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Abstract

The problem of whether human causal judgments could be
better explained by associationistic or probabilistic accounts
is dealt with in the paper that reviews the basic tenets of the
power PC theory (Cheng, 1997), the most famous of the prob-
abilistic explanations, and discusses some results obtained by
Fum & Stocco (2003) that are at odds with power PC predic-
tions. An integrated model is described that is capable of ex-
plaining those findings, and a new experiment is presented in
which the predictions of the model and of the power PC the-
ory are contrasted in the case in which the causal power of a
compound cue is equal to one of its components. The results
clearly corroborate the model that provides, moreover, an ex-
planation for some data that lie outside the scope of the power
PC theory.

Introduction
Recent research on adult causal cognition has been focusing
on two main kinds of theoretical explanations that capture
many of the central findings in the field.

Associative accounts (Shanks, 1995) consider the causal
reasoning performed by humans as similar to the classi-
cal conditioning happening in animals and claim that, be-
cause both processes involve the detection of the same pre-
dictive relations, they may use a common mechanism. The
most famous model in this class is that of Rescorla & Wag-
ner (1972)—henceforth R&W—that has been successfully
applied to account for a series of phenomena—like blocking
(Kamin, 1969), overshadowing (Price & Yates, 1993), con-
ditioned inhibition (Chapman & Robbins, 1990), and con-
tingency effects (Dickinson, Shanks, & Evenden, 1984), to
name only a few—that were originally discovered in animals,
and that have been demonstrated to play a critical role in hu-
man causal learning, too.

Probabilistic theories, on the other hand, rely essentially on
the analysis of the contingencies that organisms are supposed
to acquire by interacting with their environment, and try to
estimate the extent to which a cue (or potential cause) can
determine a given outcome. The most famous among these
accounts is constituted by Cheng’s power PC theory (Cheng,
1997), an extension of the probabilistic contrast model devel-
oped by Cheng & Novick (1990).

Fum & Stocco (2003) argued that associative and proba-
bilistic models possibly cover distinct steps in human causal
induction, with associative accounts describing the processes
by which people (and animals) notice and extract statistical
connections between events, and probabilistic models captur-
ing the reasoning skills brought to bear in causal cognition.

Investigating the role of compound cues in causal judgments,
however, they obtained experimental findings that could not
be explained, in their entirety, by either group of theories.

In the paper we review the power PC theory and illustrate
some results obtained in Fum & Stocco (2003) that seem to
falsify it. We present a new model that, while being compat-
ible with previous data, is able to explain those puzzling re-
sults. We describe an experiment in which our model and the
power PC make contrasting predictions, and we present find-
ings that corroborate our hypothesis. We discuss some further
data that, while implied by our model, are out of the scope of
the power PC theory. We conclude the paper by summarizing
the features of our account of human causal cognition and by
outlining some possible developments.

A Probabilistic Account
Perhaps the simplest of the probabilistic models of causation
is given by the∆P rule (Jenkins & Ward, 1965) that formal-
izes the idea that people mentally compare the frequency of
an outcomeO in presence and in absence of a given cueC:
∆Pc = P(O|C)−P(O|¬C). If the difference is around 0, the
outcome is just as likely when the cue is present as when it is
absent; if it approaches 1,C is perceived as producingO; if it
approaches−1, the cue is seen as preventing the outcome.

Relying on this idea, Cheng & Novick (1990) developed
their probabilistic contrast model assuming that, in presence
of a set of possible causes for an effect, the∆P for each cause
is computed on the so-calledfocal set, defined as “a contex-
tually determined set of events that the reasoner uses as input
to the covariation process” (Cheng, 1997, p. 371). When a
putative cause is taken into account, all other causal factors
are kept constant within the focal set, and∆P is computed on
a background of constant alternative causes.

The transition from the probabilistic contrast model to the
power PC theory was motivated by a series of problems that
could not be adequately explained by the former nor by al-
ternative associative accounts like the R&W. The power PC
theory essentially computes how much a∆P judgment should
be discounted for providing an estimate of the causal power
of a cue. It also detects special conditions in which the causal
power cannot be deduced from∆P.

