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ABSTRACT OF THE DISSERTATION 

 

 

MRI Reconstruction and Motion Compensation Techniques for Liver Fat and R2* Quantification 

 

by 

 

Shu-Fu Shih 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles, 2024 

Professor Holden H. Wu, Chair 

 

 Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as 

non-alcoholic fatty liver disease (NAFLD), is the most common chronic liver disease with a 

current global prevalence of 25% to 40%. MASLD is associated with the metabolic syndrome 

and cardiovascular morbidity, and can progress to fibrosis and cirrhosis. Chronic liver diseases 

such as viral hepatitis and MASLD can also lead to hepatic iron overload. Magnetic resonance 

imaging (MRI) provides non-invasive evaluation of hepatic steatosis and iron overload by 

quantifying proton-density fat fraction (PDFF) and R2*. Conventional MRI techniques for liver 

PDFF and R2* quantification require breath-holding, which can be challenging for children and 

elderly patients. 3D stack-of-radial MRI techniques have been proposed for self-gated free-

breathing liver PDFF and R2* quantification. However, several challenges remain, including 

residual streaking artifacts from system imperfections, long scan acquisition times, 
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computationally expensive reconstructions, and insufficient modelling of non-rigid liver motion 

during free-breathing. Techniques to overcome these challenges are important for a wide clinical 

adoption of free-breathing MRI techniques for liver PDFF and R2* quantification. Additionally, 

in recent years, there has been an increased interest in lower-field MRI systems. A less expensive 

lower-field MRI system with a larger bore diameter may improve accessibility and comfort for 

populations with obesity and at risk for fatty liver diseases. However, the low signal-to-noise 

ratio problem can impact image quality and quantification accuracy. Therefore, noise reduction 

techniques are important to improve liver PDFF and R2* quantification in lower-field MRI 

systems.  

This work focuses on developing MRI reconstruction techniques to improve liver PDFF 

and R2* quantification. First, this work developed a phase-preserving beamforming-based 

technique to effectively reduce radial streaking artifacts from system imperfections. This 

technique can be further integrated with motion-resolved reconstruction to improve self-gated 

free-breathing liver PDFF and R2* quantification.  Second, this work developed an uncertainty-

aware physics-driven deep learning network for rapid reconstruction of PDFF and R2* maps 

from self-gated free-breathing MRI. The uncertainty maps generated from the network can be 

used to predict quantification errors and improve reliability of deep learning reconstruction 

results. Third, this work developed a compressed sensing reconstruction model with non-rigid 

motion compensation to improve and accelerate self-gated free-breathing liver PDFF and R2* 

quantification. Last, this work developed and evaluated image and k-space denoising techniques 

that can improve quantification accuracy and precision of Cartesian-based liver PDFF and R2* 

quantification at 0.55T. These technical advancements can provide accurate and motion-robust 

liver fat and R2* quantification. 
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CHAPTER 1  

Introduction 

1.1  Clinical Significance of Liver Fat and Iron Quantification 

Hepatic steatosis is characterized by abnormal accumulation of fat in the liver. Metabolic 

dysfunction-associated steatotic liver disease (MASLD)1,2, formerly known as non-alcoholic 

fatty liver disease (NAFLD), is the most common chronic liver disease with a current global 

prevalence of 25% to 40%3,4. MASLD ranges from simple steatosis to Metabolic Dysfunction-

Associated Steatohepatitis (MASH) (formerly known as non-alcoholic steatohepatitis [NASH]), 

which is hallmarked by liver fibrosis. MASLD is associated with the metabolic syndrome and 

cardiovascular morbidity, and can progress to fibrosis and cirrhosis that lead to hepatic 

carcinoma or liver failure5-10. Nontargeted liver biopsy is still considered the reference method 

for diagnosis of hepatic steatosis11. However, liver biopsy is an invasive procedure and is not 

appropriate for long-term monitoring that requires repeated evaluations. Liver biopsy also suffers 

from sampling bias and the assessment of steatosis on histopathology can be subjective12,13. 

Hepatic iron overload can result from excessive iron accumulation due to hereditary 

hemochromatosis or occur in patients undergoing repeated blood transfusion therapies14-16. 

Chronic liver diseases such as viral hepatitis and MASLD can also lead to hepatic iron overload17,18. 

Similarly, liver biopsy is the conventional method for iron quantification and iron overload 

diagnosis17. An invasive technique is not suitable for long term monitoring of hepatic iron overload.  

As the obesity rate continues to rise across the world, global prevalence rates of MASLD 

and chronic liver diseases are also increasing. Techniques that can provide non-invasive 

measurements of hepatic steatosis and iron deposition can play a significant role in disease 

diagnosis, treatment, and monitoring.  
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1.2  Conventional MRI Techniques for Liver Fat and R2* Quantification 

Single-voxel proton (1H) MR Spectroscopy (MRS) has high accuracy for measuring tissue 

fat content by resolving signal contributions from fat and water in the spectral domain. MRS 

techniques have been shown to be practical, accurate, and reproducible for non-invasive 

quantification of liver fat. However, similar to biopsy, single-voxel MRS technique suffers from 

sampling bias19. On the other hand, chemical shift-encoded (CSE) MRI methods exploit the 

difference in the resonance frequencies and resulting phases at different echo times (TE) to 

separate fat and water signals 20, and enable spatially resolved assessment of hepatic fat content 

with high spatial resolution and volumetric coverage. Proton density fat fraction (PDFF), a ratio 

of the signal from fat protons and the signal from fat and water protons combined, has been used 

for fat quantification21. R2* can be quantified using multi-echo gradient-echo sequences. Studies 

have found that the presence of tissue fat can affect R2* quantification accuracy. Since MRI PDFF 

and R2* both provide essential information for clinical decision making regarding liver health and 

are confounding factors for each other in the quantitative MRI signal models for multi-echo 

gradient-echo sequences, they are often jointly modeled and quantified using CSE MRI methods22-

25.  

Major MRI system vendors have commercial products for liver PDFF and R2* mapping. 

Although 3D or 2D multi-slice liver PDFF and R2* mapping methods have been successfully 

employed in routine clinical protocols, conventional MRI methods using Cartesian data sampling 

require a breath-holding acquisition of 15 to 20 seconds to reduce motion-induced artifacts in the 

liver and abdomen26. This breath-holding requirement can limit the practical use of MRI for liver 

PDFF and R2* mapping in populations that are less compliant with breath-holding instructions or 

have limited breath-holding capacities, such as the elderly, children, or patients with chronic 
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diseases27,28. Unsuccessful breath-holding that results in motion artifacts can lead to errors for 

PDFF and R2* quantification. To overcome the limitations of breath-holding, in recent years there 

has been an increase in the number of research works developing and evaluating free-breathing 

MRI techniques for PDFF and/or R2* quantification in the liver. 

 

1.3  Motion-Robust Free-Breathing MRI Techniques for Fat and R2* 

Quantification 

1.3.1 Free-Breathing MRI Techniques 

Non-Cartesian MRI sampling trajectories often repeatedly visit the k-space center over 

many readouts and are generally less sensitive to motion due to averaging effects near the center 

of k-space and the geometries of the sampling trajectories29. Motion artifacts in non-Cartesian MRI 

are usually more distributed and less disruptive compared to Cartesian sampling30. However, the 

artifacts can still degrade the image quality and lead to quantification errors. In addition to artifacts, 

B0 field variation, especially near the tissue-air boundary (e.g., the liver-lung interface), can cause 

errors in R2* estimation31. Studies investigated free-breathing R2* mapping found elevated R2* 

values when respiratory motion is not corrected32. One explanation is that directly averaging signal 

from different motion states, which has different phase dispersions due to B0 variation, can cause 

additional artifactually signal decay. In one study that uses 3D stack-of-radial acquisitions for free-

breathing PDFF and R2* quantification33, an R2* bias of 18.5 s-1 has been reported if respiratory 

motion is not corrected. These disadvantages, including increased artifacts and quantification 

errors, can affect conventional breath-holding techniques and free-breathing scans when motion is 

not properly managed. Free-breathing scans with strategies to manage motion is therefore 

important for improved diagnostic quality and quantification accuracy.     
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One strategy to manage motion is to use a motion surrogate signal to prospectively acquire 

MRI data from a certain motion state or retrospectively group the acquired MRI data into different 

motion states during image reconstruction30. The prospective acquisition or retrospective 

assignment of data to specific motion states is also referred to as “gating.” Self-navigation is one 

popular approach in non-Cartesian MRI. The central k-space signal (i.e., DC signal)32 or a z-axis 

projection signal calculated from k-space data along the kx=ky=0 line has been used34,35 to track 

respiratory motion along the foot-head direction.  

 

1.3.2 Challenges in Image Reconstruction and Motion Modelling  

In recent years, free-breathing techniques using stack-of-radial MRI and self-gating 

motion management have been proposed for liver PDFF and R2* quantification36-38. Studies 

showed improved quantification accuracy in adult and pediatric MASLD patients, especially in 

R2* measurements, when motion gating was applied33,36. However, several challenges remained 

for free-breathing 3D stack-of-radial MRI techniques for liver PDFF and R2* quantification. 

First, non-Cartesian MRI is sensitive to system imperfections39. Gradient error calibration 

through radial spoke alignment can only solve linear gradient errors36,40. Other imperfection such 

as B0 inhomogeneity and gradient non-linearity can results in radial streaking artifacts and affect 

diagnostic quality and quantification accuracy. Second, motion-resolved reconstruction for self-

gated free-breathing PDFF and R2* quantification requires computationally expensive iterative 

algorithms37,38.  
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1.4  MRI Fat and R2* Quantification Techniques at Lower Field Strengths 

In recent years, there has been increased interest in lower field strength MRI systems 

because of advantages such as reduced hardware and siting costs and reduction of artifacts in 

certain applications41-43. These systems can increase MRI accessibility to low-resource regions. 

The larger bore diameters41 (compared to conventional 1.5T and 3T scanners) that these lower 

field strengths MRI system provided can also benefit obese patients at risk of fatty liver diseases.  

Rapid R2* decay from high iron overload can make accurate R2* quantification 

challenging, especially at 3T. R2* quantification on lower field strength MRI systems44-46 (e.g., 

<1T) can have higher dynamic range. Recently, Campbell-Washburn et al. presented the 

feasibility of R2* mapping in liver iron overload patients using a breath-holding multi-echo 

gradient-echo acquisition at 0.55T47. Despite the benefits, the reduction of signal-to-noise ratio 

(SNR) at lower fields can limit the precision. On the other hand, unlike R2* values, PDFF 

measurements do not vary with field strength. Lower field strength MRI can provide a larger 

bore diameter which can improve comfort for patients with a larger body habitus46, which is 

common for patients with MASLD. The feasibility of fat-water separation in breath-holding 

abdominal scans at 0.55T48,49 and 0.75T50 has been demonstrated. However, the in-phase and 

out-of-phase echo times are much longer at lower fields, which exacerbates the trade-offs 

between breath-holding acquisition time and imaging parameters. This makes accurate liver 

PDFF and R2* quantification with adequate spatial resolution and coverage at lower fields more 

challenging than at 1.5T and 3T. 
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1.4.1 Considerations for the Acquisition Parameters 

A common choice at 3T is 6 echoes at either out-of-phase or in-phase echo times and a 

low flip angle of 3° to 5° for reducing the T1-related bias in PDFF estimation26. Due to the longer 

out-of-phase and in-phase echo times at 0.55T, this strategy would lead to longer TEs and TR 

that prolong acquisition beyond the acceptable time for one breath-hold. On the other hand, the 

effect of the T1-related bias is reduced at 0.55T because of the shortened T1 values and the 

increased TR. A larger flip angle that balances between SNR and the T1-related bias may be 

considered for accurate PDFF mapping at 0.55T. As the R2* values change with the field 

strength51, TEs for accurate R2* quantification should also be reconsidered. 

 

1.4.2 Challenges in Scans with Low Signal-to-Noise Ratio 

Because of the reduced SNR at lower fields, limited image resolution, reduced volumetric 

coverage, or longer scan time are common trade-offs to increase SNR for acceptable image 

quality. Previous works have also shown that the small flip angle required for accurate PDFF 

quantification (by mitigating T1 bias52) further decreases the SNR and can become a source of 

quantification errors53. Noise reduction is therefore important and necessary for accurate PDFF 

and R2* quantification at lower field strengths. 

Techniques to reduce noise in MRI are the focus of active research54. Image filtering55 or 

constrained reconstruction56 can be used to suppress the rapidly-fluctuating high-frequency noise 

components. However, these methods incur risks of over-smoothing the images and removing 

desired signal components. Denoising techniques that can objectively estimate underlying noise 

variance and suppress noise with minimal over-smoothing effects are being actively explored. 
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1.5  Specific Aims 

The purpose of the dissertation is to develop MRI reconstruction and motion compensation 

techniques to improve 1) free-breathing liver PDFF and R2* quantification at 3T and 2) breath-

holding Cartesian-based liver PDFF and R2* quantification at 0.55T. In the long term, these 

technical breakthroughs will provide a rapid and motion-robust free-breathing liver PDFF and 

R2* quantification that can benefit patients with limits breath-holding capacity. Additionally, 

improving breath-holding liver PDFF and R2* quantification at 0.55T MRI systems can increase 

accessibility for populations with obesity and at risk for fatty liver disease. 

