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ABSTRACT OF THE DISSERTATION

MRI Reconstruction and Motion Compensation Techniques for Liver Fat and R>* Quantification

by

Shu-Fu Shih
Doctor of Philosophy in Bioengineering
University of California, Los Angeles, 2024

Professor Holden H. Wu, Chair

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as
non-alcoholic fatty liver disease (NAFLD), is the most common chronic liver disease with a
current global prevalence of 25% to 40%. MASLD is associated with the metabolic syndrome
and cardiovascular morbidity, and can progress to fibrosis and cirrhosis. Chronic liver diseases
such as viral hepatitis and MASLD can also lead to hepatic iron overload. Magnetic resonance
imaging (MRI) provides non-invasive evaluation of hepatic steatosis and iron overload by
quantifying proton-density fat fraction (PDFF) and R>*. Conventional MRI techniques for liver
PDFF and R>* quantification require breath-holding, which can be challenging for children and
elderly patients. 3D stack-of-radial MRI techniques have been proposed for self-gated free-
breathing liver PDFF and R>* quantification. However, several challenges remain, including

residual streaking artifacts from system imperfections, long scan acquisition times,
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computationally expensive reconstructions, and insufficient modelling of non-rigid liver motion
during free-breathing. Techniques to overcome these challenges are important for a wide clinical
adoption of free-breathing MRI techniques for liver PDFF and R>* quantification. Additionally,
in recent years, there has been an increased interest in lower-field MRI systems. A less expensive
lower-field MRI system with a larger bore diameter may improve accessibility and comfort for
populations with obesity and at risk for fatty liver diseases. However, the low signal-to-noise
ratio problem can impact image quality and quantification accuracy. Therefore, noise reduction
techniques are important to improve liver PDFF and R»* quantification in lower-field MRI
systems.

This work focuses on developing MRI reconstruction techniques to improve liver PDFF
and R»* quantification. First, this work developed a phase-preserving beamforming-based
technique to effectively reduce radial streaking artifacts from system imperfections. This
technique can be further integrated with motion-resolved reconstruction to improve self-gated
free-breathing liver PDFF and R>* quantification. Second, this work developed an uncertainty-
aware physics-driven deep learning network for rapid reconstruction of PDFF and R>* maps
from self-gated free-breathing MRI. The uncertainty maps generated from the network can be
used to predict quantification errors and improve reliability of deep learning reconstruction
results. Third, this work developed a compressed sensing reconstruction model with non-rigid
motion compensation to improve and accelerate self-gated free-breathing liver PDFF and Ro*
quantification. Last, this work developed and evaluated image and k-space denoising techniques
that can improve quantification accuracy and precision of Cartesian-based liver PDFF and R>*
quantification at 0.55T. These technical advancements can provide accurate and motion-robust

liver fat and Ro* quantification.
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CHAPTER 1

Introduction

1.1 Clinical Significance of Liver Fat and Iron Quantification

Hepatic steatosis is characterized by abnormal accumulation of fat in the liver. Metabolic
dysfunction-associated steatotic liver disease (MASLD)!2, formerly known as non-alcoholic
fatty liver disease (NAFLD), is the most common chronic liver disease with a current global
prevalence of 25% to 40%>*. MASLD ranges from simple steatosis to Metabolic Dysfunction-
Associated Steatohepatitis (MASH) (formerly known as non-alcoholic steatohepatitis [NASH]),
which is hallmarked by liver fibrosis. MASLD is associated with the metabolic syndrome and
cardiovascular morbidity, and can progress to fibrosis and cirrhosis that lead to hepatic
carcinoma or liver failure>-!°, Nontargeted liver biopsy is still considered the reference method
for diagnosis of hepatic steatosis!!. However, liver biopsy is an invasive procedure and is not
appropriate for long-term monitoring that requires repeated evaluations. Liver biopsy also suffers
from sampling bias and the assessment of steatosis on histopathology can be subjective!'?!3.

Hepatic iron overload can result from excessive iron accumulation due to hereditary
hemochromatosis or occur in patients undergoing repeated blood transfusion therapies'416.
Chronic liver diseases such as viral hepatitis and MASLD can also lead to hepatic iron overload!”-!8,
Similarly, liver biopsy is the conventional method for iron quantification and iron overload
diagnosis'’. An invasive technique is not suitable for long term monitoring of hepatic iron overload.

As the obesity rate continues to rise across the world, global prevalence rates of MASLD
and chronic liver diseases are also increasing. Techniques that can provide non-invasive
measurements of hepatic steatosis and iron deposition can play a significant role in disease

diagnosis, treatment, and monitoring.



1.2 Conventional MRI Techniques for Liver Fat and R>* Quantification

Single-voxel proton (‘H) MR Spectroscopy (MRS) has high accuracy for measuring tissue
fat content by resolving signal contributions from fat and water in the spectral domain. MRS
techniques have been shown to be practical, accurate, and reproducible for non-invasive
quantification of liver fat. However, similar to biopsy, single-voxel MRS technique suffers from
sampling bias!. On the other hand, chemical shift-encoded (CSE) MRI methods exploit the
difference in the resonance frequencies and resulting phases at different echo times (TE) to
separate fat and water signals 2, and enable spatially resolved assessment of hepatic fat content
with high spatial resolution and volumetric coverage. Proton density fat fraction (PDFF), a ratio
of the signal from fat protons and the signal from fat and water protons combined, has been used
for fat quantification?!. R2* can be quantified using multi-echo gradient-echo sequences. Studies
have found that the presence of tissue fat can affect R2* quantification accuracy. Since MRI PDFF
and R>* both provide essential information for clinical decision making regarding liver health and
are confounding factors for each other in the quantitative MRI signal models for multi-echo
gradient-echo sequences, they are often jointly modeled and quantified using CSE MRI methods?*-
25

Major MRI system vendors have commercial products for liver PDFF and R>* mapping.
Although 3D or 2D multi-slice liver PDFF and R>* mapping methods have been successfully
employed in routine clinical protocols, conventional MRI methods using Cartesian data sampling
require a breath-holding acquisition of 15 to 20 seconds to reduce motion-induced artifacts in the
liver and abdomen?®. This breath-holding requirement can limit the practical use of MRI for liver
PDFF and R>* mapping in populations that are less compliant with breath-holding instructions or

have limited breath-holding capacities, such as the elderly, children, or patients with chronic



diseases?”?®. Unsuccessful breath-holding that results in motion artifacts can lead to errors for
PDFF and R»* quantification. To overcome the limitations of breath-holding, in recent years there
has been an increase in the number of research works developing and evaluating free-breathing

MRI techniques for PDFF and/or R>* quantification in the liver.

1.3 Motion-Robust Free-Breathing MRI Techniques for Fat and R»*

Quantification

1.3.1 Free-Breathing MRI Techniques

Non-Cartesian MRI sampling trajectories often repeatedly visit the k-space center over
many readouts and are generally less sensitive to motion due to averaging effects near the center
of k-space and the geometries of the sampling trajectories?®. Motion artifacts in non-Cartesian MRI
are usually more distributed and less disruptive compared to Cartesian sampling°. However, the
artifacts can still degrade the image quality and lead to quantification errors. In addition to artifacts,
Bo field variation, especially near the tissue-air boundary (e.g., the liver-lung interface), can cause
errors in Ro* estimation®!. Studies investigated free-breathing R>* mapping found elevated Ro*
values when respiratory motion is not corrected®2. One explanation is that directly averaging signal
from different motion states, which has different phase dispersions due to By variation, can cause
additional artifactually signal decay. In one study that uses 3D stack-of-radial acquisitions for free-
breathing PDFF and R»* quantification®3, an R,* bias of 18.5 s*! has been reported if respiratory
motion is not corrected. These disadvantages, including increased artifacts and quantification
errors, can affect conventional breath-holding techniques and free-breathing scans when motion is
not properly managed. Free-breathing scans with strategies to manage motion is therefore

important for improved diagnostic quality and quantification accuracy.



One strategy to manage motion is to use a motion surrogate signal to prospectively acquire
MRI data from a certain motion state or retrospectively group the acquired MRI data into different
motion states during image reconstruction®’. The prospective acquisition or retrospective
assignment of data to specific motion states is also referred to as “gating.” Self-navigation is one
popular approach in non-Cartesian MRI. The central k-space signal (i.e., DC signal)* or a z-axis

projection signal calculated from k-space data along the k«=k,=0 line has been used**3* to track

respiratory motion along the foot-head direction.

1.3.2 Challenges in Image Reconstruction and Motion Modelling

In recent years, free-breathing techniques using stack-of-radial MRI and self-gating
motion management have been proposed for liver PDFF and R>* quantification®6-3%, Studies
showed improved quantification accuracy in adult and pediatric MASLD patients, especially in
R>* measurements, when motion gating was applied*-¢. However, several challenges remained
for free-breathing 3D stack-of-radial MRI techniques for liver PDFF and R>* quantification.
First, non-Cartesian MRI is sensitive to system imperfections®®. Gradient error calibration
through radial spoke alignment can only solve linear gradient errors*®*’. Other imperfection such
as Bo inhomogeneity and gradient non-linearity can results in radial streaking artifacts and affect
diagnostic quality and quantification accuracy. Second, motion-resolved reconstruction for self-
gated free-breathing PDFF and R»* quantification requires computationally expensive iterative

algorithms®7-38,



1.4 MRI Fat and R;* Quantification Techniques at Lower Field Strengths

In recent years, there has been increased interest in lower field strength MRI systems
because of advantages such as reduced hardware and siting costs and reduction of artifacts in

#1-43_ These systems can increase MRI accessibility to low-resource regions.

certain applications
The larger bore diameters*! (compared to conventional 1.5T and 3T scanners) that these lower
field strengths MRI system provided can also benefit obese patients at risk of fatty liver diseases.
Rapid Ry* decay from high iron overload can make accurate R>* quantification
challenging, especially at 3T. Ro* quantification on lower field strength MRI systems*4 (e.g.,
<IT) can have higher dynamic range. Recently, Campbell-Washburn et al. presented the
feasibility of Ro* mapping in liver iron overload patients using a breath-holding multi-echo
gradient-echo acquisition at 0.55T*#’. Despite the benefits, the reduction of signal-to-noise ratio
(SNR) at lower fields can limit the precision. On the other hand, unlike R>* values, PDFF
measurements do not vary with field strength. Lower field strength MRI can provide a larger
bore diameter which can improve comfort for patients with a larger body habitus*, which is
common for patients with MASLD. The feasibility of fat-water separation in breath-holding
abdominal scans at 0.55T*%% and 0.75T>° has been demonstrated. However, the in-phase and
out-of-phase echo times are much longer at lower fields, which exacerbates the trade-offs
between breath-holding acquisition time and imaging parameters. This makes accurate liver

PDFF and R>* quantification with adequate spatial resolution and coverage at lower fields more

challenging than at 1.5T and 3T.



1.4.1 Considerations for the Acquisition Parameters

A common choice at 3T is 6 echoes at either out-of-phase or in-phase echo times and a
low flip angle of 3° to 5° for reducing the Ti-related bias in PDFF estimation?®. Due to the longer
out-of-phase and in-phase echo times at 0.55T, this strategy would lead to longer TEs and TR
that prolong acquisition beyond the acceptable time for one breath-hold. On the other hand, the
effect of the Ti-related bias is reduced at 0.55T because of the shortened T, values and the
increased TR. A larger flip angle that balances between SNR and the T-related bias may be
considered for accurate PDFF mapping at 0.55T. As the R>* values change with the field

strength’!, TEs for accurate R>* quantification should also be reconsidered.

1.4.2 Challenges in Scans with Low Signal-to-Noise Ratio

Because of the reduced SNR at lower fields, limited image resolution, reduced volumetric
coverage, or longer scan time are common trade-offs to increase SNR for acceptable image
quality. Previous works have also shown that the small flip angle required for accurate PDFF
quantification (by mitigating T bias®?) further decreases the SNR and can become a source of
quantification errors>. Noise reduction is therefore important and necessary for accurate PDFF
and Ro* quantification at lower field strengths.

Techniques to reduce noise in MRI are the focus of active research>*. Image filtering> or
constrained reconstruction®® can be used to suppress the rapidly-fluctuating high-frequency noise
components. However, these methods incur risks of over-smoothing the images and removing
desired signal components. Denoising techniques that can objectively estimate underlying noise

variance and suppress noise with minimal over-smoothing effects are being actively explored.



1.5 Specific Aims

The purpose of the dissertation is to develop MRI reconstruction and motion compensation
techniques to improve 1) free-breathing liver PDFF and R»>* quantification at 3T and 2) breath-
holding Cartesian-based liver PDFF and R>* quantification at 0.55T. In the long term, these
technical breakthroughs will provide a rapid and motion-robust free-breathing liver PDFF and
R>* quantification that can benefit patients with limits breath-holding capacity. Additionally,
improving breath-holding liver PDFF and R>* quantification at 0.55T MRI systems can increase

accessibility for populations with obesity and at risk for fatty liver disease.

1.5.1 Aim 1: Phase-Preserving Beamforming-Based Streaking Reduction Method for Free-
Breathing Radial MRI

Chapter 2 presents a phase-preserving beamforming-based technique to reduce radial
streaking artifacts caused by system imperfections. This study investigated a distinct
beamforming formulation that allows phase fidelity to be preserved while suppress streaking
artifacts. A pipeline with automatic interference patch selection was also developed to remove
the need of manual intervention. The integration of beamforming and compressed sensing
reconstruction was further demonstrated in reconstruction of self-gated free-breathing PDFF and

R>* quantification.

1.5.2 Aim 2: Rapid Uncertainty-Aware Deep Learning Reconstruction for Free-Breathing
Liver Fat and R,* Quantification
Chapter 3 presents a deep learning network that reconstructs liver PDFF and R>* maps

from self-gated free-breathing stack-of-radial MRI and provides uncertainty estimation maps that



can be used for predicting quantification errors. This end-to-end deep learning network consists
of an artifact suppression module and a parameter mapping module which can suppress artifacts
and perform signal fitting. The novel component in this network, uncertainty map for the
quantification parameter, further enhances the reliability of deep learning-based reconstruction

with the capability of predicting quantification errors.

