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Abstract:  Protein-ligand binding is among the most fundamental phenomena underlying
all  molecular biology,  and a greater ability to  more accurately and robustly predict  the
binding free energy of a small molecule ligand for its cognate protein is expected to have
vast  consequences for  improving the  efficiency of  pharmaceutical  drug discovery.   We
briefly review a number of scientific and technical advances that have enabled alchemical
free energy calculations to recently emerge as a preferred approach, and critically consider
proper validation and effective use of these techniques.  In  particular,  we characterize a
selection bias affect which may be important in prospective free energy calculations, and
introduce a strategy to improve the accuracy of the free energy predictions. 
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1. INTRODUCTION
Protein-ligand binding is of central importance in 
molecular biology, and directly mediates cellular 
metabolism, signal transduction, and coagulation 
among many other critical biological processes.  
Likewise, the vast majority of small molecule drug
therapies achieve their desired affect through 
potent and selective binding to a relevant protein 
target.  As such, there has been nearly a half-
century of sustained interest in developing 
accurate, reliable, and precise methods to estimate 
ligand binding affinity. 

Recently, physically rigorous free energy 
calculations have emerged as a preferred approach,
and are beginning to see widespread adoption 
throughout the pharmaceutical industry.1-4 The 

progress toward this tipping point however has 
been gradual, and a wide variety of intellectual and
technical contributions have been critical to the 
attainment of this long-standing goal.  Looking 
back to this tremendously productive half-century 
of work, critical contributions have included 

1. Formulation of physically rigorous estimators 
for the free energy change associated with an 
alchemical transformation that are amenable to 
being sampled via appropriate computer 
simulations;5-9 

2. Development of molecular dynamics 
simulations techniques, and their extension to 
proteins;10,11 

3. Construction of highly accurate protein and 
small molecule molecular mechanics force 
fields;11-25 
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4. Derivation of sophisticated enhanced 
sampling methods, which may accelerate the
sampling efficiency of bimolecular 
simulations while strictly satisfying detailed 
balance;25-30 

5. Porting of molecular dynamics to GPU 
hardware, which provides in many 
applications up to 100x acceleration versus 
traditional CPU-based approaches.31-33 

Further, many of the practical and technical 
considerations associated with free energy 
calculations methods have recently been 
reviewed in detail in references 34 and 35. 
Here, however, we wish to turn our attention to 
what we consider to be equally important but 
often neglected subject: the validation and use 
of these methods, and how the nature of the use
and goals may have a direct and sometimes 
counterintuitive effect upon the observed 
results.

 2. FREE ENERGY CALCULATION 
VALIDATION AND USE

Pioneering work of the McCammon, Jorgensen,
and Kollman groups from the late-80’s to the 
early 90’s brought together variety of advances 
to allow for the first protein-ligand binding free
energy calculations to be performed.36 These 
early contributions include the first calculation 
of a relative solvation free energy of two 
ligands by an alchemical transformation 
process, 37 the first relative binding free energy 
calculation of two ligands binding to a protein, 

38 as well as the first prospective calculation of 
a relative binding affinity ahead of the 
experimental determination of the quantity.39 
However, due to the immense computational 
cost associated with these simulations, 
generally only one or a few calculations were 
reported in each publication, which made any 
real investigation of the accuracy of these 
methods impossible.  Thus this early work, 
although filled with great promise, left an open 
question about what type of accuracy might 
actually be achievable with these methods if it 
were feasible to deploy them at a scale 
comparable to what would be needed to support
an industrial drug discovery project. 