One of the tenets of the theory is that, whenever the possi-
ble alternatives to a candidate causeC are kept under control
and∆P is non negative,C (i.e., the causal power ofC to gen-
erate the outcomeO) is given by:

C =
∆Pc

1−P(O|¬C)
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According to the power PC theory, identical values of∆P
associated with different values ofP(O|¬C), the base rate,
will lead to different causal judgments. When the alternative
causes are controlled, the theory predicts that, with∆P kept
constant, the causal power increases with an increase in the
value of the base rate. As a special case, if the base rate is
equal to 1, the causal power remains undefined, because the
denominator becomes 0. If the base rate is equal to 0, the
power PC reduces to the probabilistic contrast model, and the
causal power depends exclusively on∆P. Finally, if ∆P is 0,
the causal power ofC is 0, too.

Fum & Stocco (2003) focused on some interesting conse-
quences of Cheng’s theory concerning the role of compound
cues, and set up an experiment to test them. To reduce the
complexity of the theoretical framework, and to establish a
clear experimental paradigm, four assumptions were made.
First, the causal power of a generic cueA was defined as the
probability that, all other things being equal, the cue would
produce the outcomeO: A = P(O|A). Second, a given out-
come had a null probability of being obtained in absence of
the cue: P(O|¬A) = 0. Third, all cues were considered as
independent. Fourth, all the cues were pure causes: none of
them was an enabling condition (Cheng & Novick, 1991) nor
needed any enabling conditions to produce its effect.

Given these assumptions, it is possible to deduce1 some
important consequences from the power PC theory. We focus
here on two of them:

Irrelevance of Compound Previous experience with a cue
presented in a compound form should be irrelevant to the
judgment of its causal power, given that there are trials in
which the cue appears alone. It is a tenet of both the power PC
theory and of the probabilistic contrast model that only items
in the focal set—where everything, but the candidate cause
whose causal power is being evaluated, is kept constant—are
taken into account to compute∆P. Let us consider, for in-
stance, the classical backward blocking paradigm (Chapman,
1991; Dickinson & Burke, 1996; Shanks, 1985), where com-
pound trials of the form (A,B→ O) are followed by a set of
trials of the form (A→ B). In this context, an adequate fo-
cal set to evaluate the causal power of the blocking cueA
is constituted by trials (A→ O) only, because by including
(A,B→ O) in the set, the cueB would also vary. The power
PC theory therefore predicts that a previous presentation of a
compound cue (A,B→O) should not influence the following
judgment for cueA.

Equalization to Compound Sometimes it could be neces-
sary to estimate the causal power of a cue over an inadequate
focal set. Taking the example of backward blocking again
into account, it should be noted that the trials (A,B → O)
constitute an inadequate focal set for evaluating the causal
powers ofA and ofB because both cues are covariant within
the same set. However, this is exactly what participants in the
control group of that paradigm are requested to do, and what a
theory is supposed to provide an explanation for. When par-
ticipants are forced to make a judgment, they should adopt
the trials(A,B→O) as a focal set, and this would lead them
to assign both cues the same causal power of the compound.

1We refer to the original paper for the mathematical derivations.

Given the fact that the effect is never obtained without the
cause, and that each possible cause appears in the set of trials
(A,B→ O), it is possible to demonstrate thatA = P(O|A,B)
i.e. the causal power of cueA should be equal to the probabil-
ity of obtaining the outcome given the compound. The same
should be true forB.

The experiment carried out in Fum & Stocco (2003) ob-
tained findings that falsified these predictions. More pre-
cisely, contrary to the irrelevance of compound hypothesis,
judgments concerning a cueA, experienced only in a com-
pound form (i.e. together with another cueB), were signif-
icantly higher than judgments for the same cue experienced
alone. In a similar vein, and contrary to the equalization to
compound prediction, the judgments for a cueA, experienced
only in a compound form, were significantlylower than judg-
ments given to the compound cue embeddingA.

While no theoretical explanation for these results was pro-
vided in the paper, the findings clearly suggested the exis-
tence of important factors determining causal judgements that
lie beyond the scope of the power PC theory.

An Integrated Model
Trying to find an explanation for the results reported in Fum
& Stocco (2003), we assume that people are able to acquire
some knowledge about the contingencies that exist between
cues and outcomes. A significant role is played in this phase
by associative processes that contribute to the construction of
an internal representation for the magnitude of the (single and
compound) cues that were directly experienced. There is ev-
idence that it is possible to spontaneously learn such knowl-
edge by interacting with the environment (e.g., Hasher & Za-
cks, 1984), and we assume that people rely on this informa-
tion in providing the judgments for those situations they ac-
tually encountered.

When a judgment about the causal power of a cue expe-
rienced only in compound form is required, the information
about the stored magnitudes is used to infer the causal power
of the individual novel stimuli, too. This process resembles
reverse engineering, because people are supposed to figure
out a conceivable distribution for the magnitudes of the sin-
gle cues that could originate the magnitude of the compound
representation.

Let us consider the top panel of Figure 1, that depicts the
situation typically encountered in a blocking paradigm. The
model assumes that, by interacting with the environment and
by noticing the contingencies between cues and outcomes,
people are able to construct an internal representation for the
causal power of the cues they experience directly—for in-
stance,A, (A,B), and others, likeC. The stored magnitude
could be a more or less faithful representation of the actual
causal power of a given cue but, in any case, it constitutes the
basis for causal judgments. To estimate the causal power of
an experienced cue, people rely on its magnitude representa-
tion, and translate it into the required numerical scale.

When requested to provide an estimate for a cue that was
experienced only in compound form (B, in our example), they
try to figure out a sensible value for it—in our case, a magni-
tude forB compatible with the magnitude of bothA and the
compound(A,B). This process involves a comparison only
between those cues that are relevant for deriving the causal
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Figure 1: Phases of causal judgement.Top (associative):
Causal powers for cues represented as inner magnitudes.Bot-
tom (probabilistic): Inferring the value of cueB, that has not
been experienced.

power ofB (in our exampleA and(A,B)) and excludes the
others (in our case,C). The set of cues taken into considera-
tion conforms to the notion of focal set.

First, we shall observe that the causal power ofB, which
we denote through its boldface nameB, cannot be smaller
than the difference between(A,B), the causal power of the
compound, andA: if it were so, a certain part of the overall
compound effect would remain unexplained: a “rod” shorter
than(A,B)−A could not cover the whole length of the rod
representing(A,B). Therefore,Bmin = (A,B)−A. Gener-
ally, some part of the causal power ofB will be shadowed by
A: if we simply subtractA from the compound(A,B), we
would in fact grossly underestimate the causal power ofB.
On the other hand,B cannot be greater than(A,B), so that,
Bmax= (A,B).

The model therefore assumes that is “rational” to provide
as a judgment for the causal power ofB a value lying between
Bmin andBmax. All the values between this range are plausi-
ble and coherent with the magnitude of the associatively ex-
perienced contingencies. The particular judgments provided
by participants vary stochastically between this range. The
mean expected value forB is therefore obtained by weighting
each possibleB by its probabilityP(B):

B =
∫ Bmax

Bmin

BP(B)dB

For any symmetrically distributed probability function
P(B), the previous equation reduces to the average between
Bmin andBmax:

B = (A,B)− 1
2

A

Explaining Previous Results
Not surprisingly, the model can accommodate the results ob-
tained by Fum & Stocco (2003). Two main findings were
reported in that paper. First, some associative effects resulted
in a systematic distortion of the causal judgments provided
by the participants. The model assumes that these effects are
confined to the first phase of the process leading to causal
judgments, where inner magnitudes of contingencies are sup-
posed to be acquired.

The second result is more interesting, and it seems critical
for the power PC theory. In order to account for backward
blocking—one of the most robust and popular contingency
learning phenomena—a theory should be able to explain how
people make a causal judgment about a cue that has been
experienced only in compound form. As previously noted,
power PC either should exclude taking into account the inad-
equate focal set(A,B→O), denying thus itself the possibility
to account for backward blocking, or should predict, by using
only that available set, that the judgments about the causal
power ofA andB will be equal that of the compound(A,B).

Our model makes a different prediction. According to it,
participants are supposed to construct a mental representa-
tion of the causal power ofA andB such that, by joining (and
possibly overlapping) them, they will cover that of the com-
pound(A,B). Because the magnitude of the causal power of
one of the cues, let us sayA, should be obviously comprised
between 0 and(A,B), the estimate for the mean causal power
B could be computed by averaging on the predicted values of
B, computed on all the values forA comprised between these
extremes:

B =
∫ (A,B)

0

(
(A,B)− 1

2
A

)
dA

/
(A,B)

By solving this equation we obtain:

B =
3
4
(A,B)

The same result will hold, of course, forA.
In the experiment of Fum & Stocco (2003) the value for

(A,B) was set to 0.80. Under this condition, the model pre-
dicts thatA = B = 0.60. The judgments provided by par-
ticipants wereA = 0.62 andB = 0.61, respectively, with
the difference being not statistically significant. It is useful
to remind that, according to the power PC theoryA = B =
(A,B) = 0.80.

Some New Predictions
A model should be considered as good not because it is able
to explain previous data but because it allows making bold
predictions about future events. For most of the cases, our
model produces estimates of the causal power that are close to
those provided by the power PC theory. It makes, however, a
completely different prediction when, in an extreme blocking
situation, the causal power of the compound is equal to the
causal power of one of its components:(A,B) = A.

Causal Judgments Under this condition, the power PC the-
ory predicts that, independently of the values assumed by
(A,B) and A, the cueB will be perceived as having a null
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causal power. In this case,B is the candidate cause, andA is
a background cause, as assumed in Cheng’s framework. The
focal set forB is constituted by all of the trials (A,B→O) and
(A→O). In this set,P(O|B) may be estimated asP(O|A,B),
andP(O|¬B) is given byP(O|A). Given that, we can apply
the standard equation for the causal power:

B =
P(O|A,B)−P(O|A)

1−P(O|A)

SinceP(O|A,B) = P(O|A), it follows thatB = 0.2

On the contrary, according to our model,B will be given a
value equal to(A,B)−A/2. Because,(A,B) has been sup-
posed equal toA, it follows thatB = A/2, i.e, we expect that
the causal power ofB will be judged to be about half of the
value of the causal power ofA.

Because the model provides some details about the pro-
cesses underlying causal judgment, it allows making some
predictions that lie outside the scope of competitive accounts.
More particularly, it predicts the following:

Confidence Ratings According to the model, trying to pro-
vide a judgment about the causal power of an experienced
cue (e.g.A in the backward blocking paradigm), participants
rely on an existing stored representation. On the other hand,
when requested to assess the causal power of a cue that has
been experienced only in a compound form (e.g.,B, in the
same paradigm) they cannot access a similar representation
to assign a reliable value toB, and that constitutes an im-
portant source of uncertainty. When requested to estimate the
confidence according to which they provide their causal judg-
ments, participants should therefore trust their judgment for
cueA more than that provided forB.

Latencies In the backward blocking paradigm—in which
the presentation of a compound stimulus(A,B→ O) is fol-
lowed by the presentation of one of the its components, e.g.,
(A → O)—the judgment concerning the causal power ofA
could be produced by reading off the value of its internal
representation built according to associational principles. To
provide a judgment forB, on the other hand, it is necessary to
take into account the range of possible values that a coherent
judgment could assume, i.e., it is necessary to resort to the
second phase hypothesized by the model. As a consequence,
the time need to provide a judgment forB should be longer
than that spent in trying to assess the value forA.

The Experiment
To put these ideas under empirical testing, we carried out an
experiment, using the Tanks paradigm introduced by Shanks
(1985), in which the predictions of our model were directly
compared with those deriving from the power PC theory.

Method
Participants The participants were 111 college students
(28 males and 83 females) aged between 18 and 36 years

2Cheng (1997) derived a computational analysis of the R&W
model showing that, under particular conditions—that were met by
our experiment—it asymptotically computes a probabilistic contrast
over a focal set. It is therefore possible to conclude that, the R&W
model makes here the same prediction of the power PC, i.e.,B = 0.

(mean and median = 20) enrolled in an introductory Psychol-
ogy course.

Design and Procedure Participants saw a series of trials in
which a picture of an army tank moved across a computer
screen. On every trial a weapon system fired, and the tank
was hit by one or two projectiles; in some trials the tank was
destroyed, in others it remained undamaged. At the moment
the weapon fired, one or two colored lights went on in the
lower part of the computer screen. The color of the light indi-
cated the kind of projectile that was used. Conceptually, each
light could be considered as a separate cue, and the explosion
of the tank could be regarded as the outcome.

The experimental session consisted of two sets of 20 tri-
als each. In every trial from the first set two projectiles were
contemporaneously fired—this phase could be indicated by
(A,B→ O). In each trial from the second set one of the pro-
jectiles was fired alone (A→ O). Three experimental condi-
tions were set up, each condition differing in the probability
of the tank being distroyed by the projectiles. The probabil-
ities were equal to 0.2 (Low), 0.5 (Medium) and 0.8 (High).
In the Low condition, therefore, the tank was (randomly) de-
stroyed 4 times in 20 trials, while in the Medium and High
condition it was destroyed 10 and 16 times, respectively. The
probability of the tank being destroyed by two projectiles
in trials from the first set was the same as the probability
of being destroyed by a single projectile in the others, i.e.,
P(A,B→ O) = P(A→ O). Finally, trials from the two sets
were randomly interleaved for each participant, and partici-
pants were randomly assigned to an experimental condition.

Participants were requested to judge the efficacy of each
kind of projectile on a scale ranging from 0 to 100, where
0 indicated null efficacy (i.e., the projectile never destroyed
the tank) and 100 maximum efficacy (i.e., the projectile al-
ways destroyed the tank). They were also asked to indicate,
on a seven point scale, the confidence with which they formu-
lated their judgments about the causal power of each projec-
tile. The last main dependent variable that was recorded was
constituted by time needed to provide each causal judgment.

At the beginning, participants read an instructions sheet,
written in Italian, that explained the task. After that, they saw
four practice trials. The tank was randomly destroyed in two
of the trials, and in the remaining two it was left undamaged.

At this point the experiment could start. Two colors (cho-
sen in a set that comprised red, yellow, green, and blue) were
randomly assigned to the two projectiles used in each exper-
iment session, and the participants were exposed to the 20
trials of the first phase and 20 trials of the second one. To
ensure that participants paid attention to the presentation tri-
als, during the experiment four “control” screens appeared at
randomly chosen times asking participants to indicate what
they had just seen, i.e. which projectile/s was/were fired and
whether the tank had been destroyed.

At the end of the presentation trials, participants were
asked to provide their judgment about the efficacy of each
of the two projectiles they had experienced. After that, they
were requested to rate their causal judgments, i.e., to indi-
cate how confident they were about the correctness of their
answers.

Stimuli and Apparatus The experiment was performed on
a PC equipped with a 15” LCD flat screen and headphones. A
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custom-made program written in Java was utilized to present
the stimuli and to record the participants’ judgments. During
the presentation trials, the picture of a tank (120 x 45 pixels)
moved at constant speed crossing the screen from right to left.
A disk (with a diameter of 300 pixel) in the center of the
screen simulated the view finder of the weapon system and
displayed a desert landscape. The area of the screen outside
the disk was kept blank. The tank was visible only when it
crossed the disk (employing 3300 ms to cover its diameter),
in the remaining time participants could only hear the engine
sound through the headphones.

When the tank was approximately at half of its path, com-
pletely visible within the view finder, the weapon fired: one
or two gunfire sounds were heard and one or two lights, rep-
resented by round LEDs (with diameter of 150 pixels) were
lit up with the color of the projectile that had been shot.

The tank was always hit, and 1000 ms after the LEDs were
brightened, it flashed for 300 ms to simulate the projectile
impact. In the trials in which the tank was destroyed, an ex-
plosion sound was heard, and the tank was covered by a dust
cloud that, after it dissolved, left visible only the wreck. In
the trials in which the tank was left undamaged it continued
its course until disappearing from the view. In both cases the
LEDs remained lit. Each trial lasted approximately 7.5 s; af-
ter that, with a shutter effect, the view finder was closed and
opened again, and a new trial began.

The control screen utilized to monitor the participants’ at-
tention had four LEDs placed at the vertices of an imaginary
rectangle positioned at the center of the monitor, each LED
associated with two radio button labeled “Yes” and “No”, re-
spectively. Participants were asked to indicate which LEDs
were lit (and which projectiles were fired) in the very last
trial. Moreover, they had to indicate whether the tank had
been destroyed or not by choosing between two more yes/no
buttons.

The judgments about the efficacy of each projectile were
collected through separate screens. In each screen a colored
LED was presented together with a request to provide a judg-
ment about the projectile by setting a slider. The mark was
positioned at the middle of the slider and the value for the
judgment was set to “unassigned”. As soon as the participant
started moving the mark, an integer value appeared on screen
indicating the mark position on a scale ranging from 0 to 100.
The confidence rating were collected by having participants
check one of seven radio buttons. The buttons at the extremes
were labeled with the Italian equivalents of “No Confidence”
and “Complete Confidence”, respectively.