1.5.3 Aim 3: Improved Accelerated Free-Breathing Liver Fat and R;* Quantification using
Compressed Sensing with Non-Rigid Compensation

Chapter 4 presents a compressed sensing reconstruction framework with non-rigid
motion compensation for accelerated free-breathing liver PDFF and R>* quantification. In this
work, deformation vector fields with phase correction terms were used to describe the non-rigid
motion information between motion states. Using the non-rigid motion warping operator into a

compressed sensing model can lead to sharper quantitative maps with less streaking artifacts.

1.5.4 Aim 4: Accurate Liver Fat and R>* Quantification at 0.55T using Image and k-
Space Denoising Techniques

Sub-aim 4.1: Evaluation of Image-Based Locally Low-Rank Principal Component
Analysis Denoising in Fat and R:* Quantification at 0.55T

Chapter 5 evaluates two image-based locally low-rank principal component analysis
denoising techniques for liver PDFF and R>* quantification at 0.55T. This study used a Monte
Carlo simulation to investigate the quantification accuracy and precision across different scan
acquisition parameters. Based on the simulation results, a multi-echo gradient-echo protocol for

liver PDFF and R»* quantification at 0.55T was designed. The performance of two locally low-



rank principal component analysis-based denoising algorithms were evaluated in phantoms and
in in vivo liver datasets. This study found that both denoising methods can improve accuracy and

precision of PDFF and R>* quantification at 0.55T.

Sub-aim 4.2: Development of Multi-Coil Multi-Contrast k-Space Denoising
Technique for Fat and R;* Quantification at 0.55T

Chapter 6 presents a novel k-space denoising technique to denoise multi-coil multi-
contrast MRI. Using spectral property of block-Hankel matrices constructed by k-space samples,
the additive Gaussian noise can be effectively suppressed. The k-space denoising technique can
be directly applied in the originally-acquired k-space data and can be applicable for many multi-
coil multi-contrast datasets. This study showed that the k-space denoising technique can improve
image sharpness when compared with image-based denoising methods in the application of liver

PDFF and R>* quantification at 0.55T.



CHAPTER 2
Phase-Preserving Beamforming-Based Streaking Reduction Method

for Free-Breathing Radial MRI

2.1 Introduction

Radial acquisition has been increasingly used in free-breathing abdominal MRI
applications®”->® due to its inherent motion robustness. However, radial acquisition can be
sensitive to system imperfections®-%°. The resulting streaking artifacts can impact image quality
or quantification accuracy in quantitative liver MRI. Gradient delay correction methods®! based
on radial spoke alignment have been proposed to correct k-space trajectories. However, this
approach cannot fully resolve the effects of system imperfections, such as gradient non-linearity
and By field inhomogeneity, and residual streaking artifacts can still occur. This usually becomes
accentuated in areas more distant to the isocenter (e.g., especially arms in abdominal scans) and
the resulting streaking artifacts can obscure liver features.

Different approaches have been proposed to suppress the streaking artifacts resulting
from system imperfections, including 1) coil selection-based methods® that automatically
choose images from coils with less artifacts and 2) beamforming-based methods® that combine
images from all coils with specific weights to suppress streaking artifacts. The first method only
chooses a subset of coils and can impact the overall signal-to-noise ratio (SNR) in final coil-
combined images. Previous work has demonstrated that beamforming-based methods can
provide better radial streaking reduction®®. However, previous beamforming-based methods did
not explicitly consider phase and did not evaluate the artifact-suppression performance on phase,

which is important for applications including fat quantification’” and temperature mapping®*.
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Additionally, a major challenge of the previous beamforming-based methods is the need to
manually select interference regions that one wants to suppress. This hinders the widespread
application of such a method for streaking reduction in radial MRI.

In this work, we developed a different beamforming formulation that can suppress
streaking artifacts while preserving accurate phase information. We further developed an
automatic interference patch selection technique which involves deep learning-based

segmentation to avoid the need for manual input in beamforming-based streaking reduction.

2.2 Methods

2.2.1 Adaptive Coil Combination

Here, we briefly introduce the theory of adaptive coil combination® which is closely
related to the beamforming-based streaking reduction technique that we will introduce in
subsequent sections.

We assume the received signal in i coil is

y; = s;x +n; (Eq. 2-1)
where x represents the underlying magnetization, s; represents i coil sensitivities and n;
represents the noise. As the MRI signal is complex-valued, all the variables considered here are
complex-valued. The adaptive coil combination method seeks to find coil combination weights
w; such that the coil-combined image
m=Y;wy; = Xwisix +win; (Eq. 2-2)

has the maximized SNR. An optimization problem is formulated in each signal patch:

Hic.an|? H
argmaxE(IW Giol) _ wiRsw (Eq. 2-3)

w  E(wHn|h  wHRnw
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where E (.) represents expectation operator, R, and R,, represent covariance matrices of received
signal sx and noise/interference n which can be estimated from the multi-coil images. It has
been demonstrated in previous work that the analytic solution of w is F(R;;*R,), where F(.)

extracts the dominant eigenvector .

2.2.2 Phase-Preserving Beamforming-Based Streaking Reduction

Similarly, for beamforming-based coil combination, we assume the received signal in the
i" coil is y; = s;x + n;. The only difference is that now n; represents the interference in the i
coil (i.e., the undesired radial streaking artifacts caused by system imperfections). The previously
proposed beamforming-based method® finds coil combination weights that maximize the signal-
to-interference ratio (SIR) instead of adaptive coil combination methods that maximizes the
SNR. However, a potential problem in this max-SIR formulation is that phase information is not
explicitly considered. Any weight we’/% with an arbitrary phase offset ¢ is also an optimal
solution to the optimization problem.

(wele) el _ winaw o g

(wei®) " Ry (wel®) wHR,w

The resulting phase will be dependent on the numerical algorithm used to solve the
eigenvalue problem. While it may not affect applications that only consider magnitude images, it
may contribute to errors in applications when phase is of interest.

Here, we present a new formulation that is based on the minimum-variance distortionless
response (MVDR) beamformer in antenna theory®. This method finds weights w by solving the
optimization problem

argminwf’R,w subject to Y;w;s; =1 (Eq.2-5)

w
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The constraint };; w;s; = 1 corresponds to a “distortionless response” which will preserve

the signal from a specific direction in a complex domain. The analytic solution to this MVDR

Ry-~s
sHR; s

problem is While s is typically unknown, is can be estimated by extracting the principal

component from local patches®’.

We also extended the beamforming techniques to 3D, where the interference region
includes patches from several axial slices (Figure 2-1). This leads to smoother variation of signal
intensity in the interference region, avoiding signal inconsistency in the final reconstructed 3D

images.

2.2.3 Automatic Identification of Interference Patches

Previous beamforming-based methods®**’ required manual selection of interference
patches which can prolong the reconstruction processing time. Therefore, we developed an
automatic interference patch identification method that can be easily incorporated into the
reconstruction pipeline.

A deep learning network, U-Net®, was trained to segment the images into the body, the
left arm, the right arm and the background. Our training data consisted of 20 axial free-breathing
abdominal MRI scans using a multi-echo stack-of-radial sequence. After deep learning-based
segmentation, two interference patches were automatically selected by choosing the patches with
the largest signal intensities in the two arms in each axial slice. The entire pipeline is shown in

Figure 2-1.
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Figure 2-1. Reconstruction pipeline of the phase-preserving beamforming-based radial streaking
reduction method with automatic interference patch identification.
2.2.4 Data Acquisition and Image Reconstruction

In a Health Insurance Portability and Accountability Act (HIPAA)-compliant study
approved by the local institutional review board, 30 adults underwent abdominal scans on a 3T
scanner (MAGNETOM Skyra or Prisma, Siemens Healthineers, Erlangen, Germany). Written
informed consent was obtained before scans. We used a 3D multi-echo stack-of-radial gradient
echo sequence to acquire data during free-breathing acquisitions. The following scan parameters

were used: TEs =[1.23, 2.46, 3.69, 4.92, 6.15, 7.38] ms, TR = 8.85 ms, flip angle = 5°, field-of-
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view (FoV) = 300x300 to 460x460 mm?, slice thickness = 5 mm. Gradient delay correction using
radial spoke alignment’-®! was applied before image reconstruction and coil combination.

The reconstruction was done in MATLAB (R2021a, MathWorks, Natick,
Massachusetts). We used the MATLAB built-in “svd” function in the beamforming coil

combination (for both Max-SIR and MVDR beamforming).

2.2.5 Evaluation of Streaking Reduction Performance

We compared 3 different coil combination algorithms: 1) adaptive coil combine (ACC)
65, 2) max-SIR beamforming®, and 3) MVDR beamforming. Beamforming-based methods
require identification of an interference source (e.g., arms in abdominal scans). All 3 approaches
required estimation of local signal covariance matrices. Different patch sizes (5x5, 11x11 and
17x17) were compared for local patch extraction.

To assess the performance of streaking reduction, we used a metric known as cancellation

H
wg Rpw, . . . . . . .
69 = —ijRn ‘:, where wy, is a quiescent vector, w is the calculated coil combination weights,
n

ratio
and R, is the covariance matrix for interference. We also compared phase consistency along

cross-section lines on phase images.

2.2.6 Feasibility of Beamforming-Based Coil Combination in Motion-Resolved Free-
Breathing MRI

The beamforming-based method can also be compatible with compressed sensing
reconstruction by using the obtained coil combination weights as the coil sensitivity maps. We

reconstructed self-gated free-breathing liver PDFF and R>* maps using motion-resolved
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reconstruction and different coil combination methods. The optimization problem for the motion-
resolved reconstruction is:
x* = argmin, ||[FSx — y||3 + 1, TV™oton(x) +
Az Zecho,state”Wavelet(xecho,state)”1 (Eq. 2-6)

where F represents the non-uniform fast Fourier Transform (NUFFT) operator, S denotes
beamforming-based coil combination weights, x is the reconstructed multi-echo images, y is the
acquired k-space data, and A, and A, are regularization parameters. The regularization
parameters were chosen manually to balance between undersampling artifact reduction and
image sharpness. The PDFF and R>* maps were calculated by fitting to a 7-peak fat model”® with

a single Ro* decay term.

2.3 Results

Figures 2-2 and 2-3 compare the magnitude and phase of the first-echo coil-combined
images using different methods. Max-SIR beamforming resulted in phase jumps that do not
come from phase wraps (red arrows in the figures). The proposed MVDR beamforming provide
consistent phase information as in results from adaptive coil combination. A small patch size of
5x5 for calculation of signal covariance matrices can be sufficient for artifact suppression in
magnitude images. However, the experimental results showed that a larger patch size (e.g.,

17x17) is required for suppressing streaking artifacts in phase images.
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Figure 2-2. Coil-combined magnitude and phase images using (a) the adaptive coil combination,
(b) the max-SIR beamforming, and (c) the proposed MVDR beamforming. Yellow boxes
represent the patches automatically identified for interference covariance matrix calculation. The
same patches were used for max-SIR beamforming and MVDR beamforming. Max-SIR
beamforming results show rapid-changing phase (red arrows) variation. A larger patch size is
needed to reduce streaking artifacts in phase images (blue arrows).
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(a) ACC (b) Max-SIR beamforming
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Figure 2-3. Another comparison of coil-combined magnitude and phase images using (a) the
adaptive coil combination, (b) the max-SIR beamforming, and (¢) the proposed MVDR
beamforming. A smaller patch size is sufficient for suppress streaking artifacts in magnitude
images. However, residual streakings can still be observed in results using a smaller patch size.

Figure 2-4 compares the phase profiles from different reconstruction methods. In this
case, an unnatural phase jump can be observed in the max-SIR beamforming results. The MVDR
beamforming has a similar phase profile as the adaptive coil combination results, and with less
streaking artifacts in the phase images.

Figure 2-5 compares the cancellation ratio for these 3 methods. Both max-SIR and

MVDR beamforming showed increased cancellation ratio, demonstrating improved streaking

artifact suppression performance.
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Figure 2-4. Phase profiles in phase images from ACC, Max-SIR beamforming and MVDR
beamforming.
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Figure 2-5. Box plot for cancellation ratios in different coil combination methods.
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The streaking artifacts from the arms are evident with radial undersampling and motion
self-gating® (red arrows) (Figure 2-6). Using beamforming instead of conventional adaptive coil
combination suppresses the streaking specifically from the arms (orange arrows). When using
motion-resolved reconstruction (reconstructed with optimization problem in Eq. 2-6) with
conventional adaptive coil combination, the specific artifact patterns from the arms cannot be
fully suppressed (blue arrows) and can affect PDFF and R>* quantification accuracy. Combining
compressed sensing and beamforming generated images and quantitative maps with most of the

streaking artifacts suppressed (green arrows).

Self-gated free-breating MRl Self-gated free-breating MRI Self-gated free-breating MRI  Self-gated free-breating MRI
using using using CS and using CS and
adaptive coil combine MVDR beamforming adaptive coil combine MVDR beamforming

(a)

Figure 2-6. Images and PDFF/R>* maps using different reconstruction methods. (a) Results
from self-gated free-breathing MRI using conventional adaptive coil combination and the
proposed MVDR beamforming pipeline. (b) Results from motion-resolved CS reconstruction
using conventional adaptive coil combination and the proposed beamforming pipeline.
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2.4 Discussion

Compared with previous works that only investigated beamforming-based streaking
reduction in magnitude images using radial MRI acquisitions, we investigated beamforming on
both magnitude and phase images and proposed a different beamforming formulation that
preserves consistent phase information. Although the performance of interference suppression
decreased a little for the MVDR beamformer compared with the max-SIR beamformer in terms
of cancellation ratio, MVDR provides consistent phase information that is important in phase-
sensitive applications.

We found that magnitude and phase images have different sensitivities to the patch size
for signal covariance matrix calculation. The streaking reduction performance in the magnitude
images is similar from patch sizes 5x5 to 17x17. Since a larger patch size requires longer
computational time, a small patch size will be sufficient if only magnitude images are required.
On the other hand, a larger patch size is required to effectively suppress the streaking artifacts in
the phase images. The computational bottlenecks for these coil combination methods are the
repeated calculations of singular value decomposition. The use of parallel processing and high-
performance hardware can reduce the computational time.

