
UC Irvine
ICS Technical Reports

Title
Problem selection in software design

Permalink
https://escholarship.org/uc/item/2xp09956

Author
Levin, Steven L.

Publication Date
1976

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2xp09956
https://escholarship.org
http://www.cdlib.org/

I

I

I

I

I

I

I

I

I

I

I

I
Notice: This Material

I may be protected
by Copyright Law

I (Title 17 U.S.C.)

I
I This work was partially supported by NSF Grant GJ-36414 and

the Department of Information and Computer Science of the
University of California, Irvine.

I

I

I

Problem Selection in Software Design

by

Steven L. Levin

November 1976

Technical Report #93

Table of Contents

1.0 Introduction

1.1 Motivation

1.2 Overview

2.0 Problem Selection Model

2.1 Methodology
2.2 Organization
2.3 Design Processes
2.4 Summary of Model

3.0 Program Representation of the Problem Selection Model

3.1 The Information Processing Framework
3.2 Design Knowledge
3.3 Problem Selection Agents
3.4 Program Organization

4.0 Demonstration of the Model

4.1 The Database

4.2 General Operation of the Model
4.3 Constraint/Problem Associations
4.4 Subject A on the Text Editing Task
4.5 Incorrect Predictions

4.6 Illustrating Strategy Interference

5.0 Analysis of Model

5.1 How Well Does the Model Explain the Protocols?
5.2 Support for the Assertions Made by the Model
5.3 Evaluating the Encoding Process

6.0 Conclusions

6.1 Review

6.2 Further Research
6.3 Limitations of the Model
6.4 Implications for Teaching Design
6.5 Implications for Design Methods

Acknowledgements

References

Appendices

I

I

I

I

I

1.0 INTRODUCTION

Today, more than ever, the problems of creating

computer software are increasing . Software systems are

complex, expensive, and have long life cycles. Many years

after their design and Lmpl ementation, costs continue for

further system maintenance and modification. Studies by

Boehm (1973) have assigned costs to the various stages of

software development. These studies reveal that the design

step accounts for 40 percent of software costs on larger

systems.

There have been two major types of research to reduce

design costs. The first type develops prescriptions on how

to do design. Examples of such work are structured design

(Constantine, 1974), structured analysis and design

technique (Ross and Schoman, 1976) , and design

representations (Peters and Tripp, 1976). The second type

studies designers at work to understand the cognitive

processes of design. Examples of this research are Brooks's

model of programmer's coding behavior (1975) and Eastman's

study of architectural design (1968). For a survey of

design models see (Levin, 1975) .

Both forms of research can contribute to better designs

and lessened costs. In particular, behavioral studies of

Problem Selection in Software Design
Introduc tion

what goes on during design can help identify weak points in

how designers work, which prescriptive techniques can either

correct or supplement.

1.2 Overyiew >

This paper reports the results of research into the

cognitive processes of software design. (*) Design is viewed

as a complex activity involving three fundamental processes:

selecting problems to work on, gathering needed information

for their solution, and generating solutions. A detailed

model of the problem selection process is presented.

Problem selection is the process by which designers

choose problems on which to work. The order of problems and

subsequent design decisions can have an important influence

on the completed design (Naur and Randell, 1969; Goos,

1973). Each problem and decision introduces contraints on

later problems. Problems considered prematurely during

design can produce undesirable features in the finished

design. For example, designing the data structure for a

program before tackling the problems that define the

requirements for the structure can unnecessarily constrain

the design.

(*) This paper forms a major part of the author's doctoral
dissertation.

Problem Selection in Software Design
Introduction

Behavioral processes have been studied in two ways.

The most common approach is to study some behavior using

large groups of subjects where potentially independent

variables are controlled and manipulated. Results are

judged by the statistical significance in the controlled

experiments. These techniques are best applied when the

variables are independent and linear.

The program design process is difficult to study in

this manner. Design behavior is very complex and ill suited

to controlled experimentation. First, there are too many

independent variables for controlled experiments. Second,

design variables are highly interactive. Third, large

variances in design ability limit subject to subject

compar isons.

Protocol analysis (Newell and Simon, 1972) is an

experimental methodology for studying complex cognitive

behavior. A protocol is a transcription of what is said by

a subject who "thinks out loud" while performing a task. By

studying a protocol we can infer what information a subject

is using, how it is manipulated, and the cognitive processes

involved in the task.

Much of the information processing theory of human

problem solving (Newell and Simon, 1972) was developed using

protocol analysis. Their book. Human Problem Solving,

Problem Selection in Software Design
Introduction

contains a detailed description of protocol analysis and a

defense of its use for studying complex cognitive processes.

The next section presents a model for problem selection

in software design. Section 3 describes how the model is

represented as a computer program. Section 4 contains an

example of how the model operates. Section 5 analyzes the

model's performance and Section 6 describes the methodology,

verification, and implications of the model.

2.0 PROBLEM SELECTION MODEL

This section presents a model for the problem selection

process in software design.

2.1 Methodology

A model was formulated by studying software designers

as they worked. Designers were given the requirements for a

program and asked to "think aloud" as they worked out the

design. (*) The transcription of what the designer has said

is called a protocol. Protocols are the principal source of

data for this study. A typical protocol excerpt (from

Protocol 32) oppears below.

S146: The question is
S147: how are we going to build the index itself?
A148: [Writes "3) build index"]
S149: Ok

(*) The instructions for task 1 are in Appendix A.

Problem Selection in Software Design
Problem Selection Model

S150: Question, term file is apparently not sorted
S151; [Writes "term file not sorted"]
S152: I also notice that a term is one to five words.

Nine protocols, from three designers working on three

problems were collected. Three of the protocols were

selected for developing the model; the other six were set

aside to be used later in testing the model.

Using three of the nine protocols we formulated a model

for the problem selection process. The model is based on

the author's observations and assertions on how designers

use information in problem selection. The model was then

expressed as a computer program. We then moved back and

forth between our theory, data (the three protocols) and

program until we felt that the selection behavior in the

protocols was adequately reproduced by the program. How

well the model explained problem selection was tested by

running the program for the six protocols which had been set

aside originally.

2.2 Organization

The model consists of three interacting processes:

information collection, problem selection, and solution

generation. Only the problem selection process is modeled

in detail. The other two processes are represented by

information which is inferred from the protocols.

Problem Selection in Software Design
Problem Selection Model

Ideally, a model would directly accept a transcribed

protocol and reproduce the desired selection behavior.

However, understanding general discourse by computer remains

an unsolved problem, and so the meaning of what is being

said must be extracted for input to the computer

program. (*) The process of inferring information from a

protocol is called "encoding" and was done by the author.

Encoding reduces sentences like "the system will require an

error-handling module" to

Constraint: (system requires error-handling)

for input to the program.

The information-collection and solution-generation

processes are represented by information encoded directly

from the protocol. In addition, whenever the designer

selects a new problem on which to work, the occurrence of a

selection, but not what selection was made, is encoded. The

principal inputs to the program are a sequence of encodings.

Output occurs on selection cues. The model determines,

given the current information state, which problem will be

chosen by the designer. Figure 1.1 depicts the major steps

in modeling a design task.

(*) The terms model and program are often synonymous in some
contexts here. The model is represented in operation by a
program. It makes more sense to talk of "inputs to" and
"running of" the program as opposed to the model.

I

I

I

I

I

I

I

Problem Selection in Software Design
Problem Selection Model

1. Collect a protocol

SI; All right.
S2: I guess the first thing I would do
S3: when posed with this problem would be
S4: to attempt to define the class then the

subclass

S5: that I was going to attack including the ah,
S6: type of editor.
S7: Since you cannot build a text editor to

include
S8: all of the functions that are available.

Encode the protocol

(STRATEGY (define class-of-editors)
(define type-of editor))

(SELECTION)
(CONSTRAINT

(DESCRIPTION number-of functions
constrained))

(CONSTRAINT

(DESCRIPTION functions constrained-by
approachto file))

3. Encodings are input to
program/model

Problem Selection Model

Model reproduces selection
behavior of protocol.

Figure 1.1: Major steps in the modeling process

I

I

I

I

I

I

I

Problem Selection in Software Design
Problem Selection Model

2.3 Design Processes

Earlier we noted that design consisted of three major

processes. The information-collection and

solution-generation actions of designers have not been

modeled. Sections 2.3.1 and 2.3.3 describe design behavior

and the information used to represent these processes in the

model. Section 2.3.2 presents our assertions concerning

selection and their organization into a model of problem

selection behavior.

2,3.1 Information Collection

Information collection is the process in which

constraint and strategy information is gathered by the

designer. Information is obtained by retrieval from the

designer's memory or by other mechanisms like deduction and

strategy formation.

The term constraint is used to describe any piece of

information which may affect the outcome of a design

decision. Almost any piece of information a designer

introduces in design may be viewed as a constraint. Some

typical constraint-like statements in the protocols are:

Problem Selection in Software Design
Problem Selection Model

"So that this will be independent of the choice of a
particular implementation language or run-time environment."
Protocol A2, lines 22:24 (*)

"Ahmmm, data considerations as we said. Disk files will be
packed. And this will be ASCII and includes line numbers."
Protocol Bl, lines 501:504

Strategies are plans for achieving the solution to a

problem. A strategy describes a sequence of activities

(problems) which when worked on may achieve a problem

solution.

We do not consider the issues of how relevant

information is selected for retrieval or how strategies are

formed. Both questions are important but form major

research questions in themselves. The fact that problem

solvers retrieve information from permanent memory is

documented by Reitman (1965) and Newell and Simon (1972) and

is one of the tenets of information processing theory.

The existence of strategy information is readily

observed in protocols of design. For example:

"I guess I could think about how to do the program structure
first and then think about data structure or whatever."
Protocol B2, lines 79:81

(*) Protocols are identified with a subject/task name.
There are three subjects: A, B and C. There are three
design tasks: 1, 2 and 3. Thus, subject A on task two
corresponds to Protocol A2.

Problem Selection in Software Design 10
Problem Selection Model

"The first, the next level of design would be to take, the
functions we have specified and try to put some parameters
around them as to how they might be divided up into various
areas to concentrate on." Protocol Cl, lines 172:178

Each strategy element is a distinct problem which may

be explored further by the designer. Strategies may be

local (e.g. for the "build index" module, first define the

initialization routine and then the module to make new

entries) or global (e.g. you must first define the class of

editor and then its commands).

2.3.2 Problem Selection

Problem selection occurs whenever it is necessary for

the designer to select a new problem to work on. Selection

occurs when 1) the problem currently under consideration is

solved, 2) the designer explicitly decides to work on

another problem, or 3) when the designer "gives up" because

no more information can be obtained about the current

problem.

Our model makes three assertions concerning this

selection process.

1. Local constraints play an important role in problem

selection and account for a significant percentage of

,new problem selections during design. (A local

constraint is one that has been introduced only within

Problem Selection in Software Design 11
Problem Selection Model

the scope of the most recently selected problem.)

2. As strategy and constraint information ages in working

storage, the probability that it will be used as a

problem source decreases. (*)

3. The required presence of strategies in working storage

and prior use of local constraints limits the use of

strategies as problem sources.

Assertion 1 states that the selection process is

partially driven by the most recently obtained information.

Excluding knowledge which represents decisions and plans,

the bulk of this information involves constraints about the

problem. Constraints are associated with new problems

through the designer's store of knowledge. A finding of

research is that a large per centre of problem

i.? ^§5?^ OQ 5 designer's use of local constraint

information and problem associations using such information.

This type of problem selection behavior is

characterized by 1) sequences in which a designer moves from

one problem to another in a chain-like fashion, and 2)

sequences where the problems are not elements of a strategy

(*) Working storage (WS) is a small capacity, rapid access
memory. It is similar but not equivalent to the
conventional information processing theory definition of
short term memory.

Problem Selection in Software Design 12
Problem Selection Model

and do not appear as previously unfinished problems. Recent

constraint information is the source for these new problems.

Evidence of this behavior is explicit in designer"s

work. For example, in Protocol Cl:

S56: So some of the edit capabilities
S57: we would want.
S58: So first we would want to be able to look at

S59: what we have put in there.
S60: So we need a function to print or display,
S61; kind of display the file.

In lines 58 through 59 the designer stated the constraint

that the text be viewable. The constraint leads to the

decision to include a printing command and immediately

thereafter to more detailed consideration of how to display

text.

Problem selection using local contraints is limited by

the recency with which the constraint information was

obtained by the designer (assertion 2). In addition, how a

constraint is used also depends on how fixed the constraint

is for the designer. The more fixed a constraint is (e.g.

integers require 36 bits), the less likely it is that the

constraint will be the basis for exploring another problem

to define that constraint further. Constraints which are

vague or loosely defined (e.g. the general approach to text

editors is governed by the type of file system) are more

likely to cause a designer to select some problem (e.g.