 

1.5.1 Aim 1: Phase-Preserving Beamforming-Based Streaking Reduction Method for Free-

Breathing Radial MRI 

 Chapter 2 presents a phase-preserving beamforming-based technique to reduce radial 

streaking artifacts caused by system imperfections. This study investigated a distinct 

beamforming formulation that allows phase fidelity to be preserved while suppress streaking 

artifacts. A pipeline with automatic interference patch selection was also developed to remove 

the need of manual intervention. The integration of beamforming and compressed sensing 

reconstruction was further demonstrated in reconstruction of self-gated free-breathing PDFF and 

R2* quantification.   

 

1.5.2 Aim 2: Rapid Uncertainty-Aware Deep Learning Reconstruction for Free-Breathing 

Liver Fat and R2* Quantification 

 Chapter 3 presents a deep learning network that reconstructs liver PDFF and R2* maps 

from self-gated free-breathing stack-of-radial MRI and provides uncertainty estimation maps that 
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can be used for predicting quantification errors. This end-to-end deep learning network consists 

of an artifact suppression module and a parameter mapping module which can suppress artifacts 

and perform signal fitting. The novel component in this network, uncertainty map for the 

quantification parameter, further enhances the reliability of deep learning-based reconstruction 

with the capability of predicting quantification errors. 

 

1.5.3 Aim 3: Improved Accelerated Free-Breathing Liver Fat and R2* Quantification using 

Compressed Sensing with Non-Rigid Compensation 

Chapter 4 presents a compressed sensing reconstruction framework with non-rigid 

motion compensation for accelerated free-breathing liver PDFF and R2* quantification. In this 

work, deformation vector fields with phase correction terms were used to describe the non-rigid 

motion information between motion states. Using the non-rigid motion warping operator into a 

compressed sensing model can lead to sharper quantitative maps with less streaking artifacts.  

 

1.5.4 Aim 4: Accurate Liver Fat and R2* Quantification at 0.55T using Image and k- 

Space Denoising Techniques 

Sub-aim 4.1: Evaluation of Image-Based Locally Low-Rank Principal Component 

Analysis Denoising in Fat and R2* Quantification at 0.55T 

 Chapter 5 evaluates two image-based locally low-rank principal component analysis 

denoising techniques for liver PDFF and R2* quantification at 0.55T. This study used a Monte 

Carlo simulation to investigate the quantification accuracy and precision across different scan 

acquisition parameters. Based on the simulation results, a multi-echo gradient-echo protocol for 

liver PDFF and R2* quantification at 0.55T was designed. The performance of two locally low-
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rank principal component analysis-based denoising algorithms were evaluated in phantoms and 

in in vivo liver datasets. This study found that both denoising methods can improve accuracy and 

precision of PDFF and R2* quantification at 0.55T.  

 

Sub-aim 4.2: Development of Multi-Coil Multi-Contrast k-Space Denoising 

Technique for Fat and R2* Quantification at 0.55T 

 Chapter 6 presents a novel k-space denoising technique to denoise multi-coil multi-

contrast MRI. Using spectral property of block-Hankel matrices constructed by k-space samples, 

the additive Gaussian noise can be effectively suppressed. The k-space denoising technique can 

be directly applied in the originally-acquired k-space data and can be applicable for many multi-

coil multi-contrast datasets. This study showed that the k-space denoising technique can improve 

image sharpness when compared with image-based denoising methods in the application of liver 

PDFF and R2* quantification at 0.55T.  
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CHAPTER 2  

Phase-Preserving Beamforming-Based Streaking Reduction Method 

for Free-Breathing Radial MRI 

2.1 Introduction 

Radial acquisition has been increasingly used in free-breathing abdominal MRI 

applications57,58 due to its inherent motion robustness. However, radial acquisition can be 

sensitive to system imperfections59,60. The resulting streaking artifacts can impact image quality 

or quantification accuracy in quantitative liver MRI. Gradient delay correction methods61 based 

on radial spoke alignment have been proposed to correct k-space trajectories. However, this 

approach cannot fully resolve the effects of system imperfections, such as gradient non-linearity 

and B0 field inhomogeneity, and residual streaking artifacts can still occur. This usually becomes 

accentuated in areas more distant to the isocenter (e.g., especially arms in abdominal scans) and 

the resulting streaking artifacts can obscure liver features.  

Different approaches have been proposed to suppress the streaking artifacts resulting 

from system imperfections, including 1) coil selection-based methods62 that automatically 

choose images from coils with less artifacts and 2) beamforming-based methods63 that combine 

images from all coils with specific weights to suppress streaking artifacts. The first method only 

chooses a subset of coils and can impact the overall signal-to-noise ratio (SNR) in final coil-

combined images. Previous work has demonstrated that beamforming-based methods can 

provide better radial streaking reduction63. However, previous beamforming-based methods did 

not explicitly consider phase and did not evaluate the artifact-suppression performance on phase, 

which is important for applications including fat quantification57 and temperature mapping64. 
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Additionally, a major challenge of the previous beamforming-based methods is the need to 

manually select interference regions that one wants to suppress. This hinders the widespread 

application of such a method for streaking reduction in radial MRI.  

In this work, we developed a different beamforming formulation that can suppress 

streaking artifacts while preserving accurate phase information. We further developed an 

automatic interference patch selection technique which involves deep learning-based 

segmentation to avoid the need for manual input in beamforming-based streaking reduction.  

 

2.2 Methods 

2.2.1 Adaptive Coil Combination 

 Here, we briefly introduce the theory of adaptive coil combination65 which is closely 

related to the beamforming-based streaking reduction technique that we will introduce in 

subsequent sections.  

 We assume the received signal in ith coil is  

𝑦% = 𝑠%𝑥 + 𝑛% (Eq. 2-1)  

where 𝑥 represents the underlying magnetization, 𝑠% represents ith coil sensitivities and 𝑛% 

represents the noise. As the MRI signal is complex-valued, all the variables considered here are 

complex-valued. The adaptive coil combination method seeks to find coil combination weights 

𝑤% such that the coil-combined image  

𝑚 = ∑ 𝑤%𝑦%% = ∑ 𝑤%𝑠%𝑥 +% 𝑤%𝑛%  (Eq. 2-2) 

has the maximized SNR. An optimization problem is formulated in each signal patch:  

argmax
&

'()&!(*"+))
#
)

'()&!-)
#
)
= &!.$&

&!.%&
   (Eq. 2-3) 
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where 𝐸(. ) represents expectation operator, 𝑅/ and 𝑅- represent covariance matrices of received 

signal 𝑠𝑥 and noise/interference 𝑛 which can be estimated from the multi-coil images.  It has 

been demonstrated in previous work that the analytic solution of 𝑤 is 𝐹(𝑅:-0!𝑅:/), where 𝐹(. ) 

extracts the dominant eigenvector 63. 

 

2.2.2 Phase-Preserving Beamforming-Based Streaking Reduction 

Similarly, for beamforming-based coil combination, we assume the received signal in the 

ith coil is 𝑦% = 𝑠%𝑥 + 𝑛%. The only difference is that now 𝑛% represents the interference in the ith 

coil (i.e., the undesired radial streaking artifacts caused by system imperfections). The previously 

proposed beamforming-based method63 finds coil combination weights that maximize the signal-

to-interference ratio (SIR) instead of adaptive coil combination methods that maximizes the 

SNR. However, a potential problem in this max-SIR formulation is that phase information is not 

explicitly considered. Any weight 𝑤𝑒12 with an arbitrary phase offset 𝜑 is also an optimal 

solution to the optimization problem.  

3&4&'5
!
.$(&4&')

3&4&'5
!
.%(&4&')

= &!.$&
&!.%&

   (Eq. 2-4) 

The resulting phase will be dependent on the numerical algorithm used to solve the 

eigenvalue problem. While it may not affect applications that only consider magnitude images, it 

may contribute to errors in applications when phase is of interest. 

Here, we present a new formulation that is based on the minimum-variance distortionless 

response (MVDR) beamformer in antenna theory66. This method finds weights w by solving the 

optimization problem 

argmin
&

𝑤6𝑅-𝑤 		𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜		 ∑ 𝑤%𝑠%% = 1  (Eq. 2-5) 
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The constraint ∑ 𝑤%𝑠%% = 1 corresponds to a “distortionless response” which will preserve 

the signal from a specific direction in a complex domain. The analytic solution to this MVDR 

problem is .7%()*
*!.7%()*

. While 𝑠 is typically unknown, is can be estimated by extracting the principal 

component from local patches65. 

We also extended the beamforming techniques to 3D, where the interference region 

includes patches from several axial slices (Figure 2-1). This leads to smoother variation of signal 

intensity in the interference region, avoiding signal inconsistency in the final reconstructed 3D 

images. 

 

2.2.3 Automatic Identification of Interference Patches 

Previous beamforming-based methods63,67 required manual selection of interference 

patches which can prolong the reconstruction processing time. Therefore, we developed an 

automatic interference patch identification method that can be easily incorporated into the 

reconstruction pipeline.  

A deep learning network, U-Net68, was trained to segment the images into the body, the 

left arm, the right arm and the background. Our training data consisted of 20 axial free-breathing 

abdominal MRI scans using a multi-echo stack-of-radial sequence. After deep learning-based 

segmentation, two interference patches were automatically selected by choosing the patches with 

the largest signal intensities in the two arms in each axial slice. The entire pipeline is shown in 

Figure 2-1.  
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Figure 2-1. Reconstruction pipeline of the phase-preserving beamforming-based radial streaking 
reduction method with automatic interference patch identification. 
 

2.2.4 Data Acquisition and Image Reconstruction 

In a Health Insurance Portability and Accountability Act (HIPAA)-compliant study 

approved by the local institutional review board, 30 adults underwent abdominal scans on a 3T 

scanner (MAGNETOM Skyra or Prisma, Siemens Healthineers, Erlangen, Germany). Written 

informed consent was obtained before scans. We used a 3D multi-echo stack-of-radial gradient 

echo sequence to acquire data during free-breathing acquisitions. The following scan parameters 

were used: TEs = [1.23, 2.46, 3.69, 4.92, 6.15, 7.38] ms, TR = 8.85 ms, flip angle = 5°, field-of-
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view (FoV) = 300x300 to 460x460 mm2, slice thickness = 5 mm. Gradient delay correction using 

radial spoke alignment57,61 was applied before image reconstruction and coil combination.  

The reconstruction was done in MATLAB (R2021a, MathWorks, Natick, 

Massachusetts). We used the MATLAB built-in “svd” function in the beamforming coil 

combination (for both Max-SIR and MVDR beamforming). 

 

2.2.5 Evaluation of Streaking Reduction Performance 

We compared 3 different coil combination algorithms: 1) adaptive coil combine (ACC) 

65, 2) max-SIR beamforming63, and 3) MVDR beamforming. Beamforming-based methods 

require identification of an interference source (e.g., arms in abdominal scans). All 3 approaches 

required estimation of local signal covariance matrices. Different patch sizes (5x5, 11x11 and 

17x17) were compared for local patch extraction.  

To assess the performance of streaking reduction, we used a metric known as cancellation 

ratio69 = &*
!.%&*
&!.%&

, where 𝑤8 is a quiescent vector, 𝑤 is the calculated coil combination weights, 

and 𝑅- is the covariance matrix for interference. We also compared phase consistency along 

cross-section lines on phase images. 

 

2.2.6 Feasibility of Beamforming-Based Coil Combination in Motion-Resolved Free-

Breathing MRI 

The beamforming-based method can also be compatible with compressed sensing 

reconstruction by using the obtained coil combination weights as the coil sensitivity maps. We 

reconstructed self-gated free-breathing liver PDFF and R2* maps using motion-resolved 
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reconstruction and different coil combination methods. The optimization problem for the motion-

resolved reconstruction is: 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛+	‖𝐹𝑆𝑥 − 𝑦‖"" + 𝜆!𝑇𝑉:;<%;-(𝑥) +

																												𝜆"∑ Q𝑊𝑎𝑣𝑒𝑙𝑒𝑡(𝑥4$=;,*<?<4)Q!4$=;,*<?<4 				 (Eq. 2-6) 

where 𝐹 represents the non-uniform fast Fourier Transform (NUFFT) operator, 𝑆 denotes 

beamforming-based coil combination weights, 𝑥 is the reconstructed multi-echo images, 𝑦 is the 

acquired k-space data, and 𝜆! and 𝜆" are regularization parameters. The regularization 

parameters were chosen manually to balance between undersampling artifact reduction and 

image sharpness. The PDFF and R2* maps were calculated by fitting to a 7-peak fat model70 with 

a single R2* decay term.  