The automatic interference patch selection pipeline is suitable for abdominal scans with
standard axial planes where the streaking artifacts usually come from the arms. For abdominal
scans with sagittal, coronal, or oblique planes and for scans in other body parts, different deep
learning segmentation models may be trained to automatically select the interference patches.
Even without an automatic patch selection method, the MVDR beamforming method can still be

applied to suppress the streaking with manual identification of the interference patches.
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The proposed beamforming-based coil combination method for streaking reduction can
be easily adapted to different reconstruction methods, including constrained reconstruction or
deep learning-based reconstruction, by replacing the coil sensitivity maps with the calculated
beamforming coil combination weights. Further investigation on streaking reduction
performance in different radial MRI applications, especially in phase-sensitive applications, will

be investigated in the future.

2.5 Conclusion

In this study, we proposed a 3D phase-preserving beamforming-based coil combination
method with an automatic interference patch selection pipeline for coil combination in radial
MRI. The proposed method effectively suppressed streaking artifacts from system imperfections

while providing robust phase information.
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CHAPTER 3
Uncertainty-Aware Physics-Driven Deep Learning Network for

Free-Breathing Liver Fat and R;* Quantification

3.1 Introduction

Chronic liver disease is a global health burden’!"3, Liver disease is characterized by
histological changes that include hepatic steatosis, inflammation, fibrosis, and iron
deposition!®7+7, Progressive liver disease is associated with cirrhosis and hepatocellular
carcinoma, and can culminate in liver failure®. Biopsy is considered the standard technique for
diagnosing liver diseases. However, biopsy suffers from sampling bias, is invasive, and is
associated with complications!2.

MRI evaluates hepatic steatosis and iron overload by quantifying proton-density fat
fraction (PDFF) and R»*, using chemical-shift-encoded multi-echo Dixon techniques that acquire
and fit data to a signal model that accounts for the multi-peak fat spectrum and R»>* component®!.
Conventional Dixon techniques using a multi-echo 3D Cartesian sequence?® are sensitive to
motion and require breath-holding (10-20 sec). The breath-holding requirement limits the
volumetric coverage and resolution, and can be challenging for patients®?. Recently, a multi-echo
3D stack-of-radial technique®?>7 has been developed for free-breathing liver PDFF and R»*
quantification and demonstrated accurate results in subjects with non-alcoholic fatty liver disease
(NAFLD)*. To compensate for respiratory motion in free-breathing radial data acquisition, self-
gating is used to reconstruct images from a subset of data with consistent motion behavior.
However, motion self-gating introduces radial undersampling artifacts in the images and

quantitative maps. These artifacts can be mitigated by acquiring more radial spokes®? or using
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constrained reconstruction®4, but these strategies require a longer acquisition and/or
computational time.

Accurate and rapid signal fitting is another challenge in PDFF and R>* quantification.
Due to the non-convex structure of the signal model and ambiguities in resonant frequencies of
water/fat protons with respect to Bo field variations, signal fitting can converge to a local
minimum solution and lead to fat-water swaps. State-of-the-art graph-cut (GC)-based

methods®-8¢

impose smoothness constraints on the field map and use optimization algorithms to
reduce the occurrence of fat-water swaps. However, the GC-based algorithms are
computationally expensive with computation time on the order of 10 sec/slice®.

Compared with iterative constrained reconstruction methods for MRI, such as
compressed sensing (CS)**7, deep learning (DL)-based methods can rapidly enhance or
reconstruct images from undersampled data by leveraging datasets from prior scans. Previous
studies have developed novel DL networks for MRI enhancement or reconstruction from
undersampled Cartesian data®®%. Although there were DL networks developed for undersampled
radial MRI?%-%3, there is a lack of investigation regarding multi-echo radial MRI for PDFF and
R2* mapping. On the other hand, DL has also been used to replace the computationally
expensive fat-water signal fitting process. Different network architectures®*®” and loss
functions®® have been proposed to separate fat/water signals or generate PDFF/R,>* maps.
However, these methods only investigated fully-sampled Cartesian data and did not consider
radial acquisition nor data undersampling.

Developing, evaluating, and translating DL-based methods for quantitative MRI

parameter mapping can be challenging because quantification errors can be difficult to detect by

visual inspection. Confidence levels of quantification accuracy from the DL network outputs
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were not typically characterized in previous studies®* 8. Recently, there have been initial
developments in incorporating uncertainty estimation in the DL networks for MR image
reconstruction®®-1%!, These works showed promise by investigating the relationships between
estimated uncertainty scores and reconstruction errors. A recent work showed promising results
of using uncertainty estimation for quantitative MRI PDFF maps obtained from DL!%2, The study
indicated that the uncertainty scores were related to the noise levels in the input data. However,
the relationship between the uncertainty scores and quantification accuracy was not established.
In this work, we developed an uncertainty-aware physics-driven deep learning network
(UP-Net) that can rapidly calculate accurate liver PDFF and R>* maps using multi-echo images
from undersampled self-gated free-breathing stack-of-radial MRI data. UP-Net simultaneously 1)
suppressed radial streaking artifacts due to undersampling after self-gating, 2) calculated
accurate quantitative liver PDFF and R>* maps, and 3) provided pixel-wise uncertainty maps for
each quantitative parameter within a rapid inference time <100 ms/slice. We calibrated the UP-
Net uncertainty scores and demonstrated the ability to predict liver PDFF and R»>* quantification

errors using the uncertainty scores.

3.2 Methods

3.2.1 Uncertainty-Aware Physics-Driven Deep Learning Network (UP-Net)

We proposed UP-Net (Figure 3-1) to generate accurate quantitative maps from
undersampled 2D multi-echo images and provide pixel-wise uncertainty maps which can be used
to predict quantification errors. UP-Net contained two concatenated network modules for artifact
suppression and parameter mapping. The first module took 2D multi-echo undersampled images

x as the input and generated enhanced 2D multi-echo images m with suppressed undersampling
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artifacts. For x and m, multi-echo images, including both the real and imaginary components,

were stacked along the channel dimension. The second module transformed m to quantitative

parameter maps p and their corresponding uncertainty maps . In our case of multi-parameter

fitting, p and @i are 3D tensors where different 2D quantitative maps are stacked along the

channel dimension. UP-Net requires reference multi-echo images and reference quantitative

maps for training. Details regarding reference data generation are described in section 3.2.5.
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Figure 3-1. The proposed uncertainty-aware physics-driven deep learning network (UP-Net) for
rapid free-breathing proton-density fat fraction (PDFF) and R>* quantification from self-gated
multi-echo stack-of-radial MR images. The artifact suppression module used a generative
adversarial network (GAN) architecture to reduce the radial undersampling artifacts due to self-
gating. The parameter mapping module used a bifurcated UNet structure, which had a shared
encoder and two decoders, to calculate parameter maps (pixel-wise means) and uncertainty maps
(pixel-wise variances). NUFFT: non-uniform fast Fourier transform.

Convolutional neural networks (ConvNet) have been proposed to effectively suppress

artifacts from undersampling?+2°. Recently, there are works showing that generative adversarial

networks (GAN) can improve the quality of the reconstructed images for radial MRI compared

26



to conventional ConvNet!?1% We used a GAN architecture for the artifact suppression module.
The generator was implemented using a 2D UNet architecture®®, and the discriminator was
implemented using the architecture proposed in'®. To deal with image contrast variation across
subjects, instance normalization'?® was used in both the generator and the discriminator. A

detailed diagram for the UP-Net implementation is presented in Figure 3-2.
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Figure 3-2. Network architectures for the (a) artifact suppression module and (b) parameter
mapping module in UP-Net.
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We considered the quantitative parameter output as distributions which can be
characterized using pixel-wise means p and pixel-wise variances i from a Bayesian
perspective!'?-1% We interpreted p and i as the quantitative maps and the corresponding
uncertainty maps. For each pixel index j, a larger value of @, indicates a wider spread of the
distribution and therefore the associated p, has higher uncertainty. By assuming a prior data
distribution, the network can be trained to predict p and #i simultaneously using the loss function
introduced in section 3.2.2. In light of the deeply correlated nature of p and i, we used a
“bifurcated UNet” architecture (Figures 3-1 and 3-2) for the parameter mapping module. This
architecture has one shared encoder that extracts features from multi-contrast images m, and two
separate decoders that generate parameter maps p and uncertainty maps #i. Because the
uncertainty score, or the variance of a distribution, should always be nonnegative, a softplus

layer (Softplus(x) = log(1 + e*)) was added prior to the uncertainty map output.

3.2.2 Loss Function for UP-Net Training
We constructed a loss function with 5 components for supervised training of UP-Net:
Lyp_net = WiLlimguse + WaLlimgean + Walmapmse + Walpnysics + WsLuncere  (Eq. 3-1)
An image mean square error (MSE) loss was used to measure the errors between enhanced (m)

and reference (m) multi-echo images:
1 . 2
LimgMSE = N_ij(mj - mj) (Eq. 3-2)
, where j represents the pixel index and N; is the total number of pixels in the multi-echo images.

We trained the GAN architecture using a Wasserstein GAN loss!?, which can be formulated as:

N MaX Epy -y, [P0 = By oy [DGOR)] (B 3-3)

28



, where G represents the generator, D represents the discriminator. The loss for updating the
generator G was:

Limgcan = Egpsy[D(G(M))]  (Eq. 3-4)
We also used an MSE loss that measures the errors between quantitative maps from UP-Net (p)

and reference data (p):
Lingnse = 52,y =p))*  (Eq.3-5)

To promote learning of the signal fitting process we used an MRI physics loss:
Lpnysies =5 (R = Q#)*  (Eq. 3-6)

where Q represents an operator that transforms the quantitative maps to multi-echo images based
on the MRI signal equation. In this work where we investigated PDFF and R>* quantification,
the operator Q we used was:

Q) = QW,F, R, ¢, TE) = (W + F - (Sh_y @y, - e2nTE) ) . e RiTE . o270TE (Eq 3-7)
where W, F, R}, ¢ represent the quantitative water maps, fat maps, Ro* maps, and By field maps.
A 7-peak fat model” with amplitudes a,,, and frequencies f;,, were also included. To predict
quantitative parameter outputs with corresponding uncertainty scores, we used an uncertainty

loss:

Luncere = 221 + log(a)  (Eq. 3-8)
This uncertainty loss function is equivalent to performing maximum a posteriori (MAP)
inference where a Laplace distribution'?” is assumed for each quantitative parameter in each
pixel. We can also understand this loss function from a more intuitive perspective. First, in
regions where the ||[p — p||; error minimization is difficult (e.g., regions with lower signal-to-

noise ratio), increased values of @i can reduce the loss, therefore capturing uncertainty. Second,
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the log(1i) term can serve as a regularization term to avoid unconstrained increase in the
uncertainty score.

The relative weights for each loss component in Equation 1 can impact the results. We
chose the weight combination that achieved the lowest PDFF and R>* quantification errors in the

validation set: w; = 0.2, w, = 0.2, w3 = 0.2, w, = 0.3, and wy = 0.1.

3.2.3 Training Strategy for UP-Net

To shorten the convergence time for training UP-Net, we used a step-by-step training
strategy.
Step 1: Pre-train the artifact suppression module using pairs of input undersampled images x and
reference images m as the training data and using only L guyse and Liyggan for the loss
function.
Step 2: Pre-train the parameter mapping module without the uncertainty estimation path using
pairs of reference multi-contrast images m and reference quantitative maps p as the training data
and using only Ly, qpmse and Lypysics for the loss function.
Step 3: Load the weights trained from Steps 1 and 2, and then train the entire UP-Net end-to-end
without the uncertainty path using Lingmses Limgcans> Lmapmse and Liyoqe; for the loss function
(i.e., not including the uncertainty loss term yet).
Step 4: Train the entire UP-Net using training sets of undersampled images x, reference images
m and reference quantitative maps p with the full loss function Lyp_pet-

For all training steps, data augmentation for images/maps was performed by mirroring
(no flip or horizontal flip) and rotating by n*90 degrees (n=0,1,2,3). This augmented the training

data size to 8 times that of the original training data. In addition, we used a “phase
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augmentation” strategy to further augment training data by adding a phase offset to the multi-
echo input images, multi-echo reference images, and reference fat and water complex signals at
the same time (Figure 3-3). The signal magnitudes were not changed, and the relationship
between images and quantitative maps were not modified. In each epoch during training, we
generated 3 more instances for each 2D slice in this manner (i.e., in addition to the original data,
3 different phase offsets were applied to generate 3 more instances). The phase offsets were
randomly selected between 0~2m. This strategy aimed to improve robustness to phase variations,

which is important in separating fat/water signals.
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Figure 3-3. Overview of the data augmentation strategy used in this work. For phase
augmentation, a phase offset (¢p) was added to 1) self-gated images, 2) reference compressed
sensing (CS)-reconstructed images, 3) reference complex-valued fat signal and 4) reference
complex-valued water signal to generate phase-augmented training data. Signal magnitudes were
not modified. R>* and field map values were not changed. In each epoch during training, 3 more
instances (in addition to the original data) were generated by using 3 random phase offsets ¢,
¢, and ¢5 in the range of [0, 2m].

3.2.4 Data Acquisition
In a HIPAA-compliant and IRB-approved study, we acquired MR images from 105
subjects, including healthy subjects and subjects with suspected or confirmed NAFLD, at 3T

(MAGNETOM Skyra or Prisma, Siemens Healthineers, Erlangen, Germany). Fifty-seven of the

32



subjects were adults (34 females, 23 males; age 48.16+£19.01 years; body mass index [BMI]:

26.98+5.94kg/m?) and 48 of the subjects were children (19 females, 29 males; age 13.06+2.99

years; BMI: 22.85+8.41kg/m?). Written informed consent, parental permission, and assent, if

applicable, were obtained for all subjects prior to research procedures. We scanned using a

prototype free-breathing multi-echo gradient-echo 3D stack-of-radial sequence with bipolar

readout gradients (FB Radial, parameters in Table 3-1)>’. To compare with standard breath-

holding techniques, we acquired an additional breath-hold bipolar multi-echo gradient-echo 3D

Cartesian sequence (BH Cartesian, parameters in Table 3-

1)%. We separated the data into

training (N=63), validation (N=21), and testing (N=21) datasets using a 3:1:1 ratio (Table 3-2).