I

I

I

Problem Selection in Software Design 13
Problem Selection Model

defining the file system) which would provide more

information about the constraint. Through this process the

designer acquires more information and decision criteria for

the problem at hand.

The use of strategies is constrained in assertion 3.

First, a strategy must be present in WS to be accessible by

the model. Second, strategies become a source of problems

only after local constraints have been considered.

Combining both parts of the assertion produces a

behavior we have termed strategy interference. This occurs

when a strategy that is being followed is interrupted and

not resumed. The strategy cannot be continued if it is not

present in working storage.

When the constraints for the immediate problem are

either highly fixed or yield no problem associations, and

when no strategies are available, then the model selects the

most recent unsolved problem. If no unsolved problems

remain, then the model selects a problem related to

constraints evoked in previous problems.

The general notion is that when the designer is not

deriving problems by following a strategy, problems are

generated within the context of a small body of information.

Most of this information consists of constraints and

constraint/problem relationships. The order in which

Problem Selection in Software Design 14
Problem Selection Model

constraints are used in making problem associations depends

on their relative recency and level of definition.

2.3.3 Solution Generation

Solution generation describes decision-making by the

designer. Sometimes solution generation is invoked

immediately upon the selection of a problem. This usually

occurs when a solution for the problem is known to the

designer. At such times the designer may state a sequence

of related design decisions.

At other times the solution process is invoked by the

application of one large constraint to a relatively

under-defined problem. For example, the problem of

designing a text editor is loosely constrained but the

decision that it should be like SOS is sufficient to invoke

the solution process for describing the entire repertoire of

commands and formats of that text editor. (*)

The solution process is characterized by 1) no backup

and 2) no statement of alternatives. It is very similar to

reading off the recipe for a solution.

The solution process may result in an isolated design

decision or a whole sequence of related decisions.

Sequences of decisions occur from the retrieval and use of

(*) SOS is a text editor on DEC System-10.

Problem Selection in Software Design 15
Problem Selection Model

solution plans or from using a large body of non-procedural

information for the solution under the appropriate

constraints.

2.4 Summary of Model

The human information processing theory of Newell and

Simon provides the basic framework for this model. Since

our use of short- and long-term memory differs slightly from

the typical information processing system (IPS) definitions,

we have called these memory structures working and permanent

storage. A comparison of STM to WS and LTM to PS appears in

Section 3.1.

We have described the information the model uses in

reproducing problem selection in software design.

Constraints, decisions, and strategies are obtained directly

from what the designer has said. A set of

constraint/problem relationships are inferred for each

designer and task. This information constitutes the only

input to the model.

The model is expressed as a computer program which when

run with the inputs encoded from a protocol reproduces the

problem selections made by the designer as observed in that

protocol. The model accurately reproduces 70 percent of the

problem selections in the nine protocols we collected./

Problem Selection in Software Design 16
Problem Selection Model

Section 6 contains a detailed analysis of the model's

performance.

3.0 PROGRAM REPRESENTATION OF THE

PROBLEM SELECTION MODEL

In the previous section we presented a theory of design

composed of three major processes. This section describes

how the problem selection component of that theory has been

represented as a computer program.

The program models observed human behavior to the

extent that:

1. The program selects (i.e. chooses to work on next) the

same problems as the subjects do.

2. The knowledge state (as represented by the contents of

WS and PS) of the program at any one time is the same as

that of the subjects (as evidenced by the protocols),

and it changes as the design progresses.

Problem selection is modeled using four selection

agents. Each agent is a specialist which represents how

particular information is used by designers. Most of the

design knowledge accessed by the agents is information

exhibited by the designers in their protocols. The only

other information available to the program is the set of

constraint/problem relations which are asserted (by the

I

I

I

I

I

Problem Selection in Software Design 17
Program Representation of Model

experimenter) to be part of the designer's knowledge base.

3.1 More on the Information Processing Framework

The information processing theory of behavior specifies

that individuals have access to two memories. The memories

are usually referred to as short-term memory (STM) and

long-term (LTM) memory, and each has its own

characteristics.

Short-term memory has a small capacity and rapid

access. The size of the memory has been quoted as from five

to twenty "chunks" (Miller, 1956; Simon, 1974; Brooks,

1975). Chunks, or symbols as they are sometimes referred

to, may represent structures of arbitrary size and

complexity located in the LTM. Access time for the STM is

estimated at a tenth of a second. Information in an STM,

like data in a cache, is transient due to its high

sensitivity to the type of processing taking place.

While the STM has fast access and low capacity, the LTM

has comparatively slow access and large, if not potentially

infinite capacity (Newell and Simon, 1972). Retrieval times

from human LTM order about one fifth to one second with

write times of five to ten seconds. Even though information

is never lost from the LTM, it may become inaccessible to

the designer for lack of the appropriate key under which the

information was stored.

•Problem Selection in Software Design 18
Proaram Renresentation of ModplProgram Representation of Model

5 22^ use these conventional definitions

of STM and LTM. To avoid any misinterpretation we have used

the terms working storage (WS) and permanent storage (PS) to

describe storage (memory) structures similar to but distinct

from STM and LTM. WS is used to represent the assertions of

information processing theory concerning how much

information individuals can readily access at any point in

time. The remainder of this section discusses the

differences and similarities between WS and STM.

I

I

I

I

I

I
I WS and STM are similar in size, access times, and

addressing. Both structures have small capacity and fast

III access times. Additionally, WS and STM are both viewed as
fixed size queues. Items entering the queue most recently

I are those that leave the queue last.

I

I

I

I

I

I

I

I

I

The major differences between WS and STM are in

content. STM as defined by Newell and Simon contains chunks

which are pointers to information in LTM. The problem

selection model uses a WS that contains copies of

information found in permanent storage instead of pointers

to that information. -^Information items in WS are not

chunks, but are facts (e.g., constraints, problems,

strategies). Finally, nothing that falls off the end of WS

is lost. Information leaving WS always passes into PS.

Forgetting is the absence of information in WS.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Problem Selection in Software Design 19
Program Representation of Model

The program uses a WS of 11 positions. This number was

arrived at experimentally in the definitional stages of the

model and is the size of WS at which the program's output

has the closest correspondence to the protocols.

3.2 Design Knowledge

When the program runs it has two sources of

information. The first is knowledge encoded from the

protocol. This includes constraints, strategies, problem

statements, and problem selections. The second is

constraint/problem information whose availability is

asserted. These are the only inputs to the program.

The general form of this information is:

(information-type (desc . value) ... (desc . value))

where the information type may be CONSTRAINT, DECISION,

STRATEGY, PROBLEM, or SELECTION. If it is SELECTION then

there are no descriptor/value pairs. An example of each

information type would be:

(STRATEGY
(DESCRIPTION (define class-of-editors)

(decide (type-of editor))))

(CONSTRAINT
(DESCRIPTION pdp-10 has-only sequential files))

(DECISION data-structure will-be linked-lists)

(PROBLEM define editor commands)

I

I

Problem Selection in Software Design 20
Program Representation of Model

When this knowledge is represented internally, other

descriptor/value pairs are added. Each type of information

has a different set of applicable descriptors. For

strategies, the descriptors STRATEGY-PTR and STATE are

added. The first indicates which element in the strategy

was used last and; the latter, whether or not the strategy

is currently in use (i.e., the values may be UNUSED, ACTIVE

or COMPLETED). For more detail on the knowledge

representations used in the program see (Levin, 1976) .

3•3 Problem Selection Agents

The problem selection agents represent the basic

assertions of our model. Each agent has access to the

designer's knowledge state as represented by the contents of

working and permanent storage. The model specifies how the

selection agents utilize that knowledge in reproducing human

selection behavior in software design.

There are four selection agents; each deals with a

different type of information. Agents exist for utilizing:

1. local constraints

2. strategies

3. unsolved problems

4. non-local constraints

I

I Problem Selection in Software Design 21
Program Representation of Model

Agents are used in the order listed above. Problem

selection is attempted first using constraints, followed by

strategies, unsolved problems, and non-local constraints.

The ordering emphasizes the importance of constraint

information in problem selection. Agents may succeed or

fail in making a selection. When one agent fails, the next

agent is tried. VJhen an agent succeeds, the model prints

which problem the agent has chosen. This section describes

the operation of each selection agent.

3.3.1 Local Constraints Agent

The associative nature of problem selection is

represented by the local constraints agent. Local

constraints are those that have only been evoked since the

last choice of problem. We have found that the number of

local constraints almost never exceeds five and that at all

times the full set of local constraints about a problem is

available in WS.

WS is searched for the most recent local constraint.

If there are no local constraints the agent fails. If a

local constraint is found, then it is evaluated to determine

its usefulness as a new subproblem source. The evaluation

uses the function OPERATE. OPERATE evaluates the constraint

using a usefulness measure (assigned by the encoder) and the

relative recency with which the constraint has been evoked

Problem Selection in Software Design 22
Program Representation of Model

by the designer. OPERATE computes the sum of the

definitional value for the constraint and its position in WS

(representing the constraint's recency).

Constraints which satisfy the OPERATE function are then

matched against the designer's list of of constraint/problem

relations in PS. If a match is made, that problem is

selected; otherwise the local constraints agent continues

the search in WS for other plausible local constraints. The

operation of the local constraints agent is summarized by

the metacode representation given in Figure 3.1. In this

and other program segments WS is represented as a vector.

The most recent element of WS would be WS(1) and the least

recent, WS(n).

procedure local-constraints-agent;
begin

problem-flag:-true;
i:=l;

! Search through WS for a local constraint;

while problem-flag and i<=length(ws) do

! If the constraint is local and has a problem
associated with it then select it;

if ws(i) is a local constraint
and operate(ws(i))
ang assoc-con(ws(i))

then

begin select(assoc-con(ws(i)));
problem-flag:=false

end

e^e i: =i+l
end

Figure 3.1: The Local Constraints Agent

Problem Selection in Software Design 23
Program Representation of Model

The function ASSOC-CON simulates the process of finding

a problem related to the given constraint. ASSOC-CON

attempts to match the given constraint with the

constraint/problem pairs in PS. ASSOC-CON is a table-lookup

procedure using pattern matching. For example: given the

constraint

(functions constrained-by (approach-to file))

in Protocol A1 the function ASSOC-CON returns

(determine (type-of operating-system))

resulting from the match with the constraint/problem

relationship (files (type-of operating-system)).

3.3.2 Strategies Agent

A strategy is a sequence of problem actions. The

strategy agent recognizes the statement of such knowledge by

the designer and then supervises the selection of problems

from the list of strategy elements. The agent determines

the availability of a strategy by searching the WS. If no

strategy is present then the strategy agent fails and the

next selection agent is activated.

The first strategy encountered in the WS is activated

if its STATE value is UNUSED. The strategy is made ACTIVE

(by setting the value of the descriptor STATE to ACTIVE) and

Problem Selection in Software Design 24
Program Representation of Model

the first problem element of the strategy is selected as the

next problem. When an element of the strategy is chosen,

then the STRATEGY-PTR is incremented by one. Attempts by

the agent to used a completed strategy cannot succeed

because the STRATEGY-PTR cannot be incremented beyond the

number of elements in the strategy. When such an attempt

occurs the state of the strategy is changed from ACTIVE to

COMPLETED.

To be usable by the designer, the strategy must be

accessible in WS. A strategy enters WS when it is first

stated by the designer; it is subsequently returned to the

front of WS (rehearsed) whenever an element of the strategy

is chosen as the next problem. If strategies are not

rehearsed then they are prematurely lost by the model.

Strategies can leave the WS and thus be "lost" by either

their completion or failure to be rehearsed. The latter

case arises when the designer pursues a sequence of

subproblems which introduces new problems and constraints in

WS such that the original strategy is pushed out. Figure

3.2 is a program description of the strategies agent.

Problem Selection in Software Design 25
Program Representation of Model

procedure strategies-agent;
begin

strategy-flag;=true;
i :=1 ;
while strategy-flag and i<=length(ws) dp

! Search through WS for a strategy;

if ws(i) is not a strategy or is a completed
strategy then i:=i+l else

! Test if strategy has been used yet;

if strategy-ptr is unused then
begin

strategy-ptr:=1;
select first element of strategy;
strategy-flag:=false

end else

Tf strategy-ptr = length(strategy)
then

begin
set strategy to completed;
i:=i+l

end

else

! Select next element of the strategy;

begin
strategy-ptr:=strategy-ptr + 1;
select strategy
element(strategy-ptr);

strategy-flag;=false
end

end

Figure 3.2: Strategies Agent

3.3.3 Unsolved Problems Agent

This agent searches VJS and then PS for an unsolved

problem. WS is searched for the most recent problem whose

state value is less than three. (This state value was found

Problem Selection in Software Design 26
Program Representation of Model

to produce the best program selection of unsolved problems.)