 

2.3 Results 

Figures 2-2 and 2-3 compare the magnitude and phase of the first-echo coil-combined 

images using different methods. Max-SIR beamforming resulted in phase jumps that do not 

come from phase wraps (red arrows in the figures). The proposed MVDR beamforming provide 

consistent phase information as in results from adaptive coil combination. A small patch size of 

5x5 for calculation of signal covariance matrices can be sufficient for artifact suppression in 

magnitude images. However, the experimental results showed that a larger patch size (e.g., 

17x17) is required for suppressing streaking artifacts in phase images.  
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Figure 2-2. Coil-combined magnitude and phase images using (a) the adaptive coil combination, 
(b) the max-SIR beamforming, and (c) the proposed MVDR beamforming. Yellow boxes 
represent the patches automatically identified for interference covariance matrix calculation. The 
same patches were used for max-SIR beamforming and MVDR beamforming. Max-SIR 
beamforming results show rapid-changing phase (red arrows) variation. A larger patch size is 
needed to reduce streaking artifacts in phase images (blue arrows). 
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Figure 2-3. Another comparison of coil-combined magnitude and phase images using (a) the 
adaptive coil combination, (b) the max-SIR beamforming, and (c) the proposed MVDR 
beamforming. A smaller patch size is sufficient for suppress streaking artifacts in magnitude 
images. However, residual streakings can still be observed in results using a smaller patch size.  

 

 Figure 2-4 compares the phase profiles from different reconstruction methods. In this 

case, an unnatural phase jump can be observed in the max-SIR beamforming results. The MVDR 

beamforming has a similar phase profile as the adaptive coil combination results, and with less 

streaking artifacts in the phase images.  

Figure 2-5 compares the cancellation ratio for these 3 methods. Both max-SIR and 

MVDR beamforming showed increased cancellation ratio, demonstrating improved streaking 

artifact suppression performance.  
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Figure 2-4. Phase profiles in phase images from ACC, Max-SIR beamforming and MVDR 
beamforming. 
 

 
Figure 2-5. Box plot for cancellation ratios in different coil combination methods.  
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The streaking artifacts from the arms are evident with radial undersampling and motion 

self-gating32 (red arrows) (Figure 2-6). Using beamforming instead of conventional adaptive coil 

combination suppresses the streaking specifically from the arms (orange arrows). When using 

motion-resolved reconstruction (reconstructed with optimization problem in Eq. 2-6) with 

conventional adaptive coil combination, the specific artifact patterns from the arms cannot be 

fully suppressed (blue arrows) and can affect PDFF and R2* quantification accuracy. Combining 

compressed sensing and beamforming generated images and quantitative maps with most of the 

streaking artifacts suppressed (green arrows). 

 

 

Figure 2-6. Images and PDFF/R2* maps using different reconstruction methods. (a) Results 
from self-gated free-breathing MRI using conventional adaptive coil combination and the 
proposed MVDR beamforming pipeline. (b) Results from motion-resolved CS reconstruction 
using conventional adaptive coil combination and the proposed beamforming pipeline. 
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2.4 Discussion 

 Compared with previous works that only investigated beamforming-based streaking 

reduction in magnitude images using radial MRI acquisitions, we investigated beamforming on 

both magnitude and phase images and proposed a different beamforming formulation that 

preserves consistent phase information. Although the performance of interference suppression 

decreased a little for the MVDR beamformer compared with the max-SIR beamformer in terms 

of cancellation ratio, MVDR provides consistent phase information that is important in phase-

sensitive applications.  

 We found that magnitude and phase images have different sensitivities to the patch size 

for signal covariance matrix calculation. The streaking reduction performance in the magnitude 

images is similar from patch sizes 5x5 to 17x17. Since a larger patch size requires longer 

computational time, a small patch size will be sufficient if only magnitude images are required. 

On the other hand, a larger patch size is required to effectively suppress the streaking artifacts in 

the phase images. The computational bottlenecks for these coil combination methods are the 

repeated calculations of singular value decomposition. The use of parallel processing and high-

performance hardware can reduce the computational time.   

 The automatic interference patch selection pipeline is suitable for abdominal scans with 

standard axial planes where the streaking artifacts usually come from the arms. For abdominal 

scans with sagittal, coronal, or oblique planes and for scans in other body parts, different deep 

learning segmentation models may be trained to automatically select the interference patches. 

Even without an automatic patch selection method, the MVDR beamforming method can still be 

applied to suppress the streaking with manual identification of the interference patches.  
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 The proposed beamforming-based coil combination method for streaking reduction can 

be easily adapted to different reconstruction methods, including constrained reconstruction or 

deep learning-based reconstruction, by replacing the coil sensitivity maps with the calculated 

beamforming coil combination weights. Further investigation on streaking reduction 

performance in different radial MRI applications, especially in phase-sensitive applications, will 

be investigated in the future.  

 

2.5 Conclusion 

 In this study, we proposed a 3D phase-preserving beamforming-based coil combination 

method with an automatic interference patch selection pipeline for coil combination in radial 

MRI. The proposed method effectively suppressed streaking artifacts from system imperfections 

while providing robust phase information.  
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CHAPTER 3  

Uncertainty-Aware Physics-Driven Deep Learning Network for 

Free-Breathing Liver Fat and R2* Quantification 

3.1 Introduction 

Chronic liver disease is a global health burden71-73. Liver disease is characterized by 

histological changes that include hepatic steatosis, inflammation, fibrosis, and iron 

deposition16,74-79. Progressive liver disease is associated with cirrhosis and hepatocellular 

carcinoma, and can culminate in liver failure80. Biopsy is considered the standard technique for 

diagnosing liver diseases. However, biopsy suffers from sampling bias, is invasive, and is 

associated with complications12. 

MRI evaluates hepatic steatosis and iron overload by quantifying proton-density fat 

fraction (PDFF) and R2*, using chemical-shift-encoded multi-echo Dixon techniques that acquire 

and fit data to a signal model that accounts for the multi-peak fat spectrum and R2* component81. 

Conventional Dixon techniques using a multi-echo 3D Cartesian sequence26 are sensitive to 

motion and require breath-holding (10-20 sec). The breath-holding requirement limits the 

volumetric coverage and resolution, and can be challenging for patients82. Recently, a multi-echo 

3D stack-of-radial technique32,57 has been developed for free-breathing liver PDFF and R2* 

quantification and demonstrated accurate results in subjects with non-alcoholic fatty liver disease 

(NAFLD)36. To compensate for respiratory motion in free-breathing radial data acquisition, self-

gating is used to reconstruct images from a subset of data with consistent motion behavior. 

However, motion self-gating introduces radial undersampling artifacts in the images and 

quantitative maps. These artifacts can be mitigated by acquiring more radial spokes83 or using 



 24 
 

constrained reconstruction84, but these strategies require a longer acquisition and/or 

computational time.  

Accurate and rapid signal fitting is another challenge in PDFF and R2* quantification. 

Due to the non-convex structure of the signal model and ambiguities in resonant frequencies of 

water/fat protons with respect to B0 field variations, signal fitting can converge to a local 

minimum solution and lead to fat-water swaps. State-of-the-art graph-cut (GC)-based 

methods85,86 impose smoothness constraints on the field map and use optimization algorithms to 

reduce the occurrence of fat-water swaps. However, the GC-based algorithms are 

computationally expensive with computation time on the order of 10 sec/slice85.  

Compared with iterative constrained reconstruction methods for MRI, such as 

compressed sensing (CS)35,87, deep learning (DL)-based methods can rapidly enhance or 

reconstruct images from undersampled data by leveraging datasets from prior scans. Previous 

studies have developed novel DL networks for MRI enhancement or reconstruction from 

undersampled Cartesian data88,89. Although there were DL networks developed for undersampled 

radial MRI90-93, there is a lack of investigation regarding multi-echo radial MRI for PDFF and 

R2* mapping. On the other hand, DL has also been used to replace the computationally 

expensive fat-water signal fitting process. Different network architectures94-97 and loss 

functions98 have been proposed to separate fat/water signals or generate PDFF/R2* maps. 

However, these methods only investigated fully-sampled Cartesian data and did not consider 

radial acquisition nor data undersampling.  

Developing, evaluating, and translating DL-based methods for quantitative MRI 

parameter mapping can be challenging because quantification errors can be difficult to detect by 

visual inspection. Confidence levels of quantification accuracy from the DL network outputs 
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were not typically characterized in previous studies94-98. Recently, there have been initial 

developments in incorporating uncertainty estimation in the DL networks for MR image 

reconstruction99-101. These works showed promise by investigating the relationships between 

estimated uncertainty scores and reconstruction errors. A recent work showed promising results 

of using uncertainty estimation for quantitative MRI PDFF maps obtained from DL102. The study 

indicated that the uncertainty scores were related to the noise levels in the input data. However, 

the relationship between the uncertainty scores and quantification accuracy was not established. 

In this work, we developed an uncertainty-aware physics-driven deep learning network 

(UP-Net) that can rapidly calculate accurate liver PDFF and R2* maps using multi-echo images 

from undersampled self-gated free-breathing stack-of-radial MRI data. UP-Net simultaneously 1) 

suppressed radial streaking artifacts due to undersampling after self-gating, 2) calculated 

accurate quantitative liver PDFF and R2* maps, and 3) provided pixel-wise uncertainty maps for 

each quantitative parameter within a rapid inference time <100 ms/slice. We calibrated the UP-

Net uncertainty scores and demonstrated the ability to predict liver PDFF and R2* quantification 

errors using the uncertainty scores.  

 

3.2 Methods 

3.2.1 Uncertainty-Aware Physics-Driven Deep Learning Network (UP-Net) 

We proposed UP-Net (Figure 3-1) to generate accurate quantitative maps from 

undersampled 2D multi-echo images and provide pixel-wise uncertainty maps which can be used 

to predict quantification errors. UP-Net contained two concatenated network modules for artifact 

suppression and parameter mapping. The first module took 2D multi-echo undersampled images 

𝑥 as the input and generated enhanced 2D multi-echo images 𝑚U  with suppressed undersampling 
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artifacts. For 𝑥 and 𝑚U , multi-echo images, including both the real and imaginary components, 

were stacked along the channel dimension. The second module transformed 𝑚U  to quantitative 

parameter maps �̂� and their corresponding uncertainty maps 𝑢X . In our case of multi-parameter 

fitting, �̂� and 𝑢X  are 3D tensors where different 2D quantitative maps are stacked along the 

channel dimension. UP-Net requires reference multi-echo images and reference quantitative 

maps for training. Details regarding reference data generation are described in section 3.2.5. 

 

 

Figure 3-1. The proposed uncertainty-aware physics-driven deep learning network (UP-Net) for 
rapid free-breathing proton-density fat fraction (PDFF) and R2* quantification from self-gated 
multi-echo stack-of-radial MR images. The artifact suppression module used a generative 
adversarial network (GAN) architecture to reduce the radial undersampling artifacts due to self-
gating. The parameter mapping module used a bifurcated UNet structure, which had a shared 
encoder and two decoders, to calculate parameter maps (pixel-wise means) and uncertainty maps 
(pixel-wise variances). NUFFT: non-uniform fast Fourier transform.  
 
 

Convolutional neural networks (ConvNet) have been proposed to effectively suppress 

artifacts from undersampling24-29. Recently, there are works showing that generative adversarial 

networks (GAN) can improve the quality of the reconstructed images for radial MRI compared 
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to conventional ConvNet103,104. We used a GAN architecture for the artifact suppression module. 

The generator was implemented using a 2D UNet architecture68, and the discriminator was 

implemented using the architecture proposed in105. To deal with image contrast variation across 

subjects, instance normalization106 was used in both the generator and the discriminator. A 

detailed diagram for the UP-Net implementation is presented in Figure 3-2. 

 
Figure 3-2. Network architectures for the (a) artifact suppression module and (b) parameter 
mapping module in UP-Net. 
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We considered the quantitative parameter output as distributions which can be 

characterized using pixel-wise means �̂� and pixel-wise variances 𝑢X  from a Bayesian 

perspective107,108. We interpreted �̂� and 𝑢X  as the quantitative maps and the corresponding 

uncertainty maps. For each pixel index 𝑗, a larger value of 𝑢@U  indicates a wider spread of the 

distribution and therefore the associated 𝑝@U  has higher uncertainty. By assuming a prior data 

distribution, the network can be trained to predict �̂� and 𝑢X  simultaneously using the loss function 

introduced in section 3.2.2.  In light of the deeply correlated nature of �̂� and 𝑢X , we used a 

“bifurcated UNet” architecture (Figures 3-1 and 3-2) for the parameter mapping module. This 

architecture has one shared encoder that extracts features from multi-contrast images 𝑚U , and two 

separate decoders that generate parameter maps �̂� and uncertainty maps 𝑢X . Because the 

uncertainty score, or the variance of a distribution, should always be nonnegative, a softplus 

layer (𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = log(1 + 𝑒+)) was added prior to the uncertainty map output. 