Subject information and data were entered into a secure database for management and

analysis!!0,

We trained and tested UP-Net using only FB Radial data, while the BH Cartesian data

served as an external reference for evaluation of PDFF and R»>* quantification accuracy. For BH

Cartesian data, images and the quantitative PDFF and R>* maps were reconstructed using

vendor-provided software on the scanner.

Table 3-1. Representative sequence parameters for free-breathing 3D stack-of-radial (FB Radial)
and breath-holding (BH) 3D Cartesian axial MRI scans at 3T. N/A: not applicable.

Sequence parameters FB Radial \ BH Cartesian
TE (ms) 1.23, 2.46, 3.69, 4.92, 6.15, 7.38
TR (ms) 8.85
Flip angle (°) 5 5
Field of view 360-440 x 360-440 mm? 360-440 x 360-440 mm?
Slice thickness (mm) 5 5
Matrix size (X, Y, Z) 224-288, 224-288, 40-72 224-288, 224-288, 30-40
Acceleration factor N/A R=4 (parallel imaging)
Radial spokes 354-454 N/A
Scan time (min:sec) 2:28 - 4:49%* 0:19%
Retrospective R=2.5 (40% self-gating N/A
undersampling acceptance rate)

*Radial gradient calibration time was not included. *Prescan calibration time was not included.
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Table 3-2. Dataset characteristics. NAFLD: non-alcoholic fatty liver disease. Std: standard
deviation.

Datasets | Total Adult Pediatric Total number | Range of
number of | subjects subjects of 2D slices liver PDFF
subjects values

Training 63 24 NAFLD, 18 NAFLD?, 2528%* Min: 0.4%

set 11 healthy 10 healthy Max: 33.4%

Mean:
10.5%
Std: 9.7%
Validation | 21 7 NAFLD, 6 NAFLD?, 812 Min: 0.9%
set 4 healthy 4 healthy Max: 28.4%
Mean: 9.2%
Std: 8.8%
Testing 21 7 NAFLD, 5 NAFLD?, 860 Min: 0.6%
set 4 healthy 5 healthy Max: 25.2%
Mean: 9.8%
Std: 8.4%

*Before performing data augmentation. See text in section 3.2.3 for details about data
augmentation. “Suspected or confirmed NAFLD.
3.2.5 Reference Data Preparation for UP-Net Training

UP-Net was trained in a supervised approach, which demands high-quality multi-echo
images and quantitative maps with minimal artifacts to serve as references. However, it is
challenging to acquire fully-sampled data for reconstruction of motion-resolved 3D volumetric
images in the abdomen. To satisfy the Nyquist sampling criteria after self-gating, longer
acquisition time is needed, which may increase sensitivity to motion effects. Previous works
have used CS to generate images and quantitative maps for DL network training in applications
where a fully-sampled reference dataset is difficult to acquire!!!!!2, Following a similar strategy,
we acquired nominally fully-sampled stack-of-radial data before applying motion self-gating,
and used CS to reconstruct motion self-gated images with suppressed undersampling artifacts.

The workflow for generating the training data for UP-Net is shown in Figure 3-4.

Gradient delays were calibrated to correct the radial trajectory for FB Radial data
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reconstruction'é, We extracted a projection-based self-navigator from the kyx= ky= 0 line in k-
space™® to track respiratory motion along the z dimension. A sliding window approach was
applied along the motion dimension to bin the k-space data into 6 respiratory motion states
where each bin contained 40% of the entire k-space data (effective data undersampling factor =
2.5 in each state). We estimated coil sensitivity maps using the phased array beamforming
technique developed in Chapter 2''3, which has been shown to suppress radial artifacts resulting
from system imperfections (e.g., gradient non-linearity and By field inhomogeneity). We
formulated the 2D CS reconstruction problem as®>:

x* = argmin, ||[FSx — y||3 + 1, TV™oton(x) +

/12 Zecho,state ” Wavelet (xecho,state) ” 1 (Eq 3'9)

where F represents the non-uniform fast Fourier Transform (NUFFT) operator, S denotes coil
sensitivity maps, x is the reconstructed multi-echo images, y is the acquired k-space data, and A
and A, are regularization parameters. The regularization parameters were chosen manually to
balance between undersampling artifact reduction and image sharpness. After CS reconstruction,
we calculated quantitative maps (including complex fat/water components, R>* map, and By field
map) by fitting the CS-reconstructed multi-echo images to a 7-peak fat model’® with a single R»*
component (same as Eq. 3-7) using GC-based algorithms®>8¢. Local fat-water swaps still
occurred in certain slices and were difficult to correct using GC-based algorithms; we excluded
these slices from the training dataset. We generated body masks from the first-echo CS-
reconstructed magnitude images, and applied the body masks to the CS-reconstructed images
and the corresponding quantitative maps for background artifact and noise suppression. We will

refer to the reference CS-reconstructed self-gated free-breathing stack-of-radial images as
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FB+CS and the corresponding quantitative maps reconstructed by GC-based algorithms as

FB+CS+GC.
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Figure 3-4. The workflow for generating reference data (multi-echo images and quantitative
maps) for training UP-Net. Nominally fully-sampled stack-of-radial k-space data were binned
into 6 respiratory motion states using projection-based self-navigators. A 2D compressed sensing
(CS) framework with beamforming-based coil sensitivity maps was used to reconstruct multi-
echo images with reduced undersampling streaking artifacts. Quantitative maps were generated
by fitting the multi-echo images to a fat-water signal model with a single R>* component. Body
masks were generated from the CS-reconstructed first-echo images for background suppression.
The input images x to UP-Net were coil-combined 6-echo images using 40% of FB
Radial data near the end-expiration state (Figure 3-1). The real and imaginary components from
each echo were stacked along the channel dimension (6 echoes X real/imaginary components =
12 channels). The output from the artifact suppression module had the same data dimensions as

the input images (12 channels), and were fed into the parameter mapping module. The output

from the parameter mapping module contained 1) complex-valued fat and water components,
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R>* map, and field map stacked along the channel dimension and 2) three uncertainty maps for
PDFF, R>*, and field map stacked along the channel dimension. PDFF maps were generated

from complex fat/water components for calculation of Ly,qpmsg and Lypcere, While the complex-

valued fat/water components were directly used in L, q¢;-
Based on PDFF and R>* quantification accuracy in the validation dataset, the
hyperparameters for the end-to-end UP-Net training were chosen as: batch size=32, initial

learning rates=0.0001, and epochs=150, using the Adam optimizer.

3.2.6 Evaluation of UP-Net Image Quality and Quantification Accuracy

We evaluated the performance of UP-Net in terms of image quality and quantification
accuracy of the output images and maps in the testing dataset. For image quality, we compared
the enhanced image results from UP-Net with the reference FB+CS images using normalized
root mean squared error (NRMSE) and structure similarity index (SSIM). For quantification
accuracy, we calculated differences in PDFF and R>* quantification results using liver regions of
interest (ROIs) for 1) FB+UP-Net versus FB+CS+GC and 2) FB+UP-Net versus BH Cartesian.
ROIs with area of 5-cm? were placed in the right lobe of the liver by a trained researcher while
avoiding large vessels and bile ducts®. A total of 3 ROIs were placed in the upper, middle and
lower liver (one ROI at each level) for each subject. Bland-Altman analysis was performed to
evaluate PDFF and R>* accuracy by calculating the mean difference (MD) and 95% limits of

agreement (LoA) between different methods.
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3.2.7 Evaluation of UP-Net Uncertainty Estimation

We evaluated the performance of UP-Net uncertainty estimation in terms of its ability to
predict quantification errors according to the following steps.
Step 1: Complete UP-Net training.
Step 2: In the validation dataset, measure 1) quantification errors (};egos|P; — pil) between UP-
Net and reference FB+CS+GC results and 2) UP-Net uncertainty scores in the liver ROIs. Use a
linear correlation model to generate “calibration curves” between quantification errors and UP-
Net uncertainty scores for each quantitative parameter separately. Calculate Spearman
correlation coefficients and test for statistical significance.
Step 3: Output UP-Net uncertainty scores for liver ROIs in the testing dataset. Transform UP-
Net uncertainty scores to predicted quantification errors using the calibration curves.
Step 4: Perform Bland-Altman analysis on predicted quantification errors versus actual
quantification errors in the testing dataset, with respect to FB+CS+GC results, for each

quantitative parameter separately.

3.2.8 UP-Net Ablation Study

We performed an ablation study to assess the contributions of the key components used
in UP-Net, including phase augmentation, GAN loss, MRI physics loss, uncertainty estimation,
and joint end-to-end training strategy. After training each ablated model with the same training
dataset, we compared the results in the testing dataset using NRMSE and SSIM for image
quality, and absolute errors in liver PDFF and R>* for quantification accuracy. We used the
Wilcoxon signed-rank test to evaluate if the performance of the ablated network models had

significant difference versus the performance of UP-Net. P<0.01 was considered significant.
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3.3 Results

3.3.1 UP-Net Image Quality and Quantification Accuracy

Figure 3-5 shows representative first-echo magnitude and phase images from UP-Net
input, UP-Net output results, and FB+CS results in two subjects with NAFLD (a 47-year-old
male and a 17-year-old male). UP-Net suppressed the radial undersampling streaking artifacts in
the liver and in the background (arrows in Figure 3-5), and achieved high SSIM compared with
FB+CS. Figures 3-6 and 3-7 show representative quantitative PDFF, R>* and field map results
in axial and coronal orientations and the corresponding uncertainty maps in two NAFLD subjects
(same subjects as in Figure 3-5). UP-Net generated accurate PDFF/R,*/field maps compared
with FB+CS+GC references in the liver ROIs. Most regions show low quantification errors
(Figures 3-6 and 3-7) in all 3 quantitative parameters. Regions corresponding to air usually had
large quantification errors. The uncertainty maps show high intensities (red arrows in Figures 3-

6 and 3-7) and characterize the lower confidence in these regions in air.
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Figure 3-5. Representative free-breathing (FB) stack-of-radial first-echo images from self-gated
input images, UP-Net output results, and reference images reconstructed by compressed sensing
(CS). (a) Results from a 47-year-old male (BMI=28.0kg/m?) in the testing set. (b) Results from a
17-year-old male (BMI=30.4kg/m?) in the testing set. Structural similarity index (SSIM) values
comparing UP-Net output with reference images are shown. Arrows point to streaking artifacts
in the self-gated images that are suppressed in the UP-Net output and reference images. BMI:
body mass index.
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Figure 3-6. Representative free-breathing (FB) (a) proton-density fat fraction (PDFF), (b) R>*
and (c¢) field maps and corresponding uncertainty maps from the same subject in Figure 3-5(a).

PDFF, R>* and field map errors were generally low when comparing UP-Net results with
reference maps reconstructed using compressed sensing (CS) and graph-cut (GC) algorithms. In
regions with larger quantification errors, higher UP-Net uncertainty scores were observed in all 3

quantitative maps (red arrows). Errors and higher uncertainty scores around the body were in
regions corresponding to air.
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Figure 3-7. Representative free-breathing (FB) (a) proton-density fat fraction (PDFF), (b) R>*
and (c¢) field maps and corresponding uncertainty maps from the same subject in Figure 3-5(b).
PDFF, R>* and field map errors were generally low when comparing UP-Net results with
reference maps reconstructed using compressed sensing (CS) and graph-cut (GC) algorithms. In
regions with larger quantification errors, higher UP-Net uncertainty scores were observed in all 3

quantitative maps (red arrows). Errors and higher uncertainty scores around the body were in
regions corresponding to air.
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Bland-Altman plots for liver PDFF and R>* quantification accuracy are shown in Figure
3-8. For PDFF quantification, FB+UP-Net achieved MD = -0.36% compared with FB+CS+GC,
and MD = 0.53% compared with BH Cartesian. For R>* quantification, FB+UP-Net achieved
MD = -0.37 s'! compared with FB+CS+GC, and MD = 6.75 s"'compared with BH Cartesian.
LoA between FB+UP-Net versus FB+CS+GC was narrower than FB+UP-Net versus BH

Cartesian for both PDFF and R>* quantification.
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Figure 3-8. (a-b) Bland-Altman plots comparing liver proton-density fat fraction (PDFF) values
from UP-Net output maps versus free-breathing (FB) reference maps and breath-holding (BH)
Cartesian maps. (c-d) Bland-Altman plots comparing liver R>* values from UP-Net output maps
versus FB reference maps and BH Cartesian maps. The dashed lines represent zero difference.
The solid lines represent mean differences (MD) and 95% limits of agreements (LoA).

43



3.3.2 UP-Net Uncertainty Estimation

Linear correlation results comparing absolute quantification errors versus uncertainty
scores of three quantitative parameters in liver ROIs in the validation dataset are shown in
Figure 3-9(a). The Spearman correlation coefficients for PDFF, Ro* and field map were 0.358
(p<0.05), 0.466 (p<0.01), and 0.503 (p<0.01), respectively. These calibrated linear regression
curves were used to convert uncertainty scores measured in the testing dataset to predicted
quantification errors. The Bland-Altman plots for UP-Net predicted errors versus actual
quantification errors in liver ROIs are shown in Figure 3-9(b). MDs between UP-Net predicted
errors versus actual absolute quantifications errors were 0.27%, 0.12 s”!, and 0.19 Hz for PDFF,
R»*, and field map, respectively. Note that the quantification errors were all generally low to

begin with.
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Figure 3-9. (a) Correlation plots between absolute quantification errors (UP-Net outputs versus
reference compressed sensing and graph-cut fitting results) and UP-Net uncertainty scores in
liver regions of interest (ROIs) in the validation dataset. Linear regression was performed to
calibrate PDFF, R>* and field map uncertainty scores with respect to the absolute errors. (b)
Bland-Altman plots comparing the errors predicted from UP-Net uncertainty scores versus the
actual absolute quantification errors in PDFF, R>* and field map in liver ROIs in the testing
dataset. The black dashed lines represent zero difference. The black solid lines represent mean
differences (MD) and 95% limits of agreements (LoA).