If such a problem exists, it is selected. Figure 3.3 is a

metacode description of this agent.

procedure unsolved-problems-agent;
begin

problem-flag : =t_rue ;
i : = i+l;

! Search for an unsolved problem;

while problem-flag and i<=length(ws) do

! if problem is unsolved, select it;

if ws(i) is a problem and its state is < 3
then

begin
select ws{i) as the next problem;
problem-flag:=false

end

else i:=i+l

end

Figure 3.3: Unsolved Problems Agent

When there are no unsolved problems in WS, PS is

searched using the criteria outlined above.

WS and PS are represented as simple lists. The actual

organization of knowledge in human memory could be very

different from that used in the program. Knowledge might be

organized by the difficulty of the problem or with the

constraints associated with that problem. Without any

evidence to the contrary, we have chosen one convenient

possibility.

I

I

Problem Selection in Software Design 27
Program Representation of Model

3.3.4 Non-local Constraints Agent

non-local constraints are those that have appeared in

the context of some previous problem but not within the

scope of the most recently selected subproblem. Use of this

agent represents a form of information backtracking in that

the designer's efforts to solve some previous sequence of

subproblems have failed. It is now necessary to go back and

gather more information through development of problems

which were previously unexplored. These problems might be

characterized as those that are increasingly tangential to

the original problem sequence. The designer discovers these

"new" problems by returning to previously evoked

constraints.

This agent is similar to that for unsolved problems

because-^ appropriate constraints are first searched for in WS

and then in PS. Since the treatment of constraint

information is the same for both memories, one explanation

will suffice for both cases.

WS is searched for an active non-local constraint.

Remember, the local constraint agent has already considered

active local constraints. A constraint is active if the

problem for which it was generated has not been solved. If

such a constraint is found it is evaluated using the OPERATE

function which was described in Section 4.4.2. Applicable

Problem Selection in Software Design 28
Program Representation of Model

constraints are then matched with memory to produce an

associated problem, if one exists. The agent fails when

there are no local constraints, when none of the constraints

meet the criteria imposed by the OPERATE function, or when

no associated problems can be found. Figure 3.4 is a

metacode description of this agent.

procedure non-local-constraints-agent;
begin

constraint-flag:=true;
i:=0;

! Search for a constraint in WS;

while i<=length(ws) and constraint-flag do

! If the constraint is local, active and has an
associated problem, then select it;

if ws(i) is non-local
. and active

and operate(ws(i))
and assoc-con(ws(i))

then begin select(assoc-con(ws(i)));
constraint-flag;=false

end

else i:=i+l

end

Figure 3.4: Non-local Constraints Agent

3.4 Program Organization

The encoded information of a protocol is the driver for

the problem selection program. Encoded information is

sequentially read (from a file) by the program's highest

level procedure. This procedure acts as a dispatcher by

Problem Selection in Software Design 29
Program Representation of Model

invoking a processor corresponding to whatever type of

information has been input.

When a problem selection occurs in the protocol, a cue

(SELECTION) in the program input causes the selection

processor to be invoked. This process is composed of the

four selection agents which we have previously described.

Selecting a new problem changes local constraints to

non-local. A new unsolved problem then enters WS.

The program (see Figure 3.5, for the general

organization) continues execution until the input file is

exhausted.

Each information processor updates the program's

representation of the designer's current knowledge state

(i.e., the contents of WS and PS). When the decision

processor is invoked, it updates appropriate problem

solution states in WS and PS. Constraints which arose

because of a solved problem are marked as INACTIVE.

4.0 DEMONSTRATION OF THE MODEL

The verbal protocols used in testing the model vary in

length from a minimum of 36 minutes to a maximum of 78

minutes. Protocol A2, the shortest protocol, has 83 pieces

of encoded information and produces 1203 lines of detailed

trace information. Due to space limitations we will present

Problem Selection in Software Design
Demonstration of the Model

File of encoded

protocol information

Main Procedure

Read information

from file

Determine type of
information

Invoke processor

Constraint

Processor

Decision

Processor

Strategy
Processor

Selection

Processor

WS

Local Constraints

Strategies

Unsolved Problems

Nonlocal Constraints

Figure 3.5: General Organization

segments of several protocols which illustrate the general

nature and properties of the model.

Problem Selection in Software Design 31
Demonstration of the Model

Before proceeding with the examples of the model's

operation we describe the collection and characteristics of

our database.

4.1 The Database

4.1,1 The Experimental Setting

Each protocol was collected in a continuous session

which commenced when the observer (the author) provided the

subject with a set of written task instructions and ended

when the subject determined that the design task was

completed. The actions of the subject were videotaped to

provide a visual as well as audio record of the subject's

action. Transcription of the tapes was done by the author.

The protocol transcripts included the verbalizations of the

subject and any other action that took place during the

session. These actions included writing, diagramming,

pointing done by the subject to written materials, as well

as interventions by the observer to ask the subject to speak

or to answer questions.

The protocols were collected with each subject seated

at a desk in an office similar to those in which the

subjects normally worked. Subjects were provided with paper

and used their own writing instruments. A subject would be

given written general and specific task instructions and

asked to begin.

Problem Selection in Software Design 32
Demonstration of the Model

The general instructions did not prohibit the subject

from asking questions of the observer. When the question

concerned specifications, the subject was told to make any

necessary assumption. For questions about the amount of

detail necessary, subjects were reminded that the design

would be implemented by another person.

For the nine protocols there were 11 instances where

the observer intervened to ask the subject to speak or

enunciate more clearly. This averages only 1.22

interventions per protocol. There were five instances where

the subject asked a question of the observer. Two of these

occurred in Protocol C1 and one each in Protocols A1, A2 and

B2. These interactions did not seem to affect the subject's

performance.

4.1.2 The Subjects

The data used for verifying the model was provided by

using protocols for three subjects, each of whom performed

three design tasks. All of the subjects were graduate

students in computer science. Subjects differed

significantly in design experience and general expertise,

i.e., skill at design. The following assessments of

backgrounds and skill were derived from conversations with

the subjects and with faculty who were familiar with each

subject's work.

Problem Selection in Software Design 33
Demonstration of the Model

Subject A was a fourth year graduate student who was

considered to have exceptionally high ability in design and

programming. This subject was very involved with both

small- and large-scale programming projects dealing with

applications and systems work.

Subject B was a second year graduate student who

possessed average skills in both design and programming.

The subject was known to have programmed a variety of

application programs but whose experience was limited to

academic areas.

Subject C was a first year graduate student who had

several years experience working for a large computer

corporation in the role of an applications analyst. The

subject was experienced in the programming of applications

in COBOL but not familiar with other types of applications

outside of the business domain. The subject had very little

experience with time-sharing systems.

4.1.3 The P^tqcol Tasks

The data base for testing the selection model consisted

of nine protocols, three subjects on three different tasks.

Table 4.1 supplies the statistics regarding the length (in

time and lines), the number of information items encoded and

the ratio of lines to encoded information for each protocol.

I

I

I

I

I

Problem Selection in Software Design
Demonstration of the Model

Protocol Time Length Encodings Line

(minutes) (1ines) Encod

A1 55 1152 131 8 .79

A2 36 352 83 4 .24

A3 41 528 75 7 .04

B1 78 988 136 7 .26

B2 62 1022 98 10.42

B3 44 541 71 7 .61

C1 50 512 89 5.75

C2 40 396 67 5.91

C3 51 707 89 7 .94

34

Table 4.1; Protocol Characteristics

The variance in the ratio of protocol lines to

information encoding is due to differences in the amount of

writing activity and the verbosity of the subjects (some

subjects are much more elaborate in describing why they make

particular decisions).

The three tasks were:

1. Design a text editor for the PDP-10.

2. Design a book-indexing program.

3. Design an order-entry system.

Two of the tasks were designs of on-line systems. The

third design was to operate in a batch environment. Design

decisions in the tasks covered command interfaces, system

structure, coding, data structures, and system performance.

These tasks were chosen because they could be completed in

less than two hours (at least for the level of design

required of the participants) and because each subject was

I

I Problem Selection in Software Design 35
Demonstration of the Model

I familiar with at least one of the three task domains. That

is, each subject had some experience or knowledge that could

be brought to bear on all of the tasks. The task

instructions are presented in Appendix A.

I

4.2 General Operation of the Model

In demonstrating the model's operation we have tried to

maintain a close correspondence between the descriptive

trace produced by the program and the notation used in this

chapter. At times we have taken the liberty to "unravel the

onion skin" format that characterizes the way the

information has been represented in the program's LISP

implementation.
J '

The initial state of the model has WS "empty" and PS

H containing the constraint/problem pairs described in the
next section. WS is empty in the sense that whatever

• information occupies its eleven positions is not relevant to

the design task which has not yet commenced. After WS

becomes full, new information which is entered at the front

m of WS pushes older information out of WS onto a list that

I

I

I

I

I

represents PS. Strategies that leave WS are presumed

forgotten by the designer in this model.

Problem Selection in Software Design 36
Demonstration of the Model

^•3 Constraint/Problem Associations

The program is run with the encoded protocol

information and a list of constraint/problem associations.

Such associative pairs are asserted to be a part of each

designers knowledge. This list of items does not represent

an assertion about the representation of such information in

human memory.

None of the associations we supply are particularly

surprising and it is certainly reasonable that the subject

would have such knowledge, ^t is one of the findings of

this research that these associations coupled with the other

mechanisms of the model can explain — percentage of

the P^blem selection that takes place in protocols. The

association pairs in Table 4.2 are those used in the section

of protocol that we will describe next.

Constraint oy^ect Minted Problem

files type of operating system
text representation data structures
data type of files
speed performance
i/o time data formatting
modification times data structure

modification times

Table 4.2: Association Pairs for Protocol A1

4.4 Subject A on the Text Editing Task

Problem Selection in Software Design 37
Demonstration of the Model

Protocol-A1 is the text editor design and was the first

task given to subject A. It has been chosen for a detailed

presentation because in the first twenty minutes of the

protocol, most of the the model's operation is illustrated.

This protocol is typical of the length of time, 55 minutes,

and the number of selection events, 25, as given by the

average times over all protocols. Its 1040 lines are also

comparable to those of the other subjects on this task.

Part of the data (the transcribed protocol and

encoding) and program output for Protocol A1 is presented in

the appendices. The complete data for Protocol A1 is

available in (Levin, 1976) .

4.4.1 Operation of the Model for Part of P^^^tocol A1

The subject begins immediately by stating a strategy

for what to do when posed with this type of problem. This

occurs in lines 2 through 6 of the protocol as:

S2: I guess the first thing I would do
S3: when posed with this problem would be
84: to attempt to define the class then the subclass
85: that I was going to attack and then,
86: type of editor.

The input (i.e., the encoded information) to the program for

these lines is:

(STRATEGY (define class-of-editors)
(define type-of-editor))

Problem Selection in Software Design 38
Demonistration of the Model

This input is processed by the strategy module which adds

the strategy to WS. At this point the WS appears as;

1. strategy
desc: (define class-of-editor)

(define type-of-editor)
strategy-ptr: 0
state: inactive

2. empty
3. empty

11. empty

Figure 4.1: Working Storage After Line 6

The value for the descriptor STRATEGY-PTR indicates the most

recently selected element of the strategy. Initially this

value is always zero. Similarly, the initial state of the

strategy is INACTIVE. The strategy has been stated by the

subject but not yet acted upon. The program then goes on to

accept the next input.

The next input is:

(SELECTION)

This is a cue to the program that it should invoke the

selection components of the model to predict what will be

the next problem on which the subject will work. The

program uses the four strategy agents in turn, attempting to

find a problem using local constraints first, strategies

second, unsolved problems third, and non-local constraints

fourth.

I

I

Problem Selection in Software Design 39
Demonstration of the Model

In this case, WS contains no local constraints, so the

local constraint agent fails. The strategy agent is then

tried. WS is searched sequentially for a strategy whose

STATE is either INACTIVE or ACTIVE. If the STATE is

INACTIVE then by definition the strategy is unused as yet.

The strategy agent selects the first element of the strategy

to be the next problem and updates the STATE value to ACTIVE

to indicate the current use of this strategy. STRATEGY-PTR

is incremented by one. Before the actual selection of the

next problem the strategy element in WS is rehearsed. (*)

Even though the strategy agent succeeds in finding a

problem, the model's actions are not complete. The program

queries the operator's console to check if this is the

correct problem. The program does make wrong selections.

If a correct selection has been made, the program is

instructed to proceed. If the program is wrong, it must be

corrected. Later on we will examine a case where the model

makes the wrong selection and must be .corrected.