 

3.2.2 Loss Function for UP-Net Training 

We constructed a loss function with 5 components for supervised training of UP-Net:	

𝐿AB0C4< = 𝑤!𝐿%:DEF' +𝑤"𝐿%:DGHC +𝑤#𝐿:?IEF' +𝑤J𝐿I=K*%$* +𝑤L𝐿M-$4N<      (Eq. 3-1) 

An image mean square error (MSE) loss was used to measure the errors between enhanced (𝑚U ) 

and reference (𝑚) multi-echo images: 

𝐿%:DEF' =
!
C&
∑ ]𝑚U1 −𝑚1^

"
1 							(Eq. 3-2) 

, where 𝑗 represents the pixel index and 𝑁1 is the total number of pixels in the multi-echo images. 

We trained the GAN architecture using a Wasserstein GAN loss109, which can be formulated as: 

min
G
max
O

𝔼:~I+,-"%(:)[𝐷(𝑚)] − 𝔼:Q~I.(:Q)[𝐷(𝐺(𝑚U))]					(Eq. 3-3) 
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, where G represents the generator, D represents the discriminator. The loss for updating the 

generator G was: 

𝐿%:DGHC = 𝔼:Q~I.(:Q )[𝐷(𝐺(𝑚U))]								(Eq. 3-4) 

We also used an MSE loss that measures the errors between quantitative maps from UP-Net (�̂�) 

and reference data (𝑝):  

𝐿%:DEF' =
!
C&
∑ (�̂�1 − 𝑝1)"1 								(Eq. 3-5) 

To promote learning of the signal fitting process we used an MRI physics loss: 

𝐿I=K*%$* =
!
C&
(𝑚U − 𝑄(�̂�))"								(Eq. 3-6) 

where Q represents an operator that transforms the quantitative maps to multi-echo images based 

on the MRI signal equation. In this work where we investigated PDFF and R2* quantification, 

the operator Q we used was: 

𝑄(�̂�) = 𝑄(𝑊, 𝐹, 𝑅!∗ , 𝜑, 𝑇𝐸) = .𝑊 + 𝐹 ∙ 1∑ 𝑎# ∙ 𝑒$!%&!'()
#*+ 56 ∙ 𝑒,-"∗'( ∙ 𝑒$!%.'(	  (Eq. 3-7) 

where W, F, 𝑅"∗ , 𝜑 represent the quantitative water maps, fat maps, R2* maps, and B0 field maps. 

A 7-peak fat model70 with amplitudes 𝑎: and frequencies 𝑓: were also included. To predict 

quantitative parameter outputs with corresponding uncertainty scores, we used an uncertainty 

loss: 

𝐿M-$4N< =
‖IS0I‖)

MQ
+ 𝑙𝑜𝑔(𝑢X)				  (Eq. 3-8) 

This uncertainty loss function is equivalent to performing maximum a posteriori (MAP) 

inference where a Laplace distribution107 is assumed for each quantitative parameter in each 

pixel. We can also understand this loss function from a more intuitive perspective. First, in 

regions where the ‖�̂� − 𝑝‖! error minimization is difficult (e.g., regions with lower signal-to-

noise ratio), increased values of 𝑢X  can reduce the loss, therefore capturing uncertainty. Second, 



 30 
 

the 𝑙𝑜𝑔(𝑢X) term can serve as a regularization term to avoid unconstrained increase in the 

uncertainty score.  

The relative weights for each loss component in Equation 1 can impact the results. We 

chose the weight combination that achieved the lowest PDFF and R2* quantification errors in the 

validation set: 𝑤! = 0.2, 𝑤" = 0.2, 𝑤# = 0.2, 𝑤J = 0.3, and 𝑤L = 0.1. 

 

3.2.3 Training Strategy for UP-Net 

To shorten the convergence time for training UP-Net, we used a step-by-step training 

strategy. 

Step 1: Pre-train the artifact suppression module using pairs of input undersampled images 𝑥 and 

reference images 𝑚 as the training data and using only 𝐿%:DEF' and 𝐿%:DGHC for the loss 

function. 

Step 2: Pre-train the parameter mapping module without the uncertainty estimation path using 

pairs of reference multi-contrast images 𝑚 and reference quantitative maps 𝑝 as the training data 

and using only 𝐿:?IEF' and 𝐿I=K*%$* for the loss function. 

Step 3: Load the weights trained from Steps 1 and 2, and then train the entire UP-Net end-to-end 

without the uncertainty path using 𝐿%:DEF', 𝐿%:DGHC, 𝐿:?IEF' and 𝐿:;T4U for the loss function 

(i.e., not including the uncertainty loss term yet). 

Step 4: Train the entire UP-Net using training sets of undersampled images 𝑥, reference images 

𝑚 and reference quantitative maps 𝑝 with the full loss function 𝐿AB0C4<. 

For all training steps, data augmentation for images/maps was performed by mirroring 

(no flip or horizontal flip) and rotating by n*90 degrees (n=0,1,2,3). This augmented the training 

data size to 8 times that of the original training data. In addition, we used a “phase 
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augmentation” strategy to further augment training data by adding a phase offset to the multi-

echo input images, multi-echo reference images, and reference fat and water complex signals at 

the same time (Figure 3-3). The signal magnitudes were not changed, and the relationship 

between images and quantitative maps were not modified. In each epoch during training, we 

generated 3 more instances for each 2D slice in this manner (i.e., in addition to the original data, 

3 different phase offsets were applied to generate 3 more instances). The phase offsets were 

randomly selected between 0~2𝜋. This strategy aimed to improve robustness to phase variations, 

which is important in separating fat/water signals. 
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Figure 3-3. Overview of the data augmentation strategy used in this work. For phase 
augmentation, a phase offset (𝜙) was added to 1) self-gated images, 2) reference compressed 
sensing (CS)-reconstructed images, 3) reference complex-valued fat signal and 4) reference 
complex-valued water signal to generate phase-augmented training data. Signal magnitudes were 
not modified. R2* and field map values were not changed. In each epoch during training, 3 more 
instances (in addition to the original data) were generated by using 3 random phase offsets 𝜙!, 
𝜙" and 𝜙# in the range of [0, 2𝜋]. 
 

3.2.4 Data Acquisition 

In a HIPAA-compliant and IRB-approved study, we acquired MR images from 105 

subjects, including healthy subjects and subjects with suspected or confirmed NAFLD, at 3T 

(MAGNETOM Skyra or Prisma, Siemens Healthineers, Erlangen, Germany). Fifty-seven of the 



 33 
 

subjects were adults (34 females, 23 males; age 48.16±19.01 years; body mass index [BMI]: 

26.98±5.94kg/m2) and 48 of the subjects were children (19 females, 29 males; age 13.06±2.99 

years; BMI: 22.85±8.41kg/m2). Written informed consent, parental permission, and assent, if 

applicable, were obtained for all subjects prior to research procedures. We scanned using a 

prototype free-breathing multi-echo gradient-echo 3D stack-of-radial sequence with bipolar 

readout gradients (FB Radial, parameters in Table 3-1)57. To compare with standard breath-

holding techniques, we acquired an additional breath-hold bipolar multi-echo gradient-echo 3D 

Cartesian sequence (BH Cartesian, parameters in Table 3-1)26. We separated the data into 

training (N=63), validation (N=21), and testing (N=21) datasets using a 3:1:1 ratio (Table 3-2). 

Subject information and data were entered into a secure database for management and 

analysis110.  

We trained and tested UP-Net using only FB Radial data, while the BH Cartesian data 

served as an external reference for evaluation of PDFF and R2* quantification accuracy. For BH 

Cartesian data, images and the quantitative PDFF and R2* maps were reconstructed using 

vendor-provided software on the scanner.  

Table 3-1. Representative sequence parameters for free-breathing 3D stack-of-radial (FB Radial) 
and breath-holding (BH) 3D Cartesian axial MRI scans at 3T. N/A: not applicable.  

Sequence parameters FB Radial BH Cartesian 
TE (ms) 1.23, 2.46, 3.69, 4.92, 6.15, 7.38 
TR (ms) 8.85 

Flip angle (°) 5 5 
Field of view 360-440 x 360-440 mm2 360-440 x 360-440 mm2 

Slice thickness (mm) 5 5 
Matrix size (x, y, z) 224-288, 224-288, 40-72 224-288, 224-288, 30-40 
Acceleration factor N/A R=4 (parallel imaging) 

Radial spokes 354-454 N/A 
Scan time (min:sec) 2:28 - 4:49* 0:19# 

Retrospective 
undersampling 

R=2.5 (40% self-gating 
acceptance rate) 

N/A 

*Radial gradient calibration time was not included. #Prescan calibration time was not included. 
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Table 3-2. Dataset characteristics. NAFLD: non-alcoholic fatty liver disease. Std: standard 
deviation.  
Datasets Total 

number of 
subjects 

Adult 
subjects 
 

Pediatric 
subjects 
 

Total number 
of 2D slices  

Range of 
liver PDFF 
values 

Training 
set 

63 24 NAFLD, 
11 healthy 

18 NAFLD#,  
10 healthy 

2528* Min: 0.4% 
Max: 33.4% 
Mean: 
10.5% 
Std: 9.7% 

Validation 
set 

21 7 NAFLD,  
4 healthy 

6 NAFLD#,  
4 healthy 

812 Min: 0.9% 
Max: 28.4% 
Mean: 9.2% 
Std: 8.8% 

Testing 
set 

21 7 NAFLD,  
4 healthy 

5 NAFLD#, 
5 healthy 

860 
 
 

Min: 0.6% 
Max: 25.2% 
Mean: 9.8% 
Std: 8.4% 

*Before performing data augmentation. See text in section 3.2.3 for details about data 
augmentation. #Suspected or confirmed NAFLD. 
 

3.2.5 Reference Data Preparation for UP-Net Training 

UP-Net was trained in a supervised approach, which demands high-quality multi-echo 

images and quantitative maps with minimal artifacts to serve as references. However, it is 

challenging to acquire fully-sampled data for reconstruction of motion-resolved 3D volumetric 

images in the abdomen. To satisfy the Nyquist sampling criteria after self-gating, longer 

acquisition time is needed, which may increase sensitivity to motion effects. Previous works 

have used CS to generate images and quantitative maps for DL network training in applications 

where a fully-sampled reference dataset is difficult to acquire111,112. Following a similar strategy, 

we acquired nominally fully-sampled stack-of-radial data before applying motion self-gating, 

and used CS to reconstruct motion self-gated images with suppressed undersampling artifacts.  

The workflow for generating the training data for UP-Net is shown in Figure 3-4. 

Gradient delays were calibrated to correct the radial trajectory for FB Radial data 
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reconstruction16. We extracted a projection-based self-navigator from the kx = ky = 0 line in k-

space35 to track respiratory motion along the z dimension. A sliding window approach was 

applied along the motion dimension to bin the k-space data into 6 respiratory motion states 

where each bin contained 40% of the entire k-space data (effective data undersampling factor = 

2.5 in each state). We estimated coil sensitivity maps using the phased array beamforming 

technique developed in Chapter 2113, which has been shown to suppress radial artifacts resulting 

from system imperfections (e.g., gradient non-linearity and B0 field inhomogeneity). We 

formulated the 2D CS reconstruction problem as35: 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛+	‖𝐹𝑆𝑥 − 𝑦‖"" + 𝜆!𝑇𝑉:;<%;-(𝑥) +

																												𝜆"∑ Q𝑊𝑎𝑣𝑒𝑙𝑒𝑡(𝑥4$=;,*<?<4)Q!4$=;,*<?<4 				 (Eq. 3-9) 

where 𝐹 represents the non-uniform fast Fourier Transform (NUFFT) operator, 𝑆 denotes coil 

sensitivity maps, 𝑥 is the reconstructed multi-echo images, 𝑦 is the acquired k-space data, and 𝜆! 

and 𝜆" are regularization parameters. The regularization parameters were chosen manually to 

balance between undersampling artifact reduction and image sharpness. After CS reconstruction, 

we calculated quantitative maps (including complex fat/water components, R2* map, and B0 field 

map) by fitting the CS-reconstructed multi-echo images to a 7-peak fat model70 with a single R2* 

component (same as Eq. 3-7) using GC-based algorithms85,86. Local fat-water swaps still 

occurred in certain slices and were difficult to correct using GC-based algorithms; we excluded 

these slices from the training dataset. We generated body masks from the first-echo CS-

reconstructed magnitude images, and applied the body masks to the CS-reconstructed images 

and the corresponding quantitative maps for background artifact and noise suppression. We will 

refer to the reference CS-reconstructed self-gated free-breathing stack-of-radial images as 
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FB+CS and the corresponding quantitative maps reconstructed by GC-based algorithms as 

FB+CS+GC. 