3.3.3 UP-Net Ablation Study Results

Table 3-3 shows the results of our ablation study. UP-Net achieved higher mean SSIM of
0.872 and lower mean NRMSE of 0.173 compared with the ablated UP-Net models without
phase augmentation or GAN loss (all p<0.01). Compared with the ablated UP-Net model without
the MRI physics loss, UP-Net achieved lower mean PDFF error of -0.36% and lower mean R>*

error of -0.37 s (both p<0.01). UP-Net without uncertainty estimation did not have significant
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difference in image quality and quantification accuracy when compared with UP-Net (i.e., the
addition of the uncertainty path did not degrade quantification accuracy). UP-Net without joint
training achieved higher mean PDFF error of -0.46% (p<0.01) compared to UP-Net with joint

training.

Table 3-3. Ablation study in the testing dataset for different components used in UP-Net.
Structural similarity index (SSIM) and normalized root mean squared error (NRMSE) were
evaluated on magnitude images, with respect to compressed sensing results. Proton-density fat
fraction (PDFF) and R»* quantification errors were evaluated in liver regions of interest, with
respect to compressed sensing and graph-cut fitting results. Results are reported as mean +
standard deviation. * represents statistically significant difference (p<0.01, Wilcoxon signed-
rank test) compared with UP-Net.

Component Metric
Networ Phase GAN | Physics | Uncertainty Joint SSIM NRMSE PDFF Errors Ro* Errors
k Augmentation Loss Loss Estimation | Training
1 v v v v 0.851+ 0.182+ -0.92%+ -0.545'+
0.055%* 0.048* 0.95%* 3.02s7'*
2 v v v v 0.858+ 0.194+ -0.31%+ -0.68s'+
0.067* 0.053* 1.05% 3.46s'*
3 v v v v 0.870+ 0.178+ -1.69%+ -2.50s"+
0.049 0.050 1.49%* 5.03s'*
4 v v v v 0.877+ 0.176+ -0.29%+ -0.345+
0.048 0.042 0.88% 3.81s’
5 v v v v 0.884+ 0.168+ -0.46%+ 0415+
0.050 0.061 1.47%* 3.02s™
UP-Net v v v v v 0.872+ 0.173+ -0.36%+ -0.37s'+
0.053 0.059 0.98% 3.56s’!

3.3.4 Processing and Reconstruction Time

Data preparation steps of gradient calibration, self-gating, NUFFT, and beamforming-
based coil combination (Figures 3-1 and 3-2) required a total time of 30 sec/slice. Repeated
forward and inverse NUFFT are the bottleneck for the CS reconstruction method. To improve
computational performance, we implemented the CS reconstruction method using GPU-based
NUFFT packages’®. CS reconstruction took 3 min/slice on an Intel Xeon E5-2660 CPU with
128GB RAM and an NVIDIA v100 GPU with 32GB memory. We used the ISMRM fat-water
toolbox>® and code from previous works?!' for GC fitting algorithms, which required 15

seconds/slice on the same CPU. UP-Net required 28 hours to train on an NVIDIA v100 GPU
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with 32GB memory. With the prepared data as input, UP-Net took 79 msec/slice for network
inference (using same hardware as network training). A more detailed analysis of the total

operation counts for each method was provided in Table 3-4.

Table 3-4. Comparison of the number of floating-point operations (FLOPs) for reconstructing
one slice using different methods. The compressed sensing (CS) algorithm used in this work was
implemented using conjugate gradient descent. The graph-cut based fitting algorithm was
implemented using code from the ISMRM fat-water toolbox. The CS algorithm is an iterative
method and the FLOPs count is based on the average iteration number used in this work.
Number of FLOPs for UP-Net was calculated using the ptflops package
(https://pypi.org/project/ptflops/) and the number of FLOPs for CS and graph-cut algorithm were
calculated with the help of the Lightspeed Matlab Toolbox
(https://github.com/tminka/lightspeed).

Compressed sensing Graph cut-based UP-Net
fitting algorithm

FLOPs 60.2 G 1.8G 15.64 G

3.4 Discussion

We developed an uncertainty-aware physics-driven deep learning network that accurately
quantifies liver PDFF and R>* using undersampled self-gated free-breathing multi-echo stack-of-
radial MRI. Compared with previous works on DL-based fat/water separation and/or R»*

9498 our study has two main contributions. First, we investigated a DL approach for

mapping
PDFF and R>* mapping from undersampled radial MRI data. Unlike previously proposed
networks that learned mapping from fully-sampled Cartesian images to fat/water signals or
quantitative maps®+?8, UP-Net generates accurate quantitative maps from images impacted by
radial undersampling artifacts. We incorporated artifact suppression and parameter mapping into
one end-to-end network. This substantially reduced the computational time for image artifact

suppression compared to time-intensive CS methods and fat-water signal fitting compared to GC

algorithms. Second, our proposed network has built-in uncertainty estimation that generates
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pixel-wise uncertainty maps for different quantitative parameters. Uncertainty estimation to
assess the confidence levels in DL-based MRI reconstruction and quantitative parameter
mapping results is a nascent direction®-192, We specifically investigated the application of
uncertainty estimation in DL-based PDFF and R>* quantification and demonstrated that a
calibration method for the UP-Net uncertainty scores can be used to predict absolute liver PDFF
and R>* quantification errors in UP-Net parameter maps to within 1% and 3 s’!, respectively,
compared to actual errors with respect to reference methods.

To suppress radial undersampling streaking artifacts, we used UNet as the backbone
architecture, which has been used in previous work for radial streaking reduction in 2D
slices”®?!, dynamic 2D cardiac images®®, and 2D images from different respiratory phases!!4. In
this work, we adapted the input/output dimensions of UNet to accommodate the 2D multi-echo
images. We stacked the real and imaginary components from all of the multi-echo images along
the channel dimension to preserve the consistency of the magnitude and phase input information
for PDFF and R>* quantification. We also adopted a GAN architecture and a phase augmentation
strategy for image quality improvement. Due to limited memory on the GPU for network
training, correlations between neighboring slices were not considered in this study. Networks
that can efficiently process multi-echo 2D+slice or multi-echo 3D volumetric data could be
further investigated. Although it is possible to omit the artifact suppression module and use one
single network to generate quantitative maps directly from self-gated undersampled radial
images, UP-Net with a modular architecture can provide more accurate quantitative maps with

less radial streaking artifacts (example in Figure 3-10).
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Figure 3-10. Comparison of results from (a) UP-Net without an artifact suppression module, (b)
proposed UP-Net, and (c) reference quantitative maps using compressed sensing and graph-cut
algorithms. In (a), we trained UP-Net without an artifact suppression module using pairs of self-
gated multi-echo images and reference quantitative maps. This approach used a single network to
suppress the radial undersampling artifacts and perform parameter mapping at the same time,
which can be challenging. We found that the radial streaking artifacts were not adequately
suppressed (yellow arrow) and there were PDFF quantification errors (green arrow).
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In addition to rapid computational time, another potential advantage of using UP-Net or
other DL-based methods for fat-water separation is reducing the occurrence of fat-water swaps.
In our datasets, there were slices with local fat-water swaps (usually around the liver dome)
using the GC methods. These slices required manually adjusting GC parameters, such as By field
map smoothness or range, to address the swaps. When training UP-Net, we excluded data with
fat-water swaps and performed phase augmentation, which helped the network to learn reliable
fat-water separation in the presence of By field map variations. The use of UP-Net can potentially
reduce the occurrence of fat-water swaps (Figures 3-11) and avoid the extra time/effort needed

to check and fix fat-water swaps.
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Figure 3-11. Example cases where a graph cut-based method generated PDFF maps with local
fat-water swaps and UP-Net generated PDFF maps without fat-water swaps. The local fat-water
swaps usually occur near the liver dome in our free-breathing MRI dataset. In these 2D slices,
the liver usually occupies a small portion of the field of view and is more likely to result in local
fat-water swaps (arrows) using the conventional method (compressed sensing + graph-cut based
fitting). In contrast, these slices do not exhibit fat-water swaps in our UP-Net results.

One concern of DL-based fat-water separation is whether the network could perform

accurate mapping for datasets with liver PDFF values outside the range in the training dataset.
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UP-Net has two advantages that could allow it to generalize to these cases. First, we used an
MRI physics loss that will constrain the output to follow the fat-water signal model. Second,
even though the training dataset we used in this work has a maximum liver PDFF around 30%,
UP-Net still learned from the signal characteristics in fat-dominant tissues (e.g., subcutaneous
adipose tissue) with PDFF up to 90%. To investigate this, we created synthetic testing datasets
with higher liver PDFF, and used UP-Net to perform PDFF mapping. A representative example
in Figure 3-12 shows that UP-Net can indeed quantify higher liver PDFF values (e.g., >40%)
that were not included in the training dataset. Another concern of DL-based fat-water separation
is whether the network can be adapted to several different body parts. Although different body
parts may have different By field map ranges and variations, their signal characteristics are
described by the same fat-water signal model. After training UP-Net on a certain dataset (e.g.,
liver and upper abdomen), the fat-water signal model is implicitly learned. Through transfer
learning and fine tuning, UP-Net can potentially be applied to other body parts (e.g., lower

abdomen).
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Figure 3-12. (a) Example of a synthetic testing case with higher PDFF. First, we performed
parameter mapping from the dataset using a reference method with graph-cut fitting. Next, we
multiplied the fat signal component within the liver by 1.5 and divided the water signal
component within the liver by 1.5 to synthesize a case with higher liver PFFF (>40%). (b) We
used the same approach as in (a) to generate corresponding synthetic self-gated images with
higher liver PDFF, which were used as inputs to UP-Net. (¢) Reference images and quantitative
maps for the synthetic testing case in (a). (d) The UP-Net results for this higher-PDFF synthetic
testing case. The quantitative values from the UP-Net results were consistent with the synthetic
reference data.

Fully-sampled free-breathing motion-resolved volumetric abdominal stack-of-radial MRI
data is often impractical to acquire. We used CS to generate images and quantitative maps with

suppressed radial streaking artifacts. CS methods have already been validated for PDFF
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quantification using undersampled Cartesian MRI'!> and for PDFF and R>* quantification using
undersampled radial MRI data®*. For complete evaluation of our UP-Net quantification accuracy,
we also compared UP-Net results with standard 3D BH Cartesian MRI. Many previous DL-
based fat-water signal fitting methods were only evaluated on individual fat and water maps®*7.
We evaluated our results on quantitative PDFF maps. Similar to a previous DL-based method for

I°%, we also achieved low biases in PDFF, Ry*,

joint PDFF and R>* mapping using Cartesian MR
and field map values versus reference methods. Notably, we trained and tested our method on a
larger dataset (105 subjects). In contrast, a previous report considered 31 subjects®®. Previous DL
methods did not investigate their results in NAFLD subjects, while our UP-Net was trained and
evaluated in a population including healthy subjects and subjects with suspected or confirmed
NAFLD. In our Bland-Altman analysis of PDFF and R>* quantification accuracy, the MD
between FB+UP-Net and FB+CS+GC was smaller than the MD between FB+UP-Net and BH
Cartesian. This was expected because UP-Net was trained using reference data from the
FB+CS+GC method. The MD and LoA of PDFF and R>* quantification comparing FB+UP-Net
versus BH Cartesian are similar to results in previous studies comparing self-gated FB stack-of-
radial MRI with BH Cartesian®¢.

We carefully examined the contributions from key components in UP-Net, including
phase augmentation, GAN loss, and MRI physics loss. Among these components, MRI physics
loss was especially important for accurate parameter quantification. From our ablation study, the
network without MRI physics loss generated larger biases in both PDFF and R>* quantification.
MRI physics loss considered the relationship between multi-echo signals and quantitative

parameters and did not require reference quantitative maps. However, the MRI physics loss

alone may not provide sufficient information to resolve fat-water swaps. By adding an MSE loss
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for quantitative maps and training with reference non-swapped maps, we directed UP-Net to
learn the spatial distribution of fat- or water- dominant pixels and reduce fat-water swaps. In
applications that focus on the signal magnitude, phase information in DL results is often
discarded or overlooked. Our use of a phase augmentation strategy strengthened UP-Net’s ability
to learn complex-valued signal relationships by including images with the same magnitude but
different phase. This strategy can also be applied in applications that need accurate phase,
including temperature mapping and quantitative susceptibility mapping. GAN architectures for
imaging tasks is an active research topic. In this work, we used Wasserstein loss in our GAN
architecture, which has previously been used in Cartesian MRI reconstruction!!®, More
complicated GAN architectures and loss functions designed for medical images'!” could be
investigated further.

The “black box” nature of DL-based methods for MRI is an important concern and

potential barrier to clinical translation. Uncertainty estimation in DL networks®-102

presents a
promising approach to provide context and assess confidence in DL outputs for clinical
applications that demand a high level of numerical accuracy, including the use of quantitative
maps for diagnostic decisions. In this study, we showed that with calibration, UP-Net uncertainty
scores predicted quantification errors in a separate testing dataset. These promising results have
some potential applications. For example, confidence masks can be generated by thresholding
the uncertainty scores and then overlaid on the UP-Net quantitative parameter maps.
Radiologists can avoid making measurements and decisions in areas with higher uncertainty
scores and have more confidence in using DL-generated images and quantitative maps. A recent

study has demonstrated that by passing uncertainty information in concatenated tasks, the

performance of the downstream task (e.g., segmentation or detection) can be improved!!'®. The
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uncertainty maps generated by UP-Net can potentially provide information and improve
subsequent automatic liver MRI analysis, such as DL-based liver segmentation and disease
classification.