Since a new problem has been selected all constraints

whose TYPE value was previously LOCAL are changed to

non-local. The new problem is added to WS which now appears

as;

(*) Rehearsal of an item in WS causes that item to move to
the front of the WS list. For strategies, any time an
element of a strategy is selected, the entire strategy is
rehearsed.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Problem Selection in Software Design 40
Demonstration of the Model

1. problem
desc: (define class-of-editor)
source: strategy
state: 0

2. strategy
desc: (define class-of-editor) (define

type-of-editor)
strategy-ptr: 1
state: active

3. empty
4. empty

11. empty

Figure 4.2: Working Storage After Line 6

Notice that the new created problem has a STATE value of

zero. This indicates that the problem is currently

unsolved.

The next two inputs are constraint statements that

occur in lines 7 through 9 and 10 through 11.

S7: Since you cannot build a text editor to include
S8: all of the functions that are available,
S9: in text editors

S10: in that some of then have to do with basic approach
Sll: to the file that one takes.

These lines in the protocol are encoded and entered as:

(CONSTRAINT number-of-functions constrained)

(CONSTRAINT functions constrained-by approach-to file)

Both inputs are handled by the constraint processor which

results in their addition to WS. The current appearance of

WS is given in Figure 4.3.

Problem Selection in Software Design 41
Demonstration of the Model

1. constraint

desc: (functions contrained-by approach-to
file)

type: local
state: active

source: (define class-of-editor)
2. constraint

desc: (number-of-functions constrained)
type: local
state: active
source (define class-of-editor)

3. problem - define class of editor
4. strategy - general editor strategy
5. empty
6. empty

11. empty

Figure 4.3: Working Storage After Line 11

Both constraints are LOCAL and are associated with the

problem of defining the class of editor. This information

is retained so that when the problem of defining the class

of editor is solved these constraints can be identified and

changed to INACTIVE. Notice that we have not listed all of

the features for the rest of the items in WS. For the

remainder of this chapter we will only include details that

are relevant to the model's operation at the current point.

The next input is a selection cue and it corresponds to

line 12 of the protocol. As with every activation of the

selection model, the local constraints agent is tried first.

In this case the agent finds a constraint in WS that is both

LOCAL and ACTIVE, e.g., (functions constrained-by

approach-to file). The program then searches WS for an

Problem Selection in Software Design 42
Demonstration of the Model

association that pairs that constraint to a problem. A

match is found with the association item (file typeof

operating-system). As before, previously LOCAL constraints

are now changed to non-local and the new problem is added to

WS. All of the action we have described has occurred on the

basis of the first 12 lines of the protocol.

The problem the subject is working on is identified in

lines 12 through 16.

SI 2: Ahmmm. Okay
S13: One basic decision is that the sort of operating
814: system that it is going to be interfacing to.
S15: Ah. There is at least four avaiable for
816: the PDP-10 that I know of.

Lines 17 through 32 contain four constraints which are

the next inputs received by the program. In this section of

the protocol the subject is discussing the different types

of operating systems and the files available under them on

the PDP-10. The four constraints are added to W8.

Following the statement of the four constraints is an

input which indicates a decision on the part of the subject.

The decision is from lines 32 through 33 of the protocol and

is interpreted as a decision to use virtual addressing or

assume that virtual addressing (and memory operations) will

be available in the operating environment for which the text

editor is being designed.

Problem Selection in Software Design 43
Demonstration of the Model

S32; would be to use the virtual memory capabilities
S33: of the most of the operating systems

These lines are encoded as input in the form:

(DECISION use virtual-memory typeof
operating-system)

This is the first time that a decision input has been

received and so we will describe the subsequent actions of

the program in detail.

The decision statement is added to the WS and then any

problems in WS or PS solved by the decision have their STATE

values updated. The value five is assigned to the STATE

descriptor and it represents at least a temporary, if not

final solution to that problem. For each problem that is

"solved" by the decision, then any constraints that were

generated as LOCAL to that problem are now marked as

INACTIVE. Figure 4.4 shows WS after the updating caused by

the decision to assume a virtual memory operating system.

1. decision

desc: (use vm typeof operating-system)
2. constraint

desc: (vm use is efficient)
state: inactive
type: local
source; (determine typeof operating-system)

3. constraint

desc: (most PDP-10S have vm)
type: local
state: inactive

source: (determine typeof operating-system)
4. constraint

desc: (PDP-10 hasno structured files)
type: local

Problem Selection in Software Design 44
Demonstration of the Model

state; inactive

source: (determine typeof operating-system)
5. constraint

desc: (PDP-10 hasonly sequential files)
type: local
state: inactive

source: (determine typeof operating-system)
6. problem

desc: (determine typeof operating-system)
state: 5

source: constraint

7. constraint
desc: (functions constrainedby approachto file)

8. constraint
desc: (numberof functions constrained)

9. problem
desc: (define class-of-editor)

10. strategy
desc: (define class-of-editor)

(define typeof-editor)
11. problem

desc: (design text-editor)

Figure 4.4: Working Storage After Line 33

The four constraints that were generated LOCAL to the

problem of determining the type of operating system are now

marked as INACTIVE. In addition, the STATE of the solved

problem has been changed. Notice also that as future items

are added to WS, then older information will be pushed into

PS.

The subject continues with the next input which is

derived from lines 35 and 36 where the decision is made to

bring all of the text in core and work with it there. As

before, both WS and PS are searched for problems that would

be solved, but in this case there are none.

I

I

Problem Selection in Software Design 45
Demonstration of the Model

An example of a problem statement then occurs in lines

42 through 44 where the subject says;

S42: not paying attention to i/o
S43: except sequentially to bring the
S44: file in and to write it out at the end.

These lines are encoded as an expression by the subject

indicating an awareness of some problem yet to be solved,

that of managing file input and output. The item

(PROBLEM-STMT management of file-io) is added to WS. This

action does not represent problem selection but rather

problem recognition.

Immediately following the problem statement another

selection cycle occurs. The problem predicted is to

(determine typeof editor). How is this choice made?

The local constraints agent is tried and fails because

there are no constraints in WS that are both LOCAL and

ACTIVE. The constraint (functions constrainedby approachto

file) that fired off the previous problem is not re-used

because it has been inactivated by the decision regarding

the type of operating system. A problem is selected because

the strategy agent finds an active strategy in WS with some

unused strategy elements remaining. The next element of

that strategy, (determine typeof-editor), is selected and

the problem added to WS.

Problem Selection in Software Design 46
Demonstration of the Model

At this point in the protocol the subject proceeds to

make a number of statements concerning various possibilities

for the type of editor. These are followed by a number of

decisions, the most important of which is to build a

TECO-like editor. (*) These decisions take place in lines 69

through 73.

S69: My own preference is toward a TECO like
S70: editor with perhaps
S71; extensions for a few of the common facilities
S72: that I use.
S73: The you know, like macro facilities

Processing of these decisions results in changing the

solution state for the problem of determining the type of

editor.

Rather unexpectedly in lines 75 through 76 of the

protocol the subject says:

S75: Let's see,
S76: the first thing is file i/o

We have coded this as an instance of problem selection.

What does the model predict?

Both the local constraints agent and the strategy agent

fail, the former because there are no local constraints and

the latter because the only existing strategy has been

finished. In fact, it is when the strategy agent examines

the strategy during this selection cycle that it is marked

(*) TECO is another text editor available on the PDP-10

Problem Selection in Software Design 47
Demonstration of the Model

as COMPLETED. Now the unsolved-problems agent is invoked.

Starting with the most recent information in WS the

unsolved-problems agent searches sequentially for an

unsolved problem (i.e., a problem whose STATE value is 3 or

less). If such a problem is found then it is the next

predicted problem. Of course, the current problem that is

being worked on is unsolved and must occur before any other

unsolved problems. The unsolved-problems agent is

programmed to ignore this problem to prevent the model from

cycling in this situation. This provision caused the model

to be in error four times when the subject was actually

repeating the same problem.

4.4.2 A Summary of tMs Example

In this section we have shown how the model's

information processing components and selection agents

follow the same selection behavior as that found in the

protocol. The description in Section 4.4.1 of Protocol A1

represents approximately 80 lines and 19 minutes of that

protocol. In it, three of the four selection agents are

used. The use of the non-local constraints agent is

described in the next section.

The model's use of several different types of

information encoded from the protocol has been described and

Problem Selection in Software Design 48
Demonstration of the Model

how that information is processed by modules of the program

illustrated. These inputs have represented strategies,

constraints, and decisions.

Among the features of the program that have not been

discussed are: what is done when the program makes the wrong

prediction and how does the program model the interaction of

strategies and constraint-driven behavior? These questions

are considered separately in the next two sections.

4.5 Incorrect Predictions

The protocol excerpt in the previous section contained

four problem selection events for which the model correctly

predicted all four. However, the model does make wrong

predictions, and at those times must be corrected to

continue replicating the protocol. If the program is not

corrected, it will continue selecting problems. However,

now the program's knowledge state differs from the designers

and the program's output can no longer be compared with the

protocol.

Incorrect predictions are caused by errors in a

protocol's encoding and from selection behavior that cannot

be explained by the model. The former case is illustrated

by the model's operation for the next few minutes of

Protocol Al.

Problem Selection in Software Design 49
Demonstration of the Model

After making the correct prediction that the subject

would begin work on the problem of file input and output,

the designer elaborated a few more constraints and then

switched to a new problem. At this point, line 93, the

model predicted the next problem would be "(determine typeof

operating system)" when actually it was a continuation of

the problem concerning the type of editor.

The error is in our original coding of the lines 69

through 73. If those lines are receded to be some form of

constraint on the type of editor then the program will make

the correct selection for this case. We assumed that a

decision had been reached concerning the type of editor.

Consequently, "determining the type of editor" is no longer

an unsolved problem and the program must find the next

unsolved problem (if one exists) or attempt to find a

problem via some active, but non-local constraint.

Because the model operates from a fixed sequence of

inputs it does not make sense to continue running the

program without first correcting selection errors. The next

set of inputs is bound to the original protocol in which

some other problem was actually chosen. Allowing the

program to run uncorrected creates the situation where the

sequences of constraints, decisions, and strategies are

inappropriate to the problems chosen.

Problem Selection in Software Design 50
Demonstration of the Model

When the model makes a prediction, the operator's

console is queried to find out whether or not this was the

correct prediction. On occasions when the prediction is

wrong, the operator can enter the correct problem and then

alter the model's current information context to correspond

to the choice of that problem. In effect, whenever a wrong

choice is made, the model is manually reset and put on the

right track. The statistics on correct and incorrect

predictions are presented in Section 5.1.

Another source of error also related to coding, arises

from the linguistic limitations of the program. The program

finds matching decisions, problem associations and other

pieces of information by matching patterns. The decision

"(use teco-like typeof editor)" would not match the problem

"(determine type-of editor)" or "(determine type of editor)"

because of the differences between typeof, type-^ or type

of. Issues in protocol encoding are discussed further in

(Levin, 1976) .

Illustrating Strategy Interference

The section of protocol we examine next illustrates a

phenomenon of strategy and subproblem interference which we

have found to occur in the design behavior of the three

subjects.

Problem Selection in Software Design 51
Demonstration of the Model

It is an assertion of the model that strategies are

only accessible when they are in WS and that problems

generated through associations with local constraints take

precedence over the use of strategies in controlling the

selection process. When the model operates with those

assertions, it accounts for the behavior that occurs when a

designer who is seemingly carrying out steps in a strategy

becomes engrossed in a series of subproblems and does not

continue with the rest of the strategy after finishing with

the subproblems.

The next protocol segment shows that the coupling of

those assertions results in active strategies being forced

out of WS. The consequence is that the remaining unfinished

elements of the strategy are no longer accessible.

4.6.1 Operation of the Model for Protocol B2 Lines 79 ;147

In this protocol the subject was asked to design a

program to create book indices. Like other protocols from

this subject, it is of slightly longer duration and length

than protocols from the other two subjects.

At lines 79 through 81 in the protocol the subject

explicitly outlines the next two steps of the design

S79: I guess I could think about how to do the program
S80; structure first and then think about data structure
S81: or whatever

Problem Selection in Software Design 52
Demonstration of the Model

This is formulated as the two element strategy;

(STRATEGY (determine program structure)
(determine data-structures))

The subject begins carrying out this strategy in the next

line. This is indicated by:

S82: Lets take a look at some of the basic program
S83: stuff

The model reproduces this behavior by correctly predicting

the next problem is that of program structuring.

In the next 63 lines of protocol the subject states

three decisions, five constraints, and two problem

statements. These new information items, in addition to the

already present current problem, results in the previous

strategy being pushed out of WS. When the next selection

cycle takes place the model makes the correct prediction.

The next problem is not that of data structures but arises

from the recent problem statement of what modules should

constitute the design. Work on the new problem begins at

line 146 with the comment:

S146: The question is,
S147: how are we going to build the index itself?

The exact effects of strategy interference are

difficult to assess because it occurs only 8 times over the

nine protocols. Strategy interference occurs at least once

for each subject but does not occur in all nine protocols.

I

Problem Selection in Software Design 53
Demonstration of the Model

5.0 ANALYSIS OF THE MODEL

In the previous two sections we have described the

model's organization and shown how its output corresponds to

the behavior in the protocols. In this section we will

evaluate how well the model explains the protocols and show

evidence for the assertions made by the model.

^ ^ How Well D^s the Program Explain the Protocols?

Evaluating a cognitive model is a difficult task-.

Programs of this type emphasize the detailed reproduction of

behavior rather than the prediction of new behavior. Thus,

the criteria for judging a psychological model is how well

the model's output matches the behavioral data that was

observed. An evaluation is an objective measure of how well

the program explains the subject's behavior.

Evaluating a model involves,two steps. First, we must

establish a mapping between the subject's behavior and the

program's output. Second, a measure must exist for the

mapping. There are several problems inherent in creating

the mapping and its measure.

Both the program and the subject are complex objects.

While the program is complex, it can be examined and

described at almost any level that we wish. However,

descriptions of the subject must be made from the limited

Problem Selection in Software Design 54
Analysis of the Model

amount of information that is observable in the protocol.

Ideally, we would like to construct a complete mapping at

all levels of detail, but the data to do this is

unavailable. Comparisions must be made with a partial

mapping using the information observable in the subject's
protocol.

What if a total mapping could be made? Moran (1973)

has said, "It is practically impossible to assign a measure

of completeness because of the great amount of

interdependence among all parts of the systems. Most

measures are additive and assume independence among the

parts being counted. In other words, a comparison between

complex systems can not be reduced to a simple

statistic." (*) With these issues in mind, we will describe

the measure we have used and its application to the data.

5.1.1 Measuring the Correspondence of Major Events ^ the
Protocol wi^th the Model

Some of the features that might be used in comparing

behavior in the protocols with the model are: (a) the timing

of different actions in the protocol, (b) the wordings used

to express actions, and (c) the correspondence of actions in

(*) Thomas B. Moran, "The Symbolic Imagery Hypothesis: A
Production System Model," Doctoral Dissertation, Department
of Computer Science, Carnegie-Mellon University, (December
1973) , p. 122 .

Problem Selection in Software Design 55
Analysis of the Model

the protocols and the program. Actually, only the last

measure is feasible.

Timing must be excluded as a measure for three reasons.

First, we can not deduce from the data how much human

processing time is devoted to decisions, selections, or

information gathering. Second, even if we could determine

the subject's processing times, we have not modeled all of

the processes involved with design, only that of problem

selection. Third, relative processing times of the program

for the different conceptual agents are a function of the

program's knowledge representations. We have not claimed

that these representations are the same as those used by

humans and therefore can not impart any significance to such

timings.

Reproducing the actual verbalizations of the subject is

not possible because the program only models selection

actions (which are generally nonverbal) and because the

model does not have a linguistic component. It should be

increasingly obvious that any mapping we may produce will

correspond to a comparatively high level of design activity.

The third mapping was between the programs actions and

those in the protocols. The model is supplied with inputs

that represent when decisions, constraints and selections

take place. One useful measure of this mapping is the

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Problem Selection in Software Design 56
Analysis of the Model

frequency with which the model makes correct problem

selections.

5.1.2 Measuring Correct Predictions

Any measure of the number of correct predictions made

by the model depends on the criteria used in determining

instances of problem selection. Those measures are only

meaningful when we have corrrectly identified and encoded

the principal selection behavior in the protocol. (*)

The reliability of the coding rules was tested by

having an independent judge encode all of Protocol B2.

Training the judge to do encoding required approximately 30

minutes. During this time the experimenter explained the

written coding rules and went over a previously encoded

protocol with the judge. Additional training time involved

studying examples of protocols encoded by the experimenter

and reading a set of encoding rules and examples (Levin,

1976). These times do not include the years of experience

in designing programs which enabled the judge to understand

the content and actions represented by the verbal protocols.

The judge was a professional computer scientist with a

doctorate in computer science and previous training in

psychology. The judge had previous experience in analyzing

(*) See Section 5.3 for an evaluation of the encoding
process.

Problem Selection in Software Design 57
Analysis of the Model

verbal protocols.

In the coding of selection behavior, there was an

overall match of 91 percent for the identified selection

points. The remaining 9 percent involved protocol segments

which the experimenter had previously identified as being

especially difficult to interpret. Only 5 percent of the

selections correctly matched were classed as difficult to

identify. Validating the encoding using an unbiased encoder

provides some assurance that the model's output does not

result strictly from biases of the principal encoder (who is

also the model builder).

The model's performance can be compared with behavior

(as observed in the protocol) by measuring the percentage of

correct problem selections predicted by the model. The

percentage is a ratio of the number of correct predictions

with the number of selections that take place. Table 5.1

reports the number of selection events, the number of

correctly predicted selections, and the resulting percentage

for the nine protocols.

Problem Selection in Software Design 58
Analysis of the Model

Protocol Number of Correct Percentage

Selections Selection Correct

A1 25 17 68.0

A2 15 9 60.0
A3 15 11 73.3
B1 45 30 66.6

B2 24 14 63.6
B3 16 11 68.7

C1 18 14 77.7
C2 14 10 71.4

C3 16 12 75.0

Table 5.1: Selection Frequencies

The average percentage of correct selections over all nine

protocols is 69.3. How good is this performance?

One way tO assess this result is to consider the

percentage of correct predictions if random selection were

used. Consider that at each point where the model makes a

prediction there exists a space of possible problems from

which one is chosen. The space is formed from problems

generated by other possible constraints, strategies, and

unsolved problems. If the model were to select from this

problem space at random, then what would be the percentage

of correct selections given that only one problem in that

space is the correct choice?

If there were only two problem choices each time the

model made a prediction, then random selection would account

for a 50 percent success rate. This extreme case

illustrates that under the appropriate conditions a

Problem Selection in Software Design 59
Analysis of the Model

respectable result can be produced from a strictly random

decision process.

To show that the model performs significantly better

than it would if random choice were used, a measure of

random selection was computed for each protocol. This

measure was computed by summing the probability of a correct

selection for each instance, and dividing that sum by the

number of selection instances. The data and computation of

this measure for Protocol C1 is given in Table 5.2.

The count of possible problems is the total of unsolved

problems and the number of problems potentially arising from

available strategies and constraints (local and non-local).

I

Problem Selection in Software Design
Analysis of the Model

Number of

Possible Problems

Probability of
Correct Selection

Selection 1 1 1.0

Selection 2 3 . 333
Selection 3 5 .199

Selection 4 7 .142
Selection 5 5 .199

Selection 6 7 .142
Selection 7 6 . 166

Selection 8 11 .090
Selection 9 11 .090

Selection 10 8 .125
Selection 11 9 .111
Selection 12 10 . 099
Selection 13 17 . 058
Selection 14 17 .058
Selection 15 17 . 058

Selection 16 17 . 058
Selection 17 17 . 058
Selection 18 17 . 058

3.045

Average Probability of a Correct Random
Selection = 3.045/18 = .1698 = 17%

60

Table 5.2: Random Selection in Protocol C1

If random selection were used in all nine protocols then the

prediction rate is 12.72 percent. The actual percentage of

correct selections made in the model is 69.3 which shows

that the model's output is significantly better than would

be accounted for by random choice. The selection

percentages for each protocol is given in Table 5.3.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Problem Selection in Software Design 61
Analysis of the Model

Protocol Random Selection Using
Selection the Model

A1 9.0 68.0

A2 12.5 60.0
A3 14.5 73.3
B1 4.6 66.0
B2 17.5 63.6
B3 13.7 68.7
C1 16.9 77.7
C2 11.3 71.4
C3 14.5 75.0

Average using random selction = 114.5/9 = 12.72

Average using the model = 623.7/9 = 69.3

Table 5.3: Selection Percentages

5.2 Support for the Assertions Made ^e Model

The argument that the model both matches observed data

and is a good predictor is insufficient for the model's

acceptance. A necessary condition for a valid model is that

the mechanisms of the model are consistent with other

psychological data and findings. The mechanisms in the

program are equivalent to three assertions that are made by

the model. Evidence for the plausibility of the assertions

is presented in this section.

The model makes three assertions concerning the

selection process:

1. Local constraints play an important role in problem

I
Problem Selection in Software Design 62
Analysis of the Model

H selection and account for a significant percentage of
the new problem selections that occur during design.

I

I

I

I

I
I 5.2.1 The Assertion about Local Constraints

I

I

I

I

I

I

I

I

I

I

I

2. As strategy and constraint information ages in working

storage, the probability that it will be used as a

problem source decreases.

3. The required presence of strategies in working storage

and prior use of local constraints, limits the use of

strategies as a problem source.

The model asserts that local constraints are a

significant source of new problems during design. One way

of investigating this assertion is to ask what sources other

than local constraints could be used for problem selection?

One possibility might be that each designer has a large

body of stored knowledge about different problems. Problem

selection could involve explicitly choosing from that set.

Selection could occur at random or using some set of rules.

Random selection appears unlikely because of obvious

patterns that designers appear to follow. More structured

selection, such as choosing the most constrained problem, is

not observed in the data.

Problem Selection in Software Design 63
Analysis of the Model

Another alternative source of new problems is from

strategies. Analysis of the protocols, independent of the

model's output, shows strategies are used in that

manner. (*) However, after we account for problems generated

by strategies and those through "creativity," a great many

problems remain. Thus, local constraints appear to be a

plausible source for many of these problems.

From the model's output we can determine how different

information is used in problem selection. Local constraints

are used for 23.4 percent of all problem selections. When

only new problem selections are considered, local

constraints account for 33.8 percent of the selections.

Strategies account for 29.2 percent of the selections (see

Table 5.4). This data supports the assertion.

(*) See the examples in Section 4.4.

Problem Selection in Software Design
Analysis of the Model

Protocol Local

Constraints

Strategies Unsolved

Problems

64

Incorrect

Predictions

A1 3 2.0 (8) 20.0 (5) 20.0 (5) 28.0 (7)

A2 33.3 (5) 13.3 (2) 13.3 (2) 40.0 (6)

A3 46.6 (7) 20.0 (3) 6.6 (1) 26.6 (4)
31 13.3 (6) 35.5 (16) 17.7 (8) 33.3 (15)
32 12.5 (3) 20 .8 (5) 25.0 (6) 41.6 (10)
33 31.2 (5) 25.0 (4) 12.5 (2) 31.2 (5)

C1 22.2 (4) 50.0 (9) 5.5 (1) 22.2 (4)
C2 14.2 (2) 42.8 (6) 14.2 (2) 28.6 (4)

C3 25.0 (4) 33.3 (5) 6.0 (3) 25.0 (4)

The figures are the percentages of selections accounted for
by each agent. In parentheses are the raw scores. (*)

Table 5.4; Agent Usage

The use of strategies is also consistent with our

position on their role in design. We would not expect the

subjects to have a large number of strategies covering the

different problems in these tasks. First, the subjects are

not so familiar with the tasks that they are likely to have

prestored plans. Second, there is almost no evidence to

te correlation between subjects and the
different selection agents. Subject A
of local constraints in generating

other two subjects. Subjects B and C
s on strategies. We believe these
osyncratic and represent the different
ience individual subjects use in
discussion of these differences is

6 .

(*) There is a defini
usage frequency of
shows a greater use

problems than the
place greater emphasi
differences are idi
knowledge and exper
designing. Further
continued in Section

Problem Selection in Software Design 65
Analysis of the Model

indicate the development of plans during the different

tasks.

5.2.2 The Assertion Concerning Recency

Even with the assertion about local constraints there

remains, at any one point, a number of constraints that are

possible sources for new problems. The recency assertion

states that the constraints used by the local constraints

agent are those that have entered WS most recently. The

assertion is implemented in the model by a list which

simulates a WS where new information is always at the head

of the list.

WS can be examined to determine which constraint will

fire off associated problems. We can use the position of a

constraint in the WS as a measure of its recency. With this

information we can determine for each problem chosen through

local constraints how recently the activating constraint

entered WS. Was it the most recent piece of constraint

information? Was it the oldest? Over the nine protocols,

the most recent constraint accounts for 74.4 percent of

these selections. The next to most recent constraint

accounts for another 18.6 percent.

The formulation of constraints and how they match and

cause new problems to be created is also consistent with the

Problem Selection in Software Design 66
Analysis of the Model

representation and actions of production system models of

behavior. Production systems that model cognitive behavior

contain a series of rules that are matched against the

contents of STM (Newell and Simon, 1972; Davis and King,

1975). When the invoking conditions are satisfied then a

particular rule will be used. The application of the rule

is equivalent in most cases to some aspect of human

behavior. Most production system models of behavior only

allow rules to be invoked only by information that is

present in STM.

Although this model has not been implemented as a

production system, it shares features with those models that

reflect assertions concerning what information is available

in human information processing. If we redefined the

actions of the local constraints agent and others as

production rules, then the model's performance would not be

changed. As in production systems, all the information that

brings different agents (rules) into use is based on the

presence of that information in WS.

Thus, the assertion of usage based on recency is

supported by the performance of the program, the constraints

that it uses, and similar models of human behavior.

I

I

Problem Selection in Software Design 67
Analysis of the Model

5.2.3 The Assertion about Strategies

I We have asserted that the availability of strategies as
a problem source is limited by their accessibility from WS.

We have also asserted that other problem selection criteria

may divert the designer into subproblems whose solution may

eventually block the resumption of some strategy's

execution.

I

I

I

I

I

I

I

I

I

I

I

I

I

In the model these assertions take the form of a

limited size WS in which strategies must be present if they

I are to be used. Before a strategy is invoked, problems
arising from local constraints are considered. Is this a

reasonable assertion?

In experiments of problem solving conducted by Donald

Norman there is evidence that people under stress will

exhibit a phenomenon Norman has termed "perceptual

narrowing." Perceptual narrowing (Lindsay and Norman, 1972)

occurs when the problem solver is distracted from solving

^ the whole problem and focuses or becomes immersed in solving
a subproblem. A result of this behavior is that while a

good solution may result for the subproblem, it may cause

the subject to fail for the general problem. An example

cited by Norman is that of getting out of a building which

1^ is on fire. Ageneral solution plan might be (1) go down
the stairs and (2) out the door. However, if the problem

I Problem Selection in Software Design 68
Analysis of the Model

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

solver concentrates on just going down the stairs then he

might never execute the critical step of actually leaving

the building. The difficulty is that if you keep going down

I the stairs you could continue to go into the basement. Fire
laws actually prevent this by requiring buildings designed

so that it is necessary to exit the stair well at ground

level before continuing to the below ground levels.

We believe that an analogous process takes place in

problem solving in design. The narrowing of attention is on

recent problems and their implications. This behavior is

common and in programs is usually described as

H "goal-directed" or depth-first problem solving.

Combining goal-directed design with a structural

framework that limits working memory to a small size

produces the effect of strategy interference that was

described in Section 4.6. At that time we presented an

example where an active strategy was lost from WS by the

introduction of new constraints, decisions, and other

problem information.

5.3 Evaluating the Encoding Process

The reliability of the coding rules was tested by

having an independent judge encode all of Protocol B2.

Overall there was a match of 83 percent between the judge's

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Problem Selection in Software Design 69
Analysis of the Model

encodings and those done by the experimenter. The match

rate rises to 91 percent when only the identification of

selection points is considered.

The 17 percent of mismatches distributes into two

groups. The first group accounts for 10 percent of the 17

percent of mismatches and are codings where either the judge

or experimenter encoded some piece of information that the

other had not. The remaining 7 percent were codings where

the judge and experimenter had coded the same segment of

protocol differently.

Both the judge and experimenter agreed that the

greatest difficulty was in differentiating between

statements of constraints and decisions. Differences in the

coding of these two items accounts for 64 percent of the

second group of coding variances.

6.0 CONCLUSIONS

6.1 Review

This paper has presented a general model of design

composed of three processes: information collection, problem

selection, and solution generation. Section 2 described

these processes, gave evidence of their existence, and

presented a model for problem selection in software design.

Problem Selection in Software Design 70
Conclusions

The selection model was formulated as a computer

program (see Section 3) that reproduced human problem

selection behavior of designers at work.

Protocols were collected for three designers on three

design tasks. The characteristics of the designers and the

tasks were described in Section 4.1. The design tasks were

of moderate complexity and required from 30 minutes to 90

minutes to complete.

As designers worked they were asked to verbalize their

thoughts. The transcriptions of their verbalizations were

later encoded and used as input to the model. The encodings

were a form of deep structure representation of statements

by the designers expressing constraints, strategies,

problems, and decisions that they were making. Section 4

demonstrated the model's ability to reproduce sequences of

problem selections observed in protocols. Section 5

evaluated the model s performance in reproducing selection

behavior and presented empirical support for the main

assertions of the model.

We have learned that problem selection behavior in

software design is primarily a function of constraint and

strategy knowledge and the structural limitations of human

information processing systems. Our research has presented

a model of how such knowledge interacts with those

•Problem Selection in Software Design 71
Conclusions

I

I

I

processing mechanisms. We have verified the model by

implementing it as a computer program and comparing the

performance of the program with behavior observed in verbal

protocols.

H We have learned about the role of different types of
knowledge in design. We have increased our understanding of

I how behavior is influenced by the structure of our own
information processing systems. The implications of these

findings are discussed in Sections 6.4 and 6.5.I

I

I

I

I

I

I

I

I

I

I

I

I

This is exploratory research. Only a handful of

computer-based cognitive models have been built. Our model

is the first we know of that has specifically studied

psychological aspects of the design of computer programs and

it has only explored a part of a much larger process.

6.2 Furthe£ Research

One area of further research is the study of design

processes not modeled in this research. In particular, how

do designers gather information during design? Each designer

possesses an immense amount of information. How does the

designer determine what information is relevant? How much

information is enough? How is it organized?

Our research indicates that these questions may be

related to how a designer's information is structured and

II

•Problem Selection in Software Design 72
Conclusions

I

I

I

I

I

I

I

I

"parameters" of the designer's decision-making processes.

Identifying relevant information might be a function of how

the designer's knowledge is organized. The decision-making

parameters, such as how many alternatives to consider before

making decisions, what effort to expend in finding

alternatives, and how to collect information may change

depending on the designer or the problem.

We have observed that designers write code while

designing. Sometimes it is very high level metacode. At

other times the code may be extremely detailed and expressed

in a particular implementation language. We have just begun

to consider how such code-writing is related to our model.

This behavior appears similar to the code-writing

processes described by Brooks (1975) . The question remains

whether Brooks's model can be generalized to the design

problems we have studied.

6.3 Limitations of the Model

The model l^ks a deductive component and thus has no

understanding of what is taking place during the design.

There is no evaluation of decisions, constraints, or the

importance of one problem over another.

When the model chooses incorrectly, it is often because

it lacks such a capability. A typical instance involves a

I Problem Selection in Software Design 73
Conclusions

I

I

I

I

I

H

H

fl

I

I

n

I

n
"Bi55113 ZllBl 1^15 model.

^ Designers tell us that they work much of the time with some

I

I

I

I

designer's constraining the solution of a data structure to

alternatives involving linked structures. It appears

obvious that this would prevent the designer from going back

and looking at other features of the alternative sequential

structures. Nevertheless, it is possible for the model to

do just that because the program can not deduce the effect

of that constraint on the space of likely problems.

The program dq^es not "understand" . The program uses a

simple pattern-matching scheme for processing protocol

encodings instead of a natural language processor. Pattern

matching was chosen to make the model applicable to several

designers and widely differing task domains.

Including language understanding would have required

limiting the domain to at most one task and probably to one

subject because of the resources required for encoding

knowledge about the domain to "understand" what was being

said. In general, such a understanding component would be a

general language understander which was beyond the scope of

this research.

overriding purpose in mind. The goal may be to minimize or

maximize some constraint. The goal may be to finish one

part of the design before another. These goals do not

•Problem Selection in Software Design 74
Conclu sions

I

I

I

I

always appear as strategies. They are parts of a more

general mechanism, in the form of a constraint, influencing

the behavior of the designer.

A goal mechanism could be added to the model by

extending the interpretation used for constraints. Part of

the extension would require adding a scope and importance

H description to each constraint. The goal problem is
ultimately related to the absence of a deductive component.

6.4 Implications for Teaching Design

I

n

H
Two kinds of knowledge are used by the model in

reproducing problem selection behavior; constraints and

Q strategies. During design, strategies provide the
breadth-wise coverage of design problems. They dictate

Q which problems to follow across some level of the design.
Strategies also serve as general plans. Constraints used in

design supply the depth-first element of selection behavior.

Constraints act as the connectors between levels in design

and are used by designers to follow a problem through

several directions and levels.

I

I

n

I

I

I

I

I

When we look at the nine protocols, there is a distinct

pattern of information usage amongst the designers. Two of

the designers use strategies much more frequently than the

third. These designers seem to deal with the tasks more

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

i

I

Problem Selection in Software Design 75
Conclusions

generally. They systematically look at one level after

another of the problem. The third designer moves quickly

from one problem to another through many levels of the

design. Most of the transitions can be explained by the

large body of constraint information which the designer

uses. Intuitively, we feel greater progress with the third

designer than with the two designers using their general but

weaker strategies.

We find that when the designer is able to evoke

constraints, the problem is quickly bounded. Constraints

combined with a body of relational information allows the

designer to explore the problem in several dimensions in

constrast to the systematic approach typified through the

usage of strategies. This implies that a designer's

education should provide a substantial body of interrelated

design knowledge. For example, knowledge of different ways

to structure data within a computer should not be isolated

from the issues of space, time, and implementation demands.

The bringing together of such knowledge is critical to the

designer's ability to explore design problems better.

6.5 Implications for Design Methods

The model we have presented is not specific to any one

design method. It does not attempt to decompose design into

a series of steps or stages. We did not observe subjects

•Problem Selection in Software Design 76
Conclusions

I

I

I

I

I

I

I

I

I

I

I

I

I

I

designing in that manner.

m We have seen subjects attempting to follow some general
design approaches. Several times, subjects would say that

they were approaching the problem in a top-down fashion.

Top-down design involves specifying the design

hierarchically with the highest level details first and

III proceeding downward, systematically, level by level, to the
finest level of detail. Subjects regularly deviated from

their top-down approaches.

Strategies were the main method of expressing top-down

problem approaches. As we have already shown these

strategies can be interfered with by limits on the size of

working storage and the appearance of constraint information

that invokes related problems.

When the designer uses a "systematic" strategy, the

H information collection associated with working on the
problems of that strategy is not systematic. Information is

often gathered through seemingly loose associations. These

associations also form the basis for some of the problem

selection behavior that we have already discussed.

The implication we derive for design methods is that

they should place greater emphasis on helping the designer

gather and concentrate information.. In addition, design

m methods should improve the planning a designer uses in

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Problem Selection in Software Design 77
Conclusions

choosing a sequence of problems.

ACKNOWLEDGEMENTS

I would like to acknowledge my thesis advisor, Peter

Freeman, for his contributions to this work and for his

constant guidance during my graduate studies. I also thank

Ruven Brooks, Rob Kling , and Fred Tonge for their valuable

assistance in this research. Jim Meehan's careful reading

and numerous editorial comments are gratefully acknowledged

I

I

I

I

I

I

I

I

I

I

I

i

I

I

I

I

I

I

I

Problem Selection in Software Design 78
References

REFERENCES

Boehm, Barry W. "The High Cost of Software." in Proceedings
of a Symposium on the High Cost of Software, Naval
Postgraduate School, Monterey, California, September
17-19, 1973.

Brooks, Ruven. "A Model of Human Cognitive Behavior in
Writing Code for Computer Programs." unpublished PhD
thesis, Carnegie-Mellon University, Department of
Computer Science, May 1975.

Constantine, L. L. , Myers, G. J. and Stevens, W. P.
"Structured Design." IBM Systems Journal, Vol. 13, No.
2, pp. 115-139, May 1974.

Davis, Randall and Jonathan King. "An Overview of Production
Systems." Stanford Artificial Intelligence Laboratory
Memo AIM-271, Computer Science Department Report No.
STAN-CS-75-524 , Computer Science Department, Stanford
University, October 1975.

Eastman, Charles M. "Explorations in the Cognitive Processes
of Design." Carnegie-Mellon University, ARPA Report DDC
No. 671-158, 1968.

Eastman, Charles M. "Design Augmentation." Computer Science
Research Review, Carnegie-Mellon University, 1972-1973.

GoOS, G. "Hierarchies." Advanced Course on Software
Engineering. Ed. F. L. Bauer, Springer-Verlag, 1973.

Levin, Steven L. "A Short Survey of Models of the Design
Process." University of California, Irvine, Department
of Information and Computer Science, TR #71, October
1975.

Levin, Steven L. "A Model of the Problem Selection Process
in the Design of Computer Programs." unptiblished PhD
dissertation. University of California, Irvine,
Department of Information and Computer Science,
September 1^76.

Levin, Steven L. "Problem Selection in Software Design: The
Data for Protocol A1." University of California,
Irvine, Department of Information and Computer Science,
TR #94, November 1976.

Lindsay, Peter H. and Donald A. Norman. Human Information

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Problem Selection in Software Design 79
References

York:

Academic Press, 1972.

Miller, G. A. "The Magical Number Seven, Plus or Minus Two:
Some Limits On Our Capacity for Processing
Information." Pyschological Review, Vol. 63, March
1956 , pp. 81-97 .

Moran, Thomas P. "The Symbolic Imagery Hypothesis: A
Production System Model." unpublished PhD thesis,
Carnegie-Mellon University, Department of Computer
Science, December 1973.

