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Abstract 

In practice, models almost always have misfit. The misfit of a structural equation model 

(SEM) can affect the estimation of model parameters in terms of point estimates, standard 

errors (SEs), and confidence intervals (CIs). In this article, the performance of different 

methods are compared including: the delta method, the nonparametric bootstrap (NP-B) 

method, and the semi-parametric bootstrap (SP-B) method in estimating standardized model 

parameters under the influence of model misfit. Two methods are used to construct the CI of 

the bootstrap method, the standard percentile method and the bias-corrected and accelerated 

(BCa) method. A simulation study is conducted using an SEM model with different amounts 

of model misfit and various sample sizes. The results show that if the model is correctly 

specified, all methods give correct point estimates, SE estimates, and CI coverage rates. 

However, as the amount of model misfit increases, the estimates based on NP-B remain 

accurate and consistent, whose based on the delta method and SP-B deteriorate 

Keywords: misspecification, standard error, SEM, standardized parameters 
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The Robustness of the Delta Method and Bootstrap in Calculating Standardized 

Coefficient in Misspecified SEM Models 

Structural equation modeling (SEM) is a commonly used statistical method in the 

social sciences. In an SEM study, researchers proposed several models to explain the 

relationships between variables based on substantive theories. After data are collected, 

researchers fit the candidate models to the data and compare the model fit. The model which 

is most consistent with both theories and the data is selected. The next step is to interpret the 

relationships between variables and such relationships are in the form of model coefficients. 

The model coefficients describes the strength and the direction of the relationship between 

variables, which can be used for developing and modifying theories.  

There are two ways to estimate coefficients: point estimation and interval estimation. 

Point estimation seeks the most plausible single value for a population parameter. The 

advantage of that approach is that it gives us a straightforward view on the proposed model’s 

coefficients. However, in practice, there is always uncertainty associated with the point 

estimates because the true population parameter may be larger or smaller than the sample 

value. Point estimation does not tell us how certain the estimation is unless we take standard 

error (SE) into consideration. Interval estimation overcomes these drawbacks by providing us 

with the certainty (via the interval’s width) of our estimate. If the interval is narrow, we will 

have more confidence about our estimate. One common type of interval estimation is 

confidence interval (CI). According to the Publication Manual of the American Psychological 

Association (APA), researchers are strongly recommended to report the CI because it tells us 

the certainty of the estimation (APA, 2010, p.34).  

Statistical methods for model evaluation, model selection and the estimation of 

coefficients have been mainly developed in the unstandardized context. However, if variables 

have different scales of measurement, their unstandardized coefficients are not comparable 
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and difficult to interpret. In order to solve this, researchers usually use standardized 

coefficients, which can be transformed from unstandardized coefficient to facilitate the 

interpretation. Most SEM software packages offer point estimates for standardized 

coefficients, and some can also calculate standard errors and confidence intervals. Although 

standardized coefficient provides us with an easy way to interpret models, they are less 

straightforward to estimate as compared to unstandardized ones. One naïve way is to fit the 

model to a correlation matrix to obtain standardized coefficients. But the usefulness of this 

method depends on whether or not the model is scale invariant. If the model is scale-

invariant, the point estimation is unbiased, but the SE is not correct (see, e.g., Cudeck, 1989). 

If the model is scale-variant, neither the point estimation nor the SE is not accurate (e.g., 

Cudeck, 1989). A more reasonable approach is to estimate the unstandardized coefficients 

first and then transform them into standardized ones. In this case, standardized coefficients 

are a function of the unstandardized coefficients. Different types of coefficient have different 

transformation functions. There are two approaches to estimate standardized coefficients: the 

asymptotic approach and the empirical approach. The most common asymptotic approach is 

maximum likelihood (ML). The ML point estimate of standardized coefficient is transformed 

from the ML point estimate of unstandardized coefficient. One can then apply the delta 

method to construct the sampling distributions of the standardized coefficients so as to obtain 

SEs and CIs. The most common type of ML is normal theory ML and it relies on two crucial 

assumptions: normality and correct model specification. If these assumptions do not hold in 

practice, the estimation of standardized coefficient could be compromised. In fact, the two 

assumptions are usually violated in practice.  

Another approach uses the bootstrap resampling technique to construct an empirical 

distribution of the estimates of the standardized population parameters. Then the standardized 

population parameters can be estimated from this empirical distribution without assuming 



STANDARDIZED COEFFICIENTS IN MISFITTED SEM MODELS                                                       5 
 

normality or correct model. One main difference between the asymptotic method and the 

bootstrap method is that the former estimates population parameters directly based on the 

sample, whereas the latter resamples from the sample. The bootstrap estimates population 

parameters are obtained based on the bootstrap resamples. The current study includes two 

bootstrap approaches: the non-parametric approach (NP-B) and the semi-parametric approach 

(SP-B). The difference between these two approaches is that the NP-B uses original sample 

space, whereas the SP-B uses a transformed. The purpose of the SP-B method is to 

compensate for the model misspecification (Yuan & Hayashi, 2006). Although in theory, the 

bootstrap methods should outperform the delta method when model is misspecified, no study 

has compared them in simulation. Therefore, the current study compares the performance of 

three methods: the asymptotic method, the NP-B method, and the SP-B method.  

It is generally accepted that any model is only an approximation to reality in the SEM 

literature (e.g., MacCallum, 1986). The misspecification error can be caused by omitting 

variables and/or paths between variables. So the misspecification model is common in SEM 

because the relationship between variables in population level is unknown. The study of the 

impact of the model misspecification has great value because it can affect not only the overall 

model evaluation but also the parameter estimates (Intriligator, 1978, Yuan, Bentler, 2007). 

In particular, the use of chi-square as fit index in misspecified models can lead to accepting 

models with severe parameter bias (Kaplan, 1988). Moreover, the misspecification error can 

affect the ML estimates of the measurement and the structural parameters (see Judgem 

Griffths, Hill, Lutkepohl, & Lee, 1985, pp. 857-859; Kaplan, 1988). Yuan and Hayashi 

(2006; see also Arminger & Schoenberg, 1989; Browne & Arminger, 1995; Shapiro, 1983) 

gave a consistent SE estimator for misspecified models using normal theory ML, and derived 

conditions for bootstrap’s robustness to model misspecifications. Jennrich (2008) gave 

consistent SEs using infinitesimal jackknife (IJ), a special case of bootstrap (e.g., Efron & 
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Tibshirani, 1993, Chapter 21), without assuming correct model or normal data. But no 

simulation studies have been carry out to assess these treatments for model misspecifications. 

With respect to CIs, Bollen and Stine (1990), Ichikawa and Konishi (1995), and Lambert et 

al. (1991) investigated the utility of the bootstrap within a limited scope. 

The consequences of violating the normality and correct model assumptions are not 

completely clear yet. The related literature has been primarily in the unstandardized context. 

When the population follows the multivariate normal distribution and model is correctly 

specified, the point estimates by the ML method are unbiased (Curran et al. 1996). For the 

bootstrap method, the accuracy of the estimated SEs increases with the sample size from 

N=100 to N=1000 (Nevitt & Hancock, 2001). Moreover, on the one hand, if the population is 

not normally distributed, the estimates by the ML method are unbiased (Anderson & 

Gerbing, 1984; Boomsa, 1986; Browne, 1982; Chou et al. 1991; Curran et al. 1996; Finch et 

al. 1997; Harlow, 1985; Hu et al. 1992), but the ML estimated SEs tend to be negatively 

biased (Finch et al. 1997). On the other hand, the SE estimates by the bootstrap method are 

larger than the ones obtained by the ML method (Boomsma, 1986). However, that result is 

not confirmed by Nevitt and Hancock (2001), who found that the bias of the SE estimates by 

the bootstrap method is actually smaller than the SE estimates by the ML method. 

Furthermore, if the model is misspecified and the population is normally distributed, the point 

estimates by the ML method are not substantially different from the population parameters 

(Curran et al. 1996). In addition, when the combining misspecified model and the 

nonnormality conditions, SE estimates by the ML method are not affected by 

misspecification. 

No study has examined different methods to estimate standardized coefficient in the 

context of SEM. That is the purpose of the current paper. Specifically, this paper compares 

the performance of the asymptotic approach and the empirical approach in estimating 



STANDARDIZED COEFFICIENTS IN MISFITTED SEM MODELS                                                       7 
 

standardized coefficients under different model-correctness conditions. There are three misfit 

conditions with varying amounts of model misfit, and one correct model condition. For 

typical SEM simulation studies, sample size ranges from 200 to 1000. Sample size less than 

200 can result inaccurate estimates and sample size larger than 1000 requires extensive 

amount of time to complete. Therefore, I select three sample size conditions, 300, 500, and 

800. In each sample size condition, I use the ML method, the non-parametric bootstrap (NP-

B), and the semi-parametric bootstrap (SP-B), which will be introduced in the following 

section, to estimate standardized model parameter. There are three methods to estimate the 

SEs of the standardized coefficients: the delta method, the NP-B method, and the SP-B 

method. For the estimation of the CI coverage rates, there are five methods: the delta method, 

the NP-B percentile method, the NP-B bias-corrected and accelerated (BCa) method, the SP-

B percentile method, and the SP-B BCa method.  

The structure of the current study is as follows: I introduce different methods to 

estimate the standardized coefficients with respect to point estimates, SEs, and the CI 

coverage rates. The design of the simulation is covered in the next section, followed by a 

description of the evaluation criteria. I present the simulation results and give 

recommendations on the choice of method. Finally, I present a discussion of the results  

Standardized Model Parameter Estimation 

Maximum Likelihood Estimation 

Let ઱ denote the variance covariance matrix of vector x with p variables. Let ઱ሺ∙ሻ 

denote the structure of interest. By using a fit function, the goal is to minimize the 

discrepancy between ઱ and ઱ሺ∙ሻ, which is	ܨ൫઱, ઱ሺ∙ሻ൯. In this paper, I assume the discrepancy 

measure is the normal-theory ML fit function (i.e., F୑୐൫઱, ઱ሺ∙ሻ൯ ൌ ln|઱ሺ∙ሻ| ൅ trሺ઱઱ሺ∙ሻିଵሻ െ

ln|઱| െ ,൫઱ܨ Let ી denote the argument that minimizes the fit function .(݌ ઱ሺ∙ሻ൯.  
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 So ી is considered to be the unstandardized population parameter, no matter 

,൫઱ܨ ઱ሺ∙ሻ൯ ൌ 0 (correct model) or ܨ൫઱, ઱ሺ∙ሻ൯ ൐ 0 (misspecified model). Let ી෡ denote the ML 

estimate of ી. Then standard asymptotics lead to 

                                                      √݊ሺી෡ െ ીሻ
ୈ
→ 	ܰሺ૙,ષሻ,                                                     (1) 

where 
ୈ
→ means converge in distribution and ષ is the asymptotic variance covariance matrix 

of √݊ી෡.  

A standardized population parameter is defined as 

                                                         θ୧୨
ୱ ൌ θ୧୨൫σ୨୨ σ୧୧⁄ ൯,                                                            (2) 

where the superscript s represents the standardized form, θ୧୨ is the unstandardized population 

parameter, i is the index of the dependent variable, j is the index of the independent variable, 

and	ߪ is the population model-implied standard deviation of the i and j variable in the 

unstandardized context (e.g., Bollen, 1989, p.349). ߪ is not parameter in the model but 

function of model parameters. Based on Equation 2, the standardized coefficient can be 

considered a function of its unstandardized coefficient.  

Delta Method 

Based on the relationship between the standardized and unstandardized coefficients, 

one can use the delta method to estimate the asymptotic distribution of the standardized 

coefficients from Equation 1, 

                                      √݊ሾ݃൫ߠ෠൯ െ ݃ሺߠሻሿ
஽
→ܰ	ሺ0,  ሻሿଶሻ,                                   (3)ߠ෠ሻሾ݃′ሺߠሺ	ݎܽݒ

where ݃ is the function transforming the unstandardized coefficients to the standardized 

coefficients (Equation 2), ݃ሺߠሻ is the value of ݃ evaluated at the population coefficient ߠ and 

the first derivative ݃ᇱሺߠሻ exists and is no zero. Therefore, the SE estimate at a given sample 

size n is ߪොሺߠ෠ሻ݃′ሺߠ෠ሻ, obtained by substituting ߠ෠ for ߠ in calculating	ߪ൫ߠ෠൯ and ݃ᇱሺߠሻ,  where 
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෠൯ߠ൫ߪ ൌ ටݎܽݒ	ሺߠ෠ሻ. One can use the SE to obtain the confidence limits of a ሺ1 െ ܽሻ% CI as 

ሾ݃൫ߠ෠൯ െ ଵି௔ݖ ∙ ,෠ሻߠ෠ሻ݃′ሺߠොሺߪ ݃൫ߠ෠൯ ൅ ଵି௔ݖ ∙ .෠ሻߠ෠ሻ݃′ሺߠොሺߪ ሿ 

Bootstrap Estimation of Standardized parameters 

The bootstrap method draws multiple samples with replacement from the existing 

sample. The population parameters are estimated from each bootstrap sample. Then one can 

use these estimates to construct a distribution of the estimated population parameters to 

obtain the point estimates, the SE estimates, and the CI coverage rates of the population 

parameters. 

Given a sample xi (i=1, 2, …n), let us construct a bootstrap sample space, ܠ௜
∗ ൌ

ୟ܁
ଵ/ଶି܁ଵ/ଶܠ௜, for	݅ ൌ 1, 2, …݊, where, ܠ௜

∗ is the bootstrap sample space, S is the covariance 

matrix of the sample space, and ܉܁ depends on the method of bootstrap. If ܉܁ = S, it is the 

nonparametric bootstrap (NP-B). That is, the bootstrap sample space is equal to the original 

sample space. If  ܉܁ is the model-implied covariance matrix, it is the semi-parametric 

bootstrap (SP-B). It can be proved that the covariance matrix of the SP-B sample space is 

equal to the model-implied covariance matrix. The usefulness of SP-B is proposed by Yuan 

and Hayashi (2006) in order to compensate for the inaccuracy of the model-implied 

covariance matrix when the model is incorrectly specified.  

The procedure of bootstrap method to estimate the population parameter is as follow. 

Let S* denote the covariance matrix of the bootstrap sample and ી෡∗ denote the argument, 

minimizing the ML fitting function, ܨ൫܁∗, ઱ሺ∙ሻ൯. ી෡∗ is considered as the estimates of 

unstandardized population parameters. From the Equation 2 one can obtain the estimates of 

the standardized population parameters, ી෡∗ୱ. A large number (B) of bootstrap samples are 

drawn from the bootstrap sample space, obtainingી෡௕
∗௦, where b= 1, 2, … B. The point 

estimates of the standardized population parameters are the means of the corresponding 
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bootstrap samples, θ෠∗ ൌ ሺ∑ θ෠௕
∗௦ሻ஻

௕ୀଵ  The SE estimates of the standardized parameter are .ܤ/

the standard deviation of the empirical distribution, ݏෞ݁∗ ൌ ሺી෡௕݀ݏ
∗௦ሻ. The current study uses 

two methods to construct CIs: the percentile method and the bias-corrected and accelerated 

method (BCa). In the percentile method, the lower ( ሺߙ 2⁄ ሻ	100% ) and upper 

(ሺ1 െ ሺߙ 2⁄ ሻ	ሻ100%) boundaries of ሺ1 െ  100% CI are the percentile of the estimates of	ሻߙ

the standardized population parameter from bootstrap samples ሺߠ෠ଵ
∗௦, ෠ଶߠ

∗௦, … , ෠஻ߠ
∗௦ሻ. In the BCa 

method, extra steps are required. One needs to calculate bias-corrected component, zො଴, and 

acceleration component, αෝ in order to construct the BCa Cis (Efron, Tibshirani, 1993, pp.185-

186). Efron and Tibshirani (1993) proposed the BCa method in order to compensate for the 

discrepancy in medium values between the original sample and the bootstrap samples. 

Design of Simulation Study 

I compare the performance of these different methods in a SEM model (Figure 1). 

There are two exogenous latent variables (F1, F2) and three endogenous latent variables (F3, 

F4, F5). Each latent variable has four manifest variables with standardized loadings of 0.6, 

0.7, 0.8, and 0.9. The error variances of corresponding loads are .64, .51, .36, and .19. All of 

the measurement errors and disturbances are independent. For the structural coefficients, 

because they are in the standardized context, I choose values that imply a somewhat medium 

magnitude in effects. The relationships among the latent variables in the standardized metric 

are: cov(F1, F2) = 0.5; F3 = 0.3F1 + 0.7F2 + D3; F4 = 0.6F3 + 0.3F2 + D4; F5 = 0.4F4 + 0.5F1 

+ D5. In order to obtain model-implied covariance matrix, I assign the standard deviations to 

20 observable variables to be [1, 2,  …, 9, 1, 2, …, 9, 1, 2]. Then I use the MASS package 

(Venables & Ripley, 2002) in R (R Core Team, 2016) to generate random samples from a 

multivariate normal distribution using the model-implied covariance matrix as the population 

covariance matrix; then I use the lavaan package (Rosseel, 2012) in R to fit the model to 

random samples. 
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There are four model correctness conditions: one correct model condition, and three 

misspecification conditions with varying amount of model misfit. In the slightly misfit 

condition (misfit 1), I remove bF1F5, yielding comparative fit index (CFI) = .98, root mean 

square error of approximation (RMSEA) = .037, and standardized root mean residual 

(SRMR) = .052. In the moderate misfit condition (misfit 2), we remove bF1F5 and bF2F3, with 

CFI = .932, RMSEA = .068, and SRMR = .099. In the severe misfit condition (misfit 3), we 

remove bF1F5, bF2F3, and bF1F3, yielding CFI = .889, RMSEA = .087, and SRMR = .231. Note 

that the model in misfit 3 condition does not resemble common models in the SEM literatures 

because F1 only correlates with F2 and F3 and does not have regression effects on the 

endogenous latent variables. I have tried various other misspecifications but none of them 

can lead to the desired amount of misfit. Although the model in Misfit Condition 3 is not 

straightforward to interpret substantively, for the purpose of evaluating model estimation 

methods it is still statistically viable. There are three sample-size conditions, 300, 500, and 

800. Crossing these sample sizes with model-correctness conditions above results in 12 

simulation conditions.  In each condition, I draw 1500 samples from model implied 

covariance matrix. Within each sample, there are 1500 bootstrap samples. 

Evaluation Criteria 

I use different metrics to evaluate the performance of the methods including point 

estimates, SE estimates, the coverage rate of CIs, and the width of the CIs. I will also 

examine the convergence rate of NP-B and SP-B. 

I consider both absolute bias and relative bias to evaluate point estimates. Absolute 

bias is calculated by mean (θ෠୧) – θ, where θ෠୧ is the estimate of θ by a certain method and i is 

the index for replications. Relative bias is to capture the magnitude relative to the true value 

of population parameters. It is calculated by [mean (θ෠୧) – θ]/	θ. For estimation of the SEs, 

because the true SE of θ෠ is unknown, I approximate it by the standard deviation, ݀ݏሺθ෠୧ሻ, of 
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the empirical distribution of θ෠୧. The estimates of the SE for a certain method are calculated 

by the mean of the SEs of the replications, mean (ݏෞ݁௜). Therefore, the bias of the SE estimates 

is mean (ݏෞ݁௜) - sd(θ෠୧) and the relative bias of the SE estimates is [mean (ݏෞ݁௜) - sd(θ෠୧)]/ sd(θ෠୧). 

To assess the coverage rate of the CIs, let θ෠୐୧ and θ෠୙୧denote the lower ( ሺߙ 2⁄ ሻ	100% ) and 

upper (ሺ1 െ ሺߙ 2⁄ ሻ	ሻ100%) bounds of the ሺ1 െ  100% CI in each replication. For the delta	ሻߙ

method, the boundaries of the CI can be calculated as θ෠୐୧ ൌ θ෠୧ െ ෞ݁௜ and θ෠୙୧ݏ௔/ଶݖ ൌ θ෠୧ െ

 ௔/ଶ is the z score of the intended CI coverage. For the bootstrap method, θ෠୐୧ݖ ෞ݁௜, whereݏ௔/ଶݖ

and θ෠୙୧ is the ሺߙ 2⁄ ሻ	100% and ሺ1 െ ሺߙ 2⁄ ሻ	ሻ100%	percentile of the empirical distribution. I 

assess the coverage rates of the CIs by counting the number of times [θ෠୐୧, θ෠୙୧] containing θ. 

This empirical coverage rate is compared with the nominal confidence level: 50%, 60%, 

70%, 80%, 90% and 95%. Additionally, I compare the average width of the CIs in each 

nominal level. If the CI coverage rates are correct, the narrow the CI width is, the more 

accurate the estimates are. Finally, because some bootstrap samples may not converge, I also 

calculate the convergence rates of the bootstrap samples by dividing the number of the 

successfully converged bootstrap samples by the total number of the bootstrap samples. 

Results 

I evaluate the performance of different methods in the following sequence: the point 

estimation, the SE estimation, the coverage of CI rates, the width of CIs, and convergence 

rate. The performance of different methods is evaluated on the estimation of four structural 

coefficients (bF1F2, bF2F3, bF3F4, and bF4F5) and two factor loadings (bF4V1 and bF4V2). Table 1 

shows the results of the point estimation. Overall, the discrepancy between the estimated 

model parameters and the population parameters is small for all methods, with none of the 

relative bias exceeding 5%. The results are the same for all sample conditions and all model-

correctness conditions. 
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Table 2 shows the results of the SE estimation. The performance of different methods 

depends on the model-correctness conditions. That is, when model is correctly specified, the 

estimated SEs of different methods are close to the empirical standard deviations.  However, 

as the model becomes incorrectly specified, the bias and the relative bias increase for some of 

the parameters in the both delta method and the SP-B method. The estimation of SE by NP-B 

method remains accurate. This tendency is the same across all sample conditions. Moreover, 

model correctness does not affect the estimation of all parameters. For example, the 

estimation of the coefficient between F1 and F2 is less affected than the estimation of the 

coefficient between F2 and F4 when the model is incorrectly specified. Finally, the model 

correctness has less influence on the estimation of factor loadings (bF4V1, bF4V2) than on the 

estimation of structural coefficients. 

Figures 2 and 3 show the CI coverage rates for the coefficients,  bF1F2 and bF2F4, for a 

sample size of 300. The results are similar for larger sample conditions (i.e., 500, 800). When 

the model is correctly specified, the CI coverages of all five methods are correct. This result 

persists if the model is slightly misspecified (misfit 1). However, as the severity of model 

misfit increases, the differences in CI coverages between different methods emerge. On the 

one hand, the model misfit does not affect the CI coverages by the NP-B percentile and the 

NP-B BCa method. That is, the CI coverages by the NP-B percentile and the NP-B BCa 

method are correct in misfit 3 and 4 conditions. On the other hand, model misfit affects the 

CI coverage rate by the delta method, the SP-B percentile method, and, the SP-B BCa 

method. Specifically, in the misfit 2 condition, the delta method, SP-B percentile, and SP-B 

BCa method give incorrect CI coverage rate for the coefficients bF1F2 and bF2F4. In the misfit 3 

condition, the CI coverage of the coefficient bF1F2 is correct but the CI coverage of the 

coefficient bF2F4 is incorrect. Figure 4 shows the CI coverage rates for of the factor loading, 

bF4V1, with sample size of 300. The results are similar for larger sample conditions (i.e., 500, 
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800). The CI coverages rates of all methods are correct in correctly specified model, the 

misfit 1, and the misfit 2 conditions. In the misfit 3 condition, the delta method, SP-B 

percentile method, and the SP-B BCa method give incorrect CI coverage rates. 

Table 3 shows the CI width for bF4V2 estimated by different methods. The narrower 

the CI width is, the more accurate the estimation is. I compare the CI widths only when the 

CI coverage is accurate. Therefore, because the accuracy of CI coverage rates by the delta 

method, SP-B percentile method, and SP-B BCa method are affected by model misfit, their CI 

widths are not discussed in conditions with model misspecified. For correct-model condition, 

the CI widths estimated by all methods are similar. That result persists in the misfit 1 

condition. In the misfit 2 and misfit 3 conditions, the CI widths estimated by the NP-B 

percentile method and the NP-B BCa method are not very different from each other, and the 

CI widths for other parameters are similar. That is, if methods have correct CI coverage rates, 

the CI widths are almost the same. 

Finally, the convergence rates are assessed in the NP-B method and the SP-B method. 

All the bootstrap samples converged in both the NP-B method and the SP-B method. An 

interesting question applied researchers often encounter is NP-B tends to suffer from 

nonconvergence if misfit is large, and the nonconvergence problem may undermine of 

usefulness of NP-B. Based on the present simulation study, nonconvergence does not seem to 

be a drawback NP-B.  

In summary, the NP-B method demonstrate superior performance over other methods 

in terms of the SE estimation, the CI coverage rates, and the convergence rates. Although all 

methods give accurate point estimates in all sample-size conditions and model-correctness 

conditions, some of the SE estimates are biased by the delta method and the SP-B method if 

model is not correctly specified (misfit 2 and misfit 3). In contrast, the SE estimates by the 

NP-B method is accurate the consistent. The similar results are obtained from the estimation 
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of the CI coverage rates. In particular, for some of the structural coefficients, the delta 

method and the SP-B method underestimate the CI coverage rates. But for some factor 

loadings, they overestimate the CI coverage rates. In terms of the width of the CI coverage, if 

methods have the correct CI coverage rates, the widths of their CI coverages are the similar.  

Discussion 

In general, the results from the simulation study suggest that if the model is correctly 

specified, all methods perform equally well. But if the model has misfit, NP-B outperform the 

delta method and the SP-B with respect to the SE estimation and the CI coverage rates. This 

result is consistent across all sample size conditions. This information is useful when using 

the bootstrap method because the bootstrap is criticized if sample size is small. For example, 

Ichikawa and Konishi (1995) found that if the sample size is 150, the bootstrap overestimated 

the empirical SEs. The current study can be considered as an extension of previous study that 

when sample size is above 300, NP-B estimated SE was correct. 

Model misfit plays an important role in the estimation of the SEs. When we use the 

asymptotic method in software to estimate SEs, there is an assumption that the population is 

normally distributed and the model is correctly specified. However it is generally accepted 

that the model is only an approximation to the real world and that no model is absolutely 

correct. If the model is misfit, then, estimation of the SEs by asymptotic method (e.g., the 

delta method) could be incorrect. On the other hand, the bootstrap method for estimating the 

SEs takes both the distribution of the data and the finite sample size into consideration 

(Bollen & Stine, 1990; Boomsma, 1986; Chatterjee, 1984; Ichikawa & Konishi, 1995; Yung 

& Benlter, 1996). Therefore, the bootstrap should outperform the delta method if the model is 

misspecified. The current study confirms that expectation. If the model is correctly specified, 

every method estimates the SEs correctly. However, as the amount of model misfit increases, 

the NP-B method gives us better estimation of the SEs overall than the delta method and the 
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SP-B. Specifically, the SEs estimated by the NP-B are close to the empirical standard 

deviation for all coefficients. However, the SEs estimated by the delta method and the SP-B 

method are correct only for some coefficients. For the factor loadings, the estimated SEs by 

the delta method and the SP-B method are less affected by the model misfit. This result is not 

consistent with previous studies. Ichikawa and Konishi (1995) showed that the bootstrap 

method performs differently for different coefficients. In the current study, only the SP-B 

method shows a similar pattern and the NP-B method accurately estimates SEs for all model 

parameters. 

Which bootstrap method is better at forming confidence intervals, the percentile 

method or the BCa method? Bollen and Stine (1990) recommended the use of the percentile 

method in covariance structure analysis due to its ease of implementation. While Efron and 

Tibshirani (1993) argued that because of the good mathematical properties (transformation 

respecting and second-order correctness), the BCa method is better. If the sample size is 

infinitely large, the two methods become equivalent. But for finite sample sizes, the BCa 

method is believed to approach its asymptotic properties more quickly than the percentile CI 

method. The results of the current study suggest that the performance of the two method are 

similar. The reason might be that because the samples of the current study are drawn from a 

normal population and because the smallest sample size condition (300) is large enough, the 

bootstrap samples are representative to the population. Therefore, the BCa method does not 

need to adjust any bias and skewness in the bootstrap samples. Finally, the two methods 

perform similar if model is misspecified. 

I conducted this simulation study to compare the performance of the delta method, the 

NP-B method and the SP-B method in different sample-size conditions and different model-

misfit conditions. Based on the results of the simulation, I recommended the use of the NP-B 

method to estimate model parameters if the model is likely to be misspecified. It performs 
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best if sample size is above 300. One limitations of the study is that I did not address the issue 

of the distributional form of the population. This issue is potentially as important as model 

misfit because normality is one of the assumptions for the asymptotic approach in estimating 

model parameters. The violation of such an assumption, which is commonly seen in practice, 

could lead to inaccurate estimation. For example, Ichikawa and Konishi (1995) examined this 

issue and found that the SEs estimated by the bootstrap method is less biased than asymptotic 

method if the population is not normally distributed. Therefore, future research should 

address this issue, while taking model misfit into consideration. 
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Table 1 

Point estimates of the standardized population parameters 

 

  

Correct Bias ML NP-B SP-B ML NP-B SP-B ML NP-B SP-B

b F1F2 .500 Absolute .001 .002 .002 .002 .002 .002 .001 .001 -

Relative .002 .004 .004 .004 .004 .004 .002 .002 -

b F2F4 .300 Absolute .003 .003 .005 .007 .007 .001 .002 .002 .003

Relative .010 .010 .017 .023 .023 .003 .007 .007 .010

b F3F4 .600 Absolute .002 .002 .005 .007 .007 .002 .001 .001 .004

Relative .003 .003 .008 .012 .012 .003 .002 .002 .007

b F4F5 .400 Absolute - - - - - - - - .001

Relative - - - - - - - - .003

b F4V1 .600 Absolute .003 .003 - .001 .001 - - - .001

Relative .005 .005 - .002 .002 - - - .002

b F4V2 .700 Absolute .002 .002 .001 .001 .001 .002 - - .001

Relative .003 .003 .001 .001 .001 .003 - - .001

Misfit 1

b F1F2 .503 Absolute .002 .003 .001 - - .001 - - .002

Relative .004 .006 .002 - - .002 - - .004

b F2F4 .249 Absolute .006 .011 - .003 .006 .006 .001 .001 .004

Relative .024 .044 - .012 .024 .024 .004 .004 .016

b F3F4 .665 Absolute .005 .010 .001 .003 .006 .006 .001 .001 .004

Relative .008 .015 .002 .005 .009 .009 .002 .002 .006

b F4F5 .701 Absolute .002 .002 .001 .001 - .001 - - .001

Relative .003 .003 .001 .001 - .001 - - .001

b F4V1 .598 Absolute .001 .002 - - - - - - .001

Relative .002 .003 - - - - - - .002

b F4V2 .698 Absolute .002 .003 .001 - .001 .001 - .001 -

Relative .003 .004 .001 - .001 .001 - .001 -

Poplation 
Value

Note . Bold values are relative bias exceeding 5%; ML=maximum likelihood; NP-
B=nonparametric bootstrap; SP-B=semi-parametric bootstrap.

n =300 n =500 n =800
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Table 1 continue 

Point estimates of the standardized population parameters 

 

  

Bias

Misfit 2 ML NP-B SP-B ML NP-B SP-B ML NP-B SP-B

b F1F2 .585 Absolute .001 - .003 - - .001 - .001 .002

Relative .002 - .005 - - .002 - .002 .003

b F2F4 .407 Absolute - .001 - - - .002 .002 .001 .001

Relative - .002 - - - .005 .005 .002 .002

b F3F4 .617 Absolute .002 .003 .002 .001 .002 .004 .001 .002 .003

Relative .003 .005 .003 .002 .003 .006 .002 .003 .005

b F4F5 .680 Absolute .001 .001 - .001 .001 .001 .001 .001 .001

Relative .001 .001 - .001 .001 .001 .001 .001 .001

b F4V1 .573 Absolute .001 .001 - - - .002 - - .002

Relative .002 .002 - - - .003 - - .003

b F4V2 .673 Absolute .002 .002 .001 .001 .001 .001 - - -

Relative .003 .003 .001 .001 .001 .001 - - -

Misfit 3

b F1F2 .510 Absolute .004 .005 .001 - - .001 .001 .001 -

Relative .008 .010 .002 - - .002 .002 .002 -

b F2F4 .479 Absolute .001 .001 .001 .001 .001 .001 .002 .002 -

Relative .002 .002 .002 .002 .002 .002 .004 .004 -

b F3F4 .675 Absolute .004 .007 .004 .001 .003 .001 .001 .002 .001

Relative .006 .010 .006 .001 .004 .001 .001 .003 .001

b F4F5 .628 Absolute .001 - .001 .001 .002 .003 - - .001

Relative .002 - .002 .002 .003 .005 - - .002

b F4V1 .529 Absolute .001 .002 .001 .002 .002 .002 - - .001

Relative .002 .004 .002 .004 .004 .004 - - .002

b F4V2 .631 Absolute .002 .003 .001 .001 .002 - - - -

Relative .003 .005 .002 .002 .003 - - - -

Poplation 
Value

Note . Bold values are relative bias exceeding 5%; ML=maximum likelihood; NP-
B=nonparametric bootstrap; SP-B=semi-parametric bootstrap.

n=300 n=500 n=800
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Table 2 

Standard errors of the standardized population parameters 

 

  

Bias

Correct Delta NP-B SP-B Delta NP-B SP-B Delta NP-B SP-B

b F1F2 Absolute .052 .001 - .001 .039 .001 .001 .001 .032 .001 .001 .001

Relative .019 - .019 .026 .026 .026 .031 .031 .031

b F2F4 Absolute .098 - .006 .003 .078 .003 .001 .001 .061 .002 - .001

Relative - .061 .031 .038 .013 .013 .033 - .016

b F3F4 Absolute .096 .001 .005 .003 .076 .003 .001 .001 .060 .002 .001 .002

Relative .010 .052 .031 .039 .013 .013 .033 .017 .033

b F4F5 Absolute .056 .002 .001 .001 .043 .001 - .001 .033 - .001 -

Relative .036 .018 .018 .023 - .023 - .030 -

b F4V1 Absolute .041 .001 .001 .001 .030 .001 .001 .001 .025 .001 .001 .001

Relative .024 .024 .024 .033 .033 .033 .040 .040 .040

b F4V2 Absolute .032 .001 .001 .001 .026 .001 .001 .001 .020 - - -

Relative .031 .031 .031 .038 .038 .038 - - -

Misfit 1

b F1F2 Absolute .052 .001 - .001 .038 .001 .002 .001 .032 .001 - .001

Relative .019 - .019 .026 .053 .026 .031 - .031

b F2F4 Absolute .106 .009 .007 .006 .080 .005 .002 .004 .063 .004 - .003

Relative .085 .066 .057 .063 .025 .050 .063 - .048

b F3F4 Absolute .103 .010 .007 .007 .078 .006 .001 .005 .061 .005 - .004

Relative .097 .068 .068 .077 .013 .064 .082 - .066

b F4F5 Absolute .039 .002 - .057 .029 .001 .001 .044 .023 .001 - .034

Relative .051 - 1.462 .034 .034 1.517 .043 - 1.478

b F4V1 Absolute .041 .001 .001 .001 .031 - - - .024 - - -

Relative .024 .024 .024 - - - - - -

b F4V2 Absolute .032 .001 .001 .001 .026 .001 .001 .001 .020 - - -

Relative .031 .031 .031 .038 .038 .038 - - -

Note . Bold values are relative bias exceeding 5%; Delta=the delta method; NP-B=nonparametric 
bootstrap; SP-B=semi-parametric bootstrap. 1: Empirical srandard deviation

n =800n =500n =300Empirical 

SD
1

Empirical 

SD
1

Empirical 

SD
1
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Table 2 continue 

Standard errors of the standardized population parameters 

 

  

Bias

Misfit 2 Delta NP-B SP-B Delta NP-B SP-B Delta NP-B SP-B

b F1F2 Absolute .058 .012 - .012 .044 .008 - .008 .035 .007 .001 .007

Relative .207 - .207 .182 - .182 .200 .029 .200

b F2F4 Absolute .068 .023 .001 .022 .053 .018 - .018 .041 .013 .001 .013

Relative .338 .015 .324 .340 - .340 .317 .024 .317

b F3F4 Absolute .063 .021 - .021 .049 .017 .001 .016 .038 .013 - .012

Relative .333 - .333 .347 .020 .327 .342 - .316

b F4F5 Absolute .040 .001 .001 .001 .032 .002 .001 .002 .024 - .001 -

Relative .025 .025 .025 .063 .031 .063 - .042 -

b F4V1 Absolute .041 .001 - .001 .031 .002 - .001 .024 .002 .001 .002

Relative .024 - .024 .065 - .032 .083 .042 .083

b F4V2 Absolute .034 .001 - .001 .026 .001 .001 .001 .021 - - -

Relative .029 - .029 .038 .038 .038 - - -

Misfit 3

b F1F2 Absolute .052 .002 - .002 .041 .002 .001 .002 .031 - .001 -

Relative .038 - .038 .049 .024 .049 - .032 -

b F2F4 Absolute .075 .032 .002 .031 .060 .026 - .026 .047 .020 - .020

Relative .427 .027 .413 .433 - .433 .426 - .426

b F3F4 Absolute .065 .027 - .027 .050 .021 - .021 .039 .016 .001 .016

Relative .415 - .415 .420 - .420 .410 .026 .410

b F4F5 Absolute .039 .005 - .005 .030 .004 - .004 .024 .003 - .003

Relative .128 - .128 .133 - .133 .125 - .125

b F4V1 Absolute .040 .005 .001 .005 .031 .004 .001 .004 .024 .004 - .004

Relative .125 .025 .125 .129 .032 .129 .167 - .167

b F4V2 Absolute .034 .005 - .005 .026 .004 .001 .004 .021 .003 - .003

Relative .147 - .147 .154 .038 .154 .143 - .143

Note . Bold values are relative bias exceeding 5%; Delta=the delta method; NP-B=nonparametric 
bootstrap; SP-B=semi-parametric bootstrap. 1: Empirical srandard deviation

Empirical 

SD
1

n =300 n =500 n =800Empirical 

SD
1

Empirical 

SD
1
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Table 1 

Point estimates of the standardized population parameters 

 

  

Correct Bias ML NP-B SP-B ML NP-B SP-B ML NP-B SP-B

b F1F2 .500 Absolute .001 .002 .002 .002 .002 .002 .001 .001 -

Relative .002 .004 .004 .004 .004 .004 .002 .002 -

b F2F4 .300 Absolute .003 .003 .005 .007 .007 .001 .002 .002 .003

Relative .010 .010 .017 .023 .023 .003 .007 .007 .010

b F3F4 .600 Absolute .002 .002 .005 .007 .007 .002 .001 .001 .004

Relative .003 .003 .008 .012 .012 .003 .002 .002 .007

b F4F5 .400 Absolute - - - - - - - - .001

Relative - - - - - - - - .003

b F4V1 .600 Absolute .003 .003 - .001 .001 - - - .001

Relative .005 .005 - .002 .002 - - - .002

b F4V2 .700 Absolute .002 .002 .001 .001 .001 .002 - - .001

Relative .003 .003 .001 .001 .001 .003 - - .001

Misfit 1

b F1F2 .503 Absolute .002 .003 .001 - - .001 - - .002

Relative .004 .006 .002 - - .002 - - .004

b F2F4 .249 Absolute .006 .011 - .003 .006 .006 .001 .001 .004

Relative .024 .044 - .012 .024 .024 .004 .004 .016

b F3F4 .665 Absolute .005 .010 .001 .003 .006 .006 .001 .001 .004

Relative .008 .015 .002 .005 .009 .009 .002 .002 .006

b F4F5 .701 Absolute .002 .002 .001 .001 - .001 - - .001

Relative .003 .003 .001 .001 - .001 - - .001

b F4V1 .598 Absolute .001 .002 - - - - - - .001

Relative .002 .003 - - - - - - .002

b F4V2 .698 Absolute .002 .003 .001 - .001 .001 - .001 -

Relative .003 .004 .001 - .001 .001 - .001 -

Poplation 
Value

Note . Bold values are relative bias exceeding 5%; ML=maximum likelihood; NP-
B=nonparametric bootstrap; SP-B=semi-parametric bootstrap.

n =300 n =500 n =800
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Table 1 continue 

Point estimates of the standardized population parameters 

 

  

Bias

Misfit 2 ML NP-B SP-B ML NP-B SP-B ML NP-B SP-B

b F1F2 .585 Absolute .001 - .003 - - .001 - .001 .002

Relative .002 - .005 - - .002 - .002 .003

b F2F4 .407 Absolute - .001 - - - .002 .002 .001 .001

Relative - .002 - - - .005 .005 .002 .002

b F3F4 .617 Absolute .002 .003 .002 .001 .002 .004 .001 .002 .003

Relative .003 .005 .003 .002 .003 .006 .002 .003 .005

b F4F5 .680 Absolute .001 .001 - .001 .001 .001 .001 .001 .001

Relative .001 .001 - .001 .001 .001 .001 .001 .001

b F4V1 .573 Absolute .001 .001 - - - .002 - - .002

Relative .002 .002 - - - .003 - - .003

b F4V2 .673 Absolute .002 .002 .001 .001 .001 .001 - - -

Relative .003 .003 .001 .001 .001 .001 - - -

Misfit 3

b F1F2 .510 Absolute .004 .005 .001 - - .001 .001 .001 -

Relative .008 .010 .002 - - .002 .002 .002 -

b F2F4 .479 Absolute .001 .001 .001 .001 .001 .001 .002 .002 -

Relative .002 .002 .002 .002 .002 .002 .004 .004 -

b F3F4 .675 Absolute .004 .007 .004 .001 .003 .001 .001 .002 .001

Relative .006 .010 .006 .001 .004 .001 .001 .003 .001

b F4F5 .628 Absolute .001 - .001 .001 .002 .003 - - .001

Relative .002 - .002 .002 .003 .005 - - .002

b F4V1 .529 Absolute .001 .002 .001 .002 .002 .002 - - .001

Relative .002 .004 .002 .004 .004 .004 - - .002

b F4V2 .631 Absolute .002 .003 .001 .001 .002 - - - -

Relative .003 .005 .002 .002 .003 - - - -

Poplation 
Value

Note . Bold values are relative bias exceeding 5%; ML=maximum likelihood; NP-
B=nonparametric bootstrap; SP-B=semi-parametric bootstrap.

n=300 n=500 n=800
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Table 2 

Standard errors of the standardized population parameters 

 

  

Bias

Correct Delta NP-B SP-B Delta NP-B SP-B Delta NP-B SP-B

b F1F2 Absolute .052 .001 - .001 .039 .001 .001 .001 .032 .001 .001 .001

Relative .019 - .019 .026 .026 .026 .031 .031 .031

b F2F4 Absolute .098 - .006 .003 .078 .003 .001 .001 .061 .002 - .001

Relative - .061 .031 .038 .013 .013 .033 - .016

b F3F4 Absolute .096 .001 .005 .003 .076 .003 .001 .001 .060 .002 .001 .002

Relative .010 .052 .031 .039 .013 .013 .033 .017 .033

b F4F5 Absolute .056 .002 .001 .001 .043 .001 - .001 .033 - .001 -

Relative .036 .018 .018 .023 - .023 - .030 -

b F4V1 Absolute .041 .001 .001 .001 .030 .001 .001 .001 .025 .001 .001 .001

Relative .024 .024 .024 .033 .033 .033 .040 .040 .040

b F4V2 Absolute .032 .001 .001 .001 .026 .001 .001 .001 .020 - - -

Relative .031 .031 .031 .038 .038 .038 - - -

Misfit 1

b F1F2 Absolute .052 .001 - .001 .038 .001 .002 .001 .032 .001 - .001

Relative .019 - .019 .026 .053 .026 .031 - .031

b F2F4 Absolute .106 .009 .007 .006 .080 .005 .002 .004 .063 .004 - .003

Relative .085 .066 .057 .063 .025 .050 .063 - .048

b F3F4 Absolute .103 .010 .007 .007 .078 .006 .001 .005 .061 .005 - .004

Relative .097 .068 .068 .077 .013 .064 .082 - .066

b F4F5 Absolute .039 .002 - .057 .029 .001 .001 .044 .023 .001 - .034

Relative .051 - 1.462 .034 .034 1.517 .043 - 1.478

b F4V1 Absolute .041 .001 .001 .001 .031 - - - .024 - - -

Relative .024 .024 .024 - - - - - -

b F4V2 Absolute .032 .001 .001 .001 .026 .001 .001 .001 .020 - - -

Relative .031 .031 .031 .038 .038 .038 - - -

Note . Bold values are relative bias exceeding 5%; Delta=the delta method; NP-B=nonparametric 
bootstrap; SP-B=semi-parametric bootstrap. 1: Empirical srandard deviation

n =800n =500n =300Empirical 

SD
1

Empirical 

SD
1

Empirical 

SD
1
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Table 2 Continue 

Standard errors of the standardized population parameters 

 

  

Bias

Misfit 2 Delta NP-B SP-B Delta NP-B SP-B Delta NP-B SP-B

b F1F2 Absolute .058 .012 - .012 .044 .008 - .008 .035 .007 .001 .007

Relative .207 - .207 .182 - .182 .200 .029 .200

b F2F4 Absolute .068 .023 .001 .022 .053 .018 - .018 .041 .013 .001 .013

Relative .338 .015 .324 .340 - .340 .317 .024 .317

b F3F4 Absolute .063 .021 - .021 .049 .017 .001 .016 .038 .013 - .012

Relative .333 - .333 .347 .020 .327 .342 - .316

b F4F5 Absolute .040 .001 .001 .001 .032 .002 .001 .002 .024 - .001 -

Relative .025 .025 .025 .063 .031 .063 - .042 -

b F4V1 Absolute .041 .001 - .001 .031 .002 - .001 .024 .002 .001 .002

Relative .024 - .024 .065 - .032 .083 .042 .083

b F4V2 Absolute .034 .001 - .001 .026 .001 .001 .001 .021 - - -

Relative .029 - .029 .038 .038 .038 - - -

Misfit 3

b F1F2 Absolute .052 .002 - .002 .041 .002 .001 .002 .031 - .001 -

Relative .038 - .038 .049 .024 .049 - .032 -

b F2F4 Absolute .075 .032 .002 .031 .060 .026 - .026 .047 .020 - .020

Relative .427 .027 .413 .433 - .433 .426 - .426

b F3F4 Absolute .065 .027 - .027 .050 .021 - .021 .039 .016 .001 .016

Relative .415 - .415 .420 - .420 .410 .026 .410

b F4F5 Absolute .039 .005 - .005 .030 .004 - .004 .024 .003 - .003

Relative .128 - .128 .133 - .133 .125 - .125

b F4V1 Absolute .040 .005 .001 .005 .031 .004 .001 .004 .024 .004 - .004

Relative .125 .025 .125 .129 .032 .129 .167 - .167

b F4V2 Absolute .034 .005 - .005 .026 .004 .001 .004 .021 .003 - .003

Relative .147 - .147 .154 .038 .154 .143 - .143

Note . Bold values are relative bias exceeding 5%; Delta=the delta method; NP-B=nonparametric 
bootstrap; SP-B=semi-parametric bootstrap. 1: Empirical srandard deviation

Empirical 

SD
1

n =300 n =500 n =800Empirical 

SD
1

Empirical 

SD
1
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Table 3 

Width of the empirical CI coverage with a nominal level of 95% 

Correct

Delta NP-B 
percentile

NP-B BCa SP-B 
percentile

SP-B Bca Delta NP-B 
percentile

NP-B BCa SP-B 
percentile

SP-B Bca Delta NP-B 
percentile

NP-B BCa SP-B 
percentile

SP-B Bca

b F1F2 .199 .201 .202 .199 .199 .155 .156 .156 .154 .155 .122 .122 .122 .122 .122

b F2F4 .384 .409 .409 .398 .398 .294 .303 .303 .301 .301 .233 .237 .237 .235 .235

b F3F4 .374 .398 .398 .387 .387 .285 .295 .295 .292 .292 .226 .230 .230 .228 .228

b F4F5 .213 .217 .217 .213 .214 .165 .167 .167 .166 .166 .131 .132 .132 .131 .131

b F4V1 .157 .157 .157 .156 .156 .121 .121 .121 .121 .121 .096 .095 .096 .095 .096

b F4V2 .128 .129 .129 .127 .128 .099 .099 .099 .098 .099 .078 .078 .078 .078 .078

Misfit 1

b F1F2 .200 .203 .203 .198 .199 .154 - - .154 .154 .122 .123 .123 .122 .122

b F2F4 - - - - - - .322 .321 - - - .248 .248 .233 .233

b F3F4 - - - - - - .311 .311 - - - .240 .240 - -

b F4F5 - .150 .151 - - .111 .115 .116 - - .088 .091 .091 - -

b F4V1 .156 .157 .157 .155 .156 .121 .121 .121 .121 .121 .096 .096 .096 .095 .095

b F4V2 .128 .129 .130 .128 .128 .099 .099 .099 .099 .099 .078 .078 .079 .078 .078

Misfit 2

b F1F2 - .227 .227 - - - .172 .172 - - - .135 .135 - -

b F2F4 - .269 .269 - - - .206 .206 - - - .162 .162 - -

b F3F4 - .248 .248 - - - .189 .189 - - - .150 .150 - -

b F4F5 .152 .158 .159 .153 .153 - .123 .123 - - - .097 .097 .093 .093

b F4V1 .165 .158 .159 .164 .164 - .123 .123 .127 .127 - .097 .097 - -

b F4V2 .136 .133 .134 .136 .136 .107 .104 .104 .106 .106 .084 .082 .082 .084 .084

Misfit 3

b F1F2 .198 .203 .203 .197 .197 .153 .156 .156 .152 .152 .121 .123 .123 .121 .121

b F2F4 - .301 .301 - - - .234 .234 - - - .185 .185 - -

b F3F4 - .254 .255 - - - .196 .196 - - - .155 .155 - -

b F4F5 - .154 .155 - - - .118 .119 - - - .094 .094 - -

b F4V1 - .153 .154 - - - .119 .119 - - - .094 .094 - -

b F4V2 - .134 .135 - - - .104 .104 - - - .082 .082 - -

n =300 n =500 n =800
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Figure 1 

Structural part of the SEM model 
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Figure 2 

Empirical CI coverage rates for bF1F2 with sample size of 300 
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Figure 3 

Empirical CI coverage rates for bF2F4 with sample size of 300 
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Figure 4 

Empirical CI coverage rates for bF4V1 with sample size of 300 

 