Many free energy studies continue to focus on 
a small number of test cases, particularly when 
introducing new technology into the simulation
protocols.40-42 However, within the last several 
years, computer hardware advances have 
enabled multiple large-scale studies involving 
hundreds of ligands and multiple protein targets
to be reported, which may enable now a real 
sense of the accuracy and reliability of these 
methods to be more fully understood.1,4,12,43,44 
Furthermore, both blind testing, and detailed 
reports of actual use in discovery projects, are 
now commonly being reported, which should 
allow for a much greater understanding of the 
accuracy, reliability, and domain of 
applicability of these methods.1-3,45-51 

Thus, given this encouraging turn of events, 
one might now be able to delineate three basic 
categories of protein-ligand binding free energy
calculation reporting manuscripts

1. Small-scale proof-of-concept articles with 
only a single or a few data point(s), which 
might be appropriate if the primary focus of 
the article is the reporting of a novel 
approach, and the reported calculations are 
intended to show that a computer 
implementation of the method is indeed 
possible, rather than accuracy;

2. Large-scale testing of a novel approach or 
enhancement of an existing approach on tens
to hundreds of ligands across multiple target 
classes to profile the accuracy of the method
within a particular domain of applicability; 

3. Actual prospective use of free energy 
calculations to inform decisions to 
synthesize top scoring compounds at the 
exclusion of the synthesis of other lower 
scoring compounds.

Note, in this scheme, unblinded retrospective 
testing, blinded retrospective testing (such as 
that being enabled by the Drug Design Data 
Resource), as well as prospective testing are 
grouped together.  Although the authors fully 
endorse the view that blinded testing 
(prospective or retrospective) is useful to 
ensure that one has not unintentionally 
designed the protocol to require information 
that might be unavailable when performing the 
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calculation in a more realistic context, blinded 
retrospective testing should generally look no 
different than unblinded retrospective testing so
long as good methods development practices 
have been used.  To be clear, if good methods’ 
development practices are used, then unblinded
and blinded testing results should be within the 
statistical error of each other unless one has 
been using the target data set for methods 
development rather than testing, which may 
have yielded over fitting.  Given the vast data 
sets now available to most researchers through 
the PDB,53 BindingDB,54 CHEMBL,55 D3R,56 
and other resources, we believe that any 
methods development group should have ready 
access to suitable test sets

However, in contrast, true prospective use of 
these methods raises data analysis challenges 
quite distinct from those posed by simple 
testing, blinded, prospective, or otherwise; and 
some of the challenges may be counterintuitive 
if one has not encountered them in other 
contexts.  To be clear, by prospective use, we 
intend to describe a situation where N 
molecules are scored, and then a top scoring 
subset M, where M << N, is synthesized and 
assayed on the basis of the predicted affinities.  
We note here that  a great deal of relevant 
learning can be taken from the virtual screening
literature, where prospective applications are 
common.56-58 As detailed in the following 
section, the use of free energy calculations to 
compute a quantitatively accurate relative or 
absolute binding affinity raises unique 
challenges distinct from what is usually 
observed in virtual screening studies where the 
goal is typically simple classification; 
especially if one seeks to infer the numerical 
accuracy of the calculation methods from the 
prospective testing.

3. EVALUATION OF PROTEIN-LIGAND 
BINDING FREE ENERGY 
CALCULATIONS TO INFORM 
DECISION MAKING

Given the increasing frequency of reports of 
prospective free energy calculations guiding 
inhibitor design, we believe it is timely to 
consider how such studies should be evaluated. 

This is very similar in purpose to important 
prior work by Brown et al. considering what 
quality of modeling results are feasible to 
obtain given the nontrivial noise that exists in 
most experimental binding affinity data,59 as 
well as work by Mobley et al. detailing the 
methodological accuracy that might be needed 
to be impactful when working in a prospective 
setting.60

To make the fundamental issues more 
transparent, we constructed a simple toy model 
system of 1000 compounds where;

1. The experimental pKi values of the 
compounds are randomly drawn from 
Gaussian distribution with mean pKi = 6 and
stdev(pKi)= 1.5 

2. The predicted pKi values of the compounds 
have exactly a 0.8 log unit root-mean-square
error versus the experimental values, also 
following random assignment from an 
appropriate Gaussian distribution.