 

 

Figure 3-4. The workflow for generating reference data (multi-echo images and quantitative 
maps) for training UP-Net. Nominally fully-sampled stack-of-radial k-space data were binned 
into 6 respiratory motion states using projection-based self-navigators. A 2D compressed sensing 
(CS) framework with beamforming-based coil sensitivity maps was used to reconstruct multi-
echo images with reduced undersampling streaking artifacts. Quantitative maps were generated 
by fitting the multi-echo images to a fat-water signal model with a single R2* component. Body 
masks were generated from the CS-reconstructed first-echo images for background suppression.  
 

The input images 𝑥 to UP-Net were coil-combined 6-echo images using 40% of FB 

Radial data near the end-expiration state (Figure 3-1). The real and imaginary components from 

each echo were stacked along the channel dimension (6 echoes × real/imaginary components = 

12 channels). The output from the artifact suppression module had the same data dimensions as 

the input images (12 channels), and were fed into the parameter mapping module. The output 

from the parameter mapping module contained 1) complex-valued fat and water components, 
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R2* map, and field map stacked along the channel dimension and 2) three uncertainty maps for 

PDFF, R2*, and field map stacked along the channel dimension. PDFF maps were generated 

from complex fat/water components for calculation of 𝐿:?IEF' and 𝐿M-$4N<, while the complex-

valued fat/water components were directly used in 𝐿:;T4U. 

Based on PDFF and R2* quantification accuracy in the validation dataset, the 

hyperparameters for the end-to-end UP-Net training were chosen as: batch size=32, initial 

learning rates=0.0001, and epochs=150, using the Adam optimizer. 

 

3.2.6 Evaluation of UP-Net Image Quality and Quantification Accuracy 

We evaluated the performance of UP-Net in terms of image quality and quantification 

accuracy of the output images and maps in the testing dataset. For image quality, we compared 

the enhanced image results from UP-Net with the reference FB+CS images using normalized 

root mean squared error (NRMSE) and structure similarity index (SSIM). For quantification 

accuracy, we calculated differences in PDFF and R2* quantification results using liver regions of 

interest (ROIs) for 1) FB+UP-Net versus FB+CS+GC and 2) FB+UP-Net versus BH Cartesian. 

ROIs with area of 5-cm2 were placed in the right lobe of the liver by a trained researcher while 

avoiding large vessels and bile ducts36. A total of 3 ROIs were placed in the upper, middle and 

lower liver (one ROI at each level) for each subject. Bland-Altman analysis was performed to 

evaluate PDFF and R2* accuracy by calculating the mean difference (MD) and 95% limits of 

agreement (LoA) between different methods.  
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3.2.7 Evaluation of UP-Net Uncertainty Estimation 

We evaluated the performance of UP-Net uncertainty estimation in terms of its ability to 

predict quantification errors according to the following steps. 

Step 1: Complete UP-Net training. 

Step 2: In the validation dataset, measure 1) quantification errors (∑ |�̂�% − 𝑝%|%∈.WX ) between UP-

Net and reference FB+CS+GC results and 2) UP-Net uncertainty scores in the liver ROIs. Use a 

linear correlation model to generate “calibration curves” between quantification errors and UP-

Net uncertainty scores for each quantitative parameter separately. Calculate Spearman 

correlation coefficients and test for statistical significance. 

Step 3: Output UP-Net uncertainty scores for liver ROIs in the testing dataset. Transform UP-

Net uncertainty scores to predicted quantification errors using the calibration curves. 

Step 4: Perform Bland-Altman analysis on predicted quantification errors versus actual 

quantification errors in the testing dataset, with respect to FB+CS+GC results, for each 

quantitative parameter separately.  

 

3.2.8 UP-Net Ablation Study 

We performed an ablation study to assess the contributions of the key components used 

in UP-Net, including phase augmentation, GAN loss, MRI physics loss, uncertainty estimation, 

and joint end-to-end training strategy. After training each ablated model with the same training 

dataset, we compared the results in the testing dataset using NRMSE and SSIM for image 

quality, and absolute errors in liver PDFF and R2* for quantification accuracy. We used the 

Wilcoxon signed-rank test to evaluate if the performance of the ablated network models had 

significant difference versus the performance of UP-Net. P<0.01 was considered significant.  
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3.3 Results 

3.3.1 UP-Net Image Quality and Quantification Accuracy 

Figure 3-5 shows representative first-echo magnitude and phase images from UP-Net 

input, UP-Net output results, and FB+CS results in two subjects with NAFLD (a 47-year-old 

male and a 17-year-old male). UP-Net suppressed the radial undersampling streaking artifacts in 

the liver and in the background (arrows in Figure 3-5), and achieved high SSIM compared with 

FB+CS. Figures 3-6 and 3-7 show representative quantitative PDFF, R2* and field map results 

in axial and coronal orientations and the corresponding uncertainty maps in two NAFLD subjects 

(same subjects as in Figure 3-5). UP-Net generated accurate PDFF/R2*/field maps compared 

with FB+CS+GC references in the liver ROIs. Most regions show low quantification errors 

(Figures 3-6 and 3-7) in all 3 quantitative parameters. Regions corresponding to air usually had 

large quantification errors. The uncertainty maps show high intensities (red arrows in Figures 3-

6 and 3-7) and characterize the lower confidence in these regions in air. 
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Figure 3-5. Representative free-breathing (FB) stack-of-radial first-echo images from self-gated 
input images, UP-Net output results, and reference images reconstructed by compressed sensing 
(CS). (a) Results from a 47-year-old male (BMI=28.0kg/m2) in the testing set. (b) Results from a 
17-year-old male (BMI=30.4kg/m2) in the testing set. Structural similarity index (SSIM) values 
comparing UP-Net output with reference images are shown. Arrows point to streaking artifacts 
in the self-gated images that are suppressed in the UP-Net output and reference images. BMI: 
body mass index. 
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Figure 3-6. Representative free-breathing (FB) (a) proton-density fat fraction (PDFF), (b) R2* 
and (c) field maps and corresponding uncertainty maps from the same subject in Figure 3-5(a). 
PDFF, R2* and field map errors were generally low when comparing UP-Net results with 
reference maps reconstructed using compressed sensing (CS) and graph-cut (GC) algorithms. In 
regions with larger quantification errors, higher UP-Net uncertainty scores were observed in all 3 
quantitative maps (red arrows). Errors and higher uncertainty scores around the body were in 
regions corresponding to air. 
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Figure 3-7. Representative free-breathing (FB) (a) proton-density fat fraction (PDFF), (b) R2* 
and (c) field maps and corresponding uncertainty maps from the same subject in Figure 3-5(b). 
PDFF, R2* and field map errors were generally low when comparing UP-Net results with 
reference maps reconstructed using compressed sensing (CS) and graph-cut (GC) algorithms. In 
regions with larger quantification errors, higher UP-Net uncertainty scores were observed in all 3 
quantitative maps (red arrows). Errors and higher uncertainty scores around the body were in 
regions corresponding to air. 
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Bland-Altman plots for liver PDFF and R2* quantification accuracy are shown in Figure 

3-8. For PDFF quantification, FB+UP-Net achieved MD = -0.36% compared with FB+CS+GC, 

and MD = 0.53% compared with BH Cartesian. For R2* quantification, FB+UP-Net achieved 

MD = -0.37 s-1 compared with FB+CS+GC, and MD = 6.75 s-1compared with BH Cartesian. 

LoA between FB+UP-Net versus FB+CS+GC was narrower than FB+UP-Net versus BH 

Cartesian for both PDFF and R2* quantification. 

 
 
Figure 3-8. (a-b) Bland-Altman plots comparing liver proton-density fat fraction (PDFF) values 
from UP-Net output maps versus free-breathing (FB) reference maps and breath-holding (BH) 
Cartesian maps. (c-d) Bland-Altman plots comparing liver R2* values from UP-Net output maps 
versus FB reference maps and BH Cartesian maps. The dashed lines represent zero difference. 
The solid lines represent mean differences (MD) and 95% limits of agreements (LoA).  
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3.3.2 UP-Net Uncertainty Estimation 

Linear correlation results comparing absolute quantification errors versus uncertainty 

scores of three quantitative parameters in liver ROIs in the validation dataset are shown in 

Figure 3-9(a). The Spearman correlation coefficients for PDFF, R2* and field map were 0.358 

(p<0.05), 0.466 (p<0.01), and 0.503 (p<0.01), respectively. These calibrated linear regression 

curves were used to convert uncertainty scores measured in the testing dataset to predicted 

quantification errors. The Bland-Altman plots for UP-Net predicted errors versus actual 

quantification errors in liver ROIs are shown in Figure 3-9(b). MDs between UP-Net predicted 

errors versus actual absolute quantifications errors were 0.27%, 0.12 s-1, and 0.19 Hz for PDFF, 

R2*, and field map, respectively. Note that the quantification errors were all generally low to 

begin with. 
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Figure 3-9. (a) Correlation plots between absolute quantification errors (UP-Net outputs versus 
reference compressed sensing and graph-cut fitting results) and UP-Net uncertainty scores in 
liver regions of interest (ROIs) in the validation dataset. Linear regression was performed to 
calibrate PDFF, R2* and field map uncertainty scores with respect to the absolute errors. (b) 
Bland-Altman plots comparing the errors predicted from UP-Net uncertainty scores versus the 
actual absolute quantification errors in PDFF, R2* and field map in liver ROIs in the testing 
dataset. The black dashed lines represent zero difference. The black solid lines represent mean 
differences (MD) and 95% limits of agreements (LoA). 
 

 

3.3.3 UP-Net Ablation Study Results 

Table 3-3 shows the results of our ablation study. UP-Net achieved higher mean SSIM of 

0.872 and lower mean NRMSE of 0.173 compared with the ablated UP-Net models without 

phase augmentation or GAN loss (all p<0.01). Compared with the ablated UP-Net model without 

the MRI physics loss, UP-Net achieved lower mean PDFF error of -0.36% and lower mean R2* 

error of -0.37 s-1 (both p<0.01). UP-Net without uncertainty estimation did not have significant 
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difference in image quality and quantification accuracy when compared with UP-Net (i.e., the 

addition of the uncertainty path did not degrade quantification accuracy). UP-Net without joint 

training achieved higher mean PDFF error of -0.46% (p<0.01) compared to UP-Net with joint 

training. 

 

Table 3-3. Ablation study in the testing dataset for different components used in UP-Net. 
Structural similarity index (SSIM) and normalized root mean squared error (NRMSE) were 
evaluated on magnitude images, with respect to compressed sensing results. Proton-density fat 
fraction (PDFF) and R2* quantification errors were evaluated in liver regions of interest, with 
respect to compressed sensing and graph-cut fitting results. Results are reported as mean ± 
standard deviation. * represents statistically significant difference (p<0.01, Wilcoxon signed-
rank test) compared with UP-Net.  

 Component Metric 
Networ

k 
Phase 

Augmentation 
GAN 
Loss 

Physics 
Loss 

Uncertainty 
Estimation 

Joint 
Training 

SSIM NRMSE PDFF Errors R2* Errors 

1  ü ü ü ü 0.851± 
0.055* 

0.182± 
0.048* 

-0.92%± 
0.95%* 

-0.54s-1± 
3.02s-1* 

2 ü  ü ü ü 0.858± 
0.067* 

0.194± 
0.053* 

-0.31%± 
1.05% 

-0.68s-1± 
3.46s-1* 

3 ü ü  ü ü 0.870± 
0.049 

0.178± 
0.050 

-1.69%± 
1.49%* 

-2.50s-1± 
5.03s-1* 

4 ü ü ü  ü 0.877± 
0.048 

0.176± 
0.042 

-0.29%± 
0.88% 

-0.34s-1± 
3.81s-1 

5 ü ü ü ü  0.884± 
0.050 

0.168± 
0.061 

-0.46%± 
1.47%* 

-0.41s-1± 
3.02s-1 

UP-Net ü ü ü ü ü 0.872± 
0.053 

0.173± 
0.059 

-0.36%± 
0.98% 

-0.37s-1± 
3.56s-1 

 

3.3.4 Processing and Reconstruction Time 

Data preparation steps of gradient calibration, self-gating, NUFFT, and beamforming-

based coil combination (Figures 3-1 and 3-2) required a total time of 30 sec/slice. Repeated 

forward and inverse NUFFT are the bottleneck for the CS reconstruction method. To improve 

computational performance, we implemented the CS reconstruction method using GPU-based 

NUFFT packages58. CS reconstruction took 3 min/slice on an Intel Xeon E5-2660 CPU with 

128GB RAM and an NVIDIA v100 GPU with 32GB memory. We used the ISMRM fat-water 

toolbox59 and code from previous works21 for GC fitting algorithms, which required 15 

seconds/slice on the same CPU. UP-Net required 28 hours to train on an NVIDIA v100 GPU 
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with 32GB memory. With the prepared data as input, UP-Net took 79 msec/slice for network 

inference (using same hardware as network training). A more detailed analysis of the total 

operation counts for each method was provided in Table 3-4.  

