vesicle transport126,144 from different genomic regions: VPS55 

(region 4)146, TVP18 (region 5)147, and ATG4 (region 6)149. Additionally, it contains multiple 

genes that function in RNA binding/processing126,144 from different genomic regions: snR60 

(region 2)148, TMA22 (region 3)150, SQS1 (alias PFA1; region 6)151, SSU72 (region 6)152, POP1 

(region 6)153, and NOP15 (region 7)154. 
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 Thus, k-NN regression and PRIM both identified a significant and corresponding 

Pol2Ser5p 3D hotspot. This 3D hotspot is comprised of distal genomic regions that contain 

functionally related genes.  

 

 

 

 

Rank Beads Genomic regions 
(by chromosome) 

Mean ChIP-seq 
Peak Height 

p-value 
(Holm) 

1 75 chr 10;10;10;13 0.44 8.6e-04* 
1 75 chr 3;12;16;16 0.39 8.6e-04* 
3 75 chr 15 0.49 1.2e-03* 
4 75 chr 13;13;13 0.52 1.2e-03* 
5 75 chr 15;15;15 0.39 1.3e-03* 
6 75 chr 15;15;15 0.54 1.9e-03* 
7 75 chr 15;15;15 0.44 1.9e-03* 
8 75 chr 15;15;15;15 0.39 1.9e-03* 
9 75 chr 13;13;13;13 0.40 1.9e-03* 

10 75 chr 13;13;13;13 0.56 2.8e-03* 
 

Table 4.3: The top 10 Pol2Ser5p 3D hotspots from k-NN (k=75) regression  

The top 10 hotspots (ranked by raw p-value). Holm-adjusted p-values are shown (asterisks: 

p<0.05). Genomic regions comprising the hotspot are listed by chromosome. Regions from the 

same chromosome are listed separately when their gap is greater than 50 kilobases. 
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Figure 4.4: Genomic regions comprising the 1st-ranked Pol2Ser5p 3D hotspot (chr 

10;10;10;13) from k-NN (k=75) regression  

This 3D hotspot contains three regions from chr10 and one region from chr13. For each region, 

the top panel shows the log2-normalized ChIP-seq peak height in that region (gray background) 

and in 1-kb of flanking sequence (white background). For each region, the bottom panel shows 

the genes in that region by their names, genomic positions, and orientations. The genes PEP8, 

VPS55, and TVP18 (highlighted in red) function in vacuole transport or vesicle transport. The 

gene snR60 (highlighted in blue) functions in RNA binding/processing. 
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Rank Beads Genomic regions 
(by chromosome) 

Mean ChIP-seq 
Peak Height 

p-value 
(Holm) 

1 82 chr 10;10;10;10;13;14;14 0.65 2.3e-04* 
2 77 chr 12;12 0.53 1.6e-03* 
3 78 chr 9;9;15 0.49 4.2e-03* 
4 78 chr 10;10;10 0.48 5.1e-03* 
5 91 chr 12;15;15;16 0.45 6.4e-03* 
6 75 chr 5;5;5;10;16 0.51 1.1e-02* 
7 99 chr 2;7;8;13 0.37 2.4e-02* 
8 76 chr 4;7;12;15;15;15;15 0.42 5.3e-02 
9 75 chr 9;10;11;11 0.42 7.9e-02 

10 75 chr 2;2;2;2 0.37 9.2e-02 
 

Table 4.4: The top 10 Pol2Ser5p 3D hotspots from PRIM (min_beads=75) 

The top 10 hotspots (ranked by raw p-value). Holm-adjusted p-values are shown (asterisks: 

p<0.05). Genomic regions comprising the hotspot are listed by chromosome. Regions from the 

same chromosome are listed separately when their gap is greater than 50 kilobases. 
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Figure 4.5: Genomic regions comprising the 1st-ranked Pol2Ser5p 3D hotspot from PRIM 

(min_beads=75; legend continued on next page) 
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This 3D hotspot contains four regions from chr10, one region from chr13, and two regions from 

chr14. For each region, the top panel shows the log2-normalized ChIP-seq peak height in that 

region (gray background) and in 1-kb of flanking sequence (white background). For each region, 

the bottom panel shows the genes in that region by their names, genomic positions, and 

orientations. The genes VPS55, TVP18, and ATG4 (highlighted in red) function in vacuole 

transport or vesicle transport. The genes snR60, TMA22, SQS1, SSU72, POP1, and NOP15 

(highlighted in blue) function in RNA binding/processing. 