This toy model system, although very 
primitive, recapitulates many of the features of 
actual discovery projects.  First, only ~10% of 
compounds in the set will have experimental 
affinities < 10 nM, which is generally needed 
for a molecule to be efficacious in a drug 
discovery setting; and second, the majority of 
molecules will have unremarkable 
experimental potencies ranging from double-
digit micromolar to double-digit nanomolar, as 
would be expected to be observed in most drug 
discovery projects.61   Lastly, the accuracy of 
the predictions depicted here is comparable to 
those reported in most recent studies; and the 
number of idea molecules considered in the toy
model is comparable to the number of idea 
molecules that might be considered by a project
team utilizing commercially available reagents 
to explore synthesis possibilities at a given R-
group attachment point.1,12,43  Excel files 
allowing for reconstruction of this data have 
been made available in supplemental 
information.

One can imagine this toy model system 
corresponding, for example, to the calculation 
of the absolute binding affinities of 1000 
molecules generated by an R-group library 
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scan.  We depict in figure 1.A the agreement of 
the toy model calculated data with the 
experimental data if all the molecules in the set 
were to be synthesized, and in figure 1.B the 
agreement of a subset flagged for synthesis on 
the basis of the computed potency values.  
Note, the points depicted in figure 1.B 
constitute simply the subset of points in figure 
1.A that would be been flagged for synthesis on
the basis of the calculated potency values being
found to less than 10 nM.  

Figure 1. For a toy model system, in subpanel 
(A) we depict the agreement of the 
experimental affinities with the computed 
affinities for all the compounds in the set, and 
in subpanel (B) we depict the agreement for the
subset of 128 compounds that would have been
prioritized on the basis of the computed values.

Several features of these data are quite striking.
Perhaps the most immediate observation is all 
routinely used accuracy measures are quite 
different between the full set and the prioritized
subset, and are uniformly worse for the set 
prioritized for synthesis.  The apparent R2 value
has dropped from a highly predictive value of 
0.78 to a mediocre value of 0.33, the RMSE 
has increased by more than a tenth of a log unit,
and perhaps most disconcertingly, the 
frequency of large outliers has increased by 
more than 300%.  This suggests our selection 
of the best binding compounds for synthesis 
has somehow diminished the apparent accuracy
of the calculation.  Note, in a real computation-
driven application, only the data represented in 
figure 1.B would ever be obtained in the 
experimental work, and grossly incorrect 
conclusions could easily be drawn regarding 
the actual accuracy of the prediction method.  

One should further note that the effect becomes
even more severe as the synthesis criteria (in 
particular the potency cutoff) become more 
stringent. For example, if only the top five 
scoring compounds were selected for synthesis 
the apparent RMSE would balloon to 1.37 log 
units, nearly double the actual value on the full 
set, and the frequency of >2 log unit outliers 
grows to 20%.  Thus when considering the 
accuracy of a prediction method prospectively, 
extreme care will need to be taken to ensure the
biased selection of compounds for synthesis is 
not influencing the characterization of the 
accuracy of the prediction method.  

A simple but intuitive way to understand this 
effect is to consider the following limiting case.
If by chance one has a single highly erroneous 
calculation in the set where a particular 
molecule with experimental pKi of ~6 might 
have been incorrectly predicted to have a pKi 
value of 11, the synthesis of the molecule is 
essentially guaranteed (at least in the absence 
of other considerations).   But in contrast a 
great many accurately predicted molecules 
where both the experimental pKi and predicted 
pKi are both ~6 will be deprioritized for 
synthesis.  Thus, the accuracy statistics of the 
set of molecules ultimately synthesized will be 
skewed toward those few molecules that have 
been severely overpredicted, with that bias 
growing the more stringent one is with the 
synthesis criteria.

A visualization of this selection bias effect for a
single molecule drawn from our toy model is 
depicted in figure 2.  In this figure the 
experimental potency distribution from which 
the molecule is drawn is depicted in black, and 
the uncertainty in the calculated value (ie, the 
free energy calculation method RMSE) is 
depicted in blue.  Several features are 
immediately apparent.  First, for molecules 
where the computed value is extreme with 
respect to the distribution of experimental 
values, the observed error will not be unbiased. 
For example, as depicted in figure 2, imagine a 
particular compound is computed to have a 
potency of pKi = 11 with a computational 
method having an RMSE of 1 log unit.  In 
principle, if the free energy calculation method 
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is unbiased, then an over estimate of 1 log unit 
should be no more frequent than an 
underestimate of one log unit over a set of 
computed compounds.  However, since 
molecules in the toy model with an 
experimental pKi value of 12 are so much more
rare than molecules with an experimental pKi 
value of 10, the computed potency will in 
hindsight appear to overestimate the 
experimental potency considerably more often 
than it is underestimated.  

  
Figure 2.  A graphical representation of the 
selection bias effect on the accuracy of the 
affinities is here depicted.  The experimental 
potency distribution of the space of all 
compounds considered is depicted in black, the 
calculated potency and calculation error 
distribution is depicted in blue, and the 
Bayesian optimal predicted affinity of the 
compound is denoted in red.

Interestingly, visual analysis shown in figure 2 
also suggests a straightforward way to correct 
for this selection bias effect.  If the distribution 
of experimental potencies is somehow known, 
then it is a simple exercise in Bayesian 
probability to show the optimal predicted 
potency for the molecule is the value which 
optimizes the posterior distribution, i.e.

pIC50pred=maxpIC50P(pIC50)*P(pIC50calc|pIC50)
(1)

where pIC50pred is the optimal prediction of the 
potency of the molecule, pIC50calc is the free 
energy calculation affinity value of the 
molecule, P(pIC50) is the experimental affinity 
probability distribution of all the molecules in 
the set from which the particular predicted 
molecule was drawn, and P(pIC50calc|pIC50) is 
the conditional probability a molecule with a 
particular experimental pIC50 would result in a
particular computed pIC50calc value.

Further, for our toy model system, this 
corrected predicted value (pIC50pred), has a 
convenient closed form solution of 

pIC50 pred =
s pIC50

2 · pIC50calc+s pIC50calc

2 · pIC50

s pIC50
2 +s pIC50calc

2
±
s pIC50 · s pIC50calc

s pIC50
2 +s pIC50calc

2

(2)

To validate this simple correction to the 
calculated values, in figure 3 we have plotted 
the corrected predicted values using equation 2 
versus the experimental data for all thousand 
compounds, as well as those predicted to bind 
more tightly than 10 nM after application of 
equation 2 in subpanel B.  Interestingly, the 
mean error, MUE and RMSE are comparable 
both for the full set of compounds and the 
selected subset of compounds.  Thus 
application of equation 2 has eliminated the 
selection of any particular subset from 
exhibiting error statistics deviant with the full 
set, irrespective of the particular way the 
predicted values are used to select the 
compounds for synthesis.  The application of 
equation 2 also results in 56 fewer compounds 
being prioritized for synthesis using a 10 nM 
cutoff, versus the selection of compounds 
obtained with the uncorrected calculated 
values.  One might also note, the R2 value for 
the compounds shown in figure 3 subpanel B is
worse than the R2 value shown for figure 1 
subpanel B.  We expect the reason for this is 
simply the reduced experimental potency range
of the compounds selected in figure 3 subpanel 
B, where fewer weakly binders have been 
selected for synthesis.58 

Figure 3.  For a toy model system, in subpanel 
(A) we depict the agreement of the 
experimental affinities with the predicted 
affinities after application of the correction 
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described by equation 2 for all the compounds 
in the set, and in subpanel (B) we depict the 
agreement for the subset of 72 compounds that 
would have been prioritized on the basis of the 
predicted values yielded from application of 
equation 2.

However, application of equation 2 does pose 
some clear obstacles in more realistic 
prospective applications.  Generally the true 
experimental distributions of the full set of 
compounds will not be known unless all the 
compounds are synthesized, which in turn 
would obviate the need to perform any scoring. 
However, the distribution could easily be 
estimated from synthesis of as few as 10 
additional randomly selected compounds to 
provide an appropriate calibration.  (Note, this 
is essentially the common statistical exercise of
estimating the population variance from the 
sample variance.) An even more aggressive 
approach might be to assume the experimental 
potency distribution described by the toy model
would be transferable from discovery project to
discovery project.

As an initial attempt to investigate if such an 
ad-hoc, discovery-project-independent 
correction scheme might be useful in 
prospective applications, we present the 
prospective free energy calculation results from
reference 51 in table 1.  In that work, free 
energy calculations assisted with the 
identification of a compound with a binding 
affinity 1 full log-order tighter than any 
previously identified series compound.  
Further, synthesis of only 4 compounds 
prioritized by free energy calculations was 
required to identify this novel tight binding 
compound.  

Interestingly, several features of the data 
presented in table 1 are consistent with our 
simple toy system.  The mean error is large and
positive indicating an apparent bias toward 
overestimating the binding affinities of the 
compounds, and the apparent RMSE and MUE 
are much larger than what was observed in 
retrospective free energy calculations for the 
same system.  The toy model presented here 
suggests this apparent mismatch between the 

retrospective and prospective accuracy may not
be due to any unexpected methodological 
deficiency in the reported prospective free 
energy calculations, but rather instead due to an
extreme selection bias effect manifested from 
the synthesis of only the top four scoring 
compounds in the considered set.

In table 1, we also report what predictions 
would have been made for the 4 prospectively 
prioritized compounds had equation 2 been 
used to correct the calculated values prior to the
synthesis.  Interestingly, because the authors of 
reference 51 report the cycle-closure estimate 
of calculation convergence (σcc),42 and the 
intrinsic accuracy of the force field used in that 
work (σFF) has been carefully profiled in earlier 
work to be ~0.9 kcal/mol in free energy 
calculation applications,12 the σcalc value 
appropriate to use in the application of equation
2 is necessarily compound specific, where

σcalc = sqrt(σcc
2 + σFF

2) = sqrt(σcc
2 + 0.92) (3)

and the σcc value will be different molecule to 
molecule.

Further, in order to apply equation 2 to these 
data, an assumption must be made regarding 
the experimental potency distribution of all 
compounds considered, including those 
explicitly not synthesized.  A parsimonious 
assumption which can allow for direct 
application of equation 2 is to assume the 
activity distributions for this receptor may 
mirror the activity distributions generally seen 
in other discovery projects, ie <pKi> ≈ 6 and 
stdev(pKi) ≈ 1.5.  

Table 1.  Prospective free energy calculation 
data for four GPCR inhibitors where the 
calculations were explicitly used to prioritize 
the synthesis of the four compounds.  
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*The reported experimental affinity values 
(ΔGExpt.) and the prospectively computed free 
energy calculation results (ΔGcalc) and 
calculation convergence estimate are taken 
from reference 51.  The units of the reported 
free energies is kcal/mol.  
**The derived results free energy calculation 
predictions ΔGpred and calculation uncertainty 
estimates σcalc and σpred are obtained by 
application of equations 2 and 3 to the earlier 
reported data. The units of the reported free 
energies is kcal/mol.

Interestingly, even in the absence of any 
project-specific knowledge regarding the true 
experimental potency distribution of the 
considered compounds, application of equation 
2 yields an enormous improvement in the 
agreement of the predicted potencies with the 
experimental data.  The mean error, which 
measures the tendency of the bias of the 
prospective calculations to overestimate the 
experimental affinities, has been decreased in 
absolute value from an egregious -1.74 
kcal/mol to a more satisfactory -0.5 kcal/mol.  
Likewise, the RMSE has been reduced from 2.3
kcal/mol to 1.26 kcal/mol, and the R2 value has 
also been increased from 0.22 to 0.63.  The 

reason for the dramatic effect of the correction 
on the observed R2 value is due to the data 
reported for the most unconverged calculations,
i.e. ligands 11 and 17, being perhaps 
unsurprisingly the most erroneous, where in 
contrast the Bayesian estimate by its 
construction shifts the unconverged data points 
more toward the mean value of the 
experimental potency distribution.

A second data set that may be used to 
investigate whether or not application of 
equation 2 may provide utility in more realistic 
applications is reported in reference 62.  In that 
reference, results for 138 prospective free 
energy calculations are reported across 7 
different discovery projects.  Since no 
convergence error estimates were reported, a 
calculation uncertainty of 0.8 log units was 
used uniformly.  Likewise, consistent with our 
toy model, an experimental distribution of 
<pKi> ≈ 6 and stdev(pKi) ≈ 1.5 was assumed.  
In figure 4 we plot the originally reported 
predictions, and the corrected predictions 
obtained by way of application of equation 2.  
Application of the correction term has 
improved the mean error, MUE, and RMSE by 
several tenths of a log unit; and the frequency 
of large outliers, which may be particularly 
disruptive to a discovery project, has been 
reduced by 66%.

Figure 4. We here plot 138 agreement of 138 
prospective FEP calculations used to prioritize 
synthesis versus the experimental data.61  The 
originally reported data is plotted in red, and 
the predictions obtained from application of 
equation 2 are plotted in blue.  Error measures 
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are reported from both sets of data, however R2 
is omitted since the data has been collected 
from 7 different discovery projects.

The aforementioned not withstanding, clearly 
this is insufficient prospective data from which 
to draw definitive conclusions regarding the 
effectiveness of equation 2 in practice, and 
whether or not the experimental potency 
distribution articulated in the construction of 
the toy model should be expected to 
approximately apply across many different 
discovery projects.  However, we do believe 
the observation to be provocative, and look 
very forward to a great surge of prospective 
design work enabled by free energy 
calculations that might enable a more 
unambiguous consideration of these initial 
observations. In particular, when any 
computational technique is used to prioritize 
compounds for synthesis, a biased selection is 
being made, and this may have the unintended 
consequence of selection of compounds with 
large errors in their computed values in 
addition to good binders. Encouragingly, 
Bayesian approaches appear well suited to 
ameliorate this effect, even when project 
specific prior information is unavailable   

Lastly, we wish to note that selection bias 
effects such as those detailed here may be 
relevant even if the project chemistry goals 
may be only to maintain the potency of tight 
binding matter while resolving some other 
ADMET liability.  In such a situation, most 
new idea molecules designed to resolve the 
ADMET liability, e.g. adding a polar group to 
improve compound solubility, will likely 
diminish potency; and if only those few idea 
molecules designed to resolve the ADMET 
liability which are also predicted to maintain 
potency are synthesized, we expect a similar 
selection bias effect to what has been 
characterized above to be manifested in the 
resulting experimental data.

CONCLUSION

A variety of theoretical, technical, and practical
advances  are  now  positioning  free  energy
calculations to become a standard approach to

inhibitor  optimization  and design  both within
academic  laboratories  and  industrial  drug
discovery projects.  Further, the maturity of the
technology, availability of easy to use graphical
interfaces,  and  the  advent  of  low-cost  high-
performance GPU computing have placed the
technology within reach of nonspecialists.  As
such, we expect within the next few years to
observe a tremendous surge in the number of
reported  prospective  applications,  where  free
energy calculations are used to directly inform
synthesis and design decisions.

In  preparation  for  this  expected  body  of
prospective data, we have introduced a simple
toy model that may help to elucidate some of
the  qualitative  features  we  expect  to  later
observe.  Further, the toy model suggests there
may be an opportunity to improve the accuracy
of  predictions  from  free  energy  calculation
methods through more careful consideration of
the expected experimental affinity distributions
of  all  the  compounds  considered,  including
those  explicitly  deprioritized  for  synthesis  on
the  basis  of  the  free  energy  calculations.
Although in no way definitive, the reanalysis of
previously  reported  data  does  suggest  these
types of selection bias artifacts should indeed
be expected to occur in real-word prospective
applications,  and  a  correction  scheme  of  the
type facilitated by equation 2 may be useful to
improve  prediction  accuracy  in  realistic
settings.  

Further,  we  believe  the  correction  scheme
described  here  should  have  utility  beyond
simply the  modeling of  potency,  and may be
relevant  any  time  one  is  using  predictive
calculations to optimize a property where idea
molecules  manifesting  the  desired  extreme
value of the property should be expected to be
rare.  As such, we expect generalizations of the
approach described here in to address questions
of  ligand  binding  selectivity,  clearance,  and
other such ADMET properties to be a fruitful
future direction. 
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