 

Table 3-4. Comparison of the number of floating-point operations (FLOPs) for reconstructing 
one slice using different methods. The compressed sensing (CS) algorithm used in this work was 
implemented using conjugate gradient descent. The graph-cut based fitting algorithm was 
implemented using code from the ISMRM fat-water toolbox. The CS algorithm is an iterative 
method and the FLOPs count is based on the average iteration number used in this work. 
Number of FLOPs for UP-Net was calculated using the ptflops package 
(https://pypi.org/project/ptflops/) and the number of FLOPs for CS and graph-cut algorithm were 
calculated with the help of the Lightspeed Matlab Toolbox 
(https://github.com/tminka/lightspeed). 
 Compressed sensing Graph cut-based 

fitting algorithm 
UP-Net 

FLOPs 60.2 G 1.8 G 15.64 G 
 

3.4 Discussion 

We developed an uncertainty-aware physics-driven deep learning network that accurately 

quantifies liver PDFF and R2* using undersampled self-gated free-breathing multi-echo stack-of-

radial MRI. Compared with previous works on DL-based fat/water separation and/or R2* 

mapping94-98, our study has two main contributions. First, we investigated a DL approach for 

PDFF and R2* mapping from undersampled radial MRI data. Unlike previously proposed 

networks that learned mapping from fully-sampled Cartesian images to fat/water signals or 

quantitative maps94-98, UP-Net generates accurate quantitative maps from images impacted by 

radial undersampling artifacts. We incorporated artifact suppression and parameter mapping into 

one end-to-end network. This substantially reduced the computational time for image artifact 

suppression compared to time-intensive CS methods and fat-water signal fitting compared to GC 

algorithms. Second, our proposed network has built-in uncertainty estimation that generates 
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pixel-wise uncertainty maps for different quantitative parameters. Uncertainty estimation to 

assess the confidence levels in DL-based MRI reconstruction and quantitative parameter 

mapping results is a nascent direction99-102. We specifically investigated the application of 

uncertainty estimation in DL-based PDFF and R2* quantification and demonstrated that a 

calibration method for the UP-Net uncertainty scores can be used to predict absolute liver PDFF 

and R2* quantification errors in UP-Net parameter maps to within 1% and 3 s-1, respectively, 

compared to actual errors with respect to reference methods. 

To suppress radial undersampling streaking artifacts, we used UNet as the backbone 

architecture, which has been used in previous work for radial streaking reduction in 2D 

slices90,91, dynamic 2D cardiac images93, and 2D images from different respiratory phases114. In 

this work, we adapted the input/output dimensions of UNet to accommodate the 2D multi-echo 

images. We stacked the real and imaginary components from all of the multi-echo images along 

the channel dimension to preserve the consistency of the magnitude and phase input information 

for PDFF and R2* quantification. We also adopted a GAN architecture and a phase augmentation 

strategy for image quality improvement. Due to limited memory on the GPU for network 

training, correlations between neighboring slices were not considered in this study. Networks 

that can efficiently process multi-echo 2D+slice or multi-echo 3D volumetric data could be 

further investigated. Although it is possible to omit the artifact suppression module and use one 

single network to generate quantitative maps directly from self-gated undersampled radial 

images, UP-Net with a modular architecture can provide more accurate quantitative maps with 

less radial streaking artifacts (example in Figure 3-10).  
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Figure 3-10. Comparison of results from (a) UP-Net without an artifact suppression module, (b) 
proposed UP-Net, and (c) reference quantitative maps using compressed sensing and graph-cut 
algorithms. In (a), we trained UP-Net without an artifact suppression module using pairs of self-
gated multi-echo images and reference quantitative maps. This approach used a single network to 
suppress the radial undersampling artifacts and perform parameter mapping at the same time, 
which can be challenging. We found that the radial streaking artifacts were not adequately 
suppressed (yellow arrow) and there were PDFF quantification errors (green arrow).  
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In addition to rapid computational time, another potential advantage of using UP-Net or 

other DL-based methods for fat-water separation is reducing the occurrence of fat-water swaps. 

In our datasets, there were slices with local fat-water swaps (usually around the liver dome) 

using the GC methods. These slices required manually adjusting GC parameters, such as B0 field 

map smoothness or range, to address the swaps. When training UP-Net, we excluded data with 

fat-water swaps and performed phase augmentation, which helped the network to learn reliable 

fat-water separation in the presence of B0 field map variations. The use of UP-Net can potentially 

reduce the occurrence of fat-water swaps (Figures 3-11) and avoid the extra time/effort needed 

to check and fix fat-water swaps.  
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Figure 3-11. Example cases where a graph cut-based method generated PDFF maps with local 
fat-water swaps and UP-Net generated PDFF maps without fat-water swaps. The local fat-water 
swaps usually occur near the liver dome in our free-breathing MRI dataset. In these 2D slices, 
the liver usually occupies a small portion of the field of view and is more likely to result in local 
fat-water swaps (arrows) using the conventional method (compressed sensing + graph-cut based 
fitting). In contrast, these slices do not exhibit fat-water swaps in our UP-Net results. 

 

 

One concern of DL-based fat-water separation is whether the network could perform 

accurate mapping for datasets with liver PDFF values outside the range in the training dataset. 
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UP-Net has two advantages that could allow it to generalize to these cases. First, we used an 

MRI physics loss that will constrain the output to follow the fat-water signal model. Second, 

even though the training dataset we used in this work has a maximum liver PDFF around 30%, 

UP-Net still learned from the signal characteristics in fat-dominant tissues (e.g., subcutaneous 

adipose tissue) with PDFF up to 90%. To investigate this, we created synthetic testing datasets 

with higher liver PDFF, and used UP-Net to perform PDFF mapping. A representative example 

in Figure 3-12 shows that UP-Net can indeed quantify higher liver PDFF values (e.g., >40%) 

that were not included in the training dataset. Another concern of DL-based fat-water separation 

is whether the network can be adapted to several different body parts. Although different body 

parts may have different B0 field map ranges and variations, their signal characteristics are 

described by the same fat-water signal model. After training UP-Net on a certain dataset (e.g., 

liver and upper abdomen), the fat-water signal model is implicitly learned. Through transfer 

learning and fine tuning, UP-Net can potentially be applied to other body parts (e.g., lower 

abdomen). 
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Figure 3-12. (a) Example of a synthetic testing case with higher PDFF. First, we performed 
parameter mapping from the dataset using a reference method with graph-cut fitting. Next, we 
multiplied the fat signal component within the liver by 1.5 and divided the water signal 
component within the liver by 1.5 to synthesize a case with higher liver PFFF (>40%). (b) We 
used the same approach as in (a) to generate corresponding synthetic self-gated images with 
higher liver PDFF, which were used as inputs to UP-Net. (c) Reference images and quantitative 
maps for the synthetic testing case in (a). (d) The UP-Net results for this higher-PDFF synthetic 
testing case. The quantitative values from the UP-Net results were consistent with the synthetic 
reference data. 

 

Fully-sampled free-breathing motion-resolved volumetric abdominal stack-of-radial MRI 

data is often impractical to acquire. We used CS to generate images and quantitative maps with 

suppressed radial streaking artifacts. CS methods have already been validated for PDFF 
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quantification using undersampled Cartesian MRI115 and for PDFF and R2* quantification using 

undersampled radial MRI data84. For complete evaluation of our UP-Net quantification accuracy, 

we also compared UP-Net results with standard 3D BH Cartesian MRI. Many previous DL-

based fat-water signal fitting methods were only evaluated on individual fat and water maps94-97. 

We evaluated our results on quantitative PDFF maps. Similar to a previous DL-based method for 

joint PDFF and R2* mapping using Cartesian MRI98, we also achieved low biases in PDFF, R2*, 

and field map values versus reference methods. Notably, we trained and tested our method on a 

larger dataset (105 subjects). In contrast, a previous report considered 31 subjects98. Previous DL 

methods did not investigate their results in NAFLD subjects, while our UP-Net was trained and 

evaluated in a population including healthy subjects and subjects with suspected or confirmed 

NAFLD. In our Bland-Altman analysis of PDFF and R2* quantification accuracy, the MD 

between FB+UP-Net and FB+CS+GC was smaller than the MD between FB+UP-Net and BH 

Cartesian. This was expected because UP-Net was trained using reference data from the 

FB+CS+GC method. The MD and LoA of PDFF and R2* quantification comparing FB+UP-Net 

versus BH Cartesian are similar to results in previous studies comparing self-gated FB stack-of-

radial MRI with BH Cartesian36.  

We carefully examined the contributions from key components in UP-Net, including 

phase augmentation, GAN loss, and MRI physics loss. Among these components, MRI physics 

loss was especially important for accurate parameter quantification. From our ablation study, the 

network without MRI physics loss generated larger biases in both PDFF and R2* quantification. 

MRI physics loss considered the relationship between multi-echo signals and quantitative 

parameters and did not require reference quantitative maps. However, the MRI physics loss 

alone may not provide sufficient information to resolve fat-water swaps. By adding an MSE loss 
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for quantitative maps and training with reference non-swapped maps, we directed UP-Net to 

learn the spatial distribution of fat- or water- dominant pixels and reduce fat-water swaps. In 

applications that focus on the signal magnitude, phase information in DL results is often 

discarded or overlooked. Our use of a phase augmentation strategy strengthened UP-Net’s ability 

to learn complex-valued signal relationships by including images with the same magnitude but 

different phase. This strategy can also be applied in applications that need accurate phase, 

including temperature mapping and quantitative susceptibility mapping. GAN architectures for 

imaging tasks is an active research topic. In this work, we used Wasserstein loss in our GAN 

architecture, which has previously been used in Cartesian MRI reconstruction116. More 

complicated GAN architectures and loss functions designed for medical images117 could be 

investigated further.   

The “black box” nature of DL-based methods for MRI is an important concern and 

potential barrier to clinical translation. Uncertainty estimation in DL networks99-102 presents a 

promising approach to provide context and assess confidence in DL outputs for clinical 

applications that demand a high level of numerical accuracy, including the use of quantitative 

maps for diagnostic decisions. In this study, we showed that with calibration, UP-Net uncertainty 

scores predicted quantification errors in a separate testing dataset. These promising results have 

some potential applications. For example, confidence masks can be generated by thresholding 

the uncertainty scores and then overlaid on the UP-Net quantitative parameter maps. 

Radiologists can avoid making measurements and decisions in areas with higher uncertainty 

scores and have more confidence in using DL-generated images and quantitative maps.  A recent 

study has demonstrated that by passing uncertainty information in concatenated tasks, the 

performance of the downstream task (e.g., segmentation or detection) can be improved118. The 
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uncertainty maps generated by UP-Net can potentially provide information and improve 

subsequent automatic liver MRI analysis, such as DL-based liver segmentation and disease 

classification. 

This study has limitations. First, we did not investigate the influence of different data 

undersampling factors on UP-Net performance. We used a 40% data acceptance window (2.5-

fold undersampling) on nominally fully-sampled data, as suggested in previous studies32,36. Self-

gating data acceptance rates can be further reduced to improve motion fidelity. The number of 

acquired radial spokes can also be reduced to investigate additional scan acceleration. However, 

higher undersampling factors pose more difficulties in both generating high-quality reference 

data and training UP-Net. Adjustments such as adding k-space consistency layers119 might be 

required for UP-Net to address higher undersampling factors. Second, we trained and tested UP-

Net using data with specific number of echoes, TE, TR, and flip angle. These sequence 

parameters were closely related to PDFF and R2* accuracy in the data we used. Our current 

analysis on the quantification accuracy and uncertainty prediction may not be directly applicable 

in other datasets with different sequence parameters. Third, the calculation of the UP-Net 

uncertainty loss term required reference quantitative maps. Therefore, the UP-Net uncertainty 

values reflect differences between UP-Net results and results from reference methods. Fourth, we 

calibrated the PDFF and R2* uncertainty estimation in the validation dataset only using ROIs in 

the liver. This approach required CS and GC reference reconstruction results for calibration. In 

addition, different calibration curves may be needed to quantify DL uncertainty in other tissues, 

such as subcutaneous and visceral adipose tissues. Fifth, we used linear regression to investigate 

the relationship between UP-Net uncertainty scores and quantification errors. However, this 

approach may not be sufficient to characterize all the factors at play. PDFF measurements are 
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results of relative amounts of two chemical shift species and can have different inherent 

uncertainty at different PDFF levels. R2* uncertainty depends on combinations of the number of 

echoes, the chosen echo times, and the underlying true R2* values. Because PDFF and R2* are 

incorporated together in the fat-water signal model, multi-variate models can also be considered 

to improve uncertainty characterization and calibration in the future.  