This study has limitations. First, we did not investigate the influence of different data
undersampling factors on UP-Net performance. We used a 40% data acceptance window (2.5-
fold undersampling) on nominally fully-sampled data, as suggested in previous studies®>3°. Self-
gating data acceptance rates can be further reduced to improve motion fidelity. The number of
acquired radial spokes can also be reduced to investigate additional scan acceleration. However,
higher undersampling factors pose more difficulties in both generating high-quality reference
data and training UP-Net. Adjustments such as adding k-space consistency layers'!” might be
required for UP-Net to address higher undersampling factors. Second, we trained and tested UP-
Net using data with specific number of echoes, TE, TR, and flip angle. These sequence
parameters were closely related to PDFF and R>* accuracy in the data we used. Our current
analysis on the quantification accuracy and uncertainty prediction may not be directly applicable
in other datasets with different sequence parameters. Third, the calculation of the UP-Net
uncertainty loss term required reference quantitative maps. Therefore, the UP-Net uncertainty
values reflect differences between UP-Net results and results from reference methods. Fourth, we
calibrated the PDFF and R>* uncertainty estimation in the validation dataset only using ROIs in
the liver. This approach required CS and GC reference reconstruction results for calibration. In
addition, different calibration curves may be needed to quantify DL uncertainty in other tissues,
such as subcutaneous and visceral adipose tissues. Fifth, we used linear regression to investigate
the relationship between UP-Net uncertainty scores and quantification errors. However, this

approach may not be sufficient to characterize all the factors at play. PDFF measurements are
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results of relative amounts of two chemical shift species and can have different inherent
uncertainty at different PDFF levels. R2* uncertainty depends on combinations of the number of
echoes, the chosen echo times, and the underlying true Ro* values. Because PDFF and R»>* are
incorporated together in the fat-water signal model, multi-variate models can also be considered

to improve uncertainty characterization and calibration in the future.

3.5 Conclusion

In this study, we developed an uncertainty-aware physics-driven deep learning network
that rapidly calculates accurate liver PDFF and R>* maps from undersampled free-breathing self-
gated multi-echo stack-of-radial images and provides pixel-wise uncertainty maps. GAN
architecture, phase augmentation, and MRI physics loss improved the UP-Net image quality and
quantification accuracy for liver PDFF and R>*. We demonstrated that UP-Net uncertainty

scores can be used to predict absolute quantification errors in liver PDFF and Ro*.

This work has been published in:
Shu-Fu Shih, Sevgi Gokce Kafali, Kara L. Calkins, Holden H. Wu. “Uncertainty-Aware Physics-Driven
Deep Learning Network for Free-Breathing Liver Fat and R,* Quantification using Self-Gated Stack-of-

Radial MRI”. Magnetic Resonance in Medicine 2023; 89(4): 1567-85. doi: 10.1002/mrm.29525
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CHAPTER 4
Accelerated Free-Breathing Liver Fat and R>* Quantification using Non-

Rigid Motion Compensated Compressed Sensing Reconstruction

4.1 Introduction

MRI-based proton density fat fraction (PDFF)!2%!2! can quantify fat content and can be
used for non-invasive assessment, monitoring, and management of metabolic dysfunction-
associated steatotic liver disease (MASLD)'??, the most common chronic liver disease'?3. On the
other hand, R»>* is found to closely correlate with the iron content and R>* mapping has been
used for non-invasive diagnosis and monitoring of hepatic iron overload!'?*!?°, To account for the
confounding effects in MRI signal models for multi-echo gradient-echo sequences, PDFF and
R»* are often jointly modeled and quantified through a multi-echo gradient-echo Dixon
method?6-86,

Conventional joint PDFF and R>* quantification techniques are mostly based on
Cartesian trajectories?®. Subjects are required to hold their breaths during the acquisition to avoid
motion artifacts. However, it can be challenging for certain cohorts, such as pediatric and elderly
patients, who may find it difficult to fully comply with the breath-holding requirements. In recent
years, 3D free-breathing stack-of-radial Dixon MRI techniques®’-**-7 have been developed for
PDFF and R>* quantification. To compensate for respiratory motion and improve the
quantification accuracy, motion gating is performed®*33. However, to ensure a sufficient number
of radial spokes after motion gating, the scan time needs to be further prolonged?*. To overcome
this challenge, motion-resolved compressed sensing reconstruction methods?”-3%126 which apply

sparsity constraints along the motion state dimension, have been investigated for accelerated

self-gated free-breathing PDFF and R>* quantification.
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Recently, there are studies that investigate compressed sensing reconstruction models that
explicitly incorporate non-rigid motion information during reconstruction. Studies have shown
that such approaches can improve image sharpness in cardiac imaging'?” and pulmonary'?® and
abdominal MRI'?°, compared with previous motion-resolved reconstruction methods. Although
there were some preliminary works on non-rigid motion compensated free-breathing liver
MRI'?, this approach has not yet been investigated in free-breathing liver PDFF and R,*
quantification.

Another challenge in radial MRI is the sensitivity to system imperfections (as introduced
and presented in Chapter 2). Different gradient delay correction techniques have been proposed
to reduce gradient errors®’. However, residual streaking artifacts can still be observed due to
gradient non-linearity and off-resonance. In abdominal MRI with radial trajectories, it was
observed that these streaking artifacts usually come from the arms (closer to the peripheral field
of view). This problem could become worse when coupled with arm movements during the scan
acquisition. A phase-preserving beamforming-based method (introduced in Chapter 2) is used to
suppress these streaking artifacts while maintaining phase fidelity. An automatic interference
patch selection pipeline is also incorporated to choose image patches in the two arms as
interference regions.

In this work, we developed and evaluated a compressed sensing reconstruction method,
which incorporated beamforming-based streaking reduction and non-rigid motion compensation,
for accelerated free-breathing 3D stack-of-radial PDFF and R>* quantification. We performed
scans in six adults and six pediatrics subjects and compared the image sharpness by calculating

relative maximum derivative along the superior-inferior direction around the diaphragm. We
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further validated the PDFF and R>* quantification accuracy by comparing with results from the

reference breath-holding Cartesian MRI.

4.2 Methods

4.2.1 Overview of the Reconstruction Framework

An overview of the proposed reconstruction framework is illustrated in Figure 4-1. We
first described the overall pipeline and details in each reconstruction module are provided in later
subsections. Multi-echo data are acquired using a 3D stack-of-radial Dixon sequence during free-
breathing acquisitions®’. Gradient delays are corrected by aligning radial spokes using pre-scan
calibration data’®’. A self-navigated respiratory motion signal is estimated using the central
ky=k,=0 line!*°. The k-space data are then binned into different motion states using the self-
navigation signal. A beamforming-based method is used to calculated coil sensitivity maps that
specifically suppress radial streaking artifacts from the two arms'!3. Motion-resolved images are
reconstructed using compressed sensing with a total variation constraint along the motion state!3°
and a spatial Wavelet constraint on the images (introduced in section 4.2.2). Images from the end-
of-expiration motion state are selected as the reference motion state. Deformation vector fields
(DVFs) between the reference motion state and other motion states are calculated by registering

the magnitude images with the Demons algorithm!3!

. A phase correction term is obtained by
calculating the difference between warped phase images and the phase images from the target
motion state. Warping the magnitude images and phase images using the DVFs and the phase

correction term will be combined as an image warping operator. Later, we solve a compressed

sensing model that incorporates this phase-corrected image warping operator for image
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reconstruction. The multi-echo images were fitted?® to a 7-peak fat model’® with a single R>* decay

to generate the PDFF and R>* maps.
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Figure 4-1. Overview of the reconstruction framework. Beamforming-based coil sensitivity maps
are used during compressed sensing reconstruction for streaking artifact reduction. Deformation
vector fields (DVF) between different motion states are estimated after motion-resolved

reconstruction. The image warping operators contain a phase correction term to correct any phase
difference resulting from By variation between motion states.
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4.2.2 Phase-Corrected Image Warping Operator

Construct image warping operators that faithfully transform the complex-valued images
between motion states faces two main challenges. First, any residual radial streaking (e.g., from
data undersampling) that leads to intensity changes can impact the accuracy of DVF estimation

using an intensity-based image registration algorithm. As proposed in previous works'?8

, a motion-
resolved reconstruction was first applied to suppress most of the undersampling artifacts before
DVF estimation. In this work, we further used coil sensitivity maps calculated from the phase-
preserving beamforming-based coil combination!!* method (which was introduced in Chapter 2)
to suppress streaking artifacts from system imperfections. Second, By variation can cause phase
changes across motion states, especially near the liver-lung interface. Phase differences between
motion states need to be carefully addressed when applying image warping operators on images

from different motion states.

The optimization problem of the motion-resolved reconstruction used in this work is:

X = argminZt,eansxt,ec - yt,ec”z + A TVt(x) + A Zec,sl W(xec,sl) (Eq. 4-1)
x

while F represents non-uniform fast Fourier Transform (NUFFT), S represents coil sensitivity
maps estimated using the beamforming-based method, x; ..p, represents images at motion state t
from the ec echo, y, represents the k-space data at motion state t from the ec™ echo, TV,
represents total variation along the motion state, and A represents the regularization parameter. In
our implementation, the data are binned into 6 overlapping respiratory motion states, each
containing 40% of the k-space data.

After the motion-resolved reconstruction, the end-expiration motion state is selected as the
“reference state”. The DVFs that transform images from other motion states to the reference state

were calculated using the Demons image registration method!*!. In our implementation, the
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Demons algorithm was used with 4 pyramid scales from coarse to fined resolutions, and each with
100 iterations.

Here, we propose a phase-corrected image warping operation that transforms images
between motion states while considering the phase variations. The phase-corrected image warping
operation consists of three steps: 1) magnitude image warping, 2) phase image warping, and 3)
phase correction. In the first step, the magnitude image is transformed using the DVF and then a
cubic interpolation is applied to generate the warped magnitude image. During phase image
warping, the phase information was transformed using the DVF but with nearest-neighbor
interpolation. That is, the phase of the warped image is assigned by the phase information in the
nearest voxel before warping. Third, a phase correction term is added to the warped phase image
to generate the corrected warped phase image. The phase correction term is estimated by
comparing the warped phase image to the target phase image.

After the estimated DVFs and corresponding phase correction terms between motion
states are obtained, the phase-corrected image warping operators can be used in the non-rigid

motion compensated compressed sensing reconstruction.

4.2.3 Non-rigid Motion Compensated Compressed Sensing Reconstruction
We included the image warping operators introduced in the previous section and solved an

optimization problem:

~ . 2
% = argmin Xy oc||[FSMiXee = Veecll, + A Zec W (¥ee)  (Eq. 4-2)
X

where F represents NUFFT, S represents coil sensitivity maps estimated using the beamforming-
based method, M, represents the phase-corrected image warping operator that transforms the

reference motion state to motion state t, x is the multi-echo images from the target motion state,
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W represents the 2D Wavelet transform (with Daubechies Wavelet) and A represents the
regularization parameter. The optimization problem was solved using the conjugate gradient
descent method!*2. 1 was empirically chosen to balance between the performance of artifact

suppression and smoothing effects and the same A was used for all our scans.

4.2.4 Experiments

In a Health Insurance Portability and Accountability Act (HIPAA)-compliant study
approved by the local institutional review board, 6 adults (2 females and 4 males, age: 57116
years) and 6 children (2 females and 4 males, age: 15+2 years) were scanned at a 3T scanner
(MAGNETOM Skyra or Prisma, Siemens Healthineers, Erlangen, Germany). Written informed
consent, parental permission, and assent, if applicable, were obtained for all subjects before
research procedures. Each subject was scanned using a multi-echo gradient-echo golden-angle-
ordered 3D stack-of-radial sequence®’ during free-breathing. Key sequence parameters included
TE=(1.23, 2.46, 3.69, 4.92, 6.15, 7.38) ms, TR=8.85 ms, flip angle=5°. The detailed sequence

parameters can be found in Table 4-1.

Table 4-1. Representative sequence parameters for free-breathing 3D stack-of-radial (FB Radial)
and breath-holding (BH) 3D Cartesian axial MRI scans at 3T. N/A: not applicable.

Sequence parameters FB Radial \ BH Cartesian
TE (ms) 1.23,2.46, 3.69, 4.92, 6.15, 7.38
TR (ms) 8.85
Flip angle (°) 5 5
Field of view 360-440 x 360-440 mm? 360-440 x 360-440 mm?
Slice thickness (mm) 5 5
Matrix size (X, Yy, z) 224-288, 224-288, 40 224-288, 224-288, 30
Acceleration or radial Radial undersampling R=2 Parallel imaging acceleration
undersampling (based on Nyquist criteria) R=4
Radial spokes 178-226 N/A
Scan time (min:sec) 1:03 - 1:20 0:19
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Free-breathing MRI data were reconstructed with three different reconstruction methods:
1) motion averaging + NUFFT, 2) self-gating + motion-resolved compressed sensing
reconstruction with beamforming-based coil sensitivity maps, 3) self-gating + non-rigid motion
compensated compressed sensing reconstruction with beamforming-based coil sensitivity maps.
After image reconstruction, the multi-echo images were fitted to a signal model containing 7-
peak fat spectrum’® and a R>* term using a multi-step adaptive fitting algorithm?® to generate

PDFF and R>* maps.

4.2.5 Analysis and Evaluation

In the first part, we compared the results with or without the use of the beamforming-
based streaking reduction coil sensitivity maps in motion-resolved reconstructed images. In the
second part, we compared image sharpness between free-breathing radial MRI reconstructed
with different motion compensation strategies. A metric, relative maximum derivative'?8, was
calculated using the maximum intensity change between the lung-liver interface along the
superior-inferior dimension normalized by the mean signal intensity in the liver dome. Relative
maximum derivative was calculated in images reconstructed by three different methods: motion-
averaging without any motion gating, motion-resolved reconstruction, and non-rigid motion
compensated reconstruction. For statistical analysis, Wilcoxon tests were performed to assess if
there is any significant difference between different methods (p<0.05 considered significant).

For each subject, a trained researcher (with 5-year experience on analyzing abdominal
MRI) placed three regions of interest (ROIs) on three axial slices while avoiding large vessels®.
We measured the mean PDFF and mean R»* in the ROIs. Bland-Altman analysis was performed

to evaluate the agreement of PDFF and R»* measurements between free-breathing techniques
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and the breath-holding reference. Mean difference (MD) and 95% limits of agreements (LoA) for

each comparison were calculated.

4.3 Results

Figure 4-2 shows the representative images reconstructed with and without beamforming-
based streaking reduction. With conventional adaptive coil combination, most of the radial
streaking artifacts due to undersampling can be largely suppressed after motion-resolved
reconstruction. However, streaking artifacts from the arms can still exist. With sensitivity maps
estimated using the beamforming-based method, specific streaking patterns emanating from the

arms were suppressed.

Self-gated + Self-gated +
motion-resolved motion-resolved
Self-gated + NUFFT reconstruction reconstruction

Echo1 Echo 1 PDFF map

Adaptive
coil
combination

beamforming- =
based

streaking

reduction

0%

Figure 4-2. Representative example of motion-resolved reconstruction results using conventional
adaptive coil combination or beamforming-based streaking reduction. With beamforming-based
coil combination, the specific streaking patterns from the arms were suppressed in the
(undersampled) self-gated images. After motion-resolved reconstruction, residual artifacts from
the arms still exist in conventional methods and impact quantification maps.
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Figures 4-3 and 4-4 show the representative reconstruction results of the proposed non-
rigid motion compensation method versus breath-holding Cartesian MRI and self-gated +
motion-resolved reconstruction. Both motion-resolved and non-rigid motion compensated
reconstruction results suppressed most of the streaking artifacts in the echo images. Non-rigid
motion compensated reconstruction provided sharper quantitative maps with reduced artifacts
compared to results from motion-resolved reconstruction.

Bland-Altman analysis results are shown in Figure 4-5. The MDs of PDFF and R>*
between free-breathing motion-resolved reconstruction and the breath-holding reference were -
0.15% and -0.35 s’!, respectively. The MDs of PDFF and R>* between free-breathing non-rigid
motion compensated reconstruction and the breath-holding reference were 0.06% and 1.05 s!,
respectively. The MDs are all small in either motion-resolved reconstruction or non-rigid motion
compensated reconstruction results. The LoA of PDFF and R>* measurements between free-
breathing motion-resolved reconstruction and the breath-holding reference were [-3.14%, 3.05%]
and [-13.2 57!, 14.4 s°']. The LoA of PDFF and R,* measurements between free-breathing
motion-resolved reconstruction and the breath-holding reference were [-2.40%, 2.28%] and [-
11.4 s, 13.5 s7']. The narrower LoA showed that non-rigid motion compensated can provide
closer agreement with the breath-holding Cartesian-based reference technique.

The results of image sharpness measurements, in terms of the relative maximum
derivative in the lung-liver interface, are shown in Figure 4-6. Motion-resolved reconstruction
and non-rigid motion compensated reconstruction both had significantly higher relative
maximum derivative (both p<0.01). Non-rigid motion compensated reconstruction has a higher

relative maximum derivative than that in motion-resolved reconstruction results (p=0.04).
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Motion-resolved Non-rigid motion
reconstruction compensated reconstruction
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Cartesian MRI

Echo 1
magnitude
image

Figure 4-3. Representation reconstruction results comparing breath-holding Cartesian MRI and
free-breathing MRI (R=2) with different reconstruction methods from a fatty liver subject (62 year-

old male with BMI=31.4kg/m?). Motion-resolved reconstruction can lead to slight blurring in the
reconstructed PDFF and R,* maps (red arrows).

Free-breathing radial R=2 Free-breathing radial R=2
) motion-resolved non-rigid motion compensated
Breath-holding reconstruction reconstruction

Cartesian MRI
4 (o
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PDFF [} . f .
map ‘.. ' ) v
coronal ' w".
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Figure 4-4. Reconstruction results comparing PDFF and R>* maps in the coronal reformat (same
subject as in Figure 4-3). Results from motion-resolved reconstruction show image blurring (red
arrow) and residual artifacts that are not fully suppressed (green arrow).
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Figure 4-5. Bland-Altman plots comparing PDFF and R>* from free-breathing MRI versus breath-
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holding Cartesian MRI. MD: mean difference. LoA: 95% limits of agreement.
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Figure 4-6. Box plot for comparison of relative maximum derivative in the lung-liver interface
with different reconstruction methods.
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4.4 Discussion

In this work, we presented a reconstruction framework for accelerated free-breathing self-
gated PDFF and R>* quantification. The proposed framework used beamforming-based coil
combination (Chapter 2) to suppress streaking artifacts from system imperfections. Although
compressed sensing can reduce the overall radial streaking artifacts from undersampling, the
specific streaking artifact pattern from the arms were not fully suppressed if beamforming-based
coil sensitivity maps were not used. Non-rigid motion information with a phase correction term
were incorporated in the compressed sensing reconstruction model for non-rigid motion
compensation in data acquired from free-breathing acquisitions.

We used the Demons non-rigid registration algorithm, which is an intensity-based method,
to estimate the DVFs between different respiratory motion states. This algorithm has been
commonly used in registering medical images in different applications. However, the Demons
algorithm can face challenges in cases with more heterogeneous motion or in cases with lower
image quality (e.g., still having residual radial streaking artifacts after motion-resolved
reconstruction)!*3. Other optical flow estimation methods'**, based on L1, L2, L1-L2-combined
regularizations or deep learning networks'?®, developed in the image processing community also
holds potential in modelling the non-rigid motion information between different motion states. As

128 we rely on a motion-resolved constrained reconstruction method to first

in previous works
suppress most radial streaking artifacts from data undersampling and motion-gating before
performing DVF calculation. This process greatly increases the computational time for the entire
136

pipeline for non-rigid motion compensated reconstruction. Recently, there are research works

that showed that deep learning networks can be trained to obtain accurate DVFs from images
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reconstructed from highly undersampled k-space data and only using NUFFT. This holds potential
to shorten the overall computational time of non-rigid motion compensated reconstruction.

We investigated the performance of non-rigid motion compensated reconstruction in data
with radial undersampling factor of 2 (using Nyquist criteria to define “fully-sampled”) and
achieved scan times less than 1 minute and 30 seconds. This makes scans times of free-breathing
PDFF and R>* quantification comparable to the conventional breath-holding sequences,
considering the time of giving breath-holding instructions and the wait time after breath-holding
in conventional scans. The free-breathing scans without breath-holding requirements can also
achieve larger volumetric coverage than the conventional breath-holding sequences. It is also
possible to further reduce the free-breathing acquisition times by using a higher factor of radial
undersampling factor or combining radial undersampling and k, undersampling!’. For the cases
with more data undersampling, incorporating more sparsity constraints (in addition to the Wavelet
constraints in this work) may help suppress the undersampling artifacts.

There are limitations in this study. First, there is a lack of fully-sampled motion-resolved
images in free-breathing scans. To acquire such images, the acquisition time needs to be much
longer, and the subject bulk motion needs to be minimal. In this work, we used quantification
results from conventional breath-holding Cartesian-based PDFF and R>* as a reference for
comparison. Second, image quality evaluation by radiologists has not been investigated in this
study. Further work on investigation of the diagnostic quality of the non-rigid motion
compensated reconstruction results will be conducted in the future. Third, our dataset does not
have subjects with high hepatic iron overload. The R>* range investigated in this work is limited.

Future work on hepatic iron overload patients is needed.
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4.5 Conclusion

We presented a compressed sensing model with phase-preserving beamforming-based
coil combination and non-rigid motion compensation for accelerated self-navigated free-
breathing 3D stack-of-radial MRI PDFF and R>* quantification. Non-rigid motion compensated
reconstruction provides accurate PDFF and R»* measurement compared with conventional
breath-holding scans. In addition, non-rigid motion compensated reconstruction can improve
sharpness, in terms of relative maximum derivative, compared with motion-resolved

reconstruction.

This work is being prepared as a manuscript:

Shu-Fu Shih, Sevgi Gokce Kafali, Timoteo I. Delgado, Kara L. Calkins, Holden H. Wu. “Accelerated
Free-Breathing Liver Fat and R,* Quantification using Non-Rigid Motion Compensated Compressed

Sensing Reconstruction”. (In preparation)
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CHAPTER 5
Improved Liver Fat and R>* Quantification at 0.55T using Locally

Low-Rank Principal Component Analysis-Based Denoising

5.1 Introduction

Proton density fat fraction (PDFF)!2° and R»*!?* are powerful non-invasive MRI
biomarkers for liver fat and iron accumulation, respectively. These two parameters can be
quantified simultaneously using multi-echo gradient-echo Dixon MRI sequences followed by
signal fitting to a model that resolves different confounding factors?*-2°, Several MRI sequences
and signal fitting approaches have been developed and validated at 1.5T and 3T23-26-36.138-141,
Recently, MRI field strengths <1.5T are being explored due to advantages such as reduced
hardware and siting costs and reduction of artifacts in certain applications*!#346.142 " A Jower-field
MRI system with a larger bore diameter may also improve and comfort!*® for populations with
obesity and at risk for fatty liver disease. In addition, decreased R>* at lower fields can enable
more accurate Ro* quantification in patients with high iron overload>'.

Most existing scan protocols for joint PDFF and R>* quantification have been designed
and validated at 1.5T and/or 3T. Adaptation to lower field strengths such as 0.55T requires
careful investigation into the trade-offs associated with acquisition parameter choices. There are
several important considerations. First, lower By field strengths result in lower equilibrium
polarization which reduces the signal-to-noise ratio (SNR)*:4346:142 Thjis is exacerbated when a
small flip angle (FA) is used to reduce Ti-related bias in PDFF quantification!**. Low SNR can
degrade image quality and affect accuracy and precision of quantitative biomarkers>2>3:145,

Second, the smaller fat-water frequency difference at lower fields results in longer out-of-phase
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(TEop=6.47 ms) and in-phase (TEi»=12.94 ms) echo times. This increases scan time and limits
sequence parameter choices. Increasing the number of scan repetitions to improve SNR, a
common strategy, may be infeasible in breath-holding abdominal scans. Compromises in
imaging parameters such as reducing image resolution and restricting volumetric coverage can
reduce diagnostic quality.

Locally low-rank principal component analysis (PCA)-based denoising is one popular
approach to suppress noise in multi-contrast MR images. By suppressing principal components
associated with smaller coefficients, noise can be reduced while signal can be largely preserved.
Difficulties in this type of method involve how to accurately estimate the signal rank and
suppress the noise without removing the desired signal. Different approaches have been
proposed to objectively estimate the noise level for effective noise suppression. One method,
termed as the robust locally low-rank denoising (RLLR) technique!#®, has been proposed. Using
samples of random matrices from a known Gaussian distribution, the noise level in the multi-
echo images can be estimated. Based on Stein’s unbiased risk estimate (SURE)!47:14¥ the
singular value threshold can be objectively obtained for noise suppression. RLLR has been
shown to improve image quality for PDFF and R,* quantification at 3T'%°, but has not been
studied at lower field strengths. On the other hand, random matrix theory (RMT)-based

denoising!>0-132

can accurately estimate noise level and remove the noise components by
leveraging the spectral properties of random Gaussian matrices predicted by the Marchenko-
Pastur Law!33. This approach has shown promising noise suppression results, especially in

diffusion MRI where many contrasts (i.e., multiple b-values and multiple directions) are

available to construct locally low-rank patches!>0-132154156 There are initial studies applying
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RMT-based denoising for lower-field MRI', but this has not yet been well studied for the
application of PDFF and R>* mapping.

In this study, our objective is to improve liver PDFF and R»>* quantification accuracy and
precision at 0.55T by 1) systematically refining and validating the acquisition parameter choices
and 2) investigating the performance of two locally low-rank PCA-based denoising methods,
RLLR and RMT denoising. First, we performed a Monte Carlo simulation to investigate the
impact of acquisition parameter choices on the accuracy and precision of PDFF and R>* mapping
at 0.55T. Using the proposed acquisition protocol informed by simulation results, we conducted
experiments in a reference phantom, in the pelvis, and in the liver to compare the performance of
PDFF and R>* quantification using conventional reconstruction without denoising and with the

use of RLLR and RMT denoising.

5.2 Methods

5.2.1 Acquisition Protocol for PDFF and R>* Quantification at 0.55T

The choice of TEs and FA in the 3D multi-echo gradient-echo Dixon sequence affects
PDFF and R»* quantification accuracy'3’1*°, A common choice at 3T is 6 echoes at either out-of-
phase or in-phase echo times and a low FA of 3° to 5° for reducing the Ti-related bias in PDFF
estimation®®. Due to the longer out-of-phase and in-phase echo times at 0.55T, this strategy
would lead to longer TEs and TR that prolong acquisition beyond the acceptable time for one
breath-hold. On the other hand, the T;-related bias is reduced at 0.55T because of the shortened
T, values and the increased TR. A larger FA that balances between SNR and the Ti-related bias
may be considered. As the R>* values change with the field strength’!, TEs for accurate Ro*

quantification should also be reconsidered. Therefore, we conducted a Monte Carlo simulation to
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investigate different choices of FA, the first TE, and the echo spacing (ATE) with a range of
reference PDFF and Ro* values at 0.55T. We limited our simulation to consider 6 echoes, a
balance between sufficient number of echoes for quantification and reasonable scan time.

The signal s(t,,) at the m-th TE was simulated using the signal model:
s(tw) =M (A= F) + F - (S]ey ;- 27/1m) ) - e~Fitm - 720tm 4 (Eq. 5-1)
where M represents the steady-state magnetization signal dependent on the TE, TR, T and FA,

F represents the PDFF value, a; and f; represent the relative amplitudes and frequencies for a 7-

peak fat spectrum’®, ¢ represents the frequency shift due to By field inhomogeneity, and n
represents the complex-valued Gaussian noise.

We used T of 339 and 187 ms for water and fat protons in the liver, respectively, based
on previous work that measured in vivo relaxation times at 0.55T*. The simulated FA were in
the range of 2° to 20°. The simulated first TEs and ATE were both in the range of 1.2 to 2.8 ms,
considering hardware specifications of the 0.55T scanner and reasonable acquisition time of one
breath-hold. The TR was set to include all the echoes and the spoiler gradient. When
investigating PDFF accuracy and precision in the range of 0% to 40% (a range that covers most
of the biopsy-proven metabolic dysfunction-associated steatotic liver disease [MASLD] patients
with histologic steatosis grade 0 to 3'%Y), the reference R,* value was fixed at 30 s! (R>* value at
0.55T with no iron overload®'). When investigating R»* accuracy and precision in the range of
20 s7! to 90 s! (a range that covers mild, moderate and no iron overload at 0.55T>!), the reference
PDFF value was fixed at 5% (close to the common cutoff value for MASLD diagnosis'®").

For each combination of parameters (FA, first TE, ATE, reference PDFF, and reference

R>*), 500 simulated instances were generated. For each instance, ¢ was randomly drawn from a

range of (-100,100) Hz. The complex-valued noise was modelled as n = n,. + i - n;, where n,.
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and n; were independently drawn from a Gaussian distribution with the same variance o2. The
value of 6 was set to be similar to the noise level in actual in vivo liver scans at 0.55T. To be
more specific, the resulting apparent signal-to-noise ratio (aSNR), defined as signal mean
divided by noise standard deviation, equaled 10 when PDFF=5%, R,*=25 s!, and flip angle=8°
in our Monte Carlo simulation.

All the simulated instances were fitted to 7-peak fat model”® with a single R,* decay term
using a multi-step adaptive approach?®. We measured the quantification accuracy by reporting
the mean difference (MD) across instances of fitted PDFF and R»* versus the reference values
(i.e., the bias) at different parameter settings. We measured the quantification precision by
reporting the standard deviation across instances of fitted PDFF and R>* at different parameter

settings.

5.2.2 Locally Low-Rank PCA-Based Denoising

Here we briefly summarize the two techniques that were investigated in this work, RLLR
and RMT denoising (Figure 5-1), and describe how we adapt them to our specific application.
More technical details can be found in previous works!46:130, Tn the following paragraphs, we use
Px, Py and p; to represent the patch size in the three image dimensions, and use Ne and N¢ to

represent the number of echoes and number of coil channels, respectively.
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Figure 5-1. Reconstruction pipelines of the two locally low-rank PCA-based denoising methods

used in this work. RLLR denoising was applied on coil-combined multi-contrast images while
RMT denoising was applied on the multi-coil multi-contrast images. Both RLLR and RMT
denoising methods needed to accurately estimate noise variance before performing singular
value thresholding or shrinkage to suppress Gaussian noise. PI: parallel imaging. RLLR: robust

locally low-rank. PDFF: proton density fat fraction. RMT: random matrix theory. SVD: singular

value decomposition. SURE: Stein’s unbiased risk estimate.

The RLLR denoising method constructs a 2D low-rank matrix M,, with dimensions [px -

py * Pz by Ne¢] from the coil-combined multi-echo images. Assuming the signal rank of M,, is

smaller than N, the component associated with the smallest singular value is mainly noise.

Before noise reduction, 2D random Gaussian matrix samples with dimensions [px * py * pz by Ne]

were generated using a pre-determined variance 2. The median of the smallest singular values

of these matrix samples, denoted as A,,, is calculated. By comparing the smallest singular value

of M,, to A,,,, the noise variance 872 can be estimated using
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A P(Mn
62 = W) 02 (Eq. 5-2)

while P () extracts the smallest singular values of its argument. After estimating 6;2, RLLR
denoising finds the optimal value for singular value soft-thresholding by minimizing SURE!'#8
and obtaining the denoised matrix. All the overlapping local patches (with stride=1 along three
spatial dimensions) are denoised using the same method and averaged to generate the final
denoised images. Please note that previous works applied RLLR denoising on PDFF and R>*
mapping at 3T and only used a 2D low-rank matrix constructed from 2 image dimensions!'414,
In this work, we extended the method to include the slice dimension.

The RMT denoising method relies on the Marchenko-Pastur law!. Let us consider a 2D

random matrix X with dimensions [p by q] (p < q) whose entries are drawn from a Gaussian

distribution of mean 0 and variance o2. The probability density function of the eigenvalues 1 of

the matrix Y = %X XT, can be described by the Marchenko-Pastur distribution:

ATF-DA-21) o .
p(Uo2,y) =1 zmaez . SA =42
0 otherwise

(Eq. 5-3)

where At = 02(1 ++/¥), 41~ = 02(1 — ),y = p/q. After constructing a low-rank matrix from
local image patches, noise variance o2 can be estimated by comparing the distribution of the
singular values of the low-rank matrix to the Marchenko-Pastur distribution. Because it requires
a sufficient number of eigenvalues/singular values for accurate estimation of the noise variance,
we use both echo and coil dimensions to construct low-rank matrices, which have dimensions of
[px " py " p- by Ne'Nc]. Once the noise variance is estimated, optimal singular value shrinkage
based on Frobenius norm minimization'¢? is used. All the overlapping local patches are denoised
using the same method and averaged to generate the denoised multi-coil multi-echo images. Coil

combination® is performed after RMT denoising.
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Both denoising methods assume the noise is Gaussian distributed. Therefore, the

164

reconstruction pipeline includes coil-decorrelation!®? and requires g-factor correction!%* for

parallel imaging (PI)-accelerated data before denoising (Figure 5-1).

5.2.3 PDFF and R;* Phantom Imaging

We validated the PDFF and R»* quantification accuracy using a reference phantom
(Calimetrix, Madison, Wisconsin) with seven PDFF-only (0% to 100%) and ten R>*-only vials
(17.7 to 1009.5 s! measured at 1.5T, provided by the vendor). Scans were performed using a
whole-body 0.55T MRI system (prototype MAGNETOM Aera, Siemens Healthineers, Erlangen,
Germany) equipped with high-performance shielded gradients (45 mT/m maximum amplitude,
200 T/m/s slew rate). Phased-array receiver coils (18-channel spine array and 6-channel body
array) were used, and there were Nc=12 activated coil channels during the scans. To acquire
phantom images with similar SNR as in the in vivo liver scans, we placed pads between phantom
vials and the coils such that the space between the body array coil and the spine array coil was
similar to the volume of an adult abdomen. We acquired data using a 3D multi-echo gradient-
echo Dixon MRI research application sequence?S. Key sequence parameters, based on findings
from our Monte Carlo simulation, included Ne=6 with TEs = (2.16, 4.32, 6.48, 8.64, 10.8, 12.96)
ms, TR = 14.7 ms, FA = 8°, field-of-view = 300x300 mm?, matrix size = 192x192, and slice
thickness = 5 mm. PI with acceleration factor (R) of 2 was used. The scan was repeated 50 times.
Detailed sequence parameters are reported in Table 5-1. Each scan repetition was reconstructed
individually, using three reconstruction methods: 1) conventional PI reconstruction (GeneRalized
Autocalibrating Partially Parallel Acquisitions [GRAPPA]) without denoising, 2) PI

reconstruction and RLLR denoising with an image patch size (px,py,p-) = (5,5,5), and 3) PI
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reconstruction and RMT denoising with an image patch size (5,5,5). The reconstructed images

were fitted with a multi-step adaptive approach?® accounting for fat model complexity’ and

single R>* decay to generate PDFF and R>* maps.

Table 5-1. Sequence parameters for phantom, in vivo pelvis, and in vivo liver MRI scans at 0.55
T. The out-of-phase and in-phase echo times in the Dixon sequences are underlined.

Phantom

In vivo pelvis

In vivo liver

2D multi-echo

3D multi-echo

3D multi-echo

3D multi-echo

gradient echo Dixon Dixon Dixon
Acquisition Axial Axial Axial Axial
orientation
Field of view 300x300 300x300 400%400 380%380
(mmXmm)
TE (ms) 1.35,3.5,5.8, 2.16,4.32, 2.16,4.32, 2.16,4.32,
8.0, 10.3, 12.6, 6.48, 8.64, 6.48, 8.64, 6.48, 8.64,
14.8,17.1, 19.3, 10.8, 12.96 10.8, 12.96 10.8, 12.96
21.6,23.9, 26.1
TR (ms) 35 14.7 14.7 14.7
Matrix size 160x160 192x192 192x192 192x192
In-plane 1.9x1.9 1.6x1.6 2.1x2.1 2.0%2.0
resolution
(mmXmm)
Number of 1 8 8 8
slices
Slice N/A 20% 20% 20%
oversampling
Slice thickness 5 5 5 5
(mm)
Flip angle (°) 15 8 8 8
Bandwidth 1565 590 590 590
(Hz/px)
Parallel No GRAPPA GRAPPA GRAPPA
imaging (R=2) (R=2) (R=2)
Averages 2 1 1 1
Scan time 0:12 0:19 0:19 0:19 (breath-hold)
(min:sec)
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The analysis consisted of two parts. First, we assessed the agreement of PDFF and R>*
values from different reconstruction methods versus the reference for the evaluation of accuracy.
In this part, results from one scan repetition were used. We placed a region of interest (ROI) in
each vial and calculated the mean PDFF and R>*. PDFF values provided by the phantom vendor
were used as the reference. To obtain the reference Ry* values at 0.55T, a single-slice 12-echo
gradient-echo sequence was scanned and the images were fitted to a mono-exponential model®!.
Two Ry* vials had R*>250 s! (T2*<4 ms) at 0.55T, which could not be reliably fitted using the
specified protocol and were not included in the quantitative analysis. The MD and the
concordance correlation coefficient (p,)'® between the measured PDFF and R>* values versus
the reference were calculated to assess agreement. Linear regression was also performed.
Second, we evaluated the precision by calculating the standard deviation of quantitative
measurements in each voxel across scan repetitions. The mean values of the change in PDFF and

R>* standard deviations between different reconstruction methods were reported.

5.2.4 In Vivo Pelvic Imaging

Quantitatively assessing denoising performance in liver scans can be challenging due to
the difficulty to obtain reference high-SNR images from multiple scan repetitions. The liver
position can vary across multiple breath-holds, leading to artifacts after averaging. Therefore, we
performed an experiment in the pelvis to quantify accuracy and precision of in vivo PDFF and
R>* mapping. The experiment contained two analyses: 1) to investigate the denoising
performance and the quantification accuracy under different noise levels and 2) to investigate the
quantification precision by calculating the standard deviations of PDFF and R>* measurements

across scan repetitions. All in vivo experiments in this work were conducted under a Health
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Insurance Portability and Accountability Act-compliant study protocol approved by the
institutional review board. All subjects were scanned after providing written informed consent.

For the first analysis, we scanned a healthy volunteer (29-year-old male with body-mass
index [BMI] 26.4 kg/m?) using the 3D multi-echo gradient-echo Dixon MRI research application
sequence®® with 30 scan repetitions. Key parameters were the same as the phantom scans except
for the field-of-view and the in-plane resolution. We averaged the multi-coil multi-echo k-space
data across the 30 repetitions to generate the “reference” k-space data. We then added complex-
valued random Gaussian noise with different variances to the reference k-space data to generate
synthetic pelvis datasets with different noise levels. We chose the noise variances so that the
synthetic images after GRAPPA reconstruction (without any denoising) had aSNR ranging from
3 to 15 (while the original reference image had aSNR=95). Here, aSNR was measured by the
signal mean in a muscle ROI divided by background noise standard deviation in coil-combined
echo 3 (out-of-phase) images. We performed RLLR and RMT denoising on the synthetic images
after GRAPPA reconstruction. PDFF and R>* maps were reconstructed using the same signal
fitting method described earlier. We placed 3 ROISs, each with a size of 5 mm?, in the
subcutaneous fat tissue and in the muscle. Quantification accuracy was assessed by comparing
mean PDFF and R>* in these ROIs versus the quantification results in the reference data (from
30 repetitions).

For the second analysis, we scanned three healthy volunteers (3 males, age: 29.7+0.6
years, BMI: 24.5+2.6 kg/m?) using the same sequence, each with 15 scan repetitions. Each
repetition was reconstructed individually using three different methods: 1) conventional
reconstruction without denoising, 2) RLLR denoising with a patch size (5,5,5) and 3) RMT

denoising with a patch size (5,5,5). PDFF and R>* maps were calculated using the same signal
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fitting approach. To assess precision, we calculated pixel-wise standard deviations of PDFF and
R>* values across 15 scan repetitions. We further calculated the percentage of voxels which had
reduced standard deviations of PDFF and R>* (meaning improved precision) in denoised results

compared to conventional reconstruction results.

5.2.5 In Vivo Liver Imaging

Eleven subjects (3 females and 8 males, age: 39.5+14.3 years, BMI: 26.3+4.0 kg/m?)
were recruited and scanned. Four of the subjects (1 female and 3 males, age: 49.5+16.8 years,
BMI: 29.942.9 kg/m?) had known fatty liver. All the subjects were scanned using the 3D multi-
echo gradient-echo Dixon research application sequence?® (Table 5-1) within a single breath-
hold. Conventional reconstruction (no denoising, only GRAPPA) and reconstruction with the
two denoising methods were performed. The same signal fitting approach was used to generate
PDFF and R>* maps.

For each subject, 3 circular ROIs, each with a size of 5 mm?, were placed on 3 different
axial slices in the liver while avoiding large vessels*®. Mean and standard deviation of the PDFF
and R»* values within each ROI were recorded. Bland-Altman analysis was performed to
analyze the agreement of the quantification results between the conventional reconstruction and
two different denoising methods.

We performed Kruskal-Wallis tests to investigate if there were any differences in PDFF
mean, R>* mean, PDFF standard deviation and R»>* standard deviation in liver ROIs among the
three reconstruction methods. P<0.05 was considered significant. If the Kruskal-Wallis tests
indicated significant differences, additional pair-wise Wilcoxon signed rank tests with

Bonferroni correction for the p-values (p<0.05/3=0.017 considered significance) were used to
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evaluate if there was significant difference between a pair of two reconstruction methods. For all

the statistical tests, only one liver ROI measurement in the mid-slice from each subject was used.

5.3 Results

5.3.1 Monte Carlo Simulation Results

The Monte Carlo simulation results are in Figure 5-2. A larger FA results in larger biases
in PDFF due to T, differences between fat and water. In contrast, a smaller FA results in less
precise PDFF and R>* due to lower SNR. Shorter TEs and less T>* weighting in the multi-echo
signal also results in less pre