Results

To avoid considering data that did not accurately reflect the
phenomena under investigation, participants that made four
or more errors (over a total of 20 possible answers) in the
control task were excluded from the sample.3 The data of
19 (out of 111) participants were thus discarded, and the fol-
lowing analyses were carried out on the remaining ones: 28
participants in the Low condition, 30 in the Medium, and 34
in the High condition, respectively.

3The same criterion had been adopted in Fum & Stocco (2003).

Table 1: Mean causal judgments forA andB

Low Medium High
Judgment forA 41.32 64.53 75.44
Judgment forB 23.48 39.83 48.53

Causal Judgments The causal judgments provided by par-
ticipants are reported in Table 1 and illustrated in the top
panel of Figure 2. A mixed-design ANOVA was carried out
having Condition (Low vs Medium vs High) as a between-
subjects and Judgment (A vs B) as a within-subjects variable.

The analysis showed as significant the main effects of the
Condition (F(2,89) = 34.44, MSE= 1125.90, p < .0001)
and of the Judgment (F(2,89) = 55.29,MSE= 24357, p <
.0001) but not their interaction. Contrary to the power PC
predictions, participants provided judgments for the causal
power ofB that were completely different from the expected
zero value (t(88) = 14.50, p < .0001). In accordance with
the predictions of our model, their judgments for the causal
power ofA andB differed significantly, and the value of the
judgments increased with an increase in causal power of the
compound stimulus(A,B). The model, however, makes a
stronger prediction, i.e., that the ratio between the two stimuli
should be constant. We calculated this ratio for each partici-
pant, and then computed the mean of the ratios for each con-
dition. Results are reported in the bottom part of Figure 2:
ratios remained constant across conditions, with only slight
and insignificant differences among them. Values of the ra-
tios were around 0.6, close to our estimate, i.e. 0.5. This
result could be considered more than satisfactory being our
model completely parameter-free.

Confidence Ratings In analyzing confidence ratings and
latencies, we pooled the data of all the participants because

Figure 2: Mean causal judgments (top) and mean ratios be-
tweenB andA (bottom) in the experimental conditions.
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our model does not discriminate, under these aspects, among
the different conditions.

We found that the confidence ratings forA (mean = 3.85)
were indeed greater than those forB (mean = 3.52), the
difference—as revealed by a two-tailed, pairedt-test—being
statistically significant (t(91) = 2.48, p = 0.01). However, to
take into account the possibility that the confidence ratings—
collected through a seven point Likert scale—did not con-
form to a normal distribution, we conducted also a Wilcoxon
Matched-Paired test that confirmed the existence of the effect
(T = 676.00,N = 92, p = 0.04).

Latencies An even strongest corroboration for our model
came from the analysis of latencies. As predicted, the mean
time needed to express a jugdment forA (17.18 s) resulted
smaller than the time needed forB (21.31 s). At-test con-
firmed that the difference was significant (t(90) = 2.14, p =
0.04). The difference remained significant taking into ac-
count the square root (t(90) =−2.11, p = 0.03) and the log-
arithm (t(90) = 2.07, p = 0.04) of the latencies. Causal in-
duction processes seem to respect the time course we hypoth-
esized.

Conclusions

In the paper we presented a model of high level cognitive
processes in causal induction that is able to explain previous
findings that resulted antithetical to some predictions of the
power PC theory, and that can take into account new data
that are at odds with, or beyond the scope of, that theory.
The model assumes that, when required to provide a causal
judgment, people recur to both associative and probabilistic
processes. These processes play, however, a different role in
causal cognition: associative processes contribute to the con-
struction of an internal representation of the power of directly
experienced cues, while probabilistic reasoning is required to
estimate the magnitude of the non directly perceived ones.

In the paper we have gone one step further in the descrip-
tion of the cognitive processes underlying such judgments,
and we have extended the set of data that may be taken into
consideration to discriminate between different accounts. We
find particularly important the fact that participants were able
to express faithful subjective confidence about their own abil-
ity to estimate the causal power of different cues, an indi-
cation that these estimates lie above the subjective threshold
(Dienes & Perner, 1999) and, therefore, that some kind of
explicit knowledge is required to provide these judgments.

We are currently working to extend the model on
paradigms other than blocking, and to provide finer estimates
of human causal judgment. In particular we think that as-
sociative effects, probably reflecting an evolutionarily older,
non-specific learning system, shall be further investigated.
Our model might be of guidance in determing under which
conditions such effects may overcome the explicit processes
we described.
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