 

3.5 Conclusion 

In this study, we developed an uncertainty-aware physics-driven deep learning network 

that rapidly calculates accurate liver PDFF and R2* maps from undersampled free-breathing self-

gated multi-echo stack-of-radial images and provides pixel-wise uncertainty maps. GAN 

architecture, phase augmentation, and MRI physics loss improved the UP-Net image quality and 

quantification accuracy for liver PDFF and R2*. We demonstrated that UP-Net uncertainty 

scores can be used to predict absolute quantification errors in liver PDFF and R2*. 

 

This work has been published in: 

Shu-Fu Shih, Sevgi Gokce Kafali, Kara L. Calkins, Holden H. Wu. “Uncertainty-Aware Physics-Driven 

Deep Learning Network for Free-Breathing Liver Fat and R2* Quantification using Self-Gated Stack-of-

Radial MRI”. Magnetic Resonance in Medicine 2023; 89(4): 1567-85. doi: 10.1002/mrm.29525 
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CHAPTER 4  

Accelerated Free-Breathing Liver Fat and R2* Quantification using Non-

Rigid Motion Compensated Compressed Sensing Reconstruction 

4.1 Introduction 

MRI-based proton density fat fraction (PDFF)120,121 can quantify fat content and can be 

used for non-invasive assessment, monitoring, and management of metabolic dysfunction-

associated steatotic liver disease (MASLD)122, the most common chronic liver disease123. On the 

other hand, R2* is found to closely correlate with the iron content and R2* mapping has been 

used for non-invasive diagnosis and monitoring of hepatic iron overload124,125. To account for the 

confounding effects in MRI signal models for multi-echo gradient-echo sequences, PDFF and 

R2* are often jointly modeled and quantified through a multi-echo gradient-echo Dixon 

method26,86.  

Conventional joint PDFF and R2* quantification techniques are mostly based on 

Cartesian trajectories26. Subjects are required to hold their breaths during the acquisition to avoid 

motion artifacts. However, it can be challenging for certain cohorts, such as pediatric and elderly 

patients, who may find it difficult to fully comply with the breath-holding requirements. In recent 

years, 3D free-breathing stack-of-radial Dixon MRI techniques37,38,57 have been developed for 

PDFF and R2* quantification. To compensate for respiratory motion and improve the 

quantification accuracy, motion gating is performed33,83. However, to ensure a sufficient number 

of radial spokes after motion gating, the scan time needs to be further prolonged33. To overcome 

this challenge, motion-resolved compressed sensing reconstruction methods37,38,126, which apply 

sparsity constraints along the motion state dimension, have been investigated for accelerated 

self-gated free-breathing PDFF and R2* quantification.  
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Recently, there are studies that investigate compressed sensing reconstruction models that 

explicitly incorporate non-rigid motion information during reconstruction. Studies have shown 

that such approaches can improve image sharpness in cardiac imaging127 and pulmonary128 and 

abdominal MRI129, compared with previous motion-resolved reconstruction methods. Although 

there were some preliminary works on non-rigid motion compensated free-breathing liver 

MRI129, this approach has not yet been investigated in free-breathing liver PDFF and R2* 

quantification.  

Another challenge in radial MRI is the sensitivity to system imperfections (as introduced 

and presented in Chapter 2). Different gradient delay correction techniques have been proposed 

to reduce gradient errors57. However, residual streaking artifacts can still be observed due to 

gradient non-linearity and off-resonance. In abdominal MRI with radial trajectories, it was 

observed that these streaking artifacts usually come from the arms (closer to the peripheral field 

of view). This problem could become worse when coupled with arm movements during the scan 

acquisition. A phase-preserving beamforming-based method (introduced in Chapter 2) is used to 

suppress these streaking artifacts while maintaining phase fidelity. An automatic interference 

patch selection pipeline is also incorporated to choose image patches in the two arms as 

interference regions.  

In this work, we developed and evaluated a compressed sensing reconstruction method, 

which incorporated beamforming-based streaking reduction and non-rigid motion compensation, 

for accelerated free-breathing 3D stack-of-radial PDFF and R2* quantification. We performed 

scans in six adults and six pediatrics subjects and compared the image sharpness by calculating 

relative maximum derivative along the superior-inferior direction around the diaphragm. We 



 60 
 

further validated the PDFF and R2* quantification accuracy by comparing with results from the 

reference breath-holding Cartesian MRI.  

 

4.2 Methods 

4.2.1 Overview of the Reconstruction Framework 

An overview of the proposed reconstruction framework is illustrated in Figure 4-1. We 

first described the overall pipeline and details in each reconstruction module are provided in later 

subsections. Multi-echo data are acquired using a 3D stack-of-radial Dixon sequence during free-

breathing acquisitions57. Gradient delays are corrected by aligning radial spokes using pre-scan 

calibration data36,57. A self-navigated respiratory motion signal is estimated using the central 

ky=kx=0 line130. The k-space data are then binned into different motion states using the self-

navigation signal. A beamforming-based method is used to calculated coil sensitivity maps that 

specifically suppress radial streaking artifacts from the two arms113. Motion-resolved images are 

reconstructed using compressed sensing with a total variation constraint along the motion state130 

and a spatial Wavelet constraint on the images (introduced in section 4.2.2). Images from the end-

of-expiration motion state are selected as the reference motion state. Deformation vector fields 

(DVFs) between the reference motion state and other motion states are calculated by registering 

the magnitude images with the Demons algorithm131. A phase correction term is obtained by 

calculating the difference between warped phase images and the phase images from the target 

motion state. Warping the magnitude images and phase images using the DVFs and the phase 

correction term will be combined as an image warping operator. Later, we solve a compressed 

sensing model that incorporates this phase-corrected image warping operator for image 
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reconstruction. The multi-echo images were fitted26 to a 7-peak fat model70 with a single R2* decay 

to generate the PDFF and R2* maps.  

 

 

Figure 4-1. Overview of the reconstruction framework. Beamforming-based coil sensitivity maps 
are used during compressed sensing reconstruction for streaking artifact reduction. Deformation 
vector fields (DVF) between different motion states are estimated after motion-resolved 
reconstruction. The image warping operators contain a phase correction term to correct any phase 
difference resulting from B0 variation between motion states.   
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4.2.2 Phase-Corrected Image Warping Operator 

Construct image warping operators that faithfully transform the complex-valued images 

between motion states faces two main challenges. First, any residual radial streaking (e.g., from 

data undersampling) that leads to intensity changes can impact the accuracy of DVF estimation 

using an intensity-based image registration algorithm. As proposed in previous works128, a motion-

resolved reconstruction was first applied to suppress most of the undersampling artifacts before 

DVF estimation. In this work, we further used coil sensitivity maps calculated from the phase-

preserving beamforming-based coil combination113 method (which was introduced in Chapter 2) 

to suppress streaking artifacts from system imperfections. Second, B0 variation can cause phase 

changes across motion states, especially near the liver-lung interface. Phase differences between 

motion states need to be carefully addressed when applying image warping operators on images 

from different motion states. 

The optimization problem of the motion-resolved reconstruction used in this work is: 

𝑥X = argmin
+

∑ Q𝐹𝑆𝑥<,4$ − 𝑦<,4$Q"
"

<,4$ + 𝜆! ∙ 𝑇𝑉<(𝑥) + 𝜆! ∙ ∑ 𝑊]𝑥4$,*U^4$,*U 		 (Eq. 4-1) 

while 𝐹  represents non-uniform fast Fourier Transform (NUFFT), 𝑆 represents coil sensitivity 

maps estimated using the beamforming-based method, 𝑥<,4$=; represents images at motion state t 

from the ecth echo, 𝑦<  represents the k-space data at motion state t from the ecth echo, 𝑇𝑉< 

represents total variation along the motion state, and 𝜆 represents the regularization parameter. In 

our implementation, the data are binned into 6 overlapping respiratory motion states, each 

containing 40% of the k-space data.  

 After the motion-resolved reconstruction, the end-expiration motion state is selected as the 

“reference state”. The DVFs that transform images from other motion states to the reference state 

were calculated using the Demons image registration method131. In our implementation, the 
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Demons algorithm was used with 4 pyramid scales from coarse to fined resolutions, and each with 

100 iterations.  

 Here, we propose a phase-corrected image warping operation that transforms images 

between motion states while considering the phase variations. The phase-corrected image warping 

operation consists of three steps: 1) magnitude image warping, 2) phase image warping, and 3) 

phase correction. In the first step, the magnitude image is transformed using the DVF and then a 

cubic interpolation is applied to generate the warped magnitude image. During phase image 

warping, the phase information was transformed using the DVF but with nearest-neighbor 

interpolation. That is, the phase of the warped image is assigned by the phase information in the 

nearest voxel before warping. Third, a phase correction term is added to the warped phase image 

to generate the corrected warped phase image. The phase correction term is estimated by 

comparing the warped phase image to the target phase image.  

 After the estimated DVFs and corresponding phase correction terms between motion 

states are obtained, the phase-corrected image warping operators can be used in the non-rigid 

motion compensated compressed sensing reconstruction. 

 

4.2.3 Non-rigid Motion Compensated Compressed Sensing Reconstruction 

We included the image warping operators introduced in the previous section and solved an 

optimization problem: 

𝑥X = argmin
+

∑ Q𝐹𝑆𝑀<𝑥4$ − 𝑦<,4$Q"
"

<,4$ + 𝜆∑ 𝑊(𝑥4$)4$    (Eq. 4-2) 

where 𝐹 represents NUFFT, 𝑆 represents coil sensitivity maps estimated using the beamforming-

based method, 𝑀< represents the phase-corrected image warping operator that transforms the 

reference motion state to motion state t, 𝑥 is the multi-echo images from the target motion state, 
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𝑊 represents the 2D Wavelet transform (with Daubechies Wavelet) and 𝜆 represents the 

regularization parameter. The optimization problem was solved using the conjugate gradient 

descent method132. 𝜆 was empirically chosen to balance between the performance of artifact 

suppression and smoothing effects and the same 𝜆 was used for all our scans. 

 

4.2.4 Experiments 

In a Health Insurance Portability and Accountability Act (HIPAA)-compliant study 

approved by the local institutional review board, 6 adults (2 females and 4 males, age: 57±16 

years) and 6 children (2 females and 4 males, age: 15±2 years) were scanned at a 3T scanner 

(MAGNETOM Skyra or Prisma, Siemens Healthineers, Erlangen, Germany). Written informed 

consent, parental permission, and assent, if applicable, were obtained for all subjects before 

research procedures. Each subject was scanned using a multi-echo gradient-echo golden-angle-

ordered 3D stack-of-radial sequence57 during free-breathing. Key sequence parameters included 

TE=(1.23, 2.46, 3.69, 4.92, 6.15, 7.38) ms, TR=8.85 ms, flip angle=5°. The detailed sequence 

parameters can be found in Table 4-1.  

 

Table 4-1. Representative sequence parameters for free-breathing 3D stack-of-radial (FB Radial) 
and breath-holding (BH) 3D Cartesian axial MRI scans at 3T. N/A: not applicable.  

Sequence parameters FB Radial BH Cartesian 
TE (ms) 1.23, 2.46, 3.69, 4.92, 6.15, 7.38 
TR (ms) 8.85 

Flip angle (°) 5 5 
Field of view 360-440 x 360-440 mm2 360-440 x 360-440 mm2 

Slice thickness (mm) 5 5 
Matrix size (x, y, z) 224-288, 224-288, 40 224-288, 224-288, 30 

Acceleration or radial 
undersampling 

Radial undersampling R=2 
(based on Nyquist criteria) 

Parallel imaging acceleration 
R=4  

Radial spokes 178-226 N/A 
Scan time (min:sec) 1:03 - 1:20 0:19 
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Free-breathing MRI data were reconstructed with three different reconstruction methods: 

1) motion averaging + NUFFT, 2) self-gating + motion-resolved compressed sensing 

reconstruction with beamforming-based coil sensitivity maps, 3) self-gating + non-rigid motion 

compensated compressed sensing reconstruction with beamforming-based coil sensitivity maps. 

After image reconstruction, the multi-echo images were fitted to a signal model containing 7-

peak fat spectrum70 and a R2* term using a multi-step adaptive fitting algorithm26 to generate 

PDFF and R2* maps.  

 

4.2.5 Analysis and Evaluation 

In the first part, we compared the results with or without the use of the beamforming-

based streaking reduction coil sensitivity maps in motion-resolved reconstructed images. In the 

second part, we compared image sharpness between free-breathing radial MRI reconstructed 

with different motion compensation strategies. A metric, relative maximum derivative128, was 

calculated using the maximum intensity change between the lung-liver interface along the 

superior-inferior dimension normalized by the mean signal intensity in the liver dome. Relative 

maximum derivative was calculated in images reconstructed by three different methods: motion-

averaging without any motion gating, motion-resolved reconstruction, and non-rigid motion 

compensated reconstruction. For statistical analysis, Wilcoxon tests were performed to assess if 

there is any significant difference between different methods (p<0.05 considered significant). 

 For each subject, a trained researcher (with 5-year experience on analyzing abdominal 

MRI) placed three regions of interest (ROIs) on three axial slices while avoiding large vessels36. 