 

 

 

3D hotspots identified for Tup1 

 Tup1 is a transcriptional repressor that mediates glucose repression in S. cerevisiae155. 

Tup1 also represses genes involved in hypoxia response, DNA damage response, and mating 

type switch155. Tup1 does not bind DNA directly, but is recruited by several sequence-specific 

transcription factors155. 

 We applied k-NN regression (with k=50 selected by our tuning criterion) to the 3D 

genome reconstruction overlaid with Tup1 peak height. Table 4.5 lists the top 10 resulting Tup1 

3D hotspots, all of which were significant after multiple testing correction. We highlight one of 

these significant Tup1 3D hotspots that contains two distal regions from chr4 that separated by 

>400 kilobases. Notably, both of these regions contain one of the 149 genes that previous 

microarray analyses identified as significantly de-repressed in tup1E463A mutants156 (Figure 4.6). 

The first region contains the gene NRG1, which encodes a transcription factor that recruits 

Tup1157 and that is glucose-repressed itself158 perhaps via auto-regulation158. The second region 

contains the gene YAP6, which also encodes a transcription factor that recruits Tup1159 and for 

which similar auto-regulation would be plausible.  
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 Next, we applied PRIM (with min_beads=75 selected by our tuning criterion) to the 3D 

genome reconstruction overlaid with Tup1 peak height. Table 4.6 lists the top 10 resulting Tup1 

3D hotspots, of which nine were significant after multiple testing correction. Two of the genomic 

regions in the 4th-ranked Tup1 3D hotspot from PRIM (Figure 4.7) are the same as those in the 

1st-ranked (tied) Tup1 3D hotspot from k-NN regression (containing NRG1 and YAP6). 

 Thus, k-NN regression and PRIM both identified a significant and corresponding Tup1 

3D hotspot. This 3D hotspot is comprised of distal genomic regions that contain genes known to 

be regulated by Tup1.  

 

 

 

Rank Beads Genomic regions Mean ChIP-seq 
Peak Height 

p-value 
(Holm) 

1 50 chr 12;16 0.73 1.0e-05* 
1 50 chr 15;15 0.43 1.0e-05* 
1 50 chr 4;4 0.43 1.0e-05* 
1 50 chr 15;15  0.43 1.0e-05* 
1 50 chr 15;15;15;15 0.42 1.0e-05* 
1 50 chr 12;12 0.41 1.0e-05* 
7 50 chr 12;12 0.44 1.6e-05* 
8 50 chr 5;15 0.45 1.3e-04* 
9 50 chr 12;12;12 0.47 1.3e-04* 

10 50 chr 12;16 0.47 2.8e-04* 
 

Table 4.5: The top 10 Tup1 3D hotspots from k-NN (k=50) regression 

The top 10 hotspots (ranked by raw p-value). Holm-adjusted p-values are shown (asterisks: 

p<0.05). Genomic regions comprising the hotspot are listed by chromosome. Regions from the 

same chromosome are listed separately when their gap is greater than 50 kilobases.  
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Figure 4.6: Genomic regions comprising the 1st ranked Tup1 3D hotspot (chr 4;4) from  

k-NN (k=50) regression  

This 3D hotspot contains two regions from chr4. For each region, the top panel shows the log2-

normalized ChIP-seq peak height in that region (gray background) and in 1-kb of flanking 

sequence (white background). For each region, the bottom panel shows the genes in that region 

by their names, genomic positions, and orientations. The genes NRG1 and YAP6 (highlighted in 

red) were previously identified as significantly de-repressed in a microarray analysis of tup1-

mutants156. 
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Rank Beads Genomic regions Mean ChIP-seq 
Peak Height 

p-value 
(Holm) 

1 81 chr 4;4;12;16  0.48 2.2e-04* 
1 77 chr 4;10;12;12;16 0.45 2.2e-04* 
1 77 chr 15;15;15;15 0.42 2.2e-04* 
4 75 chr 4;4;10;16 0.37 4.4e-04* 
5 77 chr 2;2;8;15 0.36 6.5e-04* 
6 75 chr 15;15;15 0.35 4.8e-03* 
7 78 chr 10;10;13;13;13;13 0.32 6.7e-03* 
8 77 chr 2;7;7;7 0.29 1.3e-02* 
9 78 chr 4;4 0.29 3.2e-02* 

10 86 chr 4;4;10;10;12;16 0.26 7.2e-02 
 

Table 4.6: The top 10 Tup1 3D hotspots from PRIM (min_beads=75) 

The top 10 hotspots (ranked by raw p-value). Holm-adjusted p-values are shown (asterisks: 

p<0.05). Genomic regions comprising the hotspot are listed by chromosome. Regions from the 

same chromosome are listed separately when their gap is greater than 50 kilobases. 
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Figure 4.7: Genomic regions comprising the 4th ranked Tup1 3D hotspot from PRIM 

(min_beads=75) 

This 3D hotspot contains two regions from chr4, one region from chr10, and one region from 

chr16. For each region, the top panel shows the log2-normalized ChIP-seq peak height in that 

region (gray background) and in 1-kb of flanking sequence (white background). For each region, 

the bottom panel shows the genes in that region by their names, genomic positions, and 

orientations. The genes NRG1 and YAP6 (highlighted in red) were previously identified as 

significantly de-repressed in a microarray analysis of tup1-mutants156. 
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Sensitivity of PRIM results to orientation of the 3D genome reconstruction 

 The results of k-NN regression are invariant to rotations of the 3D genome 

reconstruction, an important attribute given that the 3D genome reconstruction is coordinate-free: 

its orientation with respect to the X, Y, and Z axes is arbitrarily set. On the other hand, because 

PRIM operates by peeling off data points orthogonally to the X, Y, and Z axes at each iteration, 

its results depend on the (arbitrary) orientation of the 3D genome reconstruction. Accordingly, 

we assessed the sensitivity of the PRIM results to rotations of the 3D genome reconstruction. 

 We applied a rotation matrix to the original 3D genome reconstruction to generate six 

rotated 3D genome reconstructions: the three possible combinations of two-angle 45-degree 

rotations, and the three possible combinations of two-angle 315-degree rotations. We chose 45 

and 315 degrees so that the resulting rotated 3D reconstructions would not be orthogonal to the 

original 3D reconstruction, and so that the outcome of this analysis would provide a 

representation of the orientation dependence of the original PRIM results. 

 We (separately) overlaid the six rotated 3D genome reconstructions with the ChIP-seq 

peak height for each input and then applied PRIM using the same setting of min_beads as 

previously. For each ChIP-seq input, we took the beads comprising the PRIM hotspot illustrated 

in the manuscript and then found the top rank by p-value of the PRIM hotspots from rotated 3D 

reconstructions in which these beads were present.  

  For Swi6, the top ranked PRIM hotspots from the six rotated 3D reconstructions in which 

beads from the original hotspot were present were ranked 9 (out of 650), 48 (out of 632), 29 (out 

of 667), 40 (out of 661), 10 (out of 685), and 1 (out of 615; Table 4.7). For Pol2Ser5p, the top 

ranked PRIM hotspots from the six rotated 3D reconstructions in which beads from the original 

hotspot were present were ranked 6 (out of 210), 1 (out of 218), 7 (out of 208), 16 (out of 205), 
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13 (out of 224), and 2 (out of 210; Table 4.8). For Tup1, the top ranked PRIM hotspots from the 

six rotated 3D reconstructions in which beads from the original hotspot were present were ranked 

7 (out of 215), 2 (out of 212), 1 (out of 207), 1 (out of 210), 20 (out of 222), and 8 (out of 227; 

Table 4.9). 

 If we consider a rank ≤10 as an acceptable level of orientation dependence (i.e. there 

would at least be the opportunity for some of the same genomic regions to be recovered in 

downstream biological analyses), then these results indicate only modest orientation dependence 

of the PRIM results for Pol2ser5p and Tup1, with greater dependence for Swi6 although, even 

then, there is considerable stability of identified regions over the rotations (note: the results for 

Swi6 have a greater total number of PRIM boxes, since our tuning criterion selected a smaller 

value of min_beads for Swi6 than for Pol2Ser5p and Tup1). 

   

 

 

Rotation 
x, y, z 

Top Rank 
(Number of Boxes) 

0, 0, 0 1 (out of 644) 
45, 45, 0 9 (out of 650) 
45, 0, 45 48 (out of 632) 
0, 45, 45 29 (out of 667) 
315, 315, 0 40 (out of 661) 
315, 0, 315 10 (out of 685) 
0, 315, 315 1 (out of 615) 

 

Table 4.7: Top box-ranks of beads from the original Swi6 PRIM 3D hotspot (highlighted in 

the manuscript) when PRIM (min_beads = 25) is applied to rotated 3D reconstructions 
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Rotation 
x, y, z 

Top Rank 
(Number of Boxes) 

0, 0, 0 1 (out of 224) 
45, 45, 0 6 (out of 210) 
45, 0, 45 1 (out of 218) 
0, 45, 45 7 (out of 208) 
315, 315, 0 16 (out of 205) 
315, 0, 315 13 (out of 224) 
0, 315, 315 2 (out of 210) 

 

Table 4.8: Top box-ranks of beads from the original Pol2Ser5p PRIM 3D hotspot 

(highlighted in the manuscript) when PRIM (min_beads = 75) is applied to rotated 3D 

reconstructions 

 

 

 

 

 

 

Rotation 
x, y, z 

Top Rank 
(Number of Boxes) 

0, 0, 0 1 (out of 221) 
45, 45, 0 7 (out of 215) 
45, 0, 45 2 (out of 212) 
0, 45, 45 1 (out of 207) 
315, 315, 0 1 (out of 210) 
315, 0, 315 20 (out of 222) 
0, 315, 315 8 (out of 227) 

 

Table 3.9: Top box-ranks of beads from the original Tup1 PRIM 3D hotspot (highlighted in 

the manuscript) when PRIM (min_beads = 75) is applied to rotated 3D reconstructions 
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Stability of k-NN regression and PRIM results over parameter settings 

 Though the results of PRIM depend on the 3D genome reconstruction’s orientation 

(unlike the rotationally invariant kNN regression results), PRIM is more adaptive with respect to 

the extent of elicited 3D hotspots than kNN regression. The reason for this is that the choice of k 

specified for kNN regression is prescriptive: all resulting 3D hotspots will contain exactly k 

beads. Moreover, results corresponding to differing values of k must be obtained enumeratively: 

there is no means of updating findings from one value to another.  Conversely, setting min_beads 

for PRIM only dictates the minimum number of beads in each 3D hotspot with expansion via the 

subsequent pasting steps. This putative recovery via pasting suggests starting with small settings 

of min_beads but on account of interplay with pasting and peeling parameters, along with 

computational considerations, exploration of min_beads on results is still warranted. We 

explored the sensitivity of the results to decreasing paste.alpha below the default setting (0.01): 

this had minimal impact of the results.   

 Accordingly, we assessed the stability of the downstream biological findings of the 3D 

hotspots illustrated in the manuscript over settings of k for k-NN regression and settings of 

min_beads for PRIM. For each ChIP-seq input and each algorithm, we determined which 

settings of k or min_beads (out of 25, 50, 75, 100, 125, and 150; see Figure 4.8) yielded a 3D 

hotspot that contains at least two of the same genes of interest (from at least two distinct genomic 

regions) as the 3D hotspot illustrated in the manuscript above for that ChIP-seq input. These 

results are depicted in Table 4.10. 

 For Swi6 with k-NN regression, k=50 was the only setting that identified a significant 3D 

hotspot containing the genes of interest MSB2 (chr7) and ERG11 (chr8). For Swi6 with PRIM, 

multiple settings of min_beads (25, 75, and 150) identified a significant 3D hotspot containing 
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these two genes. For Pol2Ser5p with k-NN regression, k=75 was the only setting that identified a 

significant 3D hotspot containing the genes highlighted previously from chr10, chr13, and chr14 

that function in vacuole transport or RNA binding/processing. For Pol2Ser5p with PRIM, 

multiple settings of min_beads (75, 100, 125, and 150) identified a significant 3D hotspot 

containing at least two of these genes from distinct genomic regions. For Tup1 with k-NN 

regression, multiple settings of k (50, 100, and 150) identified a significant 3D hotspot 

containing the genes of interest NRG1 and YAP6. For Tup1 with PRIM, min_beads=75 was the 

only setting that identified a significant 3D hotspot containing these two genes. Thus, for two out 

of the three ChIP-seq inputs, the downstream biological findings of the 3D hotspot were more 

stable over parameter settings for PRIM than for k-NN regression.  
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Figure 4.8: Parameter tuning for k-NN regression and PRIM  

Top row: tuning k for k-NN regression. Bottom row: tuning min_beads for PRIM. The values of 

two variables are shown over a range of settings of k or min_beads. Left y-axis (- log10 scale): 

the median Holm-adjusted p-value of the top 10 hotspots (for 105 permutations). Right y-axis: 

the mean fraction interchromosomal of the top 10 hotspots (“fraction interchromosomal” is the 

proportion of each hotspot that is not composed of the predominant chromosome). The selected k 

or min_beads is shown in bold on the x-axis for each ChIP-seq input: (a) Swi6, (b) Pol2Ser5p, 

(c) Tup1. 
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  k or min_beads 
  
Swi6 k-NN regression 50 

PRIM 25, 75, 150 
Pol2Ser5p k-NN regression 75 

PRIM 75, 100, 125, 150 
Tup1 k-NN regression 50, 100, 150 

PRIM 75 
 

Table 4.10: Stability of downstream biological findings over settings of k or min_beads 

For each ChIP-seq input and each algorithm, the setting of k or min_beads used in the 

manuscript to showcase downstream biological findings is shown in bold. Additional settings of 

k or min_beads (out of 25, 50, 75, 100, 125, 150) are listed if they yield the same downstream 

biological finding: i.e. a significant 3D hotspot containing at least two of the same genes of 

interest from at least two distinct genomic regions.  

 

 

  

4.5 Conclusions 

 For each ChIP-seq input superposed on the 3D genome reconstruction, k-NN regression 

and PRIM identified a significant and corresponding 3D hotspot of ChIP-seq peak height. These 

3D hotspots are comprised of regions that are either intra-chromosomally distal or from multiple 

chromosomes and contain known target genes of the transcriptional regulator (in the case of 

Swi6 and Tup1) or contain functionally related genes (in the case of Pol2Ser5p).  

 An important attribute of k-NN regression is that its results are invariant to rotations of 

the (coordinate-free) 3D genome reconstruction, while the results of PRIM depend on the 

orientation of the 3D reconstruction because it peels off beads orthogonally to the X, Y, and Z 

axes. On the other hand, PRIM is arguably more robust to parameter tuning than k-NN 
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regression because it performs a pasting step for each 3D hotspot identified: coupling this with 

prescription of a small value for the peeling parameter enables efficient and adaptive exploration 

of an extensive range of candidate hotspot solution regions. The orientation dependence of PRIM 

can be assessed by re-applying it to (disparate) rotated 3D genome reconstructions.  It is of 

course possible to obtain rotational invariance by performing an initial rotation of the 3D genome 

coordinates to, say, its principal axes.  However, the attendant PRIM solution is still dependent 

on the resultant coordinate reference frame.  

 Other techniques could potentially be used to identify 3D hotspots.  Recursive 

partitioning or tree-structured regression methods58 can isolate regions by successive splitting.  

However, it was partly to overcome the top-down greediness of these approaches that PRIM was 

advanced.  Like PRIM these methods are not invariant under rotation but such invariance can be 

attained using splits that are linear combinations of the coordinate axes, but due to computational 

expensive and instability these methods are disfavored58. Approaches based on algebraic 

topology and in particular persistent homology and Betti number barcodes160 have possible 

utility in eliciting 3D hotspots but are undeveloped from an inferential perspective. 

 We have emphasized that effective identification of 3D hotspots is contingent on 

exploiting a 3D reconstruction and unattainable from searching combinations of raw (pairwise) 

contacts (interaction frequencies) due to combinatorial explosion therein.  Conversely, hotspots 

so obtained are conditional on the 3D reconstruction used and gauging the accuracy or even the 

reproducibility thereof remains challenging124. Accuracy assessments have made recourse to 

agreements with select FISH markers (e.g. 45,161), while other approaches use FISH 

measurements to calibrate Hi-C derived distances162. However, there remains a sizeable disparity 

in the resolution of these data types and unless FISH markers happened to coincide with 
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emergent hotspots such evaluations may not be informative.  The emergence of Hi-C assays for 

single cell data120 allows for the possibility of a series of carefully designed experiments with 

associated 3D genome reconstructions to at least better address questions of reconstruction 

reproducibility.  Even with such developments validation of putative 3D hotspots obtained as 

described herein, will require recourse to custom experimentation. 

  

4.6 Methods 

Hi-C contact data normalization and generating a 3D reconstruction 

 The S. cerevisiae Hi-C contact data (HindIII, pre-FDR, no masking) from 43 

(Supplementary Data) was downloaded from https://noble.gs.washington.edu/proj/yeast-

architecture/sup.html. We normalized this contact data for GC content, mappability, and 

fragment length by applying HiCNorm112 genome-wide (chromosome by chromosome) as per 

135. The HiCNorm source code was downloaded from 

http://www.people.fas.harvard.edu/~junliu/HiCNorm/ (last update: “08.05.2012”). We filtered 

by interaction frequency to retain the top contacts and then generated a new 3D reconstruction 

from this normalized and filtered contact data using the constrained optimization approach from 

43. 

ChIP-seq data normalization 

 The raw ChIP-seq dataset from 136, which contains three input samples (Swi6, Pol2Ser5p, 

and Tup1) and a mock immunoprecipitation (IP) control sample (DMSO, Illumina), was 

obtained from GEO (dataset GSE51251; 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51251). We converted the raw 

sequencing SRA data to FASTQ format using “fastq-dump” version 2.3.4 in the Sequence Read 
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Archive (SRA) Toolkit163. We aligned the reads to the S. cerevisiae reference genome (sacCer2) 

using Bowtie 2 164 version 2.2.1 with default parameters and then converted the SAM output to 

BAM format using SAMtools 165 version 0.1.19-44428cd. We filtered the sequencing reads 

(using the R package “ShortRead” 166 version 1.20.0 with a custom filter) to retain only those 

with 2 or less expected errors per read: given a Phred quality score q for each base call, the 

probability that a base call is erroneous is p = 10 (- q / 10), which is then summed over the bases in 

the read to give the expected errors per read. We deduplicated the reads (using “ShortRead” 166) 

to control for PCR amplification bias50,51. We masked the highly repetitive chr12 rDNA region 

(using “ShortRead” 166 with a custom filter) because of the difficulty of aligning short reads 

there. We log2-normalized each ChIP-seq sample to the mock IP control using the function 

get.smoothed.enrichment.mle() in the R package “spp” 167 version 1.11 with a 200 basepair (bp) 

bandwidth and 100 bp stepsize. “spp” was downloaded from 

http://compbio.med.harvard.edu/Supplements/ChIP-seq/. 

 We performed a smoothing step to control for the local dependency of the signal in linear 

genomic space, since we are interested in identifying 3D hotspots of physically proximal yet 

genomically distal ChIP-seq peaks in subsequent analyses.  Specifically, we smoothed each 

normalized ChIP-seq signal along each chromosome arm using SuperSmoother168, which is 

implemented as supsmu() in R (version 3.0.2) package “stats”, with the span determined by 

cross-validation. We then took the residuals of each smoothed normalized signal — this 

constitutes the final “ChIP-seq peak height” that we proceeded to superpose onto the 3D 

chromatin configuration reconstruction. 
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Superposing ChIP-seq peak height on the 3D reconstruction 

 The 3D chromatin configuration reconstruction consists of a series of beads spaced along 

each chromosome in the genome; each bead has a genomic position and (X,Y,Z) coordinates. 

For each ChIP-seq input (Swi6, Pol2Ser5p, Tup1), we binned its peak height data (i.e. the 

residuals of the smoothed log2-normalized signal) such that each bin was centered on a bead. We 

then assigned to each bead the most extreme ChIP-seq peak height (positive or negative) from 

the bin centered on that bead. The result is a 3D chromatin configuration reconstruction overlaid 

with functional genomic data: each bead now has a genomic position, physical coordinates 

(X,Y,Z), and a ChIP-seq peak height value. We visualized this superposed 3D reconstruction in 

MacPyMOL 1.3 169 by first converting the data to the Protein Data Bank (PDB) file format170 

with the ChIP-seq peak height value rescaled as the temperature factor (B-factor) in the PDB file.    

 

k-Nearest Neighbor (k-NN) regression 

 We applied k-NN regression using the R package “FNN” 171 to identify hotspots in ChIP-

seq peak height superposed on the 3D reconstruction. k-NN regression is performed as follows. 

For each bead in the superposed 3D genome reconstruction, the function knn.index() returns the 

row indices of the k beads closest to the bead in Euclidean distance, and the function knn.reg() 

returns the mean ChIP-seq peak height of the beads corresponding to that k-NN group (the input 

bead and its k nearest neighbor beads). The k-NN groups are then ranked by mean ChIP-seq peak 

height, and the top 10 groups are retained for statistical inference (more below).  

 Rather than applying these functions to every bead in the superposed 3D reconstruction, 

we applied them to “seed” beads evenly spaced along each chromosome by seed_interval = 

0.2*k. The reason for this is to reduce redundancy in the top 10 k-NN groups and to allow 
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distinct 3D hotspots to be elicited (otherwise, the top 10 k-NN groups would primarily consist of 

genomically adjacent beads all corresponding to a single 3D hotspot). 

 Once the top 10 k-NN groups by mean ChIP-seq peak height have been identified, 

significance is then estimated by permutation. The ChIP-seq peak height values are permuted 

along each chromosome, k-NN regression is re-applied to the permuted data, and the top 10 

resulting k-NN groups are saved. This process is repeated for a total of 106 permutations. P-

values are estimated by comparing the mean ChIP-seq peak height of the k-NN groups from the 

observed data to the mean ChIP-seq peak height values of the k-NN groups from the permuted 

data along each rank. For example, the p-value of the third ranked k-NN group is estimated by 

comparing its mean ChIP-seq peak height to the mean ChIP-seq peak height values of the third 

ranked k-NN groups across all of the permutations. We Holm-adjusted the p-values for multiple 

testing.  

 

Patient Rule Induction Method (PRIM) 

 We applied PRIM using the R package “prim” 57 to identify hotspots in ChIP-seq peak 

height superposed on the 3D reconstruction. We applied prim.box() to the data (using the default 

settings peel.alpha=0.05 and paste.alpha=0.01). This returns statistics on each of the boxes 

identified (e.g. the number of beads in the box; the mean ChIP-seq peak height of the box; the 

(X,Y,Z) boundaries of the box). We then applied predict() to the output of prim.box() plus the 

original data, which returns the mapping of each bead to the appropriate PRIM box label (the 

PRIM boxes are numerically labeled; the largest numerical label is a placeholder for the beads 

that were not boxed).   
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 The superposed 3D reconstruction now has an additional column: each bead has a 

genomic position, physical (X,Y,Z) coordinates, a ChIP-seq peak height value, and a PRIM box 

number. We estimated the significance of all of the PRIM boxes (except for the placeholder) by 

permutations as follows. We preserved the mapping of beads to PRIM boxes, and then permuted 

the ChIP-seq peak height along each chromosome. Then we computed the mean ChIP-seq peak 

height for each PRIM box from the permuted data. We repeated this for a total of 106 

permutations. The p-value of each box was estimated by comparing its mean ChIP-seq peak 

height from the observed data to its mean ChIP-seq peak height values from the permuted data. 

We Holm-adjusted the p-values for multiple testing. 
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Chapter 5: Discussion 

 Throughout this dissertation, we have demonstrated that applying appropriate data 

preprocessing in conjunction with advanced supervised learning algorithms improves the 

interpretability of next-generation sequencing studies of chromatin structure and organization. 

Specifically, we focused on the preprocessing and analysis of histone modification ChIP-seq data 

(Chapter 2), of 3D genome reconstructions from Hi-C data (Chapter 3), or of both combined 

(histone modification ChIP-seq data superposed on 3D genome reconstructions; Chapter 4). In 

Chapter 2, we improved the preprocessing of ChIP-seq data compared to a previous study49 

(which used raw reads) by deduplicating reads to control for PCR amplification bias50,51, down-

sampling reads to control for variable sequencing depth51, and identifying stable nucleosome 

positions with NPS44. In Chapter 3, we improved the preprocessing of the Hi-C contact data 

compared to a previous study55 (which preceded the formalization of pipelines for redressing 

biases in Hi-C data108,111,112) by correcting for fragment length, GC content, and mappability with 

HiCNorm112. In Chapter 4, we similarly performed careful preprocessing of both the ChIP-seq 

data and Hi-C contact data before generating a 3D reconstruction and superposing ChIP-seq peak 

height onto the 3D reconstruction. A recent study applied clustering techniques to the contact 

pairs from Hi-C data based on epigenetic data172; however, this was not a focal analysis and it 

did not make use of 3D reconstructions.  

 In addition to improved data preprocessing, our analyses involved the application of 

advanced algorithms that emphasize downstream interpretation. In Chapter 2, we performed 

feature selection for classification by applying DMFS52, which (in contrast to enumerative 

feature generation, e.g., all k-mers), avoids the generation of abundant noise features and allows 

longer, potentially informative sequence features to be tested. We performed classification by 

applying Random Forests54, which, in contrast to the C4.5 (or any single) decision tree, has 
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likely predictive performance gains resulting from being an ensemble classifier, while still 

emphasizing interpretation by allowing the ranking of features by importance. In Chapter 3, we 

assessed the 3D localization of functional annotations by testing the significance of a test 

statistic: the Median of Pairwise Euclidean Distances (MPED). This was an improvement over 

previous analyses45, which assessed the enrichment of “close” pairs (following dichotomization 

of the data) and resulted in significance levels that varied by dichotomization threshold.  In 

Chapter 4, we adapted and applied to methodologies to analyze input data where each data point 

has a physical (X,Y,Z) coordinate paired with outcome value (ChIP-seq peak height) with the 

goal of identifying regions in 3-space for which the mean outcome is significantly elevated. Few 

if any existing methodologies seemed suited to this task. Our adaptations of k-NN regression and 

PRIM identified a significant and corresponding 3D hotspot for each ChIP-seq input analyzed.  

 As far as specific biological findings, in Chapter 2, we identified a significant and 

biologically meaningful DNA sequence feature associated with H2A/H4R3me2s: “TCCATT”, 

which is part of the consensus sequence of satellite II and III DNA74,75. This finding is consistent 

with a recently discovered biochemical mechanism: H4R3me2s provides a binding site for the 

DNA methyltransferase (Dnmt3a)70, which methylates satellite II and III DNA85-87. Appropriate 

data preprocessing was crucial to this discovery, as was the use a classification algorithm that 

allowed downstream ranking of the importance of individual features: Random Forests. 

Subsequent to our analyses, several studies have also employed Random Forests for other 

supervised learning / classification problems related to chromatin structure, for example: 

predicting chromatin boundaries from histone modification ChIP-seq data and Hi-C data173; 

predicting transcription factor binding from genome-wide, nucleotide-resolution DNA 

methylation data174; and predicting differentially expressed genes in lung cancer (based on RNA-
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seq analysis of lung cancer and adjacent healthy tissue) from DNA methylation data and histone 

modification ChIP-seq data175. 

 In addition, we demonstrated the added value of performing downstream biological 

analyses on 3D genome reconstructions rather than just on the Hi-C contact data. In Chapter 3, 

we detected sets of developmentally regulated genes in P. falciparum as significantly co-

localized with reconstruction-based assessment but not with contact-based assessment (the latter 

being inherently limited to detecting strictly pairwise interactions). In Chapter 4, we identified 

significant 3D hotspots in S. cerevisiae ChIP-seq peak height superposed on a 3D genome 

reconstruction, which were composed of multiple (two to seven) distal genomic regions. For 

Swi6, we identified a 3D hotspot containing two known Swi6 target genes on different 

chromosomes. For Pol2ser5p, we identified a 3D hotspot containing multiple genes that function 

in vacuole transport and RNA binding/processing. For Tup1, we identified a 3D hotspot 

containing two known Tup1-regulated genes from distal regions of chromosome 4. Having a 3D 

reconstruction to guide such analyses is crucial to discovering such multi-region functional 

nuclear hotspots; identifying them solely from the (pairwise) Hi-C contact matrix would be 

computationally prohibitive.  Nevertheless, realizing these advantages of performing 

downstream biological analyses on 3D genome reconstructions depends on the ability to generate 

a 3D reconstruction that is both accurate and consistent across experimental replicates (or from 

different restriction enzyme libraries). Statistical methods for gauging the consistency of 3D 

reconstructions have recently been advanced124, as have methods to improve the accuracy of the 

Hi-C data and 3D reconstructions by calibration with FISH data162.   

 The field of Hi-C data generation and analysis is progressing very rapidly and there are 

several notable recent advances. Many analyses to date, including ours, are based on interphase 



! 98 

cells of two model organisms that are haploid and have relatively small genomes (compared to 

human): S. cerevisiae and P. falciparum. Previously, the resolution of human Hi-C data had been 

relatively low because the larger genome size requires much greater sequencing depth. 

Nevertheless, a recent study obtained kilobase-resolution Hi-C data for nine human cell types by 

generating over five terabytes of sequence data176. Another challenge of mammalian Hi-C data 

analysis was the presence of diploid genomes; however, methods for inferring haplotypes from 

Hi-C data have been advanced121. Hi-C analysis of mitotic cells has recently been reported177, as 

has the first example of single cell Hi-C analysis120. Recent studies have also reinforced the value 

of Hi-C analysis to human disease research. Specifically, two studies applied Capture Hi-C to 

genomic regions that were significant in Genome-Wide Association Studies of diseases (but that 

had no nearby candidate genes) in order to identify distal interactions involving these 

regions178,179. 

 Beyond the specific findings reported in this dissertation, the analytic methods that we 

advanced can be applied to myriad other high-throughput data sets of chromatin structure and 3D 

organization by researchers in the future. The approach that we employed for classifying histone 

modifications – DMFS followed by Random Forests – could readily be applied to the ChIP-seq 

data available for dozens of other histone modifications to gain insight into their biological 

properties and functions. In addition, our adaption and application of k-NN regression and PRIM 

to identify 3D hotspots of ChIP-seq peak height superposed on a 3D genome reconstruction 

could be applied to any type of continuous functional genomic data (e.g. other ChIP-seq data or 

RNA-seq data) superposed on a 3D genome reconstruction. 
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