Naur, P. and B. Randell. Eds. Software Engineering. report
of NATO Science Committee, Garmisch, Germany, 7th to
11th October, 1968, published January, 1969.

Newell, Allen and Herbert A. Simon. Human Problem Solving.
Prentice-Hall, 1972.

Peters, Lawrence J. and Leonard L. Tripp, "Design
Representation Schemes." MRI Symposium on Computer
Software Engineering, April 20, 1976.

Reitman, W. R. Cognition and Thought. Wiley, 1965.

Ross, D. T. and K. E. Schoman, "Structured Analysis for
Requirements Definitions." Proceedings of the 2nd
International Conference on Software Engineering, San
Francisco, October 13-15, 1976.

Simon, Herbert A. "How Big Is a Chunk." Science, Vol. 183,
February 8, 1974, pp. 482-488.

I

I •

1 I

1

I

Problem Selection in Software Design 80
Appendices

APPENDIX A: INSTRUCTIONS

A.l G^eral Instructions

In this session I would like you to begin work on
the design task described on the following page. You
are to do the specified design such that when you are
done your design could be given to another individual
for implementation.

The attached page contains the specifications for
the required design. Please speak aloud what you are
doing and thinking while you work. If you are silent
for more than a few seconds I will prompt you by saying
"speak."

Thank you for your cooperation.

A. 2 Design Task A

In order to utilize many programs and facilities
of timeshared computers users must be able to create
and modify files of information which are stored on
disk. The programs used for this task are commonly
known as text editors. Your task is to design such a
text editor for the PDP-10

A.3 Design Task B

Purpose

Produce a page-keyed index.

Usage

The main input file contains the source text for a book
with pagination indicators. The output will be an
index for the book.

Inputs

(a) A source file; read from the standard input unit.

(b) Marker characters 'x' and 'y' (may be the same); read
from standard input unit.

(c) The name of a file containing a list of terms to be
indexed; read from standard input unit.

I—I r'zi r~i I I. 1 l_ I I -I I i iTT I I—i • - • • ___• •. I T r—1
m . M ^ M

Problem Selection in Software Design 82
Appendices

The system should accept as input orders from customers
that describe a part and quantity desired. The system
should fill as many of these orders as possible. For each
order the system should print a summary of that order, if it
can be filled, or an error message if it cannot. The
process should continue for all of the orders.

The system should fill partial orders and at the same
time generate a request reordering the exhausted part to
maintain some inventory level. At such times the customer
should get a summary of how much of the order has been
filled and its cost. In addition, the system should
generate an order request to the appropriate vendor for a
new supply of that part. Order requests should also be
generated when an order depletes the supply of some part
below a minimum level.

Environment

The company has its own batch processing computer
system. Hardware includes tape and disk drives. The
software consists of the usual language processors and
support facilities.

Problem Selection in Software Design 83
Appendices

APPENDIX'S: SEGMENT OF PROTOCOL A1

The numbers on the left hand side of the page are the
line numbers referred to in the discussions of the protocols
in the text. Lines preceded by a "S" are transcriptions of
audio information. Lines preceded by an "A" are actions
obtained from the visual portions of the tapes.

SI: ALL RIGHT.

S2: I GUESS THE FIRST THING I WOULD DO
S3: WHEN POSED WITH THIS PROBLEM WOULD BE
S4: TO ATTEMPT TO DEFINE THE CLASS THEN THE SUBCLASS
S5: THAT I WAS GOING TO ATTACK INCLUDING THE AH,
S6: TYPE OF EDITOR.
S7: SINCE YOU CANNOT BUILD A TEXT EDITOR TO INCLUDE
SB: ALL OF THE FUNCTIONS THAT ARE AVAILABLE.
S9: IN TEXT EDITORS.

S10: IN THAT SOME OF THEM HAVE TO DO WITH BASIC APPROACH
'Sll: TO THE FILE THAT ONE TAKES.
SI2; AHMM. OKAY.

SI 3: ONE BASIC DECISION IS THAT THE SORT OF OPERATING
S14: SYSTEM THAT IT IS GOING TO BE INTERFACING TO.
SI5: AH. THERE IS AT LEAST FOUR AVAILABLE FOR THE
SI6: PDP-10 THAT I KNOW OF.

S17: AH. MOST OF THOSE FOUR
SIB: ALL USE SEQUENTIAL FILES FOR TEXT.
S19: THERE AREN'T ANY STRUCTURED FILES
S20: SO THAT A STRUCTURED EDITOR

S21: ISN'T AH TOO IMPORTANT AH
S22: AFTER THE STYLE OF EDIT ON THE SEVEN.

S23: ONE MIGHT HOWEVER DECIDE TO GO TO
S24: A STRUCTURED FILE IF AH

S25: ONE EXPECTED THE TEXT EDITOR TO RUN ON A VERY
S26: SMALL PDP-10 SYSTEM.

S27: HOWEVER MOST TENS BEING SOLD THESE DAYS PROBABLY
S2B: HAVE THE VIRTUAL MEMORY CAPABILITY
S29: AND CERTAINLY MOST ALL IN THE FUTURE WILL.
S30: SO, THAT
S31: MUCH MORE EFFICIENT APPROACH PROBABLY
S32: WOULD BE TO USE THE VIRTUAL MEMORY CAPABILITIES
S33: OF THE MOST OF THE OPERATING SYSTEMS OF THE
S34: 10 TO MANAGE THE TEMPORARY FILE
S35: AND SIMPLY BRING ALL THE TEXT INVOLVED
S36: INTO CORE AND WORK ON IT DIRECTLY.
S37: AND AS LONG THE MANAGEMENT FACILITIES YOU USE DON'T
S3B: TAKE TOO MUCH PAGING OVERHEAD THEN THERE SHOULDN'T
S39: BE ALOT OF PROBLEMS WITH
A40: [WRITES "FILE I/O"]
S41: AH USING EVERYTHING INCORE AND
S42: NOT PAYING ATTENTION TO AH I/O

Problem Selection in Software Design 84
Appendices

S43: EXCEPT SEQUENTIALLY TO BRING THE

S44: FILE IN AND TO WRITE IT OUT AT THE END.

S45: AHMM. LET'S SEE.
A46; [WRITES "TYPE OF EDITOR"]
S47: I GUESS THE SECOND THING TO DO

S48: IS TO DECIDE THE AH

S49: TYPE OF EDITOR IT IS TO BE.

S50: WHETHER IT IS JUST A SIMPLE ONE

S51; AH OR AH SAY LINE ORIENTED OR

S52: SAY CHARACTER ORIENTED LIKE TECO.

A53: [WRITES "LINE OR CHARACTER"]
S54; AH OR MORE COMPLEX ONE INVOLVING SPELLING

S55: CORRECTION AND AH COMPLEX STRING MANIPULATION.

A56: [WRITES "SIMPLE OR ELABORATE"]
S57: AH.

S58: TECO IN ITSELF HAS A LOT OF FACILITIES BEYOND

S59: WHAT TYPICAL TEXT EDITOR HAS BUT

S60: IT LACKS A LOT OF THE INTERACTIVE SORT OF

S61: THINGS THAT EDITORS LIKE QED AND SOS HAVE.
S62: MY OWN INCLINATION I GUESS IS TO FOLLOW

S63: MY OWN PREFERENCE

S64: FAILING

S65: IF I DONT HAVE AH USER INSISTENCE ON ONE

S66; KIND OF TEXT EDITOR OR ANOTHER IS SIMPLY TO

S67: CREATE ONE THAT I LIKE.

S68; AH, AND
S69: MY OWN PREFERENCE IS TOWARD A TECO-LIKE

S70: EDITOR WITH PERHAPS

S71:' EXTENSIONS FOR A FEW OF THE COMMON FACILITIES

S72: THAT I USE.

S73: THE YOU KNOW LIKE MACRO FACILITIES.

S74: AH.

S75: LET'S SEE.
S76: THE FIRST. THING IS AH FILE I/O.
S77: AHMM. AND VIRTUAL MEMORY.

S78: ON SOME SYSTEMS TO GET TO AH

S79: HANDLE MEMORY MANAGEMENT PARTICULARLY ON AH

S80: KA10 BASED SYSTEMS AND AH ONES WHERE

S81: MEMORY IS EXTENDED GRADUALLY AS OPPOSED TO

S82: ON TENEX WHERE YOU CAN

S83: GRAB MEMORY AT ANY TIME YOU HAVE

S84; TO HAVE A LITTLE BIT OF MANAGEMENT FACILITY

S85; TO EXTEND MEMORY PERIODICALLY AS REQUIRED.
S86; SO THAT SIMPLY INITIALIZING THE WHOLE

S87: PAGE SPACE WOULD INVOLVE ALOT OF
S88: OVERHEAD FOR SMALL FILES

S89: WHICH PROBABLY IS THE LARGEST
S90: PERCENTAGE OF CASES.

A91: [WRITES "VIRTUAL MEMORY MANAGEMENT"]
A92: [WRITES "VERSUS INTERNAL SOFTWARE FILE STRUCTURE"]
S93: AND THE SECOND ONE IS THE AH STYLE OF
S94: EDITOR.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Problem Selection in Software Design
Appendices

S95: LINE OR CHARACTER ORIENTED.

A96: [WRITES "LINE OR CHARACTER"]
S97: AND, AH

S98: SIMPLE OR ELABORATE.
A99: [WRITES "SIMPLE OR ELABORATE"]
SI00: AHMM.

S101: THE THIRD CASE WOULD BE WHETHER IT IS

S102: PROGRAMMING LANGUAGE OR INTERACTIVE
A103: [WRITES "PROGRAMMING LANGUAGE OR INTERACTIVE"]
A104: [WRITES "STRUCTURED FOR PROGRAMMING LANGUAGE"]
SI05: SORT OF LANGUAGE.

S106: LESS IMPORTANT ARE THE PARTICULAR DETAILS OF
SI07: THE IMPLEMENTATION,
S108: THE INTERNALS IN SO MUCH AS

SI09: THE EXTERNAL FORM MAY DICTATE ALOT OF THE DETAILS,

S110: MY OWN CHOICE IS FOR A CHARACTER EDITOR WITH

Sill: FAILRY ELABORATE FACILITIES AND THE

S112: STYLE OF A PROGRAMMING LANGUAGE.
S113: THE,
S114: IN ORDER TO IMPLEMENT IT I THINK I WOULD

A115: [WRITES "IMPLEMENTATION SCHEDULE"]
SI16: TAKE AH

S117: AH SERIES OF STEPS AND AH
S118: BUILD FIRST THE BASIC EDITOR SO AS TO
A119: [WRITES "BASIC FACILITIES"]

The entire protocol is 1152 lines.

I

•Problem Selection in Software Design 86
AooendicesAppendices

APPENDIX C; ENCODED INFORMATION FOR PROTOCOL A1I

I

I

I

This appendix contains a segment of the encoded protocol and
constraint/problem pairs for Protocol A1.

C.l Encodings for Protocol A1

•(STRATEGY (DEFINE CLASS-OF-EDITORS)
(DECIDE (TYPE-OF EDITOR)))

(SELECTION)
(CONSTRAINT (DESCRIPTION NUMBER-OF-FUNCTIONS CONSTRAINED))•(CONSTRAINT

(DESCRIPTION FUNCTIONS CONSTRAINED-BY (APPROACH-TO FILE)))
(SELECTION)
(CONSTRAINT (DESCRIPTION PDP-10

HAS-ONLY
(SEQUENTIAL FILES))•(DEFVALUE . 10))

(CONSTRAINT (DESCRIPTION PDP-10 HAS-NO (STRUCTURED FILES))
(DEFVALUE . 10))

(CONSTRAINT (DESCRIPTION (MOST PDP-10)
• HAVE

(VIRTUAL MEMORY))
(DEFVALUE . 10))

(CONSTRAINT (DESCRIPTION VM USE-OF (IS EFFICIENT))
(DEFVALUE .6))

(DECISION USE VM (TYPE-OF OPERATING-SYSTEM))I(PROBLEM-STMT MANAGEMENT OF FILE-10)
(SELECTION)
(CONSTRAINT (DESCRIPTION DESIGNER

PREFERENCE

(TECO-LIKE EDITORS))
(DEFVALUE . 10))

(DECISION BUILD TECO-LIKE (TYPE-OF EDITOR))•(SELECTION)
(CONSTRAINT (DESCRIPTION USE (AVAILABLE MEMORY-MGT)))
^rnMCmDAT Kirn

I

I

I

I

I

I

I

I

(CONSTRAINT
(DESCRIPTION PAGE-SIZE INITIALIZATION PROHIBITIVE))

(CONSTRAINT
(DESCRIPTION (MOST EDITING) PERFORMED-ON (SMALL FILES)))

(SELECTION)
(CONSTRAINT

(DESCRIPTION (IMPLEMENTATION-DETAILS) UNIMPORTANT))
(DECISION BUILD

(CHARACTER ELABORATE PROGRAMMING-LANGUAGE)
(TYPE-OF EDITOR))

(PROBLEM-STMT FUNCTIONS

Problem Selection in Software Design 87
Appendices

CONSISTS-OF

(SEARCH ADDRESSING
INSERTION

DELETION

CHANGING

LISTING

MACROS

CONDITIONALS))
(SELECTION)
(CONSTRAINT

(DESCRIPTION SEARCHING MOST-IMPORTANT OPERATION))
(DECISION INCLUDE PATTERN-MATCHING)
(CONSTRAINT

(DESCRIPTION GENERAL-SEARCH-ALGS ARE NON-LINEAR))
(DECISION ELIMINATE GENERAL-ALGS FOR SEARCHING)
(SELECTION)
(CONSTRAINT

(DESCRIPTION INPUT FROM (SOURCE (OR USER-FILE))))
(CONSTRAINT (DESCRIPTION INPUT DEPENDS-ON SOURCE))
(CONSTRAINT (DESCRIPTION (INPUT FILE) IS SEQUENTIAL))
(CONSTRAINT (DESCRIPTION (INPUT USER) IS RANDOM))
(CONSTRAINT

(DESCRIPTION (MOST MODIFICATIONS) ARE (INTERNAL-TO TEXT)))
(CONSTRAINT

(DESCRIPTION INPUT-TYPES INFLUENCE TEXT-REPRESENTATION))
(SELECTION)
(CONSTRAINT

(DESCRIPTION TREE-STRUCTURES REQUIRE BALANCING))
(CONSTRAINT

(DESCRIPTION (LARGE-FILE IN-CORE) USE LINKED-STRUCTURE))

There is a total of 151 encoded statements for Protocol A1.

C.2 Relational Information for Protocol A1

(FILE TYPE-OF OPERATING-SYSTEM)
(TEXT-REPRESENTATION DATA-STRUCTURES)
(DATA TYPEOF FILE)
(SPEED PERFORMANCE)
(GOOD-SPEED PERFORMANCE)
(lO-TIME DATA-FORMATS)
(MODIFICATION-TIMES RELATIVE

DATA-STRUCTURE

MODIFICATION-TIMES)
(CHARACTER-MOVEMENT TEXT-MOVEMENT-TIME)
(FAST-INDEXING SEARCHING-TIMES)

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Problem Selection in Software Design 88
Appendices

APPENDIX D; PROGRAM OUTPUT FOR PROTOCOL A1

*(SIM)

SYSINIT: Enter source for information: *A1

Extension= INI

Print external information trace? Y

Print detailed internal trace? Y

Where should the trace be printed? TTY:
Enter external input source: (A1 . EXT)
File for memory inputs is: (Al . MEM)

Start of simulation

External input: STRATEGY
Elems:

((DEFINE CLASS-OF-EDITORS) (DECIDE (TYPE-OF EDITOR)))

External input: SELECTION

ACTION in LOCAL-CONSTRAINTS-AGENT

Attempt to find problem based on local constraints.

ACTION in STRATEGY-AGENT

Attempt to find problem via the strategy agent.

ACTION in SELECT

Next problem selected. Add to WS.

Prob: (DEFINE CLASS-OF-EDITORS)

****** Selection No. 1 ******

Problem to be selected is: (DEFINE CLASS-OF-EDITORS)
CORRECT SELECTION? (Y,N OR B): Y

External input: CONSTRAINT
pesc: (NUMBER-OF-FUNCTIONS CONSTRAINED)

ACTION in CONSTRAINT-PROCESSOR

Add constraint to WS.

External input: CONSTRAINT
Desc: (FUNCTIONS CONSTRAINED-BY (APPROACH-TO FILE))

ACTION in CONSTRAINT-PROCESSOR

Problem Selection in Software Design 89
Appendices

Add constraint to WS.

External input: SELECTION

ACTION in LOCAL-CONSTRAINTS-AGENT

Attempt to find problem based on local constraints.

ACTION in FIND-CONSTRAINT-PROB-GEN

Problem found by local constraints agent.

ACTION in SELECT

Next problem selected. Add to WS.

Prob: (DETERMINE TYPE-OF OPERATING-SYSTEM)

****** Selection No. 2 ******

Problem to be selected is: (DETERMINE TYPE-OF
OPERATING-SYSTEM)

CORRECT SELECTION? (Y,N OR B): Y

External input: CONSTRAINT
Desc: (PDP-10 HAS-ONLY (SEQUENTIAL FILES))

ACTION in CONSTRAINT-PROCESSOR

Add constraint to WS.

External input: CONSTRAINT
Desc: (PDP-10 HAS-NO (STRUCTURED FILES))

ACTION in CONSTRAINT-PROCESSOR

Add constraint to WS.

External input: CONSTRAINT
Desc: ((MOST PDP-10) HAVE (VIRTUAL MEMORY))

ACTION in CONSTRAINT-PROCESSOR

Add constraint to WS.

External input: CONSTRAINT
Desc: (VM USE-OF (IS EFFICIENT))

ACTION in CONSTRAINT-PROCESSOR

Add constraint to WS.

External input: DECISION
Desc: (USE VM (TYPE-OF OPERATING-SYSTEM))

ACTION in SEARCH-SOLVED-PROB

Attempt to find problem in WS solved by decision.

ACTION in SEARCH-SOLVED-PROB

Problem Selection in Software Design 90
Appendices

Problem found in WS. Change solution
state to SOLVED.

Prob: (DETERMINE TYPE-OF OPERATING-SYSTEM)

ACTION in MARK-INACTIVE-CONSTRAINTS

The following constraint in WS is now INACTIVE
because of a recent decision.

Desc: (VM USE-OF (IS EFFICIENT))

ACTION in MARK-INACTIVE-CONSTRAINTS

The following constraint in WS is now INACTIVE
because of a recent decision.

Desc; ((MOST PDP-10) HAVE (VIRTUAL MEMORY))

ACTION in MARK-INACTIVE-CONSTRAINTS

The following constraint in WS is now INACTIVE
because of a recent decision.

Desc: (PDP-10 HAS-NO (STRUCTURED FILES))

ACTION in MARK-INACTIVE-CONSTRAINTS

The following constraint in WS is now INACTIVE
because of a recent decision.

Desc: (PDP-10 HAS-ONLY (SEQUENTIAL FILES))

ACTION in SEARCH-SOLVED-PROB

Attempt to find problem in PS solved by decision.

ACTION in DECISION-PROCESSOR

Decision does not cause a currently unsolved
problem to be solved.

External input: PROBLEM-STMT
Prob: (MANAGEMENT OF FILE-IO)

External input: SELECTION

ACTION in LOCAL-CONSTRAINTS-AGENT

Attempt to find problem based on local constraints,

ACTION in STRATEGY-AGENT

Attempt.to find problem via the strategy agent.

ACTION in SELECT

Next problem selected. Add to WS.

Prob: (DECIDE (TYPE-OF EDITOR))

I

I

I

I

I

Problem Selection in Software Design 91
Appendices

****** Selection No. 3 ******

Problem to be selected is: (DECIDE (TYPE-OF EDITOR))
CORRECT SELECTION? (Y,N OR B): Y

External input: CONSTRAINT
Desc: (DESIGNER PREFERENCE (TECO-LIKE EDITORS))

ACTION in CONSTRAINT-PROCESSOR
Add constraint to WS.

External input: DECISION
Desc: (BUILD TECO-LIKE (TYPE-OF EDITOR))

ACTION in SEARCH-SOLVED-PROB

Attempt to find problem in WS solved by decision.

ACTION in SEARCH-SOLVED-PROB
Problem found in WS. Change solution
state to SOLVED.

Prob: (DECIDE (TYPE-OF EDITOR))

ACTION in MARK-INACTIVE-CONSTRAINTS
The following constraint in WS is now INACTIVE
because of a recent decision.

Desc: (DESIGNER PREFERENCE (TECO-LIKE EDITORS))

ACTION in SEARCH-SOLVED-PROB

Attempt to find problem in PS solved by decision.

ACTION in DECISION-PROCESSOR

Decision does not cause a currently unsolved
problem to be solved.

External input: SELECTION

ACTION in LOCAL-CONSTRAINTS-AGENT

Attempt to find problem based on local constraints.

ACTION in STRATEGY-AGENT
Attempt to find problem via the strategy agent.

ACTION in SELECT-UNSOLVED-PROBLEM
Found unsolved problem in WS.

ACTION in SELECT

Next problem selected. Add to WS.

Prob:. (MANAGEMENT OF FILE-IO)

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Problem Selection in Software Design 92
Appendices

****** Selection No. 4 ******

Problem to be selected is: (MANAGEMENT OF FILE-IO)
CORRECT SELECTION? (Y,N OR B): Y

External input: CONSTRAINT
Desc; (USE (AVAILABLE MEMORY-MGT))

ACTION in CONSTRAINT-PROCESSOR

Add constraint to WS.

External input: CONSTRAINT
Desc: (PAGE-SIZE INITIALIZATION PROHIBITIVE)

ACTION in CONSTRAINT-PROCESSOR

Add constraint to WS.

External input: CONSTRAINT
Desc: ((MOST EDITING) PERFORMED-ON (SMALL FILES))

ACTION in CONSTRAINT-PROCESSOR

Add constraint to WS.

External input: SELECTION

ACTION in LOCAL-CONSTRAINTS-AGENT

Attempt to find problem based on local constraints.

ACTION in STRATEGY-AGENT

Attempt to find problem via the strategy agent.

ACTION in SELECT-UNSOLVED-PROBLEM

Found unsolved problem in PS.

ACTION in SELECT

Next problem selected. Add to WS.

Prob: (DEFINE CLASS-OF-EDITORS)

****** Selection No. 5 ******

Problem to be selected is: (DEFINE CLASS-OF-EDITORS)
CORRECT SELECTION? (Y,N OR B): N
Enter correct problem: (DETERMINE TYPE-OF EDITOR)

> Simulation break

>G0

External input: CONSTRAINT
Desc: ((IMPLEMENTATION-DETAILS) UNIMPORTANT)

Problem Selection in Software Design 93
Appendices

ACTION in CONSTRAINT-PROCESSOR
Add constraint to WS.

External input: DECISION
Desc: (BUILD (CHARACTER ELABORATE PROGRAMMING-LANGUAGE)

(TYPE-OF EDITOR))

ACTION in SEARCH-SOLVED-PROB
Attempt to find problem in WS solved by decision.

ACTION in SEARCH-SOLVED-PROB
Problem found in WS. Change solution
state to SOLVED.

Prob: (DETERMINE TYPE-OF EDITOR)

ACTION in MARK-INACTIVE-CONSTRAINTS
The following constraint in WS is now INACTIVE
because of a recent decision.

Desc: ((IMPLEMENTATION-DETAILS) UNIMPORTANT)

ACTION in SEARCH-SOLVED-PROB

Problem found in WS. Change solution
state to SOLVED.

Prob: (DECIDE (TYPE-OF EDITOR))

ACTION in MARK-INACTIVE-CONSTRAINTS
The following constraint in WS is now INACTIVE
because of a recent decision.

Desc: (DESIGNER PREFERENCE (TECO-LIKE EDITORS))

ACTION in SEARCH-SOLVED-PROB
Attempt to find problem in PS solved by decision.

ACTION in DECISION-PROCESSOR
Decision does not cause a currently unsolved
problem to be solved.

External input: PROBLEM-STMT
Prob: (FUNCTIONS CONSISTS-OF (SEARCH ADDRESSING INSERTION

DELETION CHANGING LISTING MACROS CONDITIONALS))

External input: STRATEGY
Elems:

((DETERMINE FUNCTIONS SEARCH)
(DETERMINE FUNCTIONS ADDRESSING)
(DETERMINE FUNCTIONS INSERTION)
(DETERMINE FUNCTIONS DELETION)
(DETERMINE FUNCTIONS CHANGING)

I

I

I

I

I

I

I

I

I

I

I

I

Problem Selection in Software Design 94
Appendices

(DETERMINE FUNCTIONS LISTING)

(DETERMINE FUNCTIONS MACROS)
(DETERMINE FUNCTIONS CONDITIONALS))

External input; SELECTION

ACTION in LOCAL-CONSTRAINTS-AGENT

Attempt to find problem based on local constraints.

ACTION in STRATEGY-AGENT

Attempt to find problem via the strategy agent.

ACTION in SELECT

Next problem selected. Add to WS.

Prob: (DETERMINE FUNCTIONS SEARCH)

****** Selection No. 6 ******

Problem to be selected is: (DETERMINE FUNCTIONS SEARCH)
CORRECT SELECTION? (Y,N OR B): Y

There are 36 pages of program output for Protocol A1.