We measured the mean PDFF and mean R2* in the ROIs. Bland-Altman analysis was performed 

to evaluate the agreement of PDFF and R2* measurements between free-breathing techniques 
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and the breath-holding reference. Mean difference (MD) and 95% limits of agreements (LoA) for 

each comparison were calculated.  

 

4.3 Results 

Figure 4-2 shows the representative images reconstructed with and without beamforming-

based streaking reduction. With conventional adaptive coil combination, most of the radial 

streaking artifacts due to undersampling can be largely suppressed after motion-resolved 

reconstruction. However, streaking artifacts from the arms can still exist. With sensitivity maps 

estimated using the beamforming-based method, specific streaking patterns emanating from the 

arms were suppressed.  

 
Figure 4-2. Representative example of motion-resolved reconstruction results using conventional 
adaptive coil combination or beamforming-based streaking reduction. With beamforming-based 
coil combination, the specific streaking patterns from the arms were suppressed in the 
(undersampled) self-gated images. After motion-resolved reconstruction, residual artifacts from 
the arms still exist in conventional methods and impact quantification maps. 
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 Figures 4-3 and 4-4 show the representative reconstruction results of the proposed non-

rigid motion compensation method versus breath-holding Cartesian MRI and self-gated + 

motion-resolved reconstruction. Both motion-resolved and non-rigid motion compensated 

reconstruction results suppressed most of the streaking artifacts in the echo images. Non-rigid 

motion compensated reconstruction provided sharper quantitative maps with reduced artifacts 

compared to results from motion-resolved reconstruction. 

 Bland-Altman analysis results are shown in Figure 4-5. The MDs of PDFF and R2* 

between free-breathing motion-resolved reconstruction and the breath-holding reference were -

0.15% and -0.35 s-1, respectively. The MDs of PDFF and R2* between free-breathing non-rigid 

motion compensated reconstruction and the breath-holding reference were 0.06% and 1.05 s-1, 

respectively. The MDs are all small in either motion-resolved reconstruction or non-rigid motion 

compensated reconstruction results. The LoA of PDFF and R2* measurements between free-

breathing motion-resolved reconstruction and the breath-holding reference were [-3.14%, 3.05%] 

and [-13.2 s-1, 14.4 s-1]. The LoA of PDFF and R2* measurements between free-breathing 

motion-resolved reconstruction and the breath-holding reference were [-2.40%, 2.28%] and [-

11.4 s-1, 13.5 s-1]. The narrower LoA showed that non-rigid motion compensated can provide 

closer agreement with the breath-holding Cartesian-based reference technique.   

 The results of image sharpness measurements, in terms of the relative maximum 

derivative in the lung-liver interface, are shown in Figure 4-6. Motion-resolved reconstruction 

and non-rigid motion compensated reconstruction both had significantly higher relative 

maximum derivative (both p<0.01). Non-rigid motion compensated reconstruction has a higher 

relative maximum derivative than that in motion-resolved reconstruction results (p=0.04).  
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Figure 4-3. Representation reconstruction results comparing breath-holding Cartesian MRI and 
free-breathing MRI (R=2) with different reconstruction methods from a fatty liver subject (62 year-
old male with BMI=31.4kg/m2). Motion-resolved reconstruction can lead to slight blurring in the 
reconstructed PDFF and R2* maps (red arrows).  
 

 
Figure 4-4. Reconstruction results comparing PDFF and R2* maps in the coronal reformat (same 
subject as in Figure 4-3). Results from motion-resolved reconstruction show image blurring (red 
arrow) and residual artifacts that are not fully suppressed (green arrow).  
 



 69 
 

 
Figure 4-5. Bland-Altman plots comparing PDFF and R2* from free-breathing MRI versus breath-
holding Cartesian MRI. MD: mean difference. LoA: 95% limits of agreement.  
 

 

 
Figure 4-6. Box plot for comparison of relative maximum derivative in the lung-liver interface 
with different reconstruction methods.  
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4.4 Discussion 

In this work, we presented a reconstruction framework for accelerated free-breathing self-

gated PDFF and R2* quantification. The proposed framework used beamforming-based coil 

combination (Chapter 2) to suppress streaking artifacts from system imperfections. Although 

compressed sensing can reduce the overall radial streaking artifacts from undersampling, the 

specific streaking artifact pattern from the arms were not fully suppressed if beamforming-based 

coil sensitivity maps were not used. Non-rigid motion information with a phase correction term 

were incorporated in the compressed sensing reconstruction model for non-rigid motion 

compensation in data acquired from free-breathing acquisitions.  

 We used the Demons non-rigid registration algorithm, which is an intensity-based method, 

to estimate the DVFs between different respiratory motion states. This algorithm has been 

commonly used in registering medical images in different applications. However, the Demons 

algorithm can face challenges in cases with more heterogeneous motion or in cases with lower 

image quality (e.g., still having residual radial streaking artifacts after motion-resolved 

reconstruction)133. Other optical flow estimation methods134, based on L1, L2, L1-L2-combined 

regularizations or deep learning networks135, developed in the image processing community also 

holds potential in modelling the non-rigid motion information between different motion states. As 

in previous works128, we rely on a motion-resolved constrained reconstruction method to first 

suppress most radial streaking artifacts from data undersampling and motion-gating before 

performing DVF calculation. This process greatly increases the computational time for the entire 

pipeline for non-rigid motion compensated reconstruction. Recently, there are research works136 

that showed that deep learning networks can be trained to obtain accurate DVFs from images 
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reconstructed from highly undersampled k-space data and only using NUFFT. This holds potential 

to shorten the overall computational time of non-rigid motion compensated reconstruction.  

 We investigated the performance of non-rigid motion compensated reconstruction in data 

with radial undersampling factor of 2 (using Nyquist criteria to define “fully-sampled”) and 

achieved scan times less than 1 minute and 30 seconds. This makes scans times of free-breathing 

PDFF and R2* quantification comparable to the conventional breath-holding sequences, 

considering the time of giving breath-holding instructions and the wait time after breath-holding 

in conventional scans. The free-breathing scans without breath-holding requirements can also 

achieve larger volumetric coverage than the conventional breath-holding sequences. It is also 

possible to further reduce the free-breathing acquisition times by using a higher factor of radial 

undersampling factor or combining radial undersampling and kz undersampling137. For the cases 

with more data undersampling, incorporating more sparsity constraints (in addition to the Wavelet 

constraints in this work) may help suppress the undersampling artifacts.  

There are limitations in this study. First, there is a lack of fully-sampled motion-resolved 

images in free-breathing scans. To acquire such images, the acquisition time needs to be much 

longer, and the subject bulk motion needs to be minimal. In this work, we used quantification 

results from conventional breath-holding Cartesian-based PDFF and R2* as a reference for 

comparison. Second, image quality evaluation by radiologists has not been investigated in this 

study. Further work on investigation of the diagnostic quality of the non-rigid motion 

compensated reconstruction results will be conducted in the future. Third, our dataset does not 

have subjects with high hepatic iron overload. The R2* range investigated in this work is limited. 

Future work on hepatic iron overload patients is needed.  
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4.5 Conclusion 

We presented a compressed sensing model with phase-preserving beamforming-based 

coil combination and non-rigid motion compensation for accelerated self-navigated free-

breathing 3D stack-of-radial MRI PDFF and R2* quantification. Non-rigid motion compensated 

reconstruction provides accurate PDFF and R2* measurement compared with conventional 

breath-holding scans. In addition, non-rigid motion compensated reconstruction can improve 

sharpness, in terms of relative maximum derivative, compared with motion-resolved 

reconstruction.  

 

This work is being prepared as a manuscript: 

Shu-Fu Shih, Sevgi Gokce Kafali, Timoteo I. Delgado, Kara L. Calkins, Holden H. Wu. “Accelerated 

Free-Breathing Liver Fat and R2* Quantification using Non-Rigid Motion Compensated Compressed 

Sensing Reconstruction”. (In preparation) 
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CHAPTER 5  

Improved Liver Fat and R2* Quantification at 0.55T using Locally 

Low-Rank Principal Component Analysis-Based Denoising 

5.1 Introduction  

 Proton density fat fraction (PDFF)120 and R2*124 are powerful non-invasive MRI 

biomarkers for liver fat and iron accumulation, respectively. These two parameters can be 

quantified simultaneously using multi-echo gradient-echo Dixon MRI sequences followed by 

signal fitting to a model that resolves different confounding factors23,26. Several MRI sequences 

and signal fitting approaches have been developed and validated at 1.5T and 3T23,26,36,138-141. 

Recently, MRI field strengths <1.5T are being explored due to advantages such as reduced 

hardware and siting costs and reduction of artifacts in certain applications41,43,46,142. A lower-field 

MRI system with a larger bore diameter may also improve and comfort143 for populations with 

obesity and at risk for fatty liver disease. In addition, decreased R2* at lower fields can enable 

more accurate R2* quantification in patients with high iron overload51.  

 Most existing scan protocols for joint PDFF and R2* quantification have been designed 

and validated at 1.5T and/or 3T. Adaptation to lower field strengths such as 0.55T requires 

careful investigation into the trade-offs associated with acquisition parameter choices. There are 

several important considerations. First, lower B0 field strengths result in lower equilibrium 

polarization which reduces the signal-to-noise ratio (SNR)41,43,46,142. This is exacerbated when a 

small flip angle (FA) is used to reduce T1-related bias in PDFF quantification144. Low SNR can 

degrade image quality and affect accuracy and precision of quantitative biomarkers52,53,145. 

Second, the smaller fat-water frequency difference at lower fields results in longer out-of-phase 
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(TEop=6.47 ms) and in-phase (TEin=12.94 ms) echo times. This increases scan time and limits 

sequence parameter choices. Increasing the number of scan repetitions to improve SNR, a 

common strategy, may be infeasible in breath-holding abdominal scans. Compromises in 

imaging parameters such as reducing image resolution and restricting volumetric coverage can 

reduce diagnostic quality.  

Locally low-rank principal component analysis (PCA)-based denoising is one popular 

approach to suppress noise in multi-contrast MR images. By suppressing principal components 

associated with smaller coefficients, noise can be reduced while signal can be largely preserved. 

Difficulties in this type of method involve how to accurately estimate the signal rank and 

suppress the noise without removing the desired signal. Different approaches have been 

proposed to objectively estimate the noise level for effective noise suppression. One method, 

termed as the robust locally low-rank denoising (RLLR) technique146, has been proposed. Using 

samples of random matrices from a known Gaussian distribution, the noise level in the multi-

echo images can be estimated. Based on Stein’s unbiased risk estimate (SURE)147,148, the 

singular value threshold can be objectively obtained for noise suppression. RLLR has been 

shown to improve image quality for PDFF and R2* quantification at 3T149, but has not been 

studied at lower field strengths. On the other hand, random matrix theory (RMT)-based 

denoising150-152 can accurately estimate noise level and remove the noise components by 

leveraging the spectral properties of random Gaussian matrices predicted by the Marchenko-

Pastur Law153. This approach has shown promising noise suppression results, especially in 

diffusion MRI where many contrasts (i.e., multiple b-values and multiple directions) are 

available to construct locally low-rank patches150-152,154-156. There are initial studies applying 
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RMT-based denoising for lower-field MRI156, but this has not yet been well studied for the 

application of PDFF and R2* mapping.  

 In this study, our objective is to improve liver PDFF and R2* quantification accuracy and 

precision at 0.55T by 1) systematically refining and validating the acquisition parameter choices 

and 2) investigating the performance of two locally low-rank PCA-based denoising methods, 

RLLR and RMT denoising. First, we performed a Monte Carlo simulation to investigate the 

impact of acquisition parameter choices on the accuracy and precision of PDFF and R2* mapping 

at 0.55T. Using the proposed acquisition protocol informed by simulation results, we conducted 

experiments in a reference phantom, in the pelvis, and in the liver to compare the performance of 

PDFF and R2* quantification using conventional reconstruction without denoising and with the 

use of RLLR and RMT denoising.  

   

5.2 Methods  

5.2.1 Acquisition Protocol for PDFF and R2* Quantification at 0.55T 

 The choice of TEs and FA in the 3D multi-echo gradient-echo Dixon sequence affects 

PDFF and R2* quantification accuracy157-159. A common choice at 3T is 6 echoes at either out-of-

phase or in-phase echo times and a low FA of 3° to 5° for reducing the T1-related bias in PDFF 

estimation26. Due to the longer out-of-phase and in-phase echo times at 0.55T, this strategy 

would lead to longer TEs and TR that prolong acquisition beyond the acceptable time for one 

breath-hold. On the other hand, the T1-related bias is reduced at 0.55T because of the shortened 

T1 values and the increased TR. A larger FA that balances between SNR and the T1-related bias 

may be considered. As the R2* values change with the field strength51, TEs for accurate R2* 

quantification should also be reconsidered. Therefore, we conