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Abstract 

Towards Comprehensive and Programmable Protein Mutagenesis 

by 

Sean A Higgins 

Doctor of Philosophy in Molecular and Cell Biology 

University of California, Berkeley 

Professor David F. Savage, Chair 

 

 A fundamental goal of protein biochemistry is to determine the sequence-function 

relationship, but the vastness of sequence space makes comprehensive evaluation of this 

landscape difficult. Advances in DNA synthesis and sequencing now allow researchers to assess 

the functional impact of thousands of amino acid substitutions in a single experiment, however, 

the quality and diversity of these mutations controls the breadth of knowledge gained by these 

emerging methods. Comprehensive and programmable protein mutagenesis is critical for 

understanding structure-function relationships and improving protein function. However, current 

techniques enabling comprehensive protein mutagenesis are based on PCR and require in vitro 

reactions involving specialized protocols and reagents. This has complicated efforts to rapidly 

and reliably produce desired comprehensive protein libraries. Here we demonstrate that plasmid 

recombineering is a simple and robust in vivo method for the generation of protein mutants for 

both comprehensive library generation as well as programmable targeting of sequence space. 

Using the fluorescent protein iLOV as a model target, we build a complete mutagenesis library 

and find it to be specific and comprehensive, detecting 99.8% of our intended mutations. We 

then develop a thermostability screen and utilize our comprehensive mutation data to rapidly 

construct a targeted and multiplexed library that identifies significantly improved variants, thus 

demonstrating rapid protein engineering in a simple protocol. 

 Beyond simple amino acid substitutions, protein topology is also well-established as a 

key mechanism by which large, complex multi-domain proteins evolve highly specialized 

functions. While rationally constructed protein deletions have long been essential to elucidating 

biochemical properties, current techniques are insufficient for a comprehensive approach. Here 

we develop a method for constructing fitness landscapes for even the largest and most complex 

proteins, comprehensively surveying functional deletions in the RNA-guided DNA binding 

protein dCas9, the foundation for powerful genome editing and modifying technologies. CRISPR 

proteins are highly complex with numerous distinct domains responsible for activities such as 

guide RNA binding, DNA recognition, DNA unwinding, specificity sensing and ultimately the 

cleavage of each DNA strand. We exploit the fitness landscape to revert functionality and step 

backward in domain evolution, comprehensively minimizing dCas9 and screening for an 

essential function.  We demonstrate the power of this technique by revealing the minimal RNA 

guided DNA binding module at 64% of the full CRISPR-Cas9 platform, providing many new 

opportunities for fusions and delivery. This exploration also uncovers evidence for a DNA 

unwinding mechanism in a domain heretofore viewed as dispensable in Cas9. These results 
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highlight the power of comprehensive protein deletions to clearly elucidate the boundaries of a 

central function. 

 Together, amino acid substitution and topological mutation (encompassing deletions, 

insertions, and circular permutations) comprise all possible genetic protein modifications. This 

work has served to develop simple and robust methods, which remain programmable and 

comprehensive, for both substitution and topological mutagenesis. The construction of high-

quality protein libraries is a foundational step for applications in the fundamentals of protein 

biochemistry, disease prediction, and protein engineering. Ultimately, understanding the general 

principles of protein sequence-function landscapes - enabled by massively parallel 

experimentation - will allow computational methods to synergize with programmable 

mutagenesis and vastly improve the search for novel fitness variants. 
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Abstract 

 

 A fundamental goal of protein biochemistry is to determine the sequence-function 

relationship, but the vastness of sequence space makes comprehensive evaluation of this landscape 

difficult. However, advances in DNA synthesis and sequencing now allow researchers to assess 

the functional impact of every single mutation in many proteins, but challenges remain in library 

construction and the development of general assays applicable to a diverse range of protein 

functions. This perspective briefly outlines the technical innovations in DNA manipulation which 

allow massively parallel protein biochemistry, then summarizes the methods currently available 

for library construction and the functional assays of protein variants. Areas in need of future 

innovation are highlighted with a particular focus on library construction, including in vivo 

mutagenesis methods and topological protein modifications. Assay development and the use of 

computational analysis is also discussed in effectively traversing the sequence-function landscape. 

Finally, applications in the fundamentals of protein biochemistry, disease prediction, and protein 

engineering are presented.  
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1.1 Protein science by DNA sequencing: how advances in molecular biology are 

accelerating biochemistry 

 

 Protein function is encoded in the sequence of amino acids making up the polypeptide 

chain, and decades of biochemical studies have sought to define the principles underlying the 

sequence-function relationship. Altering even a single amino acid, though, requires choosing 

from thousands of theoretical experiments due to the vast, combinatorial nature of sequence 

space, forcing the researcher to predict which mutations will be most informative (Mandecki 

1998). Mutational experiments are traditionally informed by biochemical principles and 

empirical data yet nonetheless often fail.  Recent advances in molecular biology, however, 

enable a comprehensive investigation of functional determinants by allowing every possible 

single mutation to be made and evaluated (Fowler et al. 2010). 

 Emerging approaches leverage advances in DNA sequencing and molecular biology to 

create massive libraries (e.g. >106) of mutant proteins, map the functional importance of each 

residue and, in some cases, to engineer enhanced function into proteins (Fowler and Fields 

2014). Such experiments generally consist of building a mutant library, challenging protein 

variants with some form of functional assay that preserves a genotype-phenotype link (either in 

vivo or in vitro), and leveraging the bandwidth of next-generation DNA sequencing (NGS) to 

quantitatively evaluate the function of each variant (Figure 1.1). Thus, questions in protein 

biochemistry are increasingly posed in the form of a DNA sequencing experiment. 

 The increased scope of massively parallel biochemistry experiments has led to a number 

of issues that must be resolved. The first experimental phase, library building, must take into 

account the available methods for constructing genetic diversity (Wrenbeck, Faber, and 

Whitehead 2017; Zheng, Xing, and Zhang 2017). As discussed below, molecular biology has 

progressed to the point where substitution libraries (i.e. where amino acids may be mutated, or 

substituted, with other amino acids) may be produced with high specificity and at moderate cost, 

but more complex libraries require specialized protocols. Once constructed, the library must be 

assayed. Conceptually, assays are designed in such a way that a protein variant’s function 

impacts its abundance within the population of other library members, which can be 

quantitatively defined as a term known as fitness (Araya and Fowler 2011). Linking function and 

fitness is recalcitrant to general solutions due to the diversity of protein functions (Wrenbeck, 

Faber, and Whitehead 2017), and assay development remains the lowest bandwidth stage in 

experimental design. Here, bandwidth refers to the maximum possible number of variants that 

can pass through an assay in a reasonable fashion. Assays can be categorized as either a selection 

or a screen. A selection refers to assays in which high fitness variants are enriched autonomously 

in cells through growth dependence, while screens rely on measurement and physical separation 

to enrich desired variants. Finally, the change in abundance, necessarily accomplished by 

competition between the variants, can be measured in the third phase: DNA sequencing. NGS 

allows the fitness evaluation of millions of protein variants simultaneously, under the assumption 

that the most enriched sequences correlate with the most functional variants (Fowler et al. 2011). 

The factors that determine the most functional variants will vary based on the assay, but 

generally include characteristics such as stability, catalytic activity, substrate affinity and 

specificity, and affinity. 

 This chapter will first outline the techniques currently available for high-throughput 

protein science, including recent advances in manipulating DNA and various options for 

massively parallel functional interrogation of proteins. The engaged reader is also referred to 
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recent reviews on systematic protein mutagenesis (Wrenbeck, Faber, and Whitehead 2017; 

Zheng, Xing, and Zhang 2017). The second section describes ways in which large experimental 

datasets can provide insight into biological questions about the fundamental properties of 

proteins (Fowler and Fields 2014), the consequences of human genetic variation (Shendure and 

Fields 2016), and the engineering of novel proteins for specific functions (Wrenbeck, Faber, and 

Whitehead 2017). 

 

1.2 Technical aspects of high throughput biochemistry 

 

 Proteins evolve via two different general mechanisms: mutagenic substitutions to 

individual amino acids and larger, topological changes to gene structure (Figure 1.2). From an 

experimental viewpoint, substitution mutagenesis is the better explored of the two and ranges 

from site directed mutagenesis (Hutchison et al. 1978) to recent innovations including deep 

mutational scanning experiments, where e.g. all possible single mutations across a gene can be 

evaluated (Araya and Fowler 2011; Fowler and Fields 2014). In contrast, topological changes 

such as insertions, deletions, gene duplications, and circular-permutations have received only 

limited experimental attention despite evidence that these mutations are central to the evolution 

of protein complexity (Bhattacharyya et al. 2006). For example, one conclusion of the human 

genome project was that the human proteome diversity arises from recombination of conserved 

domains into new protein architectures (Lander et al. 2001), similar to predictions of the Exon 

Theory of Genes (Gilbert 1987). Subsequent work found that many multi-domain proteins are 

the result of gene insertions (Aroul-Selvam, Hubbard, and Sasidharan 2004), and early efforts to 

create synthetic allosteric protein switches found success by utilizing domain insertion (Guntas 

and Ostermeier 2004; Guntas et al. 2005). Relatedly, it is now believed that the complexity and 

evolvability of eukaryotic cell signaling circuits results from the underlying modularity of 

protein domains (Bhattacharyya et al. 2006).  

 Two breakthroughs have allowed the development of a comprehensive mutagenesis 

approach to protein biochemistry. These innovations are the most recent in an exponentially 

increasing capacity to read and write DNA (Carr and Church 2009; Esvelt and Wang 2013). 

First, advances in DNA synthesis now allow the production of > 50,000 unique 200-mer 

oligonucleotides and have been used to synthesize dozens of genes, totaling tens of kilo-

basepairs (bp) of DNA, at a cost of < $0.01/bp of final synthesized sequence (Kosuri et al. 2011). 

The technology behind this throughput, Oligo Library Synthesis (OLS), is enabled by advances 

in massively parallel solid surface phosporamidite chemistry (LeProust et al. 2010), where side 

reactions are the limiting factor in synthesis fidelity and ultimately constrain oligonucleotide 

length. Future advances in synthesis chemistry will likely improve these economics. Second, the 

development of NGS enables routine sequencing of > 1 billion reads of 150 bp, at a cost of $7 

per million bp (Goodwin, Mcpherson, and Mccombie 2016). Key innovations of NGS include 

amplification of library fragments to allow sufficient signal for base-calling and the use of solid 

surfaces to enable massively parallel sequencing (Mardis 2013). The scale of NGS technologies 

is steadily advancing, with upcoming commercial systems capable of 10 billion high quality 

reads per run. One important technical limitation to overcome is that of sequencing read length. 

Epistasis cannot be detected, for example, if the linkage of two mutations lies further apart than 

the read length, which is typically 300 bp. Overcoming this issue requires either increasing the 

read length or generating a lookup table of variant sequences, and both these options are 

currently being pursued (Wrenbeck, Faber, and Whitehead 2017), but challenges remain. 
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Figure 1.1: Massively parallel investigations of protein function consist of three phases. First, libraries of protein 

variants must be constructed. These variants can contain mutations which consist of either amino acid substitutions 

or larger topological changes, such as insertions (shown), deletions, or circular permutations. Second, protein 

variants are evaluated for a specific function in an assay step. Broadly, an assay can consist of measurement and 

physical separation of desired variants in a screen, or growth of an organism harboring the protein variant where 

replication fitness is dependent on the target protein’s function. Finally, both the naïve library and libraries which 

have passed through an assay are sequenced by NGS to identify and enumerate variants contained within each. An 

enrichment ratio can then be calculated for each variant in order to quantitatively assign a fitness effect to those 

particular mutations. 

 

Systems enabling longer read length such as PacBio (Rhoads and Au 2015) and Nanopore 

(Loose 2017), for example, currently suffer from lower bandwidth and accuracy in comparison 

to NGS. 
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1.3 Substitution mutagenesis 
 

 There are a now a number of methods that allow programmed creation of protein libraries 

(Figure 1.2) (Wrenbeck, Faber, and Whitehead 2017; Zheng, Xing, and Zhang 2017). In general, 

libraries are built on an episomal replicon, such as a plasmid, so as to easily amplify and 

manipulate DNA, shuttle between hosts, and verify phenotype-genotype linkage through 

retransformation. Recently, several techniques including PALS (Kitzman et al. 2015), PFunkel 

(Firnberg and Ostermeier 2012), and Nicking Mutagenesis (Wrenbeck et al. 2016), have been 

developed to produce comprehensive substitution mutagenesis libraries in vitro by leveraging 

short oligonucleotide chemical synthesis coupled with downstream molecular biology. The 

engaged reader is referred to recent reviews on the topic (Wrenbeck, Faber, and Whitehead 2017; 

Zheng, Xing, and Zhang 2017). Additionally, recombineering (Copeland, Jenkins, and Court 

2001) in vivo presents an alternative approach for comprehensive substitution mutagenesis 

(Higgins, Ouonkap, and Savage 2017). Ultimately, it is likely that chemical synthesis methods, 

which offer control over DNA sequence composition, will be the optimal future choice for 

library generation. In this vein, DNA synthesis-based libraries have already begun to be applied 

to peptides, such as in a recent paper from the Baker group describing the computationally-

guided enumeration and assay of thousands of miniproteins (folded polypeptides less than 50 

amino acids) to investigate the sequence determinants of folding and stability(Rocklin et al. 

2017). The computational design of minimal proteins is sure to be a rich future area of 

biochemistry and is highlighted below.  

 An alternative emerging strategy for studying and improving protein is by the continuous 

introduction of mutations by site-specific mutators in vivo (Packer and Liu 2015). Although the 

methods above offer significant control over library composition, they are limited by ex vivo 

library creation and the need to transform the library into the desired cell type (i.e. limited 

transformation yield). Additionally, though it may change in the future, synthesis errors and 

oligo length remain a limitation for library construction. Mutagenesis methods that function 

entirely in vivo theoretically offer the largest library sizes, the least labor-intensive protocols, 

and greater accessibility in terms of cost and specialized reagents. However, targeted 

mutagenesis in vivo is considerably more difficult, as the origin of sequence diversity must be 

localized to a specific target area in the genome. Various existing approaches leverage an 

orthogonal error-prone polymerase (Fabret et al. 2000), a targeting glycosylase (Finney-

Manchester and Maheshri 2013), an error-prone Ty1 reverse transcriptase (Crook et al. 2016), 

phage-assisted continuous evolution (PACE) (Esvelt, Carlson, and Liu 2011), or a cytidine 

deaminase-Cas9 fusion (Komor et al. 2016) to accomplish mutagenesis at a particular target 

gene. Each of these methods suffers from significant drawbacks compared to in vitro protocols 

as detailed in a recent review (Zheng, Xing, and Zhang 2017). In general these approaches do not 

cover the full codon mutational space (Kitzman et al. 2015), are not programmable, and require 

significant customization.  

 

1.4 Topological mutagenesis 

 

 While substitution mutations can modify the existing function of a protein, topological 

changes – i.e. changes in connectivity - can introduce entirely new functions by taking large 

steps in sequence and functional space as is seen in the evolution of multi-domain proteins. For 

example, circular permutations are topological changes where a protein is split and the N-   
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Figure 1.2: A variety of mutagenesis methods exist for constructing large libraries of protein variants, and can be 

categorized as either substitution, topological, or in vivo mutagenesis. Substitution methods based on synthetic 

oligonucleotides enable programmable control over library composition and bias, and have been used to build 

comprehensive substitution libraries. Note that random mutagenesis methods cannot cover the entirety of amino acid 

space due to the unlikelihood of triplet codon mutation. The combinatorial nature of sequence space results in an nm 

library size for substitution libraries, where n is the total number of possible mutations (i.e. length of protein x 

number of amino acids) and m is the number of intended mutations. Practically speaking, comprehensive 

mutagenesis libraries of m > 2 are exceedingly difficult to achieve. In contrast, topological mutations including 

insertions, deletions, and circular permutations result in library sizes equal to the length of a protein, and are 

generated using transposon-based methods. Finally, in vivo mutagenesis methods rely on random mutations 

generated in a variety of ways. These library sizes will vary based on the rate of mutagenesis (p) and the number of 

rounds of mutagenesis (r). 

 

terminal portion is fused to the C-terminus via a linker, leaving a new N- and C-terminus 

elsewhere in the protein. Circular permutations have been exploited in a variety of studies to 

generate altered binding affinity (Cheltsov, Barber, and Ferreira 2001), improved catalytic 

activity (Qian and Lutz 2005), and new biosensors (Okada, Ota, and Ito 2009) and enzymes 

(Reitinger et al. 2010). However, topological mutations are more complicated to create than 

substitutions. For example, topological mutations will often require a so called linker peptide to 

reconnect protein domains. Early studies of TEM β-lactamase circular permutation found that 

varying both the length and amino acid composition of the connecting peptide drastically 

affected protein function (Osuna, Pérez-Blancas, and Soberón 2002), and recent work 

constructing biosensors using domain insertion has continued to show that linker screening can 

improve protein function (Nadler et al. 2016). Moreover, insertions, deletions, and circular 

permutation all require specialized molecular biology protocols. An early approach to 

comprehensive topological mutations was based on random DNaseI cleavage of a plasmid 
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containing the target gene, but the use of a nonspecific endonuclease creates numerous 

deleterious truncation and duplication events (Graf and Schachman 1996; Guntas and Ostermeier 

2004). 

 More recently, transposons have emerged as a reliable tool for introducing topological 

protein changes (Shah and Kim 2016). For example, the random integration of the Mu 

transposon into a target gene, which can be catalyzed in vitro with purified transposase, has been 

used in downstream molecular biology applications to generate both comprehensive protein 

domain insertion (Edwards et al. 2010) and circular permutation (Mehta, Liu, and Silberg 2012) 

libraries. Additional work has engineered the transposon itself to minimize any vestigial 

transposon ‘scar’ sequence (Nadler et al. 2016; A. M. Jones et al. 2016)  that could affect protein 

function (Pierre et al. 2015; Shah and Kim 2016; Nadler et al. 2016).  In the case of domain 

insertion, these approaches have been used to systematically map the potential for fusion protein 

engineering in several proteins, such as the RNA-guided endonuclease Cas9, and to identify 

variants of beta-lactamase (Edwards et al. 2010), Cas9 and the green fluorescent protein (GFP) 

that are allosterically regulated by small molecules (Nadler et al. 2016; Oakes et al. 2016). 

Transposons have also been used to systematically study the effect of deletions on protein 

function (Arpino et al. 2014; Morelli et al. 2017). Specifically, a method employing Type IIS 

restriction enzymes for trinucleotide deletion was developed (D. D. Jones 2005) and used to 

investigate registry shifts in GFP, resulting in the discovery of a variant with higher fluorescence 

in cells (Arpino et al. 2014). Another recent study used transposons to generate extensive 

truncation variants of the artificial RNA ligase enzyme 10C and used mRNA display as an in 

vitro selection to identify functional variants that were nearly 20% shorter (Morelli et al. 2017). 

 One important consideration is that transposon-based methods, which produce 

randomized libraries, are not programmable in the manner that oligonucleotide-based methods 

are (Shah and Kim 2016), i.e., subsets of positions cannot be selectively targeted. Additionally, 

in the case of insertions and deletions, 2/3rds of a transposon library will contain a frameshifted 

gene, and only one of two insertion orientations will encode the expected protein sequence. 

Thus, only 1/6th of a transposon-created insertion libraries are interesting variants. These 

drawbacks further limit the library sizes that can be generated, but more importantly they 

fundamentally exclude any type of rational exploration of topological sequence space. In the 

future, it is likely that new mutagenesis approaches will allow specific libraries to be constructed 

which will be as tunable as substitution methods (Tullman et al. 2016). In particular, unique 

restriction sites could be programmably introduced into target genes, facilitating downstream 

molecular biology for generating topological mutations. 

 

1.5 Assay Design and Data Interpretation 

 

 Good assays link fitness to function and result in an increased or decreased abundance of 

each variant in accordance with its performance. Abundance can later be quantified by NGS. 

Unfortunately, there are no generic approaches for assaying protein function, and the assay 

choice depends greatly on the protein (Figure 1.3). Assay development is therefore a core 

technical limitation that requires customization and tuning, reduces effective library size (by 

limiting the number of variants that can be tested), and restricts the total diversity of sequence 

space that can be explored in one experiment.  
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 Selections offer excellent throughput (106 – 1013), low cost, and minimal labor 

requirements but require that a link be formed between function and growth (i.e. connecting 

protein fitness and cell fitness) (Packer and Liu 2015). This is typically non-trivial to achieve 

except for the simplistic cases of positive selection, such as resistance of a target protein to its 

cognate drug (Firnberg et al. 2014) or the enrichment of high affinity binders. In the case of 

binding, the physical link between a protein and its encoding gene can be accomplished through 

yeast display (Cherf and Cochran 2015), phage display(Wu et al. 2016), or ribosome display 

(Hanes and Plückthun 1997). For proteins with other functions, recent results suggest that a 

systems-level understanding of physiology may open routes to novel selections. For example, 

recent work showed that certain enzymes can be functionally linked to replication through 

dependence on a sole nitrogen source (Wrenbeck, Azouz, and Whitehead 2017). Here, the 

aliphatic amide hydrolase AmiE catalyses hydrolysis of the amide to its corresponding 

carboxylic acid. This reaction produces ammonium as a bioavailable nitrogen source, and results 

in a robust selection assay after tuning enzyme expression. In general, enzymes can be amenable 

to selection schemes if their function impacts metabolism, and a recently developed 

computational tool, SelFi, seeks to streamline the identification of assays for a particular target 

enzyme (Hassanpour et al. 2017). At its core, SelFi seeks to identify synthesis pathways that lead 

from a desired enzymatic product to a metabolite suitable for selection within an organism.  

Selections are subject to cheating, escape, and contamination, which can complicate 

experiments. An alternative to the above is to avoid the evolution of unintended solutions by 

creating minimal replication systems. One such system, termed compartmentalized partnered 

replication (CPR), is an ex vivo system capable of selecting for any genetic element that can alter 

the expression or function of Taq DNA polymerase (Ellefson et al. 2014). CPR sequesters a 

library of genetic parts into emulsion droplets that are then differentially amplified by a PCR 

step. The production of polymerase, however, is dependent on the function of the partner gene. 

Because the amplification step is dependent on a minimal number of components, the complexity 

of selection is vastly reduced and thereby eliminates pathways for escape mutants to arise. CPR, 

though, is thus inherently limited to proteins that alter the polymerase expression. 

 For a protein whose function cannot be straightforwardly tied to replicative fitness, the 

experimenter must instead use a screen to individually measure and physically bin each protein 

variant. This is increasingly practical with the improvement of and broader accessibility to high-

throughput technologies such as fluorescence-activated cell sorting (FACS).  As in a selection, a 

protein’s function can be linked to a secondary function which is amenable to these high 

throughput screening technologies. For example, a general method has been developed to link 

glycosyltransferases activity to cellular fluorescence, enabling throughputs of > 107 variants 

(Yang et al. 2010). Here, fluorescently labeled sugars such as lactose are transported into the cell 

by a transport protein. Enzymatically modified sugars lose transport competence, remaining 

trapped inside the cell, while unreacted dye is lost during a wash. FACS sorting of brighter cells 
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Figure 1.3: Due to the wide diversity of protein function, universal methods to evaluate libraries of proteins are 

difficult to develop. However, existing approaches may be categorized by the specific method used to link protein 

function to protein fitness. The lowest bandwidth approach, biochemical assay, relies on individual sequential 

measurement and spatial separation of variants at the macro scale. Next, cell-based assays can be used to screen 

individual colonies on plates, e.g. calorimetric enzyme activity. Fluorescence-based approaches can make use of 

FACS to screen even larger numbers of cells. Notably, these assays are not limited to only fluorescent proteins, and 

systems can be designed such that fluorescence is dependent on function of the protein target. Similarly, 

physiological linkage of cellular growth to a reliance on target protein function enables even higher bandwidth. 

Additionally, in vitro PCR amplification of a target protein can be linked to target protein function, such that the 

most functional target protein variants become the most amplified in the population. The highest throughput cellular 

assays rely on direct selection, where the target protein natively impacts cell growth. Finally, binding assays 

represent the maximum throughput available for protein screening, as each individual variant is physically linked to 

its genetic information. 

thus enriches for functionally active enzymes. Two different colors of fluorescent markers can be 

used simultaneously to avoid the selection of dye binding sites, a previously observed escape 

mechanism. Alternatively, the function of metabolic pathways can be assayed using a class of 

protein tools known as metabolite biosensors (Morgan et al. 2016). Biosensors link the 

abundance of small molecules to a measurable phenotype, such as fluorescence intensity, and are 

increasingly being used to assay enzymes and engineer improved function into metabolic 

pathways (Rogers and Church 2016). 

 Due to the diversity of protein functions it is difficult to develop general assays suitable 

for many possible targets. Nevertheless, analytical chemistry and NGS provide two plausible 

approaches, provided that genotype-phenotype linkage is maintained and that throughput is high 

enough to cover desired library sizes. For example, the Agilent RapidFire mass spectrometry 

system is capable of sample measurements in 15 s for small molecules and 10 s for peptides 

(Vanderporten et al. 2013). This technology has been used to measure glycolysis reactants in 

order to quantify the effectiveness of inhibitory molecules as anticancer drugs, achieving a rate 

enabling 10,000 samples per day (Rye and LaMarr 2015). Plate-based assays with sophisticated 

robotics can reduce measurement time to ~ 1 s, while water-in-oil emulsions have achieved > 

2000 individual assays per second (Agresti et al. 2010).  Alternatively, NGS enables throughput 

that is more than sufficient for generalizable assays, and in principle can quantify function for 
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any protein that directly controls transcription or could be engineered to. Such an approach 

requires linking individual transcripts to individual proteins, which could be accomplished 

through transcript barcoding. 

 In order to determine the fitness of individual protein variants, the abundance of each 

variant is measured by NGS. A number of statistical packages have been released to interpret the 

deep sequencing datasets produced by these assays (Wrenbeck, Faber, and Whitehead 2017). 

Briefly, a typical approach is to identify variant sequences and enumerate them in pre- and post-

assay libraries, creating an enrichment ratio for each variant between selected and unselected 

libraries. This ratio forms the basis for understanding the sign and strength of a variant’s 

functional change. Many library generation techniques, such as those using transposons, display 

some biases, and the enrichment ratio is critical to separating variants with enhanced function 

from those that are simply more abundant in the library by chance (Nadler et al. 2016). Because 

an enrichment ratio represents the slope of abundance change over time, multiple time points or 

rounds of an assay can be fit by a linear regression, in which case the slope of the line 

corresponds to functional activity. Enrich2 improves upon previous approaches by 1) 

normalizing for wild-type in each time point and 2) weighting regression time points based on 

variant counts (Fowler et al. 2011). These corrections help to control for non-linear behavior and 

reduce sampling error. 

 A recent statistical guide to deep mutational scanning experiments suggests that 

increasing the number of time points and experimental duration are strong approaches to 

increasing precision (Matuszewski et al. 2016). These suggestions are, however, based in the 

consideration of initial naïve libraries in which all studied mutants are well-represented and that 

population and sample size are large compared with the number of mutants and sequencing 

depth. Because assay bandwidths are limited by the specific approach (Figure 1.3), oversampling 

reduces the number of unique variants that can be examined (Persikov et al. 2014). The 

implication is that library quality is now of paramount importance. For well-studied proteins, it 

can be preferable to use programmable techniques so that the library composition and size can be 

designed precisely to match the assay bandwidth. For less well-understood proteins, it can be 

preferable to use mutagenesis technique that are as unbiased as possible so as to minimize the 

assay throughput spent re-evaluating the same variant (Higgins, Ouonkap, and Savage 2017). 

 

1.5 Objective of this study 

 

 This dissertation is framed as two main parts, where the overall purpose is to improve the 

methods available for performing programmable and comprehensive protein mutagenesis. The 

first part, Chapter 2, focuses on the first type of general protein mutation: amino acid 

substitution. The second part, Chapter 3, focuses on the second type of general protein mutation: 

topological mutations. As discussed above, topological mutations have received much less 

attention in the literature, despite initial success in both expanding biochemical knowledge and 

engineering proteins for enhanced function. In particular, Chapter 3 deals with a type of mutation 

never before performed comprehensively on a large, complex, multi-domain protein: deletions. 

The novel method therein devised is also capable of the other two possible topological 

mutations, namely, protein insertions and circular permutations. The methods developed in this 

work serve as a foundation for programmably and comprehensively modifying a protein in all 

possible ways. 

  



 
 

12 
 

Chapter 2 

 

Rapid and Programmable Protein Mutagenesis Using Plasmid Recombineering 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

† The work presented in this chapter has previously been published in the following article: 

Higgins, S.A., Ouonkap, S.V.Y., and Savage, D.F. (2017). Rapid and Programmable Protein 

Mutagenesis Using Plasmid Recombineering. ACS Synthetic Biology. 6 (10), 1825-1833 
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Abstract 

 

 Comprehensive and programmable protein mutagenesis is critical for understanding 

structure-function relationships and improving protein function. However, current techniques 

enabling comprehensive protein mutagenesis are based on PCR and require in vitro reactions 

involving specialized protocols and reagents. This has complicated efforts to rapidly and reliably 

produce desired comprehensive protein libraries. Here we demonstrate that plasmid 

recombineering is a simple and robust in vivo method for the generation of protein mutants for 

both comprehensive library generation as well as programmable targeting of sequence space. 

Using the fluorescent protein iLOV as a model target, we build a complete mutagenesis library 

and find it to be specific and comprehensive, detecting 99.8% of our intended mutations. We 

then develop a thermostability screen and utilize our comprehensive mutation data to rapidly 

construct a targeted and multiplexed library that identifies significantly improved variants, thus 

demonstrating rapid protein engineering in a simple protocol. 
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2.1 Introduction 

 

 Directed mutagenesis of a desired protein is an important technique both for 

understanding structure-function relationships as well as improving protein function for research, 

biotechnology, and medical applications. For example, techniques like deep mutational scanning, 

where every position in a protein is mutated to all possible amino acids, can be applied to 

understand key variants associated with disease (Majithia et al. 2016), while targeted 

mutagenesis of proteins such as Green Fluorescent Protein (GFP) have expanded our capacity to 

visualize many biological processes (Heim, Cubitt, and Tsien 1995). The ability to generate 

comprehensive mutation libraries and programmed libraries focused on specific locations or 

amino acids is crucial to these applications. 

 In order to address these needs, many in vitro based approaches have been developed. 

Firnberg and Ostermeier have built libraries composed almost entirely of single mutations using 

specialized protocols based on uracil-containing template DNA (Firnberg and Ostermeier 2012), 

while Melnikov and Mikkelsen constructed a comprehensive library by splitting one gene into 

many different regions small enough to be synthesized on a programmable microarray, followed 

by multiplexed in vitro recombination (Melnikov et al. 2014). Belsare and Lewis have 

demonstrated targeted, combinatorial library construction using alternating cycles of fragment 

and joining PCR (Belsare et al. 2016). Recently, Wrenbeck and Whitehead introduced nicking 

mutagenesis, using specialized nucleases to selectively degrade the wild type (WT) template 

DNA (Wrenbeck et al. 2016).  

 An alternative approach would be to incorporate synthetic oligonucleotides in vivo 

directly into a gene of interest in a programmable fashion. In E. coli, oligonucleotides introduced 

into the cell via electroporation can recombine with the genome or resident plasmids with the 

help of the lambda phage protein Beta, in a process termed recombineering (Copeland, Jenkins, 

and Court 2001). Mechanistically, it is thought that Beta-bound oligonucleotides anneal to the 

replication fork of replicating deoxyribonucleic acid (DNA) and are subsequently incorporated 

into the daughter strand, thus directly encoding mutations into a new DNA molecule (Mosberg, 

Lajoie, and Church 2010). Recombineering is therefore a compelling method for genetic 

manipulation. Cheap and easily obtained standard oligonucleotides are the only varying input 

and the protocol - mixing oligonucleotides in pooled reactions - is straightforward. 

 This process was shown to be capable of mutating the E. coli genome for rapid metabolic 

engineering in a process termed Multiplexed Automated Genome Engineering (MAGE), which 

used multiple rounds of recombineering to increase the penetrance of mutations (Wang et al. 

2009). Other work has demonstrated that thousands of pooled, barcoded oligonucleotides can be 

used, in parallel, to modify the expression of > 95% of E. coli genes and map their effect on 

fitness (Warner et al. 2010). More recent studies have combined recombineering with the 

programmable DNA nuclease Cas9, as a means of enforcing mutational penetrance, to mutate 

tens of thousands of loci in parallel with high efficiency (Garst et al. 2016).  

 Despite its success in genome engineering, recombineering of plasmids is relatively 

uncharacterized (Thomason et al. 2007). Plasmid recombineering (PR) is of particular interest in 

protein mutagenesis as plasmids are easily shuttled between different strains and organisms for 

cloning and screening. Notably, recombineering strains achieve enhanced mutation efficiency by 

knocking out mismatch repair and possess a higher genome-wide mutation rate (Turrientes et al. 

2013), which can complicate screens or selections sensitive to suppressor mutations. The use of 

plasmids, however, uncouples protein variation from any background mutation in the genome. 
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Importantly, Nyerges et al. found that recombineering itself produces few if any off-target 

mutations (Nyerges et al. 2016). Thomason et al. have previously demonstrated that PR is 

capable of generating mutations, insertions, and deletions with efficiencies comparable to 

genomic recombineering. We reasoned that the principles of MAGE – multiplexed reactions and 

multiple mutation rounds – would be applicable to PR as well. 

 To benchmark comprehensive PR for protein engineering we sought to measure the 

efficiency, bias, and overall performance of saturation mutagenesis on the small protein iLOV. 

iLOV is a 110 residue protein derived from the Light, Oxygen, Voltage (LOV) domains of the A. 

thaliana phototropin 2 protein (Chapman et al. 2008). The native LOV domain binds flavin 

mononucleotide (FMN) and uses this co-factor as a photosensor to direct downstream signal 

transduction. Mutational analysis has revealed that a cysteine to alanine substitution in the FMN 

binding site interrupts the native photocycle and instead dramatically increases the protein’s 

fluorescent properties. iLOV is an ideal candidate for further engineering because fluorescent 

proteins that don’t require molecular oxygen for chromophore maturation are a desirable 

alternative to green fluorescent protein. In previous experiments, DNA shuffling was used to 

isolate iLOV, a variant that has six amino acid mutations relative to the wild-type phototropin 2 

LOV2 sequence and an improved fluorescence quantum yield of 0.44 (Chapman et al. 2008). 

Additional approaches to engineer further improved iLOV variants have also relied on error-

prone PCR and DNA shuffling, missing much of the possible sequence-space (Christie et al. 

2012). Due to the potential utility of iLOV and its comparatively limited engineering relative to 

other fluorescent proteins, we hypothesized iLOV could serve as an excellent model system for 

exploring the utility of PR. Finally, the gene length of iLOV is exceptionally short (330 bp) and 

analysis of iLOV libraries is suited to deep sequencing. Current paired-end sequencing covers 

the entirety of the open reading frame and can accurately identify all mutations to a single 

sequenced plasmid. This provides insight into the mechanisms and utility of recombineering. 

 Here we demonstrate that PR is capable of constructing both comprehensive protein 

libraries and targeted mutagenesis libraries focusing on a small section of sequence space. We 

built a complete mutagenesis library of iLOV and found it to be specific and unbiased, detecting 

99.8 % of our intended mutations. We explored this fitness landscape in the context of 

thermostability using a plated-based screen that allowed us to identify many desirable 

thermostabilizing mutations. To demonstrate the iterative and programmable nature of our 

platform, we designed and built a multiplexed library focused on these mutational hotspots and 

isolated significantly more stable variants. In total, this work demonstrates that plasmid 

recombineering is a rapid and robust method for the generation of protein mutants for both 

unbiased, comprehensive libraries and programmable targeting of specific regions in sequence 

space. 

 

2.2 Materials and Methods 

 

2.2a Strains and Media 

 

 Strain EcNR2 (Addgene ID: 26931)(H. H. Wang et al. 2009) was used for generating PR 

libraries in plasmid pSAH031 (Addgene ID: 90330). For thermostability screening and protein 

expression, iLOV libraries were cloned into pTKEI-Dest (Addgene ID: 79784)(Nadler et al. 

2016) using Golden Gate cloning(Engler, Kandzia, and Marillonnet 2008) with restriction 

enzyme BsmbI (NEB) and transformed into either Tuner (Novagen) or XJ b Autolysis E. coli 
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(Zymo Research). Unless otherwise stated, strains were grown in standard LB (Teknova) 

supplemented with kanamycin (Fisher) at 60 µg/mL. 

 

2.2b Recombineering Library Construction 

 

 Libraries were constructed using a modified protocol from Wang 2011(H. Wang and 

Church 2011). Briefly, 110 oligonucleotides (Table 2.1) or 25 thermostabilizing oligonucleotides 

(Table 2.2) were mixed and diluted in water. A final volume of 50 µL of 2 µM oligonucleotides, 

plus 10 ng of pSAH031, was electroporated into 1 mL of induced and washed EcNR2 using a 1 

mm electroporation cuvette (BioRad GenePulser). A Harvard Apparatus ECM 630 

Electroporation System was used with settings 1800 kV, 200 Ω, 25 µF. Three replicate 

electroporations were performed, then individually allowed to recover at 30° C for 2 hr in 1 mL 

of SOC (Teknova) without antibiotic. LB and kanamycin was then added to 6 mL final volume 

and grown overnight. Cultures were miniprepped (QIAprep Spin Miniprep Kit) and monomer 

plasmids were isolated by agarose gel electrophoresis and gel extraction (QIAquick Gel 

Extraction Kit) to remove multimer plasmids (Thomason et al. 2007). The three replicates were 

then combined, completing a round of PR. 

 

2.2c Library Sequencing and Analysis 

 

 The iLOV open reading frame was amplified from PR libraries by PCR to add indices 

and priming sequences for deep sequencing (Table 2.3). PCR products were sequenced on 

Illumina platform sequencers (MiSeq and HiSeq) through the Berkeley Genomics Sequencing 

Laboratory. Sequencing data were analyzed with a custom MATLAB pipeline. Briefly, reads 

were filtered to remove those that were of low quality, frameshifted, or did not exactly match the 

annealing portion of the amplifying primers. A detailed description of sequencing analysis can be 

found below. Finally, full-length reads were compared with the iLOV target sequence for 

mutation analysis. 

 Sequencing analysis was performed with custom MATLAB scripts available online at 

https://github.com/savagelab. 250 nucleotide paired end reads were used to sequence the iLOV 

gene (330 bp). Sequencing of the forward reads began with a five nucleotide variable region to 

facilitate cluster identification. Positions 6 to 27 of the forward read are composed of the 

following sequence, corresponding to the annealing region used for primer amplification of the 

libraries: ‘TCATTAATGCACGTCTCTGTCC’. Likewise, positions 1 to 18 of the reverse reads 

correspond to the reverse primer ‘ATGGTGATGGTGACCGCT’. The first 187 nucleotides from 

each read were used to construct the sequence of the iLOV gene for each molecule. Regions of 

overlap between forward and reverse reads were used to estimate the sequencing error rate for 

the final quality passed reads (see below). Reads were filtered as follows: required to match the 

forward read primer region and required a quality score > 15 (Sanger / Illumina 1.9 encoding) for 

every nucleotide up to position 187, inclusive. This resulted in the following distribution of 

reads: quality passed reads/total reads. Negative control: 458,749/2,055,337. Round 1: 

566,418/2,417,937. Round 2: 398,167/1,785,121. Round 3: 419,328/2,409,483. Round 4: 

322,727/1,838,945. Round 5: 479,688/2,305,297. Of the quality-passed reads, some were 

identified as frameshifted due to indels if they contained at least four consecutive nucleotide 

mutations, and the following total reads were thus identified: Negative control: 1,386, Round 1: 

11,118, Round 2: 9,465, Round 3: 15,094, Round 4: 11,473, Round 5: 21,671. 
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 To estimate the error rate of sequencing, two independent approaches were taken. 

Oligonucleotides were designed to target the gene within a high copy ColE1 plasmid, and a 

negative control sample of this plasmid was prepared and sequenced in parallel with the iLOV 

libraries. The per-nucleotide mutation rate was calculated to be 0.025% versus 0.31% for the 

negative control and Round 1 library, respectively. Probabilistically, a mutation rate of 0.025% 

per nucleotide would yield an overall nucleotide mutation rate of 7.9% in the iLOV library ( [ 1 - 

(1-(0.00025))330] ). Because every nucleotide mutation does not lead to an amino acid mutation, 

the nonsynonymous mutation rate will be lower than this value, as is observed in the total 

nonsynonymous mutation rate of 5.9% for the negative control (Table 2.4). 

 In order to validate this estimate for the error rate, we used a second approach to directly 

measure the error of per-nucleotide base-calling during sequencing of the Round 1 library. By 

measuring discordant base calls in the first 30 base-pairs of overlap between our forward and 

reverse sequencing reads, we obtain a sequencing error rate of 0.028% per nucleotide in the 

Round 1 library. This value predicts that 8.8% of our sequenced reads in the Round 1 library 

contain codon mutations due to sequencing errors. Despite this background error level, we find 

that the most important parameter of the library - amino acid mutation coverage - is not 

significantly affected by controlling for sequencing errors. 

 Nucleotide and amino acid sequences for iLOV and tLOV can be found in Table 2.5. 

 

2.2d In silico Effective Library Size Simulation 

 

 Simulations were performed using a custom MATLAB script. The simulations focused 

on amino acid positions 5 – 40, for which we possess comprehensive frequency data from the 

equimolar oligonucleotide and normalized PR experiments. Successive sampling, with 

replacement, of these 36 positions was performed, with each position’s likelihood commensurate 

with the observed mutation frequency. Once 34 out of 36 positions had been observed in the 

simulation, which we arbitrarily define as ‘well-sampled’ (94.4% of the library diversity), the 

total number of samples taken was recorded as the effective library size. This process was then 

repeated 104 times for each library to generate a distribution of effective library sizes. 

 

2.2e Thermostability Screening 

 

 Colonies were screened on 10 cm dishes containing standard LB-agar with kanamycin. 

Tuner cells expressing the library were found to be fluorescent in the absence of induction after 

24 hours. Plates were incubated at 60° C for 2 hours, after which the vast majority of colonies 

were no longer fluorescent. Approximately 500,000 colonies were screened, of which 244 

remained fluorescent. These colonies were pooled, miniprepped, and deep sequenced to identify 

protein mutations. This DNA was also transformed into XJb cells to recover individual variants. 

93 colonies were then grown overnight in 96-well deep well plates with 1 mL of LB + 

kanamycin supplemented with 100 µM Isopropyl β-D-1-thiogalactopyranoside (IPTG) and 3 

mM arabinose at 37° C. Cultures were frozen and thawed to lyse the cells, then clarified by 

centrifugation. Supernatant was analyzed in a StepOnePlus™ Real-Time PCR System (Applied 

Biosystems) to estimate a Tm for each variant. 
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2.2f Protein Expression and in vitro Characterization 

 

 iLOV variants were expressed and lysed in XJb cells as above but in 100 mL volume. 

Excess FMN (Sigma) was added to the lysate to ensure all proteins possessed ligand. iLOV 

variants were then purified by nickel affinity chromatography using HisPur™ Ni-NTA Resin 

(Thermo Scientific). Variants were filtered using Vivaspin 6 3,000 molecular weight cut-off 

(Sartorius) with phosphate buffered saline (PBS) pH 7.4 (Gibco). Variants were further purified 

by size exclusion chromatography using a NGC Chromatography System (Bio-Rad). Purified 

proteins were stored at 4° C in PBS. For quantum yield determination, emission between 460 nm 

and 600 nm was measured in a FluoroLog Spectrophotometer (Horiba), and 450 nm absorbance 

was measured in an Infinity M1000 PRO monochromator (Tecan). Emission curves were 

integrated in MATLAB and normalized for absorbance. Thermostability measurements were 

made in a Nano differential scanning calorimeter (TA Instruments). 

 

2.2g Accession Codes 

 

 Sequence Read Archive: Sequencing data have been deposited under accession numbers 

SAMN07204029, SAMN07204030, SAMN07204032, SAMN07204042, SAMN07204073, and 

SAMN07204112. 

 

2.3 Results 

 

2.3a A Single Round of PR Generates a Comprehensive Mutation Library 

 

 To generate a comprehensive mutation library of iLOV, oligonucleotides were designed 

to target the gene within a high copy ColE1 plasmid (Figure 2.1). The target plasmid contained a 

promoterless iLOV coding region to prevent growth biases between mutants possessing different 

fitness during multiple rounds of transformation and outgrowth. Note that this step does 

introduce some additional complexity, such as additional time between library generation and 

screening and the potential to lose library diversity. This step is not inherent to the 

recombineering method, however, but was chosen in order to most accurately investigate the 

naive iLOV library. 10 ng of target plasmid was mixed with an equimolar mixture of 110 

recombineering oligonucleotides, one primer for each codon in iLOV (Figure 2.2). These 

oligonucleotides were 60 bp long and complementary to the lagging strand, which was 

previously demonstrated to be more efficient than targeting the leading strand (Lim, Min, and 

Jung 2008). Oligos contained a centrally located NNM mutation codon, (where N = A/C/G/T and 

M = A/C) which encodes all amino acids except methionine and tryptophan. Tryptophan, in 

particular, is known to quench flavin fluorescence in flavoproteins (Callis and Liu 2006) and was 

excluded from the library. Although modified oligonucleotides have been shown to enhance 

recombineering efficiency, e.g. phosphorothioation, standard oligonucleotides were used to 

minimize cost and complexity (H. H. Wang et al. 2009). 

 Initial experiments confirmed that PR can be used to generate diverse libraries in a 

programmable fashion. The plasmid and oligonucleotide mixture was first electroporated into the 

recombineering strain EcNR2 (H. H. Wang et al. 2009), grown overnight and miniprepped. As 

observed in Thomason et al. (Thomason et al. 2007) we found that a fraction of the plasmids had 

converted into multimers two or three times the length of the target plasmid. Because we 
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intended to perform multiple rounds of PR, we chose to gel extract the monomeric form of the 

plasmid. Notably, this step is unnecessary if the target gene is subsequently isolated by PCR or 

 
 

Figure 2.1: Plasmid map of pSAH031 (Addgene ID: 90330). High-copy number ColE1 bacterial plasmid used as 

recombineering target for library generation. Note that the kanamycin resistance gene is compatible with the 

recombineering strain EcNR2, which contains genomic resistance cassettes for chloramphenicol and ampicillin. The 

iLOV gene lacks a promotor and start codon to prevent growth biases during library construction, and is flanked by 

BsmBI sites for golden gate cloning directly into an expression plasmid. 
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Figure 2.2: Plasmid Recombineering (PR) of iLOV generates a specific and comprehensive mutation library. (A) 

Cartoon of comprehensive PR accomplished using synthetic oligonucleotides tiled across the target gene. (B) 

Frequency of single amino acid mutations mapped by residue and location in the Round 1 library. Black indicates 

the WT iLOV residue. White indicates no detected reads. (C) Cartoon of programmable PR targeting a specific 

sequence space. Sampling of the highest fitness mutants can inform subsequent library design, with recombineering 

oligos specifically targeting mutations of interest. (D) Mutational distribution of the library after additional rounds 

of recombineering. 
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subcloning, especially since multimeric forms are often successfully modified plasmid molecules 

(Thomason et al. 2007). Deep sequencing of the recovered library, hereafter termed the Round 1 

library, revealed substantial mutagenesis compared to the non-recombineered plasmid (Figure 

2.3). Further analysis revealed that, while the majority of reads were WT iLOV sequence, 29% 

of reads contained a single amino acid mutation (Table 2.4). Note that the true recombineering 

efficiency for introducing a single nonsynonymous mutations is likely ~ 23% after accounting 

for sequencing errors relative to the negative control. These mutations covered every position in 

the protein and nearly all targeted amino acid conversions were observed (Figure 2.2B). 1867 out 

of the possible 1870 single residue mutations were detected in the Round 1 library (Table 2.4). 

Sequencing errors do not significantly contribute to the coverage of single nonsynonymous 

mutations (Figure 2.4). 

 Further founds of PR were used to increase the penetrance of mutations. Although the 

Round 1 library covered targeted mutations comprehensively, it was roughly 61% WT iLOV 

sequence. Furthermore, the programmable nature of PR allows the construction of more targeted 

libraries with combinatorial multiplexing of high fitness mutations, such as would be useful in 

directed evolution (Figure 2.2C). Four additional rounds of recombineering were performed to 

reduce the WT fraction of the library and investigate the distribution of variants with 2+ 

mutations. The number of reads with codon mutations increased substantially with further rounds 

of recombineering (Figure 2.2D). In the Round 5 library, single mutations were the most 

common (33%), with the remainder composed of WT sequences (26%) and sequences 

containing 2+ mutations (41%). 
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a 

 
b 

 
 
Figure 2.3: Comparative nucleotide mutation frequency demonstrates that the majority of detected mutations are 

due to recombineering. Mutation frequency is relative to the total number of quality control (QC) passed reads, and 

is 0.025% versus 0.31% per nucleotide for the negative control versus Round 1 library, respectively. The 95% 

confidence intervals for these measurements are all smaller than +/- 0.001% (normal approximation to the binomial 

distribution). (A) Nucleotide mutation frequency detected in the iLOV gene without recombineering, 458,749 QC 

passed reads. (B) Nucleotide mutation frequency detected in the iLOV gene with one round of recombineering (the 

Round 1 library), 566,418 QC passed reads. 
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Figure 2.4: Accounting for sequencing errors does not significantly reduce the coverage of amino acid mutations 

among single amino acid mutants in the Round 1 library. Coverage has been calculated at a threshold of five reads. 

Distribution of mutation coverage for 104 simulations in silico. Coverage using all reads is 97.22%. To account for 

sequencing errors, a fraction of reads were randomly discarded from the pool in order to simulate an appropriate loss 

of mutation diversity. 20% of the 1 nonsynonymous mutation reads were discarded based on the assumption of a 

similar sequencing error rate in Round 1 as in the negative control, since they were prepared and sequenced in 

parallel. However, only reads with a single base pair mutation were eligible to be discarded. This is appropriate 

because sequencing errors are almost entirely composed of single base pair codon mutations due to the 

probabilistically independent nature of mis-calling a base. These parameters result in 51% of single base pair mutant 

reads being discarded in each simulation. Finally, coverage was calculated for mutants observed at least five times in 

order to further exclude low-frequency reads arising from sequencing errors. The lack of significant outliers along 

the distribution confirms that very few of the amino acid mutations observed are dependent on reads arising from 

sequencing errors. 
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2.3b Recombineering libraries can be finely controlled to alter the composition of 

mutations 

 

 In the absence of prior information, the ideal mutagenesis technique would produce every 

mutant targeted with equal frequency. Because each variant is initially present in the same 

amount, a uniform library requires the least amount of screening (or selection) in order to isolate 

improved mutants. A non-uniform method, in contrast, might produce a highly variable 

distribution of mutants and requires more screening or selection in order to fully explore 

sequence space. We therefore analyzed our sequencing data to characterize the uniformity and 

sequence preferences of PR libraries. 

 We detected two distinct types of bias: positional bias and mismatch bias. In positional 

bias, oligonucleotides targeted to different positions in the coding sequence incorporate with 

characteristically different efficiencies (regardless of the mutation produced at that position). In 

mismatch bias, oligonucleotides that are more similar to the WT sequence (e.g. differing only at 

the first base of the targeted codon) incorporated with high efficiency while more divergent 

oligos (e.g. different at all three positions) incorporated with lower efficiency. Positional bias is 

evident when comparing the frequencies of single codon mutations across all 110 codons in 

iLOV (Figure 2.5A). Despite the nearly 60 bp of homology between the oligonucleotide and the 

template plasmid, oligos targeting adjacent codons can exhibit a 2-3 fold different incorporation. 

The largest such discrepancy is found at codon 42, which is mutated 5.7 times more frequently 

than codon 41. Variation in efficiency has been observed in other recombineering studies and 

was somewhat correlated with the oligonucleotide binding energy (H. H. Wang et al. 2009). 

While our data was not clearly correlated with binding energy (Figure 2.6), a biological replicate 

revealed replicable positional bias (Figure 2.7), suggesting the presence of an underlying 

physical mechanism for positional bias. 

 Comprehensive mutagenesis applications, such as deep mutational scanning, ideally 

begin with uniformly distributed mutants in a naïve library. We hypothesized that the positional 

bias observed in the Round 1 library – constructed using equimolar mutagenic oligonucleotides – 

could be corrected by altering the mixture of oligonucleotides used in the electroporation step. A 

second library was therefore constructed by normalizing the concentration of each 

oligonucleotide in the library according to the frequency of mutations obtained at the 

corresponding position in Round 1. This library was constructed using PR, and the first 40 amino 

acids were deep sequenced. The normalized library was indeed more uniform, with a largest 

adjacent codon discrepancy of 2.1 fold, compared to 3.3 fold in the equimolar replication library 

(Figure 2.5B). 

 In order to understand the importance of this normalization in a quantitative fashion, we 

performed a simulation to evaluate the pragmatic impact of oligonucleotide normalization on 

effective library size – the number of samples that must be taken from a library to achieve a 

desired representation of the library diversity. In the ideal case, i.e. mutants are found in the 

library with equal frequency, if one wishes to sample, say, 95% of the diversity contained within 

the library, we must screen roughly three times the number of distinct members. That is, the 

effective library size is threefold the targeted library size. Our equimolar and normalized libraries 

are not uniformly distributed, but random sampling from our sequenced data in silico allows 

calculation of the effective library size. Our simulation revealed a substantial improvement in 

sampling efficiency, from a mean effective library size of 139 in the original library to 107 in the  
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Figure 2.5: The recombineering mechanism produces moderate bias within the library and can be manipulated by 

varying the delivered oligonucleotide concentration. (A) Frequency of single amino acid mutations across iLOV in 

the Round 1 library. (B) Biological replicate of Round 1 library with normalized oligonucleotide concentrations. (C) 

Observed vs. expected distribution of one, two, or three nucleotide mismatches among single amino acid mutations. 

The 95% confidence intervals for these measurements are all smaller than +/- 0.0025 (normal approximation to the 

binomial distribution). (D) Frequency of double mutations in the Round 5 library. White = not detected. Highly 

represented rows and columns arise from positional bias.  (E) Frequency of double mutations in the Round 5 library 

as a function of the pairwise distance between double mutations. For each distance, data has been normalized for the 

number of possible double mutations. Error bars, standard deviation. 
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Figure 2.6: Oligonucleotide incorporation frequency is not linked to simple binding energy or hairpin formation. 

A). Incorporation frequency for each oligonucleotide versus free energy in kcal/mol of binding. p = 0.113 ANOVA. 

Binding energy was calculated through MATLAB function ‘oligoprop’ in bioinformatics toolbox, using nearest 

neighbor parameters from [7] SantaLucia Jr., J. (1998). A unified view of polymer, dumbbell, and oligonucleotide 

DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Science USA 95, 1460–1465. B). 

Incorporation frequency for each oligonucleotide versus free energy in kcal/mol of hairpin formation. p = 0.13 

ANOVA. Hairpin formation was calculated using UNAfold (Markham 2008). 
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Figure 2.7: A biological replicate NNM library was independently generated and oligo efficiencies were found to 

correlate, indicating an underlying physical mechanism affecting recombineering efficiency. Correlation of 

efficiencies for oligos 5 – 40 between the initial library and replicate library (p = 6.4E-11 ANOVA). 

 

normalized library, which is quite close to that of an ideal uniformly distributed library (Figure 

2.8). 

 The presence of mismatch bias in the library demonstrates that recombineering favors 

incorporation of oligos that are more similar to the WT template sequence. Our oligonucleotides 

all contained one, two, or three nucleotide mismatches relative to WT iLOV. After 

computationally enumerating all possible oligonucleotides for each codon in iLOV, we expected 

that 14% of oligonucleotides would contain one mismatch, 43% two, and 43% three. In contrast, 

oligonucleotide-template pairs with two or three mismatches were observed at only 31% and 

22% respectively, while single nucleotide mismatches were overrepresented by more than 

threefold at 47% (Figure 2.5C). This value is inflated due to the presence of sequencing errors, of 

which the vast majority are single mismatches, but is still significantly higher than expected 

given the error rate in the negative control (Table 2.4). Together, mismatch bias and positional 

bias are substantial sources of variation in the library, accounting for roughly 60% of model 

variance (Figure 2.9). 

 While a single round of PR generates many single mutants, additional rounds shift the 

distribution to increasing mutation numbers. The Round 5 library, for example, is 25% double 

mutants. These mutations are well represented, with 5817 out of a possible 5940 locations 

detected (Figure 2.5D). However, it is clear that the same positional bias seen in the Round 1 

library is preserved in subsequent rounds. This is to be expected if recombineering events are 

statistically independent, and can be seen by the correlation of double-mutation hotspots with  
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Figure 2.8: Simulation of effective library size reveals substantial improvement in screening effectiveness using a 

normalized library. Distribution of effective library sizes for 104 simulations in silico for the original library (blue) 

vs the normalized library (red) vs an ideal uniformly distributed library (orange). p < 10-10 by two tailed z-test 

comparing the original vs normalized distribution. 
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Figure 2.9: Correlation plots of observed read counts versus expected read counts for single amino acid mutations 

in the Round 1 library. Each data point corresponds to one amino acid (i.e. all codons are lumped together) at one 

position in the iLOV sequence. A) Correlation plot of observed read counts versus expected read counts, normalized 

only for the number of codons programmed for each amino acid. Note that the finite number of codons from an 

NNM-mutagenizing primer generates a highly discretized expected read count. B) As in (A), except normalized for 

the observed mismatch bias (i.e. on a per-codon basis). C) As in (A), except normalized for positional bias. D) As in 

(A), except normalized for both mismatch and positional bias. The coefficient of determination (i.e. R2) indicates 

that including mismatch and positional bias can account for 61% of the variance between the counts of expected and 

observed sequences at the amino acid level. 
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single mutation positional bias (Figure 2.10). This data suggests that double mutations in a 

normalized library will be far more uniformly distributed. 

 The double mutation data also indicates that some recombineering events are not 

perfectly independent. A plot of the pairwise distance between all detected double mutants 

reveals an uneven distribution in frequency (Figure 2.5E). Specifically, double mutations are less 

likely to be within 30 bp (i.e. 10 amino acids) of one another. This effect becomes more 

pronounced with additional rounds of recombineering (Figure 2.11). In the Round 5 library, this 

‘zone of exclusion’ is significant enough that double mutations a few amino acids apart are 

nearly four times less frequent than double mutations with a much larger separation (e.g. three 

amino acid gap versus 10 amino acid gap). We hypothesize that this bias is due to the mechanism 

of recombineering which requires oligonucleotides to anneal to a complementary locus via 

homology arms flanking the NNM mutagenic codon. In this mechanism, sequential 

oligonucleotides would ‘overwrite’ previous mutations due to incorporation of the most recent 

oligonucleotide’s homology arms, which extend 30 bp on either side of the central NNM. 

Another potential mechanism that disfavors incorporation of nearby double mutants is 

mutational reduction of oligo incorporation efficiency. In this hypothetical mechanism, 

mutations generated in early rounds of PR could reduce the homology and, therefore, 

incorporation efficiency of oligos in subsequent PR rounds. 

 

2.3c Screening the iLOV library identifies mutations conferring thermostability 

 

 Previous screening and structural work indicates that a well-packed binding site for the 

FMN fluorophore may lead to improved photochemical properties of iLOV, such as 

photostability, by limiting the dynamics of the FMN chromophore and its ability to dissipate 

energy following excitation (Christie et al. 2012). Additionally, searches for improved LOV-

based fluorescent reporters have turned up homologous variants such as CreiLOV that, while 

brighter (50% greater quantum yield), exhibit substantial toxicity upon expression (Mukherjee et 

al. 2015). More generally, Tawfik and colleagues have theorized that thermostable proteins serve 

as more fruitful starting points for engineering and directed evolution (Tokuriki and Tawfik 

2009). In this view, variants with greater thermostability can better tolerate mutations, increasing 

the likelihood of observing mutations that improve protein function in a manner unrelated to 

thermostability. We thus investigated the thermostability of our library, which contained nearly 

every single amino acid mutation and a small fraction of possible double mutations. 

 We created a plate-based assay to screen for thermostabilized variants in the Round 5 

library. The library was plated at high colony density onto standard LB-Agar, grown overnight, 

then incubated at 60 °C for two hours (Figure 2.12A). This treatment completely abrogates the 

fluorescence of WT iLOV as well as nearly all mutants (Figure 2.12B). Some colonies remained 

fluorescent, however, and these were recovered and expressed in 96-well plate format. Cultures 

expressing these library members were lysed, clarified, and analyzed for thermostability. 

Fluorescence measurements were taken every 0.5° C during a temperature ramp from 25° C to 

95° C and used to calculate the melting temperature (Tm) for each clone, the temperature at 

which 50% of maximal fluorescence is retained (Figure 2.12C). All 93 assayed clones 

demonstrated a substantial increase in thermostability relative to iLOV (Figure 2.12D). 

Improvements in Tm ranged from two to nearly ten degrees C. 
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Figure 2.10: The non-uniformity of double mutations occurs largely due to positional bias of successive rounds of 

recombineering. Reducing positional bias (i.e. by generating a normalized library) would thus increase the 

uniformity of double mutations. A) Correlation plot of positional bias at each amino acid of iLOV vs the bias 

observed in mutation 1 of double mutations. Frequencies of double mutations have been normalized for the total 

number of possible mutations for each distance category in order to facilitate comparison with positional bias. Data 

for the first and last 14 amino acids have been excluded because normalization by small numbers artificially 

increases the data variability, while the ‘zone of exclusion’ also suppresses mutations in the extreme top-left and 

bottom-right of the double mutation heatmap (Figure 2D) (p < 8.6E-30 ANOVA). B) Data as in A, but displaying 

mutation 2 of double mutations (p < 6.5E-39 ANOVA). 
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Figure 2.11: The ‘zone of exclusion’ for nearby amino acid mutations becomes more pronounced with increasing 

rounds of PR. Pairwise distance between double mutations for rounds 1 (Gray), 3 (Red), and 5 (Blue). Data has been 

normalized for the total number of possible mutations for each distance category, then normalized to the mean in 

order to facilitate comparison between rounds. 

 

 

 
 

Figure 2.12: A plate-based thermostability screen identifies mutations that improve iLOV fluorescence at elevated 

temperatures. (A) Cartoon of the thermostability screen assay and subsequent hit validation procedure. (B) 

Representative fluorescent images of library colonies before and after temperature challenge. (C) Representative 

fluorescent thermal melt curves of lysate for two thermostable hits. (D) Histogram of Tms for 93 thermostabilized 

iLOV variants. 
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2.3d Recombineering based multiplexing allows rapid and robust directed evolution 

 

 While comprehensive single mutant libraries are ideal for exploring structure-function 

relationships in an unbiased manner, hypothesis-driven investigation requires targeted libraries 

for exploring the effect of mutations at specific sites of interest. Because PR targets only sites 

programmed by synthetic oligonucleotides, we hypothesized that PR could generate a specific 

library in a cost-effective and straightforward protocol. 

 To demonstrate the rapid multiplexing capability of PR, we designed a second library 

containing the top 25 most frequent thermostabilizing mutations from the initial plate screen 

(Figure 2.13A). Several of these mutations consisted of alternative amino acids at the same 

position, and in these cases a different oligonucleotide was designed for each. The encoding 

oligonucleotides were designed such that homology arms would stop short of neighboring 

mutations so as not to overwrite them (Figure 2.14).  

 This multiplexed library resulted in striking improvements to thermostability, with the 

best variants having Tm values nearly 20° C greater than iLOV (Figure 2.13B). Isolating and re-

cloning these variants verified that despite the significant increase in Tms, the shape of their melt 

curves was not significantly different from that of iLOV, even for the most thermostable mutant 

(Figure 2.13C).  It was noted during the screening process that one variant in particular, hereafter 

referred to as thermostable LOV (tLOV), seemed to produce abnormally bright lysate under high 

expression conditions. tLOV and iLOV were expressed and purified in parallel and their 

absorbance and emission were characterized in vitro. To accurately quantify relative quantum 

yield, the emission curves were normalized for absorption at 450 nm and integrated. tLOV was 

found to be approximately 10% brighter (Figure 2.15), and sequencing revealed the presence of 

four mutations scattered throughout the protein, all introduced by PR (Figure 2.13D). Notably, 

none of these locations are directly within the FMN binding pocket, and their contribution to 

thermostability or quantum yield improvement are not obvious. Thus, it would have been 

difficult to rationally design tLOV. Moreover, a targeted mutagenesis technique is required for 

isolating quadruple mutants reliably: iLOV is a small protein, but a quadruple mutant library 

would contain > 1013 variants, well beyond our current screening capacities. Finally, 

thermostability was verified by differential scanning calorimetry of iLOV vs tLOV (Figure 2.16). 
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Figure 2.13: Multiplexing thermostabilizing mutations rapidly identifies doubly improved iLOV variants. (A) 25 

thermostabilizing mutations mapped to the iLOV protein sequence. (B) Histogram of initial thermostable hits (Blue) 

superimposed on hits from the multiplexed library (Cyan). (C) Representative melt curves of two thermostabilized 

variants compared to iLOV. (D) Crystal structure of iLOV (PDB 4EES) indicating the location of four mutations 

found in tLOV: R11S, I35V, R90F, G106V. 

 

 

Figure 2.14: The multiplexed mutation library was designed to incorporate the 25 most frequent thermostabilizing 

mutations from the initial thermostability plate screen. These oligos were designed in such a way as to minimize the 

‘overwriting’ that might occur from the homology arms of sequential oligonucleotides, illustrated above. For some 

oligonucleotides this means the mutagenic codon is located asymmetrically. 
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Figure 2.15: Emission spectrum of purified iLOV vs. tLOV, normalized for absorbance at 450 nm. Integration of 

peak area indicates tLOV is approximately 10% brighter, in addition to a 10 °C improvement in fluorescence Tm. 

 

 
 

Figure 2.16: Differential scanning calorimetry of purified proteins confirms the thermostability of iLOV (Blue) 

relative to tLOV (Red). The fluorescence Tm of iLOV and tLOV is approximately 65 °C and 75 °C for the purified 

proteins, respectively. Interestingly, this appears to occur before the peak heat capacity of protein unfolding for 

tLOV, and in between two peaks of the biphasic iLOV heat capacity. 
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2.4 Discussion 

 

 An ideal method for generating comprehensive protein libraries would be simple and 

robust, enabling both complete and targeted mutagenesis without a change in reagents. In this 

study, we demonstrate that PR can be effectively used for both comprehensive and 

programmable mutagenesis of the fluorescent protein iLOV, using methods that are 

generalizable to any gene of interest. 

  Previous recombineering studies have successfully built libraries in the genome, 

demonstrating specificity and fine control of mutational composition. Wang et al.(H. H. Wang et 

al. 2009) used multiple rounds of recombineering to mutagenize six consecutive nucleotides 

using 90 bp oligonucleotides and found a 75% mutation rate after five rounds. We find quite 

similar behavior in the sequencing analysis of the iLOV recombineered plasmid libraries 

constructed here. Our Round 5 library consisted of 74% mutant variants, and the mutations were 

well distributed in sequence space. The modest positional bias could be substantially ameliorated 

by altering the ratios of oligonucleotides added to the electroporation mixture. This resulted in a 

nearly uniform distribution of mutations such that the effective library size was almost ideal 

(Figure 2.8). This approach could easily be used to accommodate more complex libraries with 

weighted mutation frequencies at various locations. The correlation of replicate libraries strongly 

suggests an underlying physical mechanism for differing oligonucleotide recombineering 

efficiencies. It will be important to understand this effect in order to predict efficiencies rather 

than rely on empirical data as used here, which required additional sequencing and labor.  

Regardless of these modifications, the reagent cost and experimental effort remain low – 

standard 60 bp oligonucleotides and simple cycles of electroporation, growth, and plasmid 

isolation. 

 Additional biases resulting from the mechanism of recombineering were detected and 

while their magnitude was smaller, their effect on library size and screening can be significant. 

Previous work has found that recombineering efficiency drops sharply with the size of the 

modification made (H. H. Wang et al. 2009). Here, too, single nucleotide mutations were 

observed to be more common than expected. This effect alters the distribution of codons present 

in the final library, with the template codons determining this frequency shift. Notably, mismatch 

bias is intrinsic to the annealing of oligonucleotides and is likely present for in vitro methods as 

well. 

 The ‘zone of exclusion’ around a first mutation generates another mode of bias. A second 

mutation is less likely to appear inside this zone than outside of it. This effect became more 

pronounced with increasing rounds of recombineering. Is it likely this results from 

oligonucleotides’ homology arms overwriting earlier mutations during later rounds of PR. In 

other words, we hypothesized that homology arms are capable of introducing revertant 

mutations. We thus predict that the length of homology arms would impact the length of the 

‘zone of exclusion.’ As some amount of homology is absolutely required for recombineering, no 

form of recombineering is suitable for efficiently generating adjacent mutations from different 

oligonucleotides. This limitation can likely be overcome by using single oligonucleotides 

encoding sequential mutations but at the cost of reduced efficiency due to mismatch bias. Wang 

et al.(H. H. Wang et al. 2009) observed similar mutation rates for between one and four 

mismatches, but found efficiency dropped by ~half when incorporating mismatches of five or ten 

nucleotides. Again, if this effect fundamentally stems from the annealing of oligonucleotides 

then it is likely present for in vitro methods as well. 
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 In vitro methods represent the most powerful alternatives for generating comprehensive 

mutation libraries. The chief advantage of these approaches is that they can generate a library 

composed mostly of mutated variants. Ostermeier and colleagues accomplished this by utilizing 

specialized protocols based on uracil-containing template DNA (Firnberg and Ostermeier 2012), 

while Wrenbeck and Whitehead selectively degrade the WT strand using single-strand nicking 

endonucleases (Wrenbeck et al. 2016). Such methods have been used to generate nearly 

comprehensive libraries of genes for exploring the entirety of the fitness landscape (Firnberg et 

al. 2014), and to comprehensively examine the possible evolutionary pathways leading from one 

allele to another (Steinberg and Ostermeier 2016). 

 In directed protein evolution, iterative rounds of mutagenesis can be used to multiplex 

fitness-improving mutations. PCR-based protocols (Firnberg and Ostermeier 2012), direct gene 

synthesis (Melnikov et al. 2014), and some other recombineering techniques(Garst et al. 2016) 

excel at generating libraries composed of single mutations. However, in many applications, 2+ 

mutations are desired at non-contiguous locations. Recent work has developed a PCR-based 

method to accomplish this goal in vitro (Belsare et al. 2016), and we hypothesized that PR was 

well suited to serve as a complementary approach in vivo, doing away with cloning altogether. 

To this end, we comprehensively explored the iLOV single mutation sequence-space for 

thermostability, selected the fitness enhancing mutations, and demonstrated the utility of PR for 

advanced protein engineering by multiplexing many different single and double mutations at 

discontinuous sites across iLOV in a second library. The ability to select and easily mutate 

numerous specific and non-contiguous locations across a protein is highly useful for a variety of 

techniques that utilize experimental or phylogenetic data to computationally predict and enhance 

enzymes (Heinzelman et al. 2009), explore epistatic interactions (Olson, Wu, and Sun 2014), or 

even scan SNPs in human proteins for disease prediction (Majithia et al. 2016). 

 iLOV engineering has been relatively limited in comparison to other fluorescent proteins 

(Chapman et al. 2008). Because the domain has been taken out of its natural structural context, 

we hypothesized that its thermal stability could be increased. Consistent with this idea, many 

mutations were found to improve the thermal stability of iLOV up to a robust, 10° C increase in 

Tm. These improvements were then stacked by multiplexing the 25 most common mutations 

from the first screen. As a measure of convenience, the same pooled, single electroporation 

protocol was used, although iterative rounds of transformation and outgrowth set a lower limit on 

throughput – typically ~16 hours per cycle. One particular variant among the thermostabilized 

pool, tLOV, was found to be ~10% brighter that iLOV in vitro. This result is consistent with 

previous work demonstrating that constraining the FMN fluorophore can improve the 

photochemical properties of iLOV (Christie et al. 2012). It would be interesting to perform 

comprehensive mutagenesis of the thermostabilized iLOV mutants in search of further 

improvements to the protein’s brightness or red/blue spectral shifting, as increased 

thermostability has been hypothesized to permit greater exploration of function-altering 

mutations (Tokuriki and Tawfik 2009). 

 In summary, we have demonstrated that PR retains many of the ideal properties of 

genome recombineering, including specificity and programmability.  We found that PR was 

suited for the construction of both comprehensive and targeted libraries, and that the simplicity 

of the protocol led to rapid and reliable screening experiments. In particular, PR is suitable for 

cycles of iterative design, construction, and sampling of genetic libraries, requiring no 

specialized reagents or protocols. We developed a thermostability screen of the fluorescent 

protein iLOV and used the resulting mutation data to rapidly construct a multiplexed library that 
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identified significantly improved variants, including the first enhancement to the protein’s 

brightness since its development. 
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2.5 Tables 

 
iLOV_NNM_1 CGCGGGTCGGTGATAACGAAGTTTTTTTCKNNGGACAGAGACGtgcattaatgaatcggc 

iLOV_NNM_2 AAGCGCGGGTCGGTGATAACGAAGTTTTTKNNGATGGACAGAGACGtgcattaatgaatc 

iLOV_NNM_3 GGTAAGCGCGGGTCGGTGATAACGAAGTTKNNTTCGATGGACAGAGACGtgcattaatga 

iLOV_NNM_4 TCAGGTAAGCGCGGGTCGGTGATAACGAAKNNTTTTTCGATGGACAGAGACGtgcattaa 

iLOV_NNM_5 TTGTCAGGTAAGCGCGGGTCGGTGATAACKNNGTTTTTTTCGATGGACAGAGACGtgcat 

iLOV_NNM_6 GGATTGTCAGGTAAGCGCGGGTCGGTGATKNNGAAGTTTTTTTCGATGGACAGAGACGtg 

iLOV_NNM_7 ATTGGATTGTCAGGTAAGCGCGGGTCGGTKNNAACGAAGTTTTTTTCGATGGACAGAGAC 

iLOV_NNM_8 ATGATTGGATTGTCAGGTAAGCGCGGGTCKNNGATAACGAAGTTTTTTTCGATGGACAGA 

iLOV_NNM_9 AAGATGATTGGATTGTCAGGTAAGCGCGGKNNGGTGATAACGAAGTTTTTTTCGATGGAC 

iLOV_NNM_10 GCAAAGATGATTGGATTGTCAGGTAAGCGKNNGTCGGTGATAACGAAGTTTTTTTCGATG 

iLOV_NNM_11 GAGGCAAAGATGATTGGATTGTCAGGTAAKNNCGGGTCGGTGATAACGAAGTTTTTTTCG 

iLOV_NNM_12 TCTGAGGCAAAGATGATTGGATTGTCAGGKNNGCGCGGGTCGGTGATAACGAAGTTTTTT 

iLOV_NNM_13 CCATCTGAGGCAAAGATGATTGGATTGTCKNNTAAGCGCGGGTCGGTGATAACGAAGTTT 

iLOV_NNM_14 AAACCATCTGAGGCAAAGATGATTGGATTKNNAGGTAAGCGCGGGTCGGTGATAACGAAG 

iLOV_NNM_15 AGAAAACCATCTGAGGCAAAGATGATTGGKNNGTCAGGTAAGCGCGGGTCGGTGATAACG 

iLOV_NNM_16 TCGAGAAAACCATCTGAGGCAAAGATGATKNNATTGTCAGGTAAGCGCGGGTCGGTGATA 

iLOV_NNM_17 AGCTCGAGAAAACCATCTGAGGCAAAGATKNNTGGATTGTCAGGTAAGCGCGGGTCGGTG 

iLOV_NNM_18 GTTAGCTCGAGAAAACCATCTGAGGCAAAKNNGATTGGATTGTCAGGTAAGCGCGGGTCG 

iLOV_NNM_19 TCGGTTAGCTCGAGAAAACCATCTGAGGCKNNGATGATTGGATTGTCAGGTAAGCGCGGG 

iLOV_NNM_20 TATTCGGTTAGCTCGAGAAAACCATCTGAKNNAAAGATGATTGGATTGTCAGGTAAGCGC 

iLOV_NNM_21 CTGTATTCGGTTAGCTCGAGAAAACCATCKNNGGCAAAGATGATTGGATTGTCAGGTAAG 

iLOV_NNM_22 CGGCTGTATTCGGTTAGCTCGAGAAAACCKNNTGAGGCAAAGATGATTGGATTGTCAGGT 

iLOV_NNM_23 TCACGGCTGTATTCGGTTAGCTCGAGAAAKNNATCTGAGGCAAAGATGATTGGATTGTCA 

iLOV_NNM_24 TCTTCACGGCTGTATTCGGTTAGCTCGAGKNNACCATCTGAGGCAAAGATGATTGGATTG 

iLOV_NNM_25 ATTTCTTCACGGCTGTATTCGGTTAGCTCKNNAAAACCATCTGAGGCAAAGATGATTGGA 

iLOV_NNM_26 AGAATTTCTTCACGGCTGTATTCGGTTAGKNNGAGAAAACCATCTGAGGCAAAGATGATT 

iLOV_NNM_27 CCCAGAATTTCTTCACGGCTGTATTCGGTKNNCTCGAGAAAACCATCTGAGGCAAAGATG 

iLOV_NNM_28 CGACCCAGAATTTCTTCACGGCTGTATTCKNNTAGCTCGAGAAAACCATCTGAGGCAAAG 

iLOV_NNM_29 TTACGACCCAGAATTTCTTCACGGCTGTAKNNGGTTAGCTCGAGAAAACCATCTGAGGCA 

iLOV_NNM_30 GCATTACGACCCAGAATTTCTTCACGGCTKNNTTCGGTTAGCTCGAGAAAACCATCTGAG 

iLOV_NNM_31 CGAGCATTACGACCCAGAATTTCTTCACGKNNGTATTCGGTTAGCTCGAGAAAACCATCT 

iLOV_NNM_32 AAACGAGCATTACGACCCAGAATTTCTTCKNNGCTGTATTCGGTTAGCTCGAGAAAACCA 

iLOV_NNM_33 AGGAAACGAGCATTACGACCCAGAATTTCKNNACGGCTGTATTCGGTTAGCTCGAGAAAA 
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iLOV_NNM_34 TGCAGGAAACGAGCATTACGACCCAGAATKNNTTCACGGCTGTATTCGGTTAGCTCGAGA 

iLOV_NNM_35 CCCTGCAGGAAACGAGCATTACGACCCAGKNNTTCTTCACGGCTGTATTCGGTTAGCTCG 

iLOV_NNM_36 GGGCCCTGCAGGAAACGAGCATTACGACCKNNAATTTCTTCACGGCTGTATTCGGTTAGC 

iLOV_NNM_37 TCCGGGCCCTGCAGGAAACGAGCATTACGKNNCAGAATTTCTTCACGGCTGTATTCGGTT 

iLOV_NNM_38 GTTTCCGGGCCCTGCAGGAAACGAGCATTKNNACCCAGAATTTCTTCACGGCTGTATTCG 

iLOV_NNM_39 TCGGTTTCCGGGCCCTGCAGGAAACGAGCKNNACGACCCAGAATTTCTTCACGGCTGTAT 

iLOV_NNM_40 TGGTCGGTTTCCGGGCCCTGCAGGAAACGKNNATTACGACCCAGAATTTCTTCACGGCTG 

iLOV_NNM_41 GCTTGGTCGGTTTCCGGGCCCTGCAGGAAKNNAGCATTACGACCCAGAATTTCTTCACGG 

iLOV_NNM_42 GTAGCTTGGTCGGTTTCCGGGCCCTGCAGKNNACGAGCATTACGACCCAGAATTTCTTCA 

iLOV_NNM_43 ACCGTAGCTTGGTCGGTTTCCGGGCCCTGKNNGAAACGAGCATTACGACCCAGAATTTCT 

iLOV_NNM_44 TGAACCGTAGCTTGGTCGGTTTCCGGGCCKNNCAGGAAACGAGCATTACGACCCAGAATT 

iLOV_NNM_45 TTCTGAACCGTAGCTTGGTCGGTTTCCGGKNNCTGCAGGAAACGAGCATTACGACCCAGA 

iLOV_NNM_46 ATTTTCTGAACCGTAGCTTGGTCGGTTTCKNNGCCCTGCAGGAAACGAGCATTACGACCC 

iLOV_NNM_47 CGAATTTTCTGAACCGTAGCTTGGTCGGTKNNCGGGCCCTGCAGGAAACGAGCATTACGA 

iLOV_NNM_48 TCGCGAATTTTCTGAACCGTAGCTTGGTCKNNTTCCGGGCCCTGCAGGAAACGAGCATTA 

iLOV_NNM_49 GCATCGCGAATTTTCTGAACCGTAGCTTGKNNGGTTTCCGGGCCCTGCAGGAAACGAGCA 

iLOV_NNM_50 ATTGCATCGCGAATTTTCTGAACCGTAGCKNNGTCGGTTTCCGGGCCCTGCAGGAAACGA 

iLOV_NNM_51 CGAATTGCATCGCGAATTTTCTGAACCGTKNNTTGGTCGGTTTCCGGGCCCTGCAGGAAA 

iLOV_NNM_52 TCGCGAATTGCATCGCGAATTTTCTGAACKNNAGCTTGGTCGGTTTCCGGGCCCTGCAGG 

iLOV_NNM_53 TGATCGCGAATTGCATCGCGAATTTTCTGKNNCGTAGCTTGGTCGGTTTCCGGGCCCTGC 

iLOV_NNM_54 CGCTGATCGCGAATTGCATCGCGAATTTTKNNAACCGTAGCTTGGTCGGTTTCCGGGCCC 

iLOV_NNM_55 TCACGCTGATCGCGAATTGCATCGCGAATKNNCTGAACCGTAGCTTGGTCGGTTTCCGGG 

iLOV_NNM_56 GTCTCACGCTGATCGCGAATTGCATCGCGKNNTTTCTGAACCGTAGCTTGGTCGGTTTCC 

iLOV_NNM_57 GTAGTCTCACGCTGATCGCGAATTGCATCKNNAATTTTCTGAACCGTAGCTTGGTCGGTT 

iLOV_NNM_58 ACGGTAGTCTCACGCTGATCGCGAATTGCKNNGCGAATTTTCTGAACCGTAGCTTGGTCG 

iLOV_NNM_59 TGAACGGTAGTCTCACGCTGATCGCGAATKNNATCGCGAATTTTCTGAACCGTAGCTTGG 

iLOV_NNM_60 AATTGAACGGTAGTCTCACGCTGATCGCGKNNTGCATCGCGAATTTTCTGAACCGTAGCT 

iLOV_NNM_61 ATCAATTGAACGGTAGTCTCACGCTGATCKNNAATTGCATCGCGAATTTTCTGAACCGTA 

iLOV_NNM_62 TTGATCAATTGAACGGTAGTCTCACGCTGKNNGCGAATTGCATCGCGAATTTTCTGAACC 

iLOV_NNM_63 TAGTTGATCAATTGAACGGTAGTCTCACGKNNATCGCGAATTGCATCGCGAATTTTCTGA 

iLOV_NNM_64 GTGTAGTTGATCAATTGAACGGTAGTCTCKNNCTGATCGCGAATTGCATCGCGAATTTTC 

iLOV_NNM_65 TTGGTGTAGTTGATCAATTGAACGGTAGTKNNACGCTGATCGCGAATTGCATCGCGAATT 

iLOV_NNM_66 CTTTTGGTGTAGTTGATCAATTGAACGGTKNNCTCACGCTGATCGCGAATTGCATCGCGA 

iLOV_NNM_67 CCGCTTTTGGTGTAGTTGATCAATTGAACKNNAGTCTCACGCTGATCGCGAATTGCATCG 
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iLOV_NNM_68 TTACCGCTTTTGGTGTAGTTGATCAATTGKNNGGTAGTCTCACGCTGATCGCGAATTGCA 

iLOV_NNM_69 TTTTTACCGCTTTTGGTGTAGTTGATCAAKNNAACGGTAGTCTCACGCTGATCGCGAATT 

iLOV_NNM_70 AATTTTTTACCGCTTTTGGTGTAGTTGATKNNTTGAACGGTAGTCTCACGCTGATCGCGA 

iLOV_NNM_71 CAAAATTTTTTACCGCTTTTGGTGTAGTTKNNCAATTGAACGGTAGTCTCACGCTGATCG 

iLOV_NNM_72 TTCCAAAATTTTTTACCGCTTTTGGTGTAKNNGATCAATTGAACGGTAGTCTCACGCTGA 

iLOV_NNM_73 AGGTTCCAAAATTTTTTACCGCTTTTGGTKNNGTTGATCAATTGAACGGTAGTCTCACGC 

iLOV_NNM_74 AACAGGTTCCAAAATTTTTTACCGCTTTTKNNGTAGTTGATCAATTGAACGGTAGTCTCA 

iLOV_NNM_75 TGCAACAGGTTCCAAAATTTTTTACCGCTKNNGGTGTAGTTGATCAATTGAACGGTAGTC 

iLOV_NNM_76 AGATGCAACAGGTTCCAAAATTTTTTACCKNNTTTGGTGTAGTTGATCAATTGAACGGTA 

iLOV_NNM_77 TGAAGATGCAACAGGTTCCAAAATTTTTTKNNGCTTTTGGTGTAGTTGATCAATTGAACG 

iLOV_NNM_78 GGTTGAAGATGCAACAGGTTCCAAAATTTKNNACCGCTTTTGGTGTAGTTGATCAATTGA 

iLOV_NNM_79 ACCGGTTGAAGATGCAACAGGTTCCAAAAKNNTTTACCGCTTTTGGTGTAGTTGATCAAT 

iLOV_NNM_80 CGTACCGGTTGAAGATGCAACAGGTTCCAKNNTTTTTTACCGCTTTTGGTGTAGTTGATC 

iLOV_NNM_81 TCGCGTACCGGTTGAAGATGCAACAGGTTKNNAAATTTTTTACCGCTTTTGGTGTAGTTG 

iLOV_NNM_82 TGGTCGCGTACCGGTTGAAGATGCAACAGKNNCCAAAATTTTTTACCGCTTTTGGTGTAG 

iLOV_NNM_83 TTTTGGTCGCGTACCGGTTGAAGATGCAAKNNGTTCCAAAATTTTTTACCGCTTTTGGTG 

iLOV_NNM_84 CCTTTTTGGTCGCGTACCGGTTGAAGATGKNNCAGGTTCCAAAATTTTTTACCGCTTTTG 

iLOV_NNM_85 TCGCCTTTTTGGTCGCGTACCGGTTGAAGKNNCAACAGGTTCCAAAATTTTTTACCGCTT 

iLOV_NNM_86 AGCTCGCCTTTTTGGTCGCGTACCGGTTGKNNATGCAACAGGTTCCAAAATTTTTTACCG 

iLOV_NNM_87 TGAAGCTCGCCTTTTTGGTCGCGTACCGGKNNAAGATGCAACAGGTTCCAAAATTTTTTA 

iLOV_NNM_88 TACTGAAGCTCGCCTTTTTGGTCGCGTACKNNTTGAAGATGCAACAGGTTCCAAAATTTT 

iLOV_NNM_89 AAGTACTGAAGCTCGCCTTTTTGGTCGCGKNNCGGTTGAAGATGCAACAGGTTCCAAAAT 

iLOV_NNM_90 ATAAAGTACTGAAGCTCGCCTTTTTGGTCKNNTACCGGTTGAAGATGCAACAGGTTCCAA 

iLOV_NNM_91 CCGATAAAGTACTGAAGCTCGCCTTTTTGKNNGCGTACCGGTTGAAGATGCAACAGGTTC 

iLOV_NNM_92 ACGCCGATAAAGTACTGAAGCTCGCCTTTKNNGTCGCGTACCGGTTGAAGATGCAACAGG 

iLOV_NNM_93 TGCACGCCGATAAAGTACTGAAGCTCGCCKNNTTGGTCGCGTACCGGTTGAAGATGCAAC 

iLOV_NNM_94 AGCTGCACGCCGATAAAGTACTGAAGCTCKNNTTTTTGGTCGCGTACCGGTTGAAGATGC 

iLOV_NNM_95 TCCAGCTGCACGCCGATAAAGTACTGAAGKNNGCCTTTTTGGTCGCGTACCGGTTGAAGA 

iLOV_NNM_96 CCATCCAGCTGCACGCCGATAAAGTACTGKNNCTCGCCTTTTTGGTCGCGTACCGGTTGA 

iLOV_NNM_97 CTCCCATCCAGCTGCACGCCGATAAAGTAKNNAAGCTCGCCTTTTTGGTCGCGTACCGGT 

iLOV_NNM_98 TCACTCCCATCCAGCTGCACGCCGATAAAKNNCTGAAGCTCGCCTTTTTGGTCGCGTACC 

iLOV_NNM_99 TGGTCACTCCCATCCAGCTGCACGCCGATKNNGTACTGAAGCTCGCCTTTTTGGTCGCGT 

iLOV_NNM_100 ACATGGTCACTCCCATCCAGCTGCACGCCKNNAAAGTACTGAAGCTCGCCTTTTTGGTCG 

iLOV_NNM_101 CTCACATGGTCACTCCCATCCAGCTGCACKNNGATAAAGTACTGAAGCTCGCCTTTTTGG 
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iLOV_NNM_102 TCGCTCACATGGTCACTCCCATCCAGCTGKNNGCCGATAAAGTACTGAAGCTCGCCTTTT 

iLOV_NNM_103 CTCTCGCTCACATGGTCACTCCCATCCAGKNNCACGCCGATAAAGTACTGAAGCTCGCCT 

iLOV_NNM_104 CGTCTCTCGCTCACATGGTCACTCCCATCKNNCTGCACGCCGATAAAGTACTGAAGCTCG 

iLOV_NNM_105 cagCGTCTCTCGCTCACATGGTCACTCCCKNNCAGCTGCACGCCGATAAAGTACTGAAGC 

iLOV_NNM_106 cgtcagCGTCTCTCGCTCACATGGTCACTKNNATCCAGCTGCACGCCGATAAAGTACTGA 

iLOV_NNM_107 gcccgtcagCGTCTCTCGCTCACATGGTCKNNCCCATCCAGCTGCACGCCGATAAAGTAC 

iLOV_NNM_108 caagcccgtcagCGTCTCTCGCTCACATGKNNACTCCCATCCAGCTGCACGCCGATAAAG 

iLOV_NNM_109 agacaagcccgtcagCGTCTCTCGCTCACKNNGTCACTCCCATCCAGCTGCACGCCGATA 

iLOV_NNM_110 agcagacaagcccgtcagCGTCTCTCGCTKNNATGGTCACTCCCATCCAGCTGCACGCCG 

 
Table 2.1: Recombineering oligonucleotides used in construction of the iLOV comprehensive library. 110 

oligonucleotides target each of the 110 codons of the iLOV open reading frame in plasmid pSAH031. The cost of 

this oligo library is approximately $1000 at 10 nmole scale synthesis in plate form through Integrated DNA 

Technologies. 
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SAH_186 CGGGTCGGTGATAACGAAGTTTTTCGGGATGGACAGAGACGtgcattaatgaatcggcca E2P 

SAH_187 CGGGTCGGTGATAACGAAGTTTTTAAGGATGGACAGAGACGtgcattaatgaatcggcca E2L 

SAH_188 CGGGTCGGTGATAACGAAGTTTTTGCAGATGGACAGAGACGtgcattaatgaatcggcca E2C 

SAH_189 CGGGTCGGTGATAACGAAGTTGCATTCGATGGACAGAGACGtgcattaatgaatcggcca K3C 

SAH_190 CGGGTCGGTGATAACGAAGTTAAGTTCGATGGACAGAGACGtgcattaatgaatcggcca K3L 

SAH_191 CGGGTCGGTGATAACGAAGCTTTTTTCGATGGACAGAGACGtgcattaatgaatcggcca N4S 

SAH_192 AAAACCATCTGAGGCAAAGATGATTGGATTGTCAGGTAACGTCGGGTCGGTGATAACGAA R11T 

SAH_193 AAAACCATCTGAGGCAAAGATGATTGGATTGTCAGGTAAGCTCGGGTCGGTGATAACGAA R11S 

SAH_194 AAAACCATCTGAGGCAAAGATGATTGGATTGTCAGGTAAATTCGGGTCGGTGATAACGAA R11N 

SAH_195 AAAACCATCTGAGGCAAAGATGATTGGATTGTCAGGTAAAGCCGGGTCGGTGATAACGAA R11A 

SAH_196 GCATTACGACCCAGAATTTCTTCACGattGTATTCGGTTAGCTCGAGAAAACCATCTGAG S31N 

SAH_197 GCATTACGACCCAGAATTTCTTCACGggtGTATTCGGTTAGCTCGAGAAAACCATCTGAG S31T 

SAH_198 CTGCAGGAAACGAGCATTACGACCCAGaacTTCTTCACGGCTGTATTCGGTTAGCTCGAG I35V 

SAH_199 TCGGTTTCCGGGCCCTGCAGGAAACGcggATTACGACCCAGAATTTCTTCACGGCTGTAT A40P 

SAH_200 GTGTAGTTGATCAATTGAACGGTAGTtgcACGCTGATCGCGAATTGCATCGCGAATTTTC E65A 

SAH_201 GTGTAGTTGATCAATTGAACGGTAGTgctACGCTGATCGCGAATTGCATCGCGAATTTTC E65S 

SAH_202 TACCGGTTGAAGATGCAAggtGTTCCAAAATTTTTTACCGCTTTTGGTGTAGTTGATCAA L83T 

SAH_203 CTGCACGCCGATAAAGTACTGAAGCTCGCCTTTTTGGTCaaaTACCGGTTGAAGATGCAA R90F 

SAH_204 CAGCTGCACGCCGATAAAGTACTGAAGCTCGCCTTTtgcGTCGCGTACCGGTTGAAGATG Q92A 

SAH_205 CAGCTGCACGCCGATAAAGTACTGAAGCTCGCCTTTaccGTCGCGTACCGGTTGAAGATG Q92G 

SAH_206 CGTCTCTCGCTCACATGGTCACTCCCcggCAGCTGCACGCCGATAAAGTACTGAAGCTCG D105P 

SAH_207 cagCGTCTCTCGCTCACATGGTCACTtgcATCCAGCTGCACGCCGATAAAGTACTGAAGC G106A 

SAH_208 cagCGTCTCTCGCTCACATGGTCACTgatATCCAGCTGCACGCCGATAAAGTACTGAAGC G106I 

SAH_209 cagCGTCTCTCGCTCACATGGTCACTcggATCCAGCTGCACGCCGATAAAGTACTGAAGC G106P 

SAH_210 cagCGTCTCTCGCTCACATGGTCACTaacATCCAGCTGCACGCCGATAAAGTACTGAAGC G106V 

 

Table 2.2: Recombineering oligonucleotides used in the construction of the multiplexed thermostability library. 

Each oligonucleotide targets one amino acid mutation, as indicated in the rightmost column. The cost of this oligo 

library was approximately $330 at 25 nmole scale from Integrated DNA Technologies. 
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SAH_162 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT- 

NNNNNtcattaatgcaCGTCTCTGTCC 

SAH_163 

CAAGCAGAAGACGGCATACGAGAT- 

GCGTGGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcgtcagCGTCTCTCGCT 

SAH_164 

CAAGCAGAAGACGGCATACGAGAT- 

ATAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcgtcagCGTCTCTCGCT 

SAH_178 

CAAGCAGAAGACGGCATACGAGAT- 

TAGGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcgtcagCGTCTCTCGCT 

SAH_179 

CAAGCAGAAGACGGCATACGAGAT- 

CCGTATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcgtcagCGTCTCTCGCT 

SAH_180 

CAAGCAGAAGACGGCATACGAGAT- 

CGGCCTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcgtcagCGTCTCTCGCT 

SAH_181 

CAAGCAGAAGACGGCATACGAGAT- 

AGCGCTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTcgtcagCGTCTCTCGCT 

SAH_182 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT- 

NNNNNcacacaaggagatataccatgtcc 

SAH_183 

CAAGCAGAAGACGGCATACGAGAT- 

GATGCTGATGCTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTatggtgatggtgaccgct 

 

Table 2.3: PCR primers used to add barcodes and priming sequences for Illumina sequencing. SAH_162: forward 

primer for sequencing pSAH031. Consecutive degenerate bases increase diversity to facilitate cluster identification 

during sequencing. SAH_163, SAH_164, SAH_178, SAH_179, SAH_180, SAH_181: reverse primers for 

sequencing pSAH031, encoding different indices for identifying Rounds 1-5. SAH_182: forward primer for 

sequencing pTKEI-Dest. SAH_183: reverse primer for sequencing pTKEI-Dest. 
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Negative 

Control Round 1 Round 5 

Sequencing reads after quality filtering (fold coverage) 458,749 566,418 (286) 

479,688 

(242) 

Number of transformants 

 

> 5.0 * 107 > 1.0 * 107 

Number of mutated codons   110 110 

Nonsynonymous mutation library size  1870 1870 

    

Percent frameshifted reads 0.3 2 4.5 

Percent non-frameshifted reads with:        

0 nonsynonymous mutations 94.1 60.7 26.3 

1 nonsynonymous mutation 5.7 28.8 32.6 

2 nonsynonymous mutations 0.2 8.3 24.5 

3 nonsynonymous mutations 0 1.8 11.5 

4+ nonsynonymous mutations 0 0.4 4.9 

Mismatch bias: among reads with 1 nonsynonymous mutation, percentage 

of mutant codons with:       

1-bp substitution 99.1 47.1 27.6 

2-bp substitution 0.8 30.8 42.1 

3-bp substitution 0.1 22.2 30.4 

Percentage of possible codon substitutions observed       

1-bp substitution 

 

100.0 100.0 

2-bp substitution 

 

100.0 100.0 

3-bp substitution 

 

99.9 100.0 

All substitutions 

 

99.9 100.0 

Observed coverage of possible single amino acid substitutions 

 

99.8 99.4 

Observed coverage of possible single mutant codons 

 

99.7 99.1 

Coverage of possible single amino acid substitutions with ≥5 reads 

 

97.2 95.6 

Coverage of possible single mutant codons with ≥5 reads 

 

94.1 92.2 

 

Table 2.4: Plasmid recombineering library coverage statistics. 
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iLOV Nucleotide 

Sequence 

ATCGAAAAAAACTTCGTTATCACCGACCCGCGCTTACCTGACAATCCAATCATCTT

TGCCTCAGATGGTTTTCTCGAGCTAACCGAATACAGCCGTGAAGAAATTCTGGGT
CGTAATGCTCGTTTCCTGCAGGGCCCGGAAACCGACCAAGCTACGGTTCAGAAAA

TTCGCGATGCAATTCGCGATCAGCGTGAGACTACCGTTCAATTGATCAACTACAC

CAAAAGCGGTAAAAAATTTTGGAACCTGTTGCATCTTCAACCGGTACGCGACCAA
AAAGGCGAGCTTCAGTACTTTATCGGCGTGCAGCTGGATGGGAGTGACCATGTG 

 
Amino Acid 

Sequence 

IEKNFVITDPRLPDNPIIFASDGFLELTEYSREEILGRNARFLQGPETDQATVQKIRDAIR

DQRETTVQLINYTKSGKKFWNLLHLQPVRDQKGELQYFIGVQLDGSDHV 

tLOV Nucleotide 
Sequence 

ATCGAAAAAAACTTCGTTATCACCGACCCGaGCTTACCTGACAATCCAATCATCTT
TGCCTCAGATGGTTTTCTCGAGCTAACCGAATACAGCCGTGAAGAAgTTCTGGGTC

GTAATGCTCGTTTCCTGCAGGGCCCGGAAACCGACCAAGCTACGGTTCAGAAAAT
TCGCGATGCAATTCGCGATCAGCGTGAGACTACCGTTCAATTGATCAACTACACC

AAAAGCGGTAAAAAATTTTGGAACCTGTTGCATCTTCAACCGGTAtttGACCAAAAA

GGCGAGCTTCAGTACTTTATCGGCGTGCAGCTGGATGttAGTGACCATGTG 

 
Amino Acid 
Sequence 

IEKNFVITDPSLPDNPIIFASDGFLELTEYSREEVLGRNARFLQGPETDQATVQKIRDAIR
DQRETTVQLINYTKSGKKFWNLLHLQPVFDQKGELQYFIGVQLDVSDHV 

 

Table 2.5: Nucleotide and amino acid sequences of iLOV and tLOV used in this study. The four amino acid 

mutations in tLOV are R11S, I35V, R90F, G106V. 
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Chapter 3 

 

A comprehensive deletion landscape of CRISPR-Cas9 identifies the minimal RNA guided 

DNA binding module 
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Abstract 

 

 Understanding the relationship between protein sequence and function is central to 

investigating biochemical mechanisms as well as engineering desired improvements. Emerging 

techniques have harnessed massive libraries of protein mutations to accelerate this process, 

typically through amino acid substitution. In contrast, while rationally constructed protein 

deletions have long been essential to elucidating biochemical properties, current techniques are 

insufficient for a comprehensive approach. Here we develop a method for constructing 

functional landscapes of even the largest and most complex proteins, comprehensively surveying 

functional deletions in the RNA-guided DNA binding protein dCas9, the foundation for powerful 

genome editing and modifying technologies. CRISPR proteins are highly complex with 

numerous distinct domains responsible for activities such as guide RNA binding, DNA 

recognition, DNA unwinding, specificity sensing and ultimately the cleavage of each DNA 

strand. We exploit the functional landscape to revert functionality and step backward in domain 

evolution, comprehensively minimizing dCas9 and screening for an essential function.  We 

demonstrate the power of this technique by revealing the minimal RNA guided DNA binding 

module at 64% of the full CRISPR-Cas9 platform, providing many new opportunities for fusions 

and delivery. This exploration also uncovers evidence that the Helical II domain promotes DNA 

binding. These results highlight the power of comprehensive protein deletions to clearly 

elucidate the boundaries of a central function. 
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3.1 Introduction 

 

 Proteins evolve through the rearrangement of modular subunits known as domains, and 

most domain architectures gain complexity during evolution (Fong et al. 2007). Previously, we 

and others have exploited the modularity of domains to rearrange or expand the architecture of a 

protein, enabling new functionality. For example, the programmable DNA nuclease Cas9 can be 

converted into a ligand-dependent allosteric switch using advanced molecular cloning, similar to 

other domain insertions dictated by allostery (Oakes et al. 2016; Reynolds, McLaughlin, and 

Ranganathan 2011). Advanced methods now enable the construction of comprehensive protein 

libraries for domain insertion (Oakes et al. 2016) and domain rearrangement/circular permutation 

(Atkinson et al. 2018), however no such method exists for domain deletion. Domain deletions 

are also underrepresented in natural evolution, and when they occur are often limited to protein 

termini as a result of alternative start or stop codons (Björklund et al. 2005; Weiner, Beaussart, 

and Bornberg-Bauer 2006). Crucially, eukaryotic proteome diversity is vastly increased by 

alternative splicing, which tends to insert or delete protein domains (Kriventseva et al. 2003). 

This additional diversity is fully exploited by eukaryotic evolution, such that ~95% of multi-exon 

human genes are alternatively spliced (Pan et al. 2008). 

 Methods have been developed to mimic this natural diversity, but approaches to date 

have been limited in size and scope. Rationally constructed protein deletions have long been 

essential to elucidating functional and biochemical properties but are generally limited to a 

handful of truncations. Moreover, protein engineering can make use of deletions to alter enzyme 

substrate specificity (Simm et al. 2007), enable screens for improved activity and thermostability 

(Hecky and Müller 2005), or minimize protein size (D. Ma et al. 2018). Early approaches to 

protein deletion libraries resulted in the deletion of single amino acids using an engineered 

transposon, MuDel (Jones 2005; Arpino et al. 2014). Various other methods utilize direct PCR 

(Pisarchik, Petri, and Schmidt-Dannert 2007), random nuclease digestion (Ostermeier, Shim, and 

Benkovic 1999), or random in vitro transposition followed by a complicated cloning scheme 

(Morelli et al. 2017) to achieve deletion libraries containing a variety of lengths. These 

techniques are low in throughput and/or require complex molecular techniques, and in contrast to 

protein insertions or circular permutations where library size grows linearly with target length, 

deletion libraries grow as the square. Thus, to date, it has not been possible to comprehensively 

explore deletions in a protein of average size, e.g. 361 amino acids in eukaryotes (Brocchieri and 

Karlin 2005). Furthermore, a highly efficient technique could survey entire domain deletions in 

much larger multi domain proteins. 

 A simple and efficient method for building protein deletions coupled with a screen or 

selection would provide the ability to comprehensively query and delineate the function of 

domains or motifs in complex and multi-domain proteins. Such a technique could be used to 

identify crucial functions of complex proteins and splice variants in a manner akin to how deep 

mutational scanning can be used to identify the effects of single nucleotide polymorphisms on 

functionality (Fowler and Fields 2014; Araya and Fowler 2011). Moreover, the iterative 

accretion of deletions could be viewed as analogous to deconstructing the evolutionary 

aggregation of domains - rolling the clock back in time to an essential protein unit. Here, we 

introduce Minimization by Iterative Size Exclusion & Recombination (MISER). We apply 

MISER to the 1368 amino acid multi-domain DNA binding protein dCas9, and comprehensively 

assay deletions to identify the minimal RNA guided DNA binding scaffold. Furthermore, we 

construct synthetic versions of this scaffold by combining libraries of deletions and identify new 
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CRISPR Effector (CE) proteins, less than 1000 amino acids in length, that represent the minimal 

RNA guided DNA binding module within Cas9. 

 

3.2 Materials and Methods 

 

3.2a Molecular Biology 

 

 All restriction enzymes were ordered from New England Biolabs (NEB). Polymerase 

Chain Reaction (PCR) was performed using Q5 High-Fidelity DNA Polymerase from NEB. 

Ligation was performed using T4 DNA Ligase from NEB. Agarose gel extraction was performed 

using the Zymoclean Gel DNA Recovery kit, and PCR clean-up was performed using the DNA 

Clean & Concentrator, both from Zymo Research. Plasmids were isolated using the QIAprep 

Spin Miniprep Kit (Qiagen). All DNA-modifying procedures were performed according to the 

manufacturers’ instructions. All molecular biology was performed in Xl1-Blue (UC Berkeley 

QB3 MacroLab) and standard LB (Teknova) unless otherwise stated. 

 

3.2b MISER library construction 

 

 Two sets of 1368 oligonucleotides were designed and ordered as Oligonucleotide Library 

Synthesis (OLS) from Agilent Technologies. Oligonucleotides were designed to insert a six base 

pair (bp) recognition sequence for either the restriction enzyme NheI or SpeI between every 

codon in dCas9, beginning after the start codon and ending before the stop codon. Examples of 

the first oligonucleotide for both NheI and SpeI insertion are located in Table 3.1, including 

annotated design features. Internal priming sites were included in order to amplify NheI or SpeI 

specific oligonucleotide libraries. A modified amplification procedure was performed. In a 50 µL 

PCR reaction, 10 ng of template oligonucleotide library was amplified according to 

manufacturer’s instructions, but with an extension time of only five seconds, and a total of only 

15 cycles. 1.5% dimethyl sulfoxide (DMSO) was also included in the PCR reaction. These 

modifications were empirically determined in order to minimize undesirable higher order PCR 

products that were observed to be produced by amplification. These side products are likely the 

result of complementary oligonucleotides priming one another. Notably this phenomenon is 

likely inherent to amplification of a library of DNA tiled across a common sequence – in this 

case dCas9. PCR primers can be found in Auxiliary Supplementary Materials – Primer 

Sequences. 24 such reactions were typically performed in parallel and then combined, followed 

by concentration with with Zymo ‘DNA Clean & Concentrator’. BsmbI restriction digestion was 

then used to remove priming ends, followed by a second concentration with Zymo ‘DNA Clean 

& Concentrator’, resulting in mature double-stranded recombineering-competent DNA. 

 Plasmid recombineering was performed as described (Higgins 2017), using strain EcNR2 

(Addgene ID: 26931) to generate MISER libraries in plasmid pSAH060. Plasmid sequences can 

be found in Auxiliary Supplementary Materials – Plasmid Sequences. Briefly, mature double-

stranded recombineering-competent DNA at a final volume of 50 µL of 1 µM, plus 10 ng of 

pSAH060, was electroporated into 1 mL of induced and washed EcNR2 using a 1 mm 

electroporation cuvette (BioRad GenePulser). A Harvard Apparatus ECM 630 Electroporation 

System was used with settings 1800 kV, 200 Ω, 25 µF. Three replicate electroporations were 

performed, then individually allowed to recover at 30° C for 1 hr in 1 mL of SOC (Teknova) 

without antibiotic. LB (Teknova) and kanamycin (Fisher) at 60 µg/mL was then added to 6 mL 
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final volume and grown overnight. A sample of recovered culture was diluted and plated on 

kanamycin to estimate the total number of transformants, typically >107. Cultures were 

miniprepped and combined the next day. 

 Plasmid recombineering is relatively inefficient, and only a fraction of recovered 

plasmids contained successful NheI or SpeI insertions. In order to recover completely penetrant 

libraries, an intermediate cloning step was performed. A PCR product (PCR primers can be 

found in Table 3.4) conferring resistance to chloramphenicol (Table 3.5) was cloned into both 

libraries of pSAH060 plasmids. This PCR product contained either flanking NheI restriction sites 

or SpeI restriction sites, such that only modified pSAH060 plasmids (possessing NheI or SpeI 

restriction sites) could obtain chloramphenicol resistance through NheI/SpeI digestion and 

subsequent ligation. Libraries were then cleaned and transformed into Xl1-Blue competent cells 

for overnight selection in chloramphenicol (Amresco) at 25 µg/mL followed by plasmid isolation 

the next day. Samples of recovered cultures were also plated on both kanamycin alone (native 

pSAH060 resistance) and chloramphenicol alone (resistance mediated by successful 

recombineering insertion) to estimate the fraction of modified plasmids and therefore the 

restriction library size. Recombineering efficiencies were observed at ~0.5% by this method, 

indicating restriction library sizes of ~50,000, well above the number of unique insertion sites 

per library (1,368). Finally, chloramphenicol resistant pSAH060 libraries were digested with 

either NheI or SpeI as appropriate, removing the chloramphenicol cassette. The libraries were 

run on an agarose gel, and the 5953 bp (5947 bp pSAH060 + 6 bp inserted restriction site) linear 

band corresponding to each library was gel extracted. 

 To construct deletion variants composed of N- and C- terminal dCas9 fragments, one µg 

of each library was mixed and digested with BsaI, then Zymo cleaned. The resulting DNA 

mixture contained equimolar free dCas9 N- and C- terminal fragments, as well as equimolar 

pSAH060 vector backbone. This mixture was then ligated in the presence of SpeI and NheI, 

‘locking’ dCas9 fragments together by one of two six bp scar sites not recognized by either 

enzyme (Figure S1B). The ligated MISER library was transformed into XL1-Blue, grown 

overnight and plasmids were isolated the next day. The MISER library of dCas9 is quite large, 

with 936,396 possible deletions ( N(N + 1) / 2, N = 1368 ), and all cloning steps were performed 

with validation that > 107 transformants were obtained. 

 The MISER library is theoretically composed of all possible N- and C- terminal 

fragments, including duplications as well as deletions. To isolate deletions in a particular size 

range the MISER library was digested with BsaI, to excise the dCas9 gene from the vector 

backbone, and run on an agarose gel. Various slices of the MISER library were individually gel 

extracted (Figure 3.1B), ligated into expression vector pSAH063, and transformed into E.coli 

strain Xl1-Blue with appropriate antibiotic selection. 

 

3.2c Fluorescence repression assays and flow cytometry 

 

 The catalytically dead dCas9 MISER variants were used to repress the transcription of 

genomically encoded fluorescent reporter genes in E.coli as previously described (Oakes et al., 

2014; Qi et al., 2013). Briefly, a sgRNA targeting Green Fluorescent Protein (GFP) was 

constitutively expressed, which results in repression of constitutively expressed GFP contingent 

on functional dCas9 expression from pSAH063. This repression was quantified relative to non-

targeted Red Fluorescent Protein (RFP), which was expressed identically to GFP and located 

downstream at the same genomic locus. This assay yields robust repression detection, with at 
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least an order of magnitude lower GFP signal after 8 hours of growth at 37° C with 750 rpm 

shaking in LB media + 1 nM Isopropyl β-D-1-thiogalactopyranoside (IPTG) induction of dCas9 

from pSAH063. Assays and flow cytometry were conducted in either an Infinity M1000 PRO 

monochromator (Tecan) or an SH800 Cell Sorter (Sony Biotechology). For GFP/RFP ratiometric 

measurements there was no significant difference between samples for the RFP fluorescence 

measurement. 

 

3.2d Library Sequencing and Analysis 

 

 100 nucleotide single end reads were used to sequence the dCas9 Slice 4 and Slice 5 

libraries. dCas9 open reading frames were amplified from pSAH064 libraries with primers 

SAH_356 and SAH_358. PCR products were further prepared for deep sequencing by the UC 

Berkeley Functional Genomics Laboratory. Sequencing was performed by the UC Berkeley 

Vincent J. Coates Genomics Sequencing Laboratory on an Illumina HiSeq4000. Samples were 

mixed at custom ratios as follows: Slice 5 Naïve Library – 10% ; Slice 5 Sorted Library – 10% ; 

Slice 4 Naïve Library – 40% ; Slice 4 Sorted Library – 40%. 

 Sequencing analysis was performed with custom MATLAB scripts available online at 

https://github.com/savagelab. Briefly, reads were analyzed for the novel presence of the two 

possible MISER scar sequences, ‘GCTAGT’ or ‘ACTAGC’. The majority of reads were fully 

WT dCas9 sequence, as expected due to the fact that scar sequences can occur anywhere along 

dCas9. Once detected, reads containing 15 bp upstream and downstream of the scar (that exactly 

matched dCas9 sequence) were used to identify the location of a deletion. Sequencing statistics 

can be found in Table 3.2. Enrichment ratios were calculated by taking the ratio of the frequency 

of each variant before and after selection (Fowler 2014). To conservatively display variants only 

detected in one library, one artificial read was added to both datasets. 

 

3.3 Results 

 

 MISER enables a comprehensive query of a protein deletions by 1. programmably 

encoding two distinct restriction enzyme sites at every codon in a target protein; 2. excising the 

intervening sequence using said restriction enzymes and; 3. re-ligating the remaining fragments 

in a cycling ligation reaction that drives towards completion (Figure 3.1A). The simple and 

efficient MISER system can utilize any two restriction enzymes with compatible sticky ends, 

here SpeI and NheI. Subsequent cleavage and ligation forms a two codon scar site not recognized 

by either enzyme, thereby greatly increasing efficiency and simplifying cloning (Figure 3.2). The 

creation of MISER libraries is simple and fully programmable-- using in vivo plasmid 

recombineering (Thomason et al. 2007; Higgins, Ouonkap, and Savage 2017) to generate the 

initial NheI and SpeI libraries, thus overcome the optimization requirements and undirected 

nature of transposon and nuclease-based methods. Fundamentally, the ligation of protein 

terminal fragments produces duplications as well as deletions, such that a MISER library is a 

triangular distribution, with near-WT length proteins most frequent and the largest deletions least 

frequent (Figure 3.1B). To empirically determine the size range of functional deletions, an 

agarose gel of the dCas9 MISER deletion library was sliced into six sub-libraries, independently 

cloned into expression vectors, and assayed for CRISPRi GFP repression via flow cytometry 

(Figure 3.3) (Qi et al. 2013). Sublibrary Slice 4 was the most stringent library with detectable 
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repression (Figure 3.1B), with functional variants becoming more frequent in slices composed of 

smaller deletions as expected. 
 

 
 

Figure 3.1: MISER produces comprehensive functional landscapes of protein deletions. (A) Cartoon of the MISER 

cloning scheme. Two unique restriction sites with compatible sticky ends are programmably inserted across a target 

gene using plasmid recombineering. Digestion and re-ligation of gene fragments produces all possible deletions. (B) 

The full range of dCas9 deletion sizes was separated into six differently sized sub-libraries and assayed for CRISPRi 

function. Slices six, five, and four were found to contain functional deletion variants. (C) Slices five and four were 

deep sequenced before and after a CRISPRi fluorescence assay to generate a value for relative transcriptional 

repression. This data is presented as a deletion landscape, where each pixel represents a particular deletion variant. 

Two deletion variants are explicitly annotated, one functional and one non-functional. Inset: zoom of the Helical II 

domain region. 

 

 Fluorescence-activated Cell Sorting (FACS) and deep sequencing of MISER variants 

enabled the comprehensive mapping of functional dCas9 deletions. To focus sequencing on 

functional variants, Slice 4 and Slice 5 were deep sequenced pre- and post- FACS sorting, and 

the enrichment or depletion of individual variants was quantified. Four large deletion regions 

were independently identified in both libraries, and the data in the libraries were highly 

significantly correlated (Figure 3.4). These data were normalized and combined to generate a 

comprehensive landscape of functional dCas9 deletions (Figure 3.1C). 80% of sequencing depth 

was focused on deletions from 150 to 350 amino acids in length (Slice 4), and 51.4% 

(115,530/224,718) of these deletions were detected. Overall this landscape includes data for 

27.5% of all possible dCas9 deletions (257,737/936,396). Four large deletion regions were 

identified, roughly corresponding to the Helical II, Helical III, HNH, and RuvC III domains 

(Figure 3.5). These large deletion regions are bounded by domain topology, as observed by  
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Figure 3.2: Full cloning scheme for Multiplex Iterative Size Exclusion Recombination (MISER). The method can 

be considered in three parts. (A) Plasmid recombineering generates two comprehensive libraries of restriction site 

insertions across the target gene. These restriction sites are both novel to the target plasmid and produce compatible 

sticky ends. Recombineering was performed similarly as in (Higgins 2017), where the target gene lacks a promotor 

and start codon to prevent growth biases during library construction, and is flanked by BsaI sites for later golden 

gate cloning (here, plasmid pSAH060) . Additionally, rather than mutagenic oligos, double stranded PCR product 

was used for recombineering, and another cloning step was introduced to remove unmodified plasmids. These 

modifications are described in Experimental Design. (B) Modified golden gate cloning generates a library of ligated 

N- and C- terminal fragments of the target gene, comprehensively producing protein deletion variants as well as 

duplication variants. An equimolar mixture of the two plasmid libraries is mixed and fully digested to produce free 

N-  and C- terminal fragments of the target gene. This fragment mixture is then re-ligated in the presence of NheI 

and SpeI. Successful ligation of an N- and C-terminal fragment from differing libraries produces one of two possible 

6 base-pair scar sequences. These novel scar sequences are not recognized by either NheI or SpeI, thus trapping the 

desired chimeric product as a final ligated vector. Because N- and C-terminal fragments are ligated randomly, these 

chimeric products produce both protein deletions and protein duplications. Ideally the library is both large enough 

and minimally biased in order to produce a large fraction of possible variants. The product of this step can be 

considered a MISER library of plasmid pSAH060. (C) A final cloning step moves the MISER library into a desired 

context – i.e. an expression plasmid, here pSAH063. Step C also allows for size-based exclusion of undesired 

protein variants by extraction from an agarose gel.
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Figure 3.3: Size exclusion and flow cytometry identify the range of dCas9 deletion sizes exhibiting in vivo 

transcriptional repression. (A) Individual MISER sub-libraries of specific lengths can be generated by agarose size 

exclusion. To identify the range of functional deletion sizes, the dCas9 MISER library was size separated by agarose 

gel electrophoresis. The gel range encompassing dCas9 deletions was cut into six gel slices, each containing a sub-

library of differently sized deletion variants. These six slices were individually gel extracted and ligated into 

expression vector pSAH063, generating pSAH064 plasmids with dCas9 deletions. The resulting expression sub-

libraries exhibit high precision in size ranges when assayed by agarose gel electrophoresis. (B) Flow cytometry 

identifies Slice 4, 5, and 6 as expression sub-libraries containing functional dCas9 deletion variants. GFP repression 

CRISPRi was performed as described in Experimental Design. The region of phenotype defined as ‘functional’ is 

illustrated. The percent of functional hits is annotated.   
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Figure 3.4: Deep sequencing of the sublibraries Slice 4 and Slice 5 reveal deletion regions throughout dCas9. (A) 

Raw enrichment map of Slice 4 sub-library. Each pixel represents a particular deletion variant, whose start and end 

points are mapped to the linear amino acid sequence by lines at 45° angles, for example the dashed lines in the 

Helical-II domain. Domain boundaries are labeled by amino acid number. The pixel color denotes the degree of 

enrichment or loss following flow cytometry screening for transcriptional repression in vivo. Detailed calculations 

are described in the supplementary methods. Deletions corresponding to sizes within the gel slice are indicated by 

dashed lines. (B) Raw enrichment map of Slice 5 sub-library, as in A. Note the differing range of enrichment ratios. 

(C) Histogram of deletion sizes in the naïve Slice 4 library. The edges of the gel slice are indicated by dashed lines. 

(D) Histogram of deletion sizes in the naïve Slice 5 library. The edges of the gel slice are indicated by dashed lines. 

(E) Slices 4 and 5 independently replicate the same large functional deletion regions. The raw enrichment maps of 

Slice 4 and Slice 5 contain many of the same variants, and the Pearson correlation for these variants is highly 

significant (p < 0.001). Furthermore, this correlation is progressively lost if the two enrichment maps are shifted 

relative to one another. The line plots the mean of four additional Pearson correlations where the data array has been 

offset – either up, down, left, or right – by the indicated number of amino acids. This analysis verifies that the two 

enrichment maps independently identify large-scale regions of dCas9 which can be deleted, and validates the 

apparent visual correspondence between maps A and B. Error bars, standard deviation. 

 

a 

 

b 

 
 

Figure 3.5: Four domains can be deleted from dCas9, and many shorter deletions are tolerated. (A) Large tolerated 

deletions across dCas9. Only highly enriched deletions are plotted (>100x). Deletions range from 1-350 amino 

acids. (B) Small functional and non-functional deletions across dCas9. Only highly enriched (>100x) or depleted 

(<0.01x) deletions are plotted. Deletions range from 1-10 amino acids. 
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correlations between functional enrichment and the three dimensional distance between deletion 

sites in a DNA-bound structure of Cas9 (Figure 3.6). Notably, both the correlation strength and 

significance are completely lost once within a region corresponding to a deletable domain. While 

domain-level deletions are strongly bounded, small deletions and small insertions (~10 amino 

acids) are tolerated in much of the structure (Figure 3.5B, Figure 3.7.), a finding that has been 

previously observed in other proteins (Simm et al. 2007; Pisarchik, Petri, and Schmidt-Dannert 

2007). Two exceptions are the ‘bridge helix’ (Nishimasu et al. 2014) and the ‘phosphate lock 

loop’ (Anders et al. 2014), both known for key mechanistic roles. 

 To validate the function map, individual deletion variants from each of the four deletion 

regions were either isolated from the library (Figure 3.8) or constructed via PCR and assayed 

individually. Variants from each of the four deletion regions could be identified that exhibited 

CRISPRi nearly as effectively as full length dCas9 (Figure 3.9, Figure 3.8E). Intriguingly, many 

of the deletions we identified have been explored rationally over a host of reports, yielding 

insight into the biochemical mechanisms lost with the removal of each domain. To begin, the 

most obvious of the acceptable deletions, the HNH domain, is responsible for cleaving the target 

strand and gating cleavage by the RuvC domain. Thus it is little surprise that deletions of the 

HNH are tolerated in a molecule that is required to bind but not cleave DNA. In fact Sternberg et 

al. previously demonstrated that a HNH deleted (Δ768-919) Cas9 is competent for nearly WT 

levels of binding activity, but is unable to cleave (Sternberg et al. 2015). Likewise, Chen et al. 

previously demonstrated that the Helical III domain plays a similar role, but upstream of the 

HNH domain, gating the closing motion of HNH cleavage by sensing the extended duplex. 

Deletion of this domain (Δ497-713) also ablated cleavage activity while maintaining full binding 

affinity (Chen et al. 2017). Next, the Helical II domain was previously deleted because it was 

postulated to be unnecessary due to low conservation in other Cas9 sequences, and furthermore 

lacks contacts to the bound guide:target heteroduplex in the crystal structure (Nishimasu et al. 

2014). Notably, unlike our deletions of HNH & Helical III, the most functional deletions of the 

Helical II domain were slightly but significantly less functional that dCas9 (Figure 3.9A). 

Finally, we also uncover a deletion set in the RuvCIII domain that has never before been seen or 

tested. Modeling this deletion on the crystal structure (PDB ID 59FR) reveals that this deletion 

removes a large set of loops, an alpha helix and two antiparallel beta sheets.  

 Protein domains are often modularly and progressively added during the evolution of a 

large protein, and as such we hypothesized that the reverse would also be possible. However, 

unanticipated epistatic effects between multiple domain deletions might cause any particular set 

of ‘stacked’ deletions to become non-functional. Therefore, we generated libraries of stacked 

deletions built upon RuvC deletion variant Δ1010-1081 as a starting point. A library of 

quadruple deletion variants, termed CRISPR Effectors (CE) due to their highly pared down 

structure compared to Cas9, were constructed as follows: individual sublibraries of deletions 

from Helical II, Helical III, and the HNH domains were isolated from the full MISER library 

(Figure 3.8). The dCas9 gene was divided into four fragments in order to PCR and combine the 

deletion sub-libraries via Golden Gate cloning (Figure 3.10). The resulting library, CE Library 1, 

was processed through the CRISPRi assay and functional variants were isolated by flow 

cytometry as above. A variety of highly functional CEs were obtained (Figure 3.11), although 

surprisingly none of them possessed a Helical II deletion. This result was curious and we 

therefore generated a second library, CE Library 2, in a similar manner, except we included a 

new sublibrary of isolated Helical II deletion variants to ensure diversity in deletions from this   
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Figure 3.6: Domain deletions are constrained by inter- but not intra- domain topology. (A) Pairwise amino acid 

distances of Cas9 are plotted, ranging between 1 and 55 angstroms. Each pixel represents a pair of amino acids in 

Cas9, corresponding to the triangular projection onto the Cas9 domain cartoon at bottom. An example Helical-II 

deletion is illustrated. The pixel color represents the three dimensional linear distance between the two amino acids 

specified. Distance data is taken from PDB ID: 5F9R. (B) Pearson correlations between pairwise amino acid 

distance and enrichment values. The Pearson correlation between pairwise distances and enrichment values for the 

entirety of dCas9 is 0.328, p < 10-5. This indicates that overall, only a minority of the deletion variant’s enrichment 

can be explained by distance alone. However, smaller sub-regions within dCas9 exhibit either increased or 

decreased correlations. All possible such sub-region correlations are plotted, with pixel locations corresponding to 

the region boundaries via triangular projections. Two examples are illustrated. Pixel color indicates the degree of 

correlation ranging between -0.5 and 0. Correlation values are only plotted if at least 100 data points are included in 

the region. Non-significant correlation values (p < 0.05) are grey. For regions containing both highly enriched and 

de-enriched variants, pairwise distances become significantly predictive, and explain up to half of the variation 

observed. In contrast, regions composed of mostly enriched variants exhibit correlations that drastically lose 

significance and explain very little of the observed enrichment variation. These data suggest that while domain 

topology constrains the edges of acceptable deletions, amino acid distance does not constrain deletions that fall 

entirely within a removable domain. 
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Figure 3.7: The full dCas9 MISER landscape contains insertions in addition to deletions (A) The enrichment map of 

Figure 3.1C is presented in its entirety, including small duplications of dCas9 sequence. The horizontal grey line 

corresponds to the boundary between deletions (top) and tandem duplicate insertions (bottom). Pixels reflected over 

the horizontal line represent the same dCas9 fragment. Note that in all cases a two amino acid MISER scar is also 

present (either Ala-Ser or Thr-Ser).  (B) The combined enrichment map in A was interpolated to qualitatively 

highlight the boundaries between functional and non-functional deletions, which are not clearly visible in the raw 

data. Pixels were replaced by the mean enrichment value of neighboring deletions/duplications, plus itself, in a 

square window 10 amino acids wide. Windows with fewer than five values were left white. Insets: The N- and C- 

terminal regions qualitatively show particular regions where small insertions are strongly depleted, unlike in the 

majority of the protein. The ‘bridge helix’ and ‘phosphate lock loop’ are two examples of secondary structure which 

strongly disallow small insertions. 
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Figure 3.8: MISER sublibraries composed of specific deletions can be generated by restriction digestion. (A) 

Digesting a MISER library with a restriction enzyme that has exactly one site within the plasmid will linearize the 

majority of plasmids, while plasmids with the site deleted will remain circular. This reaction can then be 

transformed in order to recover a sublibrary containing deletions from a specific region. (B) The restriction enzyme 

SwaI was used to isolate deletions in the Helical II region. The enzyme recognition site is shown mapped to the 

sequence of pSAH064, the dCas9 expression plasmid, illustrating the overlap with various sequenced deletions. (C) 

The restriction enzyme KpnI was used to isolate deletions in the Helical III region, as in B. (D) The restriction 

enzyme PciI was used to isolate deletions in the HNH region, as in B. (E) Individual deletion variants were re-

transformed and assayed for CRISPRi activity. RuvC deletions were cloned manually by PCR. 
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Figure 3.9: Individual deletion variants validate the MISER deletion landscape. (A) The top six functional CRISPRi 

deletion variants from each of the four deletion regions repress GFP nearly as well as dCas9. Notably, many of the 

top variants within a deletion region share a deletion start or deletion stop site. Additional variants for each region 

can be found in Figure 3.8E. (B). The Helical II deletion region is represented on the DNA-bound structure of Cas9 

(PDB ID: 5F9R). (C) The Helical III deletion region, as in B. (D) The HNH deletion region, as in B. (E) The RuvC 

deletion region, as in B.  
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Figure 3.10: Golden Gate Cloning builds libraries of CRISPR Effector (CE) variants with multiple deletions. (A) 

One highly functional RuvC deletion variant from Region D was PCR amplified, along with Sublibraries A, B, and 

C. PCR primers added Golden Gate compatible sticky ends, enabling Golden Gate cloning of individual fragments 

to form a library of CE deletion variants, Library 1. (B) Flow cytometry was performed to isolate the most 

functional CE variants from Library 1. Selected sequences of CE variants can be found in Table 3.3. All highly 

functional CE variants were found to lack Helical-II deletions. To verify this result, a second version of Sublibrary 

A was created, using a different strategy to isolate Helical II deletions as follows: the full MISER library was 

digested with the restriction enzyme BlpI, which cuts at amino acids 227-228 (Instead of SwaI), and the resulting 

DNA was used directly as template for the PCR reaction (BlpI cuts pSAH064 three times and thus cannot be directly 

re-transformed to isolate the sublibrary). Library 2 thus contains quadruple deletion variants as in Library 1, but the 

sublibrary of Helical II deletions was entirely remade. Once again functional CE variants isolated by FACS lacked 

Helical-II deletions. The most functional variant in Library 2, CE 13, was named Δ3CE. Finally, to directly assay 

the effects of a Helical II deletion, the Helical-II region of Δ3CE was replaced with a library of deletions from 

Sublibrary A. These quadruple deletion CE variants all exhibited vastly reduced CRISPRi activity compared to 

Δ3CE alone. The most functional variant assayed was named Δ4CE. 
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Figure 3.11: Functional deletions can be combined to identify the minimal RNA-guided DNA binding element 

within dCas9. (A) Combinatorial libraries of combined functional deletions yield novel minimal CRISPR Effector 

(CE) proteins. CE variants in Library 1 and Library 2 are composed of triple deletions in Helical III, HNH, and 

RuvC domains. CE 13 was named Δ3CE. CE 25-30 are variants of Δ3CE with a fourth deletion in the Helical II 

domain. CE 25 was named Δ4CE. (B) Cartoon domain representation of dCas9, Δ3CE, and Δ4CE. (C) The intact 

domains of dCas9 or Δ4CE are represented on the DNA-bound structure of Cas9 (PDB ID: 5F9R). 
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region. Again, the most functional CE variants isolated by FACS did not contain Helical II 

deletions. Finally, in an attempt to force a minimal length CE, a highly active CE variant was 

named Δ3CE and directly combined with a library of Helical II deletions. The resulting enforced 

quadruple deletion CE variants all exhibited drastic loss of function. The most active of these, 

Δ3CE with a further deletion of Δ180-297, was named Δ4CE. Δ3CE and Δ4CE were re-

transformed and assayed once more to verify their phenotype.  

  

3.4 Discussion 

 

 In this work we have defined Δ3CE and Δ4CE as a minimal protein scaffold required for 

CRISPRi, identifying the necessary competent DNA-binding elements found within dCas9. To 

accomplish this we have modularly removed regions responsible for nuclease regulation and 

activity as well as a structural region (Figure 3.11). Δ3CE is less than 1000 amino acids in length 

and retains near-WT GFP repression under CRISPRi, demonstrating the reversibility of 

evolutionary domain aggregation. In contrast, deleting Helical II to generate Δ4CE was found to 

drastically reduce function, an unexpected finding that recapitulates previous observations of 

~50% reduction in cleavage activity in Cas9 Δ175-307 (Nishimasu et al. 2014). This previously 

observed functional deficiency was proposed to result from reduced expression, but we find that 

at even the highest levels of expression Δ4CE cannot be rescued, while Δ3CE remains highly 

functional even at very low levels of induction (Figure 3.12). We propose that our 

comprehensive investigation of dCas9 deletions has pared down protein structure in a manner 

that has potentially elucidated a fundamental role for the Helical II domain in Cas9’s DNA 

binding and cleavage mechanisms. In brief, every other domain in Cas9 has an identified 

mechanism: RuvC is responsible for non-target strand cleavage (Jinek et al. 2012); Helical I for 

binding the guide RNA (Nishimasu et al. 2014); Helical III for regulating the sensing of the 

DNA:RNA duplex (Chen et al. 2017); the HNH domain for target strand cleavage (Jinek et al. 

2012); and the CTD domain for PAM interaction and potentially DNA bubble initiation (Anders 

et al. 2014).  
 

 
 
Figure 3.12: Δ4CE CRISPRi activity is not rescued by increased expression. Δ3CE and dCas9 remain highly 

functional even at very low levels of induction.  
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 The Helical II domain is the least well understood mechanistically and is the least 

represented among Cas9 homologs, yet intriguingly SpyCas9 is better equipped to unwind 

dsDNA than many Cas9 homologs (E. Ma et al. 2015). A recent report investigating molecular 

dynamics using Förster resonance energy transfer has proposed a mechanism for the Helical II 

domain in stabilizing the unwinding of the NT strand and regulating the conformational 

transition to the on-target state, fully displacing the non-target strand (Sung et al. 2018). Here, 

we have shown that removal of this domain in the stacked MISER CE’s severely perturbs 

CRISPRi repression, consistent with the general assertion that Helical II performs a key role in 

stabilizing DNA binding. A specific mechanism involving stabilization of the non-target strand 

initially might allow for the perpetuation of the fundamental ‘Brownian ratchet’ underlying 

guideRNA:targetDNA hybridization (Sternberg et al. 2014). Our data is consistent with this 

mechanism, but future investigations will be required to confidently classify the Helical II 

domain as a non-target strand DNA binding domain that stabilizes the unwound state. 

 We have also discovered an entirely new deletion set in the RuvC III domain that retains 

full CRISPRi function. Intriguingly, this deletion does not seem to overlay with a known 

functional domain and thus may serve as a module that further stabilizes the RuvC domain as a 

whole. Additionally, this deletion abuts the non-target and target strand DNA (~4-6 angstroms) 

and may provide a highly useful site to replace with accessory fusions such as deaminases that 

base edit the non-target stand and may be sterically blocked by these amino acids. 

 The MISER approach is programmable and comprehensive, allowing the functional, 

comprehensive annotation of deletion landscapes for the first time. Here we have revealed all 

known functional dCas9 deletions and one unknown deletion in a single experiment. This 

demonstration of MISERs ability to comprehensively delineate domain function highlights the 

power of this technique for generating useful & active engineered proteins. In contrast, rational 

approaches can avoid dealing with large library sizes but must instead rely on previous 

knowledge, which may be biased. MISER represents another tool toward fully developed 

methods in molecular biology that will explore comprehensive function landscapes in an 

unbiased manner. Understanding protein functional landscapes will fully realize the potential of 

protein engineering to ameliorate humanity’s most important problems, such as human food 

security (D. Ma et al. 2018). Finally, from an evolutionary perspective, internal domain deletion 

is a relatively rare mutation, with domain architectures tending to aggregate over time. Here we 

have demonstrated that MISER libraries can be iteratively combined to reverse this process, 

isolating the minimal module that is specialized for a specific function. We anticipate that these 

comprehensive approaches to profiling protein domains will have broad application in both 

mechanistic biochemistry and protein engineering. 
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3.5 Tables 

 

 SpeI Insertion NheI Insertion 

Recombineering 
Oligo: Insertion 
Site 1 

'AACACGTCCGTCCTAGAACTcgtctc
atacgcaaaccgcctctccccgcgcgttggcg
gtctcaatctATGactagtgataagaaatac
tcaataggcttagctatcggcacaaatagcgt
cgggagacgGCAAGCGGTACACTCAG
ATCAGTGTTGAGCGTAACCAAGT' 

'AACACGTCCGTCCTAGAACTcgtctc
atacgcaaaccgcctctccccgcgcgttggcg
gtctcaatctATGgctagcgataagaaatac
tcaataggcttagctatcggcacaaatagcgt
cgggagacgGCAAGCGGTACACTCAG
ATCAGTGTTGAGCGTAACCAAGT' 

 

Table 3.1: Example Oligo Library Synthesis (OLS) oligonucleotides used in this study. The full list of ordered 

oligonucleotides is available as ‘Auxiliary Supplementary Materials - Recombineering Oligonucleotides’. All 

oligonucleotides were ordered from Agilent Technologies, Inc. Oligos were designed to incorporate 45 and 47 bp of 

homology upstream or downstream of the insertion site, respectively (lowercase). Six bp were inserted between 

dCas9 codons, beginning after the target codon. The above example targets the start codon, ‘ATG’ (bold uppercase). 

These six bp consisted of recognition sequences for either the restriction enzyme SpeI or NheI (underlined). 

Flanking primer sequences allowed the amplification of the entire OLS library (italic) using primers SAH_284 and 

SAH_285 (Table 3.4). Specific libraries of SpeI recombineering oligonucleotides or NheI recombineering 

oligonucleotides were amplified using forward primer SAH_284 and either SAH_286 or SAH_287 reverse primers, 

respectively. After amplification, these dsDNA products can be ‘matured’ by cleavage with the restriction enzyme 

BsmbI (bold lowercase), which cleaves internally of its recognition site, thus removing all non-homologous priming 

sequence from the recombineering template. 

 

 

 Total Reads Deletions 

Sequenced 

Unique 

Deletions 

Enriched 

Unique 

Deletions 

Depleted 

Unique 

Deletions 

Slice 4 Naïve 132,274,232 1,923,543 192,447   

Slice 4 Sorted 140,589,968 1,960,138 25,948 19,618 

 

6,330 

 

Slice 5 Naïve 37,873,068 590,859 111,438   

Slice 5 Sorted 35,016,326 290,947 51,462 31,794 

 

19,668 

 

Total 345,753,594 4,765,487 381,295 51,412 25,998 

 

Table 3.2: Statistics for deep sequencing of MISER libraries Slice 4 and Slice 5. 

 

Deletion CE 1 CE 2 CE 3 CE 4 CE 5 CE 6 
Δ3CE 

(CE 13) 

Δ4CE 

(CE 25) 

Helical II        [180-297] 

Helical III [511-716] [498-699] [500-688] [497-700] [501-664] [512-701] [503-708] [503-708] 

HNH [813-909] [813-908] [811-898] [786-882] [804-893] [809-916] [792-897] [792-897] 

RuvC [1010-1081] [1010-1081] [1010-1081] [1010-1081] [1010-1081] [1010-1081] [1010-1081] [1010-1081] 

 

Table 3.3: Deletions present in selected MISER variants. Indicated numbers represent the first and last amino acid 

deleted from the protein. 
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Primer 

Name 

Primer Notes Full Sequence 

SAH_284 Recombineering oligonucleotide amplification: 

universal forward 

AACACGTCCGTCCTAGAACT 

SAH_285 Recombineering oligonucleotide amplification: 

universal reverse 

ACTTGGTTACGCTCAACACT 

SAH_286 Recombineering oligonucleotide amplification: 

SpeI specific reverse 

GATCTGAGTGTACCGCTTGC 

SAH_287 Recombineering oligonucleotide amplification: 

NheI specific reverse 

GATCGCCTAGACAACTCCTG 

SAH_292 Amplify chloramphenicol cassette forward, adds 

SpeI site 

CACACCAACTAGTGACGTCGATATCTGG

CGAAAAT 

SAH_293 Amplify chloramphenicol cassette reverse, adds 

SpeI site 

TTGTTACTAGTGCTTGGATTCTCACC 

SAH_294 Amplify chloramphenicol cassette forward, adds 

NheI site 

CACACCAGCTAGCGACGTCGATATCTGG

CGAAAAT 

SAH_295 Amplify chloramphenicol cassette reverse, adds 

NheI site 

CACACCAGCTAGCGCTTGGATTCTCACC

AATAAAAAACG 

SAH_356 Amplify dCas9 from pSAH064, forward GAGCGGATAACAATTCCCCTGT 

SAH_358 Amplify dCas9 from pSAH064, reverse GGCTGTGGTGATGATGGTG 

 

Table 3.4: PCR primers used in this study. All primers were ordered from Integrated DNA Technologies, Inc. 

 

Sequence Name Cloning notes Full Sequence 

Chloramphenicol 

Selection 

Fragment 

PCR product 

for SpeI or 

NheI 

recombineering 

selection 

CACACCAGCTAGCGACGTCGATATCTGGCGAAAATGAGACGTT

GATCGGCACGTAAGAGGTTCCAACTTTCACCATAATGAAATAA

GATCACTACCGGGCGTATTTTTTGAGTTATCGAGATTTTCAGGA

GCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCA

CCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCA

TTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCT

GGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCAC

AAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAAT

GCTCATCCGGAATTTCGTATGGCAATGAAAGACGGTGAGCTGG

TGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAG

CAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACG

ATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGT

TACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAA

TATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTT

TGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTT

TCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGAT

GCCGCTGGCGATTCAGGTTCATCATGCCGTTTGTGATGGCTTCC

ATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGA

GTGGCAGGGCGGGGCGTAATTTGATATCGAGCTCGCTTGGACT

CCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATT

TGTTCAGAACGCTCGGTTGCCGCCGGGCGTTTTTTATTGGTGAG

AATCCAAGCGCTAGCTGGTGTG 

 

Table 3.5: Full sequence of the chloramphenicol selection fragment. 
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Plasmid 

name 

Cloning notes Full Sequence 

pSAH060 Recombineerin

g target 

plasmid. Lacks 

promoter. 

Flanking BsaI 

sites for Golden 

Gate cloning 

TTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTT

ATTGTTCATGACCATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGA

AAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAAC
AAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTT

TCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGC

CGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAA
TCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAA

GACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACA

GCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAG
AAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGT

CGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTC

CTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGC
GGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGC

CTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGC

CTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGA
GCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCGGTCT

CAATCTATGGATAAGAAATACTCAATAGGCTTAGCTATCGGCACAAATAGCGTCGGATG

GGCGGTGATCACTGATGAATATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAAATA
CAGACCGCCACAGTATCAAAAAAAATCTTATAGGGGCTCTTTTATTTGACAGTGGAGAG

ACAGCGGAAGCGACTCGTCTAAAACGGACAGCTCGTAGAAGGTATACACGTCGGAAGA

ATCGTATTTGTTATCTACAGGAGATTTTTTCAAATGAGATGGCGAAAGTAGATGATAGTT
TCTTTCATCGACTTGAAGAGTCTTTTTTGGTGGAAGAAGACAAGAAGCATGAACGTCATC

CTATTTTTGGAAATATAGTAGATGAAGTTGCTTATCATGAGAAATATCCAACTATCTATC

ATCTGCGAAAAAAATTGGTAGATTCTACTGATAAAGCGGATTTGCGCTTAATCTATTTGG
CCTTAGCGCATATGATTAAGTTTCGTGGTCATTTTTTGATTGAGGGAGATTTAAATCCTG

ATAATAGTGATGTGGACAAACTATTTATCCAGTTGGTACAAACCTACAATCAATTATTTG

AAGAAAACCCTATTAACGCAAGTGGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTG
AGTAAATCAAGACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGAAAAATGG

CTTATTTGGGAATCTCATTGCTTTGTCATTGGGTTTGACCCCTAATTTTAAATCAAATTTT

GATTTGGCAGAAGATGCTAAATTACAGCTTTCAAAAGATACTTACGATGATGATTTAGA
TAATTTATTGGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAGCTAAGAATTT

ATCAGATGCTATTTTACTTTCAGATATCCTAAGAGTAAATACTGAAATAACTAAGGCTCC

CCTATCAGCTTCAATGATTAAACGCTACGATGAACATCATCAAGACTTGACTCTTTTAAA
AGCTTTAGTTCGACAACAACTTCCAGAAAAGTATAAAGAAATCTTTTTTGATCAATCAAA

AAACGGATATGCAGGTTATATTGATGGGGGAGCGAGCCAAGAAGAATTTTATAAATTTA

TCAAACCAATTTTAGAAAAAATGGATGGTACTGAGGAATTATTGGTGAAACTAAATCGT
GAAGATTTGCTGCGCAAGCAACGGACCTTTGACAACGGCTCTATTCCCCATCAAATTCAC

TTGGGTGAGCTGCATGCTATTTTGAGAAGACAAGAAGACTTTTATCCATTTTTAAAAGAC
AATCGTGAGAAGATTGAAAAAATCTTGACTTTTCGAATTCCTTATTATGTTGGTCCATTG

GCGCGTGGCAATAGTCGTTTTGCATGGATGACTCGGAAGTCTGAAGAAACAATTACCCC

ATGGAATTTTGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCAATCATTTATTGAACGCAT
GACAAACTTTGATAAAAATCTTCCAAATGAAAAAGTACTACCAAAACATAGTTTGCTTT

ATGAGTATTTTACGGTTTATAACGAATTGACAAAGGTCAAATATGTTACTGAAGGAATG

CGAAAACCAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTGTTGATTTACTCTTCAAA
ACAAATCGAAAAGTAACCGTTAAGCAATTAAAAGAAGATTATTTCAAAAAAATAGAAT

GTTTTGATAGTGTTGAAATTTCAGGAGTTGAAGATAGATTTAATGCTTCATTAGGTACCT

ACCATGATTTGCTAAAAATTATTAAAGATAAAGATTTTTTGGATAATGAAGAAAATGAA
GATATCTTAGAGGATATTGTTTTAACATTGACCTTATTTGAAGATAGGGAGATGATTGAG

GAAAGACTTAAAACATATGCTCACCTCTTTGATGATAAGGTGATGAAACAGCTTAAACG

TCGCCGTTATACTGGTTGGGGACGTTTGTCTCGAAAATTGATTAATGGTATTAGGGATAA
GCAATCTGGCAAAACAATATTAGATTTTTTGAAATCAGATGGTTTTGCCAATCGCAATTT

TATGCAGCTGATCCATGATGATAGTTTGACATTTAAAGAAGACATTCAAAAAGCACAAG

TGTCTGGACAAGGCGATAGTTTACATGAACATATTGCAAATTTAGCTGGTAGCCCTGCTA
TTAAAAAAGGTATTTTACAGACTGTAAAAGTTGTTGATGAATTGGTCAAAGTAATGGGG

CGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAATCAGACAACTCAAAA

GGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCGAAGAAGGTATCAAAGAATTA
GGAAGTCAGATTCTTAAAGAGCATCCTGTTGAAAATACTCAATTGCAAAATGAAAAGCT

CTATCTCTATTATCTCCAAAATGGAAGAGACATGTATGTGGACCAAGAATTAGATATTA

ATCGTTTAAGTGATTATGATGTCGATGCCATTGTTCCACAAAGTTTCCTTAAAGACGATT
CAATAGACAATAAGGTCTTAACGCGTTCTGATAAAAATCGTGGTAAATCGGATAACGTT

CCAAGTGAAGAAGTAGTCAAAAAGATGAAAAACTATTGGAGACAACTTCTAAACGCCA

AGTTAATCACTCAACGTAAGTTTGATAATTTAACGAAAGCTGAACGTGGAGGTTTGAGT
GAACTTGATAAAGCTGGTTTTATCAAACGCCAATTGGTTGAAACTCGCCAAATCACTAA

GCATGTGGCACAAATTTTGGATAGTCGCATGAATACTAAATACGATGAAAATGATAAAC

TTATTCGAGAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGACTTCCGAAAAG
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ATTTCCAATTCTATAAAGTACGTGAGATTAACAATTACCATCATGCCCATGATGCGTATC

TAAATGCCGTCGTTGGAACTGCTTTGATTAAGAAATATCCAAAACTTGAATCGGAGTTTG
TCTATGGTGATTATAAAGTTTATGATGTTCGTAAAATGATTGCTAAGTCTGAGCAAGAAA

TAGGCAAAGCAACCGCAAAATATTTCTTTTACTCTAATATCATGAACTTCTTCAAAACAG

AAATTACACTTGCAAATGGAGAGATTCGCAAACGCCCTCTAATCGAAACTAATGGGGAA
ACTGGAGAAATTGTCTGGGATAAAGGGCGAGATTTTGCCACAGTGCGCAAAGTATTGTC

CATGCCCCAAGTCAATATTGTCAAGAAAACAGAAGTACAGACAGGCGGATTCTCCAAGG

AGTCAATTTTACCAAAAAGAAATTCGGACAAGCTTATTGCTCGTAAAAAAGACTGGGAT
CCAAAAAAATATGGTGGTTTTGATAGTCCAACGGTAGCTTATTCAGTCCTAGTGGTTGCT

AAGGTGGAAAAAGGGAAATCGAAGAAGTTAAAATCCGTTAAAGAGTTACTAGGGATCA

CAATTATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGACTTTTTAGAAGCTAAAGGA
TATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTAAATATAGTCTTTTTGAGTTA

GAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAATTACAAAAAGGAAATGAGC

TGGCTCTGCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGTCATTATGAAAAGTTGA
AGGGTAGTCCAGAAGATAACGAACAAAAACAATTGTTTGTGGAGCAGCATAAGCATTAT

TTAGATGAGATTATTGAGCAAATCAGTGAATTTTCTAAGCGTGTTATTTTAGCAGATGCC

AATTTAGATAAAGTTCTTAGTGCATATAACAAACATAGAGACAAACCAATACGTGAACA
AGCAGAAAATATTATTCATTTATTTACGTTGACGAATCTTGGAGCTCCCGCTGCTTTTAA

ATATTTTGATACAACAATTGATCGTAAACGATATACGTCTACAAAAGAAGTTTTAGATGC

CACTCTTATCCATCAATCCATCACTGGTCTTTATGAAACACGCATTGATTTGAGTCAGCT

AGGAGGTGACTAATAGGTGAGACCTCCGCTTACAGACAAGCTGTGACCGTCACCGGGAG

CTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCTTAGAAAAACTCATCGAGC

ATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGC
CGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTG

GTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTC

AAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAAT
GGCAAAAGTTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCA

TCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGGCG

AAATACGCGATCACTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGC
AGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACC

TGGAATGCTGTTTTGCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACG

GATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCA
TCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCG

CATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAG

CCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTAGAGCAAG
ACGT 

pSAH063 MISER 

expression 

plasmid. 

Golden Gate 

compatible with 

pSAH060 

CAATAAACCCTTTAGGGAAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAA

TATATGTGTAGAAACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGT
TTCAGTTTGCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCT

CACCGTCTTTCATTGCCATACGGAACTCCGGATGAGCATTCATCAGGCGGGCAAGAATG

TGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAGGCCGTA
ATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAAATGCCTCAAA

ATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCAGTGATTTTTTTCTCC

ATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAAAATACGCCCGGTAGTGAT
CTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTGCCGATCAACGTCTCATTTTCGCC

AAAAGTTGGCCCAGGGCTTCCCGGTATCAACAGGGACACCAGGATTTATTTATTCTGCG

AAGTGATCTTCCGTCACAGGTATTTATTCGGCGCAAAGTGCGTCGGGTGATGCTGCCAAC
TTACTGATTTAGTGTATGATGGTGTTTTTGAGGTGCTCCAGTGGCTTCTGTTTCTATCAGC

TGTCCCTCCTGTTCAGCTACTGACGGGGTGGTGCGTAACGGCAAAAGCACCGCCGGACA

TCAGCTCTAGCGGAGTGTATACTGGCTTACTATGTTGGCACTGATGAGGGTGTCAGTGAA
GTGCTTCATGTGGCAGGAGAAAAAAGGCTGCACCGGTGCGTCAGCAGAATATGTGATAC

AGGATATATTCCGCTTCCTCGCTCACTGACTCGCTACGCTCGGTCGTTCGACTGCGGCGA

GCGGAAATGGCTTACGAACGGGGCGGAGATTTCCTGGAAGATGCCAGGAAGATACTTA
ACAGGGAAGTGAGAGGGCCGCGGCAAAGCCGTTTTTCCATAGGCTCCGCCCCCCTGACA

AGCATCACGAAATCTGACGCTCAAATCAGTGGTGGCGAAACCCGACAGGACTATAAAG

ATACCAGGCGTTTCCCCTGGCGGCTCCCTCGTGCGCTCTCCTGTTCCTGCCTTTCGGTTTA
CCGGTGTCATTCCGCTGTTATGGCCGCGTTTGTCTCATTCCACGCCTGACACTCAGTTCCG

GGTAGGCAGTTCGCTCCAAGCTGGACTGTATGCACGAACCCCCCGTTCAGTCCGACCGC

TGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGAAAGACATGCAAAAGCACC
ACTGGCAGCAGCCACTGGTAATTGATTTAGAGGAGTTAGTCTTGAAGTCATGCGCCGGT

TAAGGCTAAACTGAAAGGACAAGTTTTGGTGACTGCGCTCCTCCAAGCCAGTTACCTCG

GTTCAAAGAGTTGGTAGCTCAGAGAACCTTCGAAAAACCGCCCTGCAAGGCGGTTTTTT
CGTTTTCAGAGCAAGAGATTACGCGCAGACCAAAACGATCTCAAGAAGATCATCTTATT

AATCAGATAAAATATTTCTAGATTTCAGTGCAATTTATCTCTTCAAATGTAGCACCTGAA

GTCAGCCCCATACGATATAAGTTGTAATTCTCATGTTAGTCATGCCCCGCGCCCACCGGA
AGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGAGATCCCGGTGCCTAATGA

GTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTG

TCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGG
GCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCG
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CCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAA

TCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTAT
CCCACTACCGAGATGTCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGC

GCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCA

GCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTA
TCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCC

GAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAG

ATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGT
CTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAA

TGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGA

AGATTGTGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACC
ACGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGC

GTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGCCAGTT

GTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCC
GCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAG

ACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAAT

TGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTG
TCCGGGATCTCGACGCTCTCCCTTATGCGACTCCGATCCCGCAAATTTGACAATTAATCA

TCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCCCCTGTAGAAATAATTT

TGTTTAACTTTAATAAGGAGATAATCTTGAGACCTGGTGTGCACACCAGGTCTCATAGGG

GCAGCAGCCATCACCATCATCACCACAGCCAGGATCCTAGGCTGCTGCCACCGCTGAGC

AATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAC

CTCAGGCATTTGAGAAGCACACGGTCACACTGCTTCCGGTAGTCAATAAACCGGTAAAC
CAGCAATAGACATAAGCGGCTATTTAACGACCCTGCCCTGAACCGACGACCGGGTCGAA

TTTGCTTTCGAATTTCTGCCATTCATCCGCTTATTATCACTTATTCAGGCGTAGCACCAGG

CGTTTAAGGGCACCAATAACTGCCTTAAAAAAATTACGCCCCGCCCTGCCACTCATCGC
AGTACTGTTGTAATTCATTAAGCATTCTGCCGACATGGAAGCCATCACAGACGGCATGA

TGAACCTGAATCGCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATA

GTGAAAACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAA
ACTCACCCAGGGATTGGCTGAGACGAAAAACATATTCT 

pSAH064 dCas9 

expression 

plasmid 

CTAGATTTCAGTGCAATTTATCTCTTCAAATGTAGCACCTGAAGTCAGCCCCATACGATA

TAAGTTGTAATTCTCATGTTAGTCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTG
AAGGCTCTCAAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATT

AATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTA

ATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTT
CTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAG

TTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGG

TTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATGT
CCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGA

TCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGT

TGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTG
CGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGG

GCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTC

GCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCA
AGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATC

CAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCG

CTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTT
GATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTG

GAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTT

GGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAAC
GTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTG

CGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGC

GCTATCATGCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGC
TCTCCCTTATGCGACTCCGATCCCGCAAATTTGACAATTAATCATCCGGCTCGTATAATG

TGTGGAATTGTGAGCGGATAACAATTCCCCTGTAGAAATAATTTTGTTTAACTTTAATAA

GGAGATAATCTATGGATAAGAAATACTCAATAGGCTTAGCTATCGGCACAAATAGCGTC
GGATGGGCGGTGATCACTGATGAATATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGG

AAATACAGACCGCCACAGTATCAAAAAAAATCTTATAGGGGCTCTTTTATTTGACAGTG

GAGAGACAGCGGAAGCGACTCGTCTAAAACGGACAGCTCGTAGAAGGTATACACGTCG
GAAGAATCGTATTTGTTATCTACAGGAGATTTTTTCAAATGAGATGGCGAAAGTAGATG

ATAGTTTCTTTCATCGACTTGAAGAGTCTTTTTTGGTGGAAGAAGACAAGAAGCATGAAC

GTCATCCTATTTTTGGAAATATAGTAGATGAAGTTGCTTATCATGAGAAATATCCAACTA
TCTATCATCTGCGAAAAAAATTGGTAGATTCTACTGATAAAGCGGATTTGCGCTTAATCT

ATTTGGCCTTAGCGCATATGATTAAGTTTCGTGGTCATTTTTTGATTGAGGGAGATTTAA

ATCCTGATAATAGTGATGTGGACAAACTATTTATCCAGTTGGTACAAACCTACAATCAAT
TATTTGAAGAAAACCCTATTAACGCAAGTGGAGTAGATGCTAAAGCGATTCTTTCTGCA

CGATTGAGTAAATCAAGACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGAA

AAATGGCTTATTTGGGAATCTCATTGCTTTGTCATTGGGTTTGACCCCTAATTTTAAATCA
AATTTTGATTTGGCAGAAGATGCTAAATTACAGCTTTCAAAAGATACTTACGATGATGAT
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TTAGATAATTTATTGGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAGCTAAG

AATTTATCAGATGCTATTTTACTTTCAGATATCCTAAGAGTAAATACTGAAATAACTAAG
GCTCCCCTATCAGCTTCAATGATTAAACGCTACGATGAACATCATCAAGACTTGACTCTT

TTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATAAAGAAATCTTTTTTGATCAA

TCAAAAAACGGATATGCAGGTTATATTGATGGGGGAGCGAGCCAAGAAGAATTTTATAA
ATTTATCAAACCAATTTTAGAAAAAATGGATGGTACTGAGGAATTATTGGTGAAACTAA

ATCGTGAAGATTTGCTGCGCAAGCAACGGACCTTTGACAACGGCTCTATTCCCCATCAA

ATTCACTTGGGTGAGCTGCATGCTATTTTGAGAAGACAAGAAGACTTTTATCCATTTTTA
AAAGACAATCGTGAGAAGATTGAAAAAATCTTGACTTTTCGAATTCCTTATTATGTTGGT

CCATTGGCGCGTGGCAATAGTCGTTTTGCATGGATGACTCGGAAGTCTGAAGAAACAAT

TACCCCATGGAATTTTGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCAATCATTTATTGA
ACGCATGACAAACTTTGATAAAAATCTTCCAAATGAAAAAGTACTACCAAAACATAGTT

TGCTTTATGAGTATTTTACGGTTTATAACGAATTGACAAAGGTCAAATATGTTACTGAAG

GAATGCGAAAACCAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTGTTGATTTACTC
TTCAAAACAAATCGAAAAGTAACCGTTAAGCAATTAAAAGAAGATTATTTCAAAAAAAT

AGAATGTTTTGATAGTGTTGAAATTTCAGGAGTTGAAGATAGATTTAATGCTTCATTAGG

TACCTACCATGATTTGCTAAAAATTATTAAAGATAAAGATTTTTTGGATAATGAAGAAA
ATGAAGATATCTTAGAGGATATTGTTTTAACATTGACCTTATTTGAAGATAGGGAGATGA

TTGAGGAAAGACTTAAAACATATGCTCACCTCTTTGATGATAAGGTGATGAAACAGCTT

AAACGTCGCCGTTATACTGGTTGGGGACGTTTGTCTCGAAAATTGATTAATGGTATTAGG

GATAAGCAATCTGGCAAAACAATATTAGATTTTTTGAAATCAGATGGTTTTGCCAATCGC

AATTTTATGCAGCTGATCCATGATGATAGTTTGACATTTAAAGAAGACATTCAAAAAGC

ACAAGTGTCTGGACAAGGCGATAGTTTACATGAACATATTGCAAATTTAGCTGGTAGCC
CTGCTATTAAAAAAGGTATTTTACAGACTGTAAAAGTTGTTGATGAATTGGTCAAAGTA

ATGGGGCGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAATCAGACAA

CTCAAAAGGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCGAAGAAGGTATCAA
AGAATTAGGAAGTCAGATTCTTAAAGAGCATCCTGTTGAAAATACTCAATTGCAAAATG

AAAAGCTCTATCTCTATTATCTCCAAAATGGAAGAGACATGTATGTGGACCAAGAATTA

GATATTAATCGTTTAAGTGATTATGATGTCGATGCCATTGTTCCACAAAGTTTCCTTAAA
GACGATTCAATAGACAATAAGGTCTTAACGCGTTCTGATAAAAATCGTGGTAAATCGGA

TAACGTTCCAAGTGAAGAAGTAGTCAAAAAGATGAAAAACTATTGGAGACAACTTCTAA

ACGCCAAGTTAATCACTCAACGTAAGTTTGATAATTTAACGAAAGCTGAACGTGGAGGT
TTGAGTGAACTTGATAAAGCTGGTTTTATCAAACGCCAATTGGTTGAAACTCGCCAAATC

ACTAAGCATGTGGCACAAATTTTGGATAGTCGCATGAATACTAAATACGATGAAAATGA

TAAACTTATTCGAGAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGACTTCCG
AAAAGATTTCCAATTCTATAAAGTACGTGAGATTAACAATTACCATCATGCCCATGATGC

GTATCTAAATGCCGTCGTTGGAACTGCTTTGATTAAGAAATATCCAAAACTTGAATCGGA

GTTTGTCTATGGTGATTATAAAGTTTATGATGTTCGTAAAATGATTGCTAAGTCTGAGCA
AGAAATAGGCAAAGCAACCGCAAAATATTTCTTTTACTCTAATATCATGAACTTCTTCAA

AACAGAAATTACACTTGCAAATGGAGAGATTCGCAAACGCCCTCTAATCGAAACTAATG

GGGAAACTGGAGAAATTGTCTGGGATAAAGGGCGAGATTTTGCCACAGTGCGCAAAGT
ATTGTCCATGCCCCAAGTCAATATTGTCAAGAAAACAGAAGTACAGACAGGCGGATTCT

CCAAGGAGTCAATTTTACCAAAAAGAAATTCGGACAAGCTTATTGCTCGTAAAAAAGAC

TGGGATCCAAAAAAATATGGTGGTTTTGATAGTCCAACGGTAGCTTATTCAGTCCTAGTG
GTTGCTAAGGTGGAAAAAGGGAAATCGAAGAAGTTAAAATCCGTTAAAGAGTTACTAG

GGATCACAATTATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGACTTTTTAGAAGCT

AAAGGATATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTAAATATAGTCTTTT
TGAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAATTACAAAAAGGA

AATGAGCTGGCTCTGCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGTCATTATGAA

AAGTTGAAGGGTAGTCCAGAAGATAACGAACAAAAACAATTGTTTGTGGAGCAGCATA
AGCATTATTTAGATGAGATTATTGAGCAAATCAGTGAATTTTCTAAGCGTGTTATTTTAG

CAGATGCCAATTTAGATAAAGTTCTTAGTGCATATAACAAACATAGAGACAAACCAATA
CGTGAACAAGCAGAAAATATTATTCATTTATTTACGTTGACGAATCTTGGAGCTCCCGCT

GCTTTTAAATATTTTGATACAACAATTGATCGTAAACGATATACGTCTACAAAAGAAGTT

TTAGATGCCACTCTTATCCATCAATCCATCACTGGTCTTTATGAAACACGCATTGATTTG
AGTCAGCTAGGAGGTGACTAATAGGGGCAGCAGCCATCACCATCATCACCACAGCCAGG

CTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTG

AGGGGTTTTTTGCTGAAACCTCAGGCATTTGAGAAGCACACGGTCACACTGCTTCCGGTA

GTCAATAAACCGGTAAACCAGCAATAGACATAAGCGGCTATTTAACGACCCTGCCCTGA

ACCGACGACCGGGTCGAATTTGCTTTCGAATTTCTGCCATTCATCCGCTTATTATCACTTA

TTCAGGCGTAGCACCAGGCGTTTAAGGGCACCAATAACTGCCTTAAAAAAATTACGCCC
CGCCCTGCCACTCATCGCAGTACTGTTGTAATTCATTAAGCATTCTGCCGACATGGAAGC

CATCACAGACGGCATGATGAACCTGAATCGCCAGCGGCATCAGCACCTTGTCGCCTTGC

GTATAATATTTGCCCATAGTGAAAACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTT
TAAATCAAAACTGGTGAAACTCACCCAGGGATTGGCTGAGACGAAAAACATATTCTCAA

TAAACCCTTTAGGGAAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATAT

ATGTGTAGAAACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTC
AGTTTGCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC

CGTCTTTCATTGCCATACGGAACTCCGGATGAGCATTCATCAGGCGGGCAAGAATGTGA
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ATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAGGCCGTAATA

TCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAAATGCCTCAAAATG
TTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCAGTGATTTTTTTCTCCATT

TTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAAAATACGCCCGGTAGTGATCTT

ATTTCATTATGGTGAAAGTTGGAACCTCTTACGTGCCGATCAACGTCTCATTTTCGCCAA
AAGTTGGCCCAGGGCTTCCCGGTATCAACAGGGACACCAGGATTTATTTATTCTGCGAA

GTGATCTTCCGTCACAGGTATTTATTCGGCGCAAAGTGCGTCGGGTGATGCTGCCAACTT

ACTGATTTAGTGTATGATGGTGTTTTTGAGGTGCTCCAGTGGCTTCTGTTTCTATCAGCTG
TCCCTCCTGTTCAGCTACTGACGGGGTGGTGCGTAACGGCAAAAGCACCGCCGGACATC

AGCTCTAGCGGAGTGTATACTGGCTTACTATGTTGGCACTGATGAGGGTGTCAGTGAAG

TGCTTCATGTGGCAGGAGAAAAAAGGCTGCACCGGTGCGTCAGCAGAATATGTGATACA
GGATATATTCCGCTTCCTCGCTCACTGACTCGCTACGCTCGGTCGTTCGACTGCGGCGAG

CGGAAATGGCTTACGAACGGGGCGGAGATTTCCTGGAAGATGCCAGGAAGATACTTAAC

AGGGAAGTGAGAGGGCCGCGGCAAAGCCGTTTTTCCATAGGCTCCGCCCCCCTGACAAG
CATCACGAAATCTGACGCTCAAATCAGTGGTGGCGAAACCCGACAGGACTATAAAGATA

CCAGGCGTTTCCCCTGGCGGCTCCCTCGTGCGCTCTCCTGTTCCTGCCTTTCGGTTTACCG

GTGTCATTCCGCTGTTATGGCCGCGTTTGTCTCATTCCACGCCTGACACTCAGTTCCGGGT
AGGCAGTTCGCTCCAAGCTGGACTGTATGCACGAACCCCCCGTTCAGTCCGACCGCTGC

GCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGAAAGACATGCAAAAGCACCACT

GGCAGCAGCCACTGGTAATTGATTTAGAGGAGTTAGTCTTGAAGTCATGCGCCGGTTAA

GGCTAAACTGAAAGGACAAGTTTTGGTGACTGCGCTCCTCCAAGCCAGTTACCTCGGTTC

AAAGAGTTGGTAGCTCAGAGAACCTTCGAAAAACCGCCCTGCAAGGCGGTTTTTTCGTT

TTCAGAGCAAGAGATTACGCGCAGACCAAAACGATCTCAAGAAGATCATCTTATTAATC
AGATAAAATATTT 

 

Table 3.6: Plasmid sequences used in this study  
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Chapter 4 

Conclusion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

† The work presented in this chapter has previously been published in the following review 

article: Higgins, S.A., and Savage, D.F. (2018). Protein Science by DNA Sequencing: How 

Advances in Molecular Biology Are Accelerating Biochemistry. Biochemistry. 57 (1), 38-46. 
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4.1 Summary 

 

 As experimental throughput has increased from point mutation (Flavell et al. 1975) to 

alanine scanning (Cunningham and Wells 1989) and finally to scans of protein variants 

encompassing all possible single mutations (Gold et al. 2006), comprehensive fitness landscapes 

are now being generated to explore residues important for protein stability, function, and 

structure (Fowler and Fields 2014; Rocklin et al. 2017). These massive datasets promise to 

greatly advance many fields, from fundamental protein biochemistry to disease prediction and 

protein engineering. 

 A key observation from these studies is the fact that proteins are robust to a large number 

of different single mutations (Bershtein et al. 2006). Multiple mutations, however, often display 

negative epistasis in accordance with a threshold robustness model (Tokuriki and Tawfik 2009) 

of protein stability, whereby the overall protein structure can tolerate a threshold loss of free 

energy over which negative fitness effects become exponentially severe (Olson, Wu, and Sun 

2014). Epistatic interactions are exceedingly difficult to predict, posing a barrier to personalized 

medicine (Shendure and Fields 2016; Weile et al. 2017; Starita et al. 2015; Majithia et al. 2016). 

At the same time, protein engineering has long sought to develop new tools in areas such as 

molecular recognition and catalyst engineering ( Mandecki 1998; Schmid et al. 2001; Fox et al. 

2007; Wrenbeck, Faber, and Whitehead 2017), where the highest fitness variants are often 

several mutations away from the starting sequence. Fundamentally, surveying protein fitness 

landscapes requires mutagenesis methods that are both high throughput enough to be 

comprehensive and programmable in order to define the specific type of landscape to be 

examined. Techniques based on PCR require in vitro reactions involving specialized protocols 

and reagents. This has complicated efforts to rapidly and reliably produce desired protein 

libraries.  

 Here we have demonstrated that plasmid recombineering (PR) is a simple and robust in 

vivo method for constructing comprehensive libraries of protein mutations. The method requires 

a single day and is performed in a single tube. The resulting libraries can comprehensively 

evaluate amino acid substitutions, as shown here for iLOV, with moderate efficiency even 

without selection. As in previous reports of genomic recombineering (H. Wang et al. 2009), this 

efficiency could be improved to nearly three quarters after five rounds of PR. The libraries also 

exhibited moderate bias related to the mechanism of oligonucleotide recombineering, but this 

bias could be ameliorated by altering ratios of oligonucleotides such that the comprehensive 

mutagenesis library was effectively uniform for screening purposes. It will be important to 

understand this mechanism in order to predict efficiencies rather than rely on empirical data as 

used here. Regardless of these modifications, the reagent cost and experimental effort remain 

low – standard 60 bp oligonucleotides and simple cycles of electroporation, growth, and plasmid 

isolation. 

 The other key aspect to ideal mutagenesis methods is programmability. Here, we 

demonstrate the PR is capable of evaluating much more focused fitness landscapes. The 

experimental design is nearly identical to a comprehensive case, with the exception that care 

might be taken to use recombineering oligonucleotides that minimize the possibility for 

‘overwriting’ each other’s mutation. This can be accomplished either by shifting the exact 

location of the homology arms, as was done here, or by including multiple mutations in a single 

oligonucleotide. To demonstrate programmability, we first comprehensively explored the iLOV 

single mutation sequence-space for thermostability. We chose 25 fitness enhancing mutations 
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and demonstrated the utility of PR for advanced protein engineering by multiplexing many 

different single and double mutations at discontinuous sites across iLOV in a second library. The 

ability to select and easily mutate numerous specific and non-contiguous locations across a 

protein is highly useful for a variety of techniques that utilize experimental or phylogenetic data 

to computationally predict and enhance enzymes (Heinzelman et al. 2009), explore epistatic 

interactions (Olson, Wu, and Sun 2014), or even scan SNPs in human proteins for disease 

prediction (Majithia et al. 2016). The best of the initial mutations were found to improve the 

thermal stability of iLOV up to 10° C increase in Tm. We found that programmably focused 

combinations of these mutations could yield doubly improved variants, up to 20° C. In summary, 

we found that PR was suited for the construction of both comprehensive and targeted libraries, 

and that the simplicity of the protocol led to rapid and reliable screening experiments. In 

particular, PR is suitable for cycles of iterative design, construction, and sampling of genetic 

libraries, requiring no specialized reagents or protocols.  

 Beyond simple amino acid substitutions, protein topology is also well-established as a 

key mechanism by which large, complex multi-domain proteins evolve highly specialized 

functions (Fong et al. 2007). While rationally constructed protein deletions have long been 

essential to elucidating biochemical properties, previous techniques have been insufficient for a 

comprehensive approach. Here we have developed a method for constructing fitness landscapes 

for even the largest and most complex proteins, building upon the PR platform. We 

comprehensively surveyed functional deletion landscape of the RNA-guided DNA binding 

protein dCas9, the foundation for powerful genome editing and modifying technologies (Qi et 

al., 2013; Oakes et al., 2014). CRISPR proteins are highly complex with numerous distinct 

domains responsible for activities such as guide RNA binding, DNA recognition, DNA 

unwinding, specificity sensing and ultimately the cleavage of each DNA strand (Jinek et al. 

2012; Nishimasu et al. 2014; Anders et al. 2014; Chen et al. 2017). We interpret this landscape in 

the context of known deletion function, uncovering both (1) a previously unknown domain 

region that is dispensable for DNA binding as well as (2) a potential role in DNA binding for 

another domain thought to be dispensable for this function. Furthermore, we exploited this 

fitness landscape to revert functionality and step backward in domain evolution, 

comprehensively minimizing dCas9 and screening for an essential function. We have 

demonstrated the power of this technique by revealing the minimal RNA guided DNA binding 

module at 64% of the full CRISPR-Cas9 platform, providing many new opportunities for fusions 

and delivery. These results highlight the power of comprehensive protein deletions to clearly 

elucidate the boundaries of a central function. 

 

4.2 Applications and future directions 

 

4.2a Fundamental Protein Characteristics 

 

 Comprehensive maps are now being generated to explore residues important for protein 

stability, function, and structure (Fowler and Fields 2014). Protein stability in particular has 

benefited from insights gained specifically due to the availability of large scale data (Rocklin et 

al. 2017). As introduced above, early studies that sought to explore large fractions of protein 

sequence space unexpectedly found that proteins are robust to a large number of different single 

mutations (Bershtein et al. 2006). Multiple deleterious mutations, however, were found to 

produce even worse fitness than the sum of individual mutations (i.e., display negative epistasis). 
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This observation has since been incorporated into a general theory of protein evolvability known 

as the threshold robustness model (Tokuriki and Tawfik 2009). Briefly, a wild-type protein will 

tend to have a margin of stability such that the vast majority of the population ensemble will 

exist in a functional conformation. In some cases, this margin allows the protein to absorb a 

small functional instability caused by a deleterious mutation, somewhat independently of the 

specific amino acid change, resulting in little loss of function. Multiple such deleterious 

mutations, however, will result in the margin being exhausted and a rapid decrease in 

fitness/function is observed. Deep mutational scans continue to produce data compatible with 

this theory (Olson, Wu, and Sun 2014). 

 Sequence determinants of protein function also stand to gain from large datasets. For 

example, determining the substrate specificity of an enzyme is a common question. A recent 

comprehensive mutational analysis of AmiE for three amide substrates revealed that substrate 

specificity was not solely encoded by residues near the active site (Wrenbeck, Azouz, and 

Whitehead 2017). Additionally, substrate-specific beneficial mutations could not be predicted 

based on known fitness towards another substrate. These results agree with other deep mutational 

scans suggesting that fitness landscapes exhibit substantial substrate dependence (Melnikov et al. 

2014). 

 Large mutation-function datasets can also enable enhanced protein structural prediction. 

It may be possible to experimentally identify co-varying residues which are nearby in the protein 

structure (Fowler and Fields 2014), and this information has been shown to enhance structural 

models produced by prediction software such as Rosetta (Kim et al. 2014). It is thus likely that 

the synthesis of computation and large datasets will improve the predictability of protein 

modifications. De novo protein design has already successfully generated a variety of stable 

structures, although challenges remain with solubility, oligomerization, and the design of specific 

functions or dynamics (Huang, Boyken, and Baker 2016). 

 

4.2b Disease Prediction 

 

 Mutations with unknown functional effect, also known as “variants of uncertain 

significance,” pose a barrier to the development of personalized medicine (Shendure and Fields 

2016). Despite thousands of known common variants that reproducibly associate with disease, 

the causal variant is rarely understood. Deep mutational scans present one path toward predicting 

the functional consequences of these variants, with some proposals even envisioning an 

understanding of the comprehensive human SNP-ome (Weile et al. 2017). 

 Deep mutational scanning experiments have begun to outperform other predictive 

approaches in some cases. For example, a scan of 2000 substitutions in the BRCA1 RING 

domain enabled a quantitative map of effects on E3 ubiquitin ligase activity and BARD1 RING 

domain binding activity (Starita et al. 2015). These functional scores were used to generate a 

predictive model for BRCA1 variants’ capacity for tumor suppression through homology-

directed DNA repair. This work culminated in the creation of a mutational map of BRCA1 more 

accurate than those produced using computational tools. Similarly, a library of all possible single 

amino acid mutations has been created and analyzed for peroxisome proliferator-activated 

receptor gamma in order to annotate variants of unknown consequence for type 2 diabetes 

(Majithia et al. 2016). Additional prediction maps are likely to follow for other genes involved in 

disease provided an appropriate functional assay can be developed. 
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 Finally, the exploration of protein sequence-space can potentially predict evolutionary 

outcomes if combined with a physiological model. For example, mutations to proteins involved 

in antibiotic resistance that produce even small changes to a Km (less than twofold) are sufficient 

to yield highly successful adaptive mutants, and these results can be integrated into a model 

relating in vitro protein properties to bacterial growth rates (Walkiewicz et al. 2012). 

Additionally, allele frequency measurements in continuous culture experiments can reveal 

hierarchy and order in genetic changes, identifying new targets for pathogen drug design – 

particularly for antibiotic resistance (Miller et al. 2013). 

 

4.2c Protein Engineering 

 

 Deep mutational scanning experiments have achieved success in molecular recognition 

and enzyme engineering, and a recent review highlights several of these studies (Wrenbeck, 

Faber, and Whitehead 2017). Successful engineering is often linked to the ease and quality of the 

assay. Binding assays, in particular, possess many ideal properties including high throughput, 

low cost, and ease of experimentation due to direct linkage between protein function (binding) 

and its sequence via DNA sequence. A variety of linkage mechanisms have been developed, 

including yeast display (Cherf and Cochran 2015), phage display (Wu et al. 2016), and ribosome 

display (Hanes and Plückthun 1997). Improving enzyme catalysis (e.g. rate, specificity, stability) 

represents another important goal for protein engineering, due to the promise of biocatalysis in 

chemical applications (Schmid et al. 2001). Enzyme assays are more complicated to develop 

than those for binding, but recent studies have found success in physiologically linking enzyme 

function to growth, as discussed above. Screens can be employed for enzymes with no 

connection to physiology, but at the cost of reduced bandwidth.   

 In contrast to comprehensive mutagenesis experiments, directed evolution can be pursued 

when the goal is simply to generate an improved protein rather than exhaustively evaluate 

sequence-function relationships. Fundamentally, exponential growth in combinatorial sequence 

space (Mandecki 1998) limits comprehensive saturation mutagenesis libraries to only a few 

simultaneous mutations (practically speaking, no more than two). At the same time, the highest 

fitness variants are often several mutations away from the starting sequence. Directed evolution 

makes use of iterative rounds of mutation and selection to explore sequence space incrementally 

further from the wild-type sequence (P. a Romero and Arnold 2009). Like above, DNA 

sequencing can be used guide this process. One such approach used statistical analysis of protein 

sequence activity relationships (ProSAR) to identify a 4,000-fold improvement in the 

performance of an industrially relevant biocatalyst, where the final improved variants possessed 

35+ mutations (Fox et al. 2007).  

 In contrast to statistically-guided directed evolution, an alternative approach known as 

continuous evolution seeks to conduct the cycles of mutagenesis and selection in vivo such that 

the process becomes automated within the cell. These systems potentially provide the highest 

possible throughput so as to maximize the likelihood of discovering rare, interesting variants. As 

discussed above, several techniques have been developed to localize mutation to a single target 

locus, including an orthogonal error-prone polymerase (Fabret et al. 2000), a targeting 

glycosylase (Finney-Manchester and Maheshri 2013), an error-prone Ty1 reverse transcriptase 

(Crook et al. 2016), PACE (Esvelt, Carlson, and Liu 2011), or a cytidine deaminase-Cas9 fusion 

(Komor et al. 2016). PACE is one of the highest throughput directed evolution methods yet 

developed, achieving hundreds of rounds of protein evolution on the week timescale (Esvelt, 
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Carlson, and Liu 2011). PACE was first used to rapidly evolve T7 RNA polymerase variants 

capable of binding distinct promoters or nucleotides, and has since been improved for easier 

tuning of selection stringency and negative selection against unwanted activities (Carlson et al. 

2014). The drawbacks to continuous evolution systems include the need for careful 

customization and validation, but more importantly these systems currently lack specificity in 

library creation and do not cover the full codon mutational space (Kitzman et al. 2015). 

Innovations in in vivo mutagenesis techniques will be needed to overcome this limitation. 

 Understanding the sequence determinants for desired protein characteristics will enable 

directed evolution of protein libraries guided and/or designed by computational methods. For 

example, the SCHEMA computational algorithm identifies fragments of proteins that can be 

recombined with minimal disruption to protein structure (Voigt et al. 2002), and properties of 

recombined enzymes such as stability can be predicted using models that sample these chimeras 

(Li et al. 2007). Additional work has developed models that investigate the ‘recombinational 

landscape’ as a whole, finding enrichment of functional sequences and additive properties of 

independent sequence elements (P. A. Romero and Arnold 2012). Fruitful areas of sequence-

space can also be identified through iterative machine learning and massively parallel 

experimentation.  

 Computational prediction can also be used to narrow the search space required for 

experimental validation. The Baker group has developed an assay to quantify stability for entire 

libraries of proteins, consisting of proteolytic cleavage of a fluorescent tag from the surface of 

yeast (Rocklin et al. 2017). This assay allowed the assignment of a stability score to each of 

thousands of designed miniproteins. Various topologies were targeted for design using 

approaches developed previously (Koga et al. 2012) and thousands of diverse sequence variants 

were generated for testing. Analysis comparing the most and least stable designed proteins 

indicated that total buried nonpolar surface area was a key determinant of stability. Adjusting 

design parameters for this finding resulted in a much larger fraction of successful designs. These 

findings demonstrate that specific library characteristics can be tuned to search areas of sequence 

space that are more likely to produce improved variants. Moreover, analysis of high-throughput 

data can uncover specific relationships between sequence and function, findings useful in protein 

engineering and protein biochemistry alike. 

 

4.3 Outlook 

 

 Together, amino acid substitution and topological mutation (encompassing deletions, 

insertions, and circular permutations) comprise the fundamental units of protein mutation. This 

work has served to develop simple and robust methods, which remain programmable and 

comprehensive, for both substitution and topological mutagenesis. In the process, novel proteins 

have been developed for both iLOV and dCas9, but more importantly these mutagenesis methods 

can be applied to any DNA sequence. A central theme in this work has been massively parallel 

approaches in light of insufficient predictive power. As computational protein design becomes 

more robust, our predictive power may become sufficient to ignore certain substitutions or 

topologies in pursuit of desired proteins. In this case, programmability will become even more 

important so as to avoid fruitless combinations that take up valuable experimental throughput. 

Ultimately, understanding the general principles of protein sequence-function landscapes - 

enabled by massively parallel experimentation - will allow computational methods to synergize 

with programmable mutagenesis and vastly improve the search for novel fitness variants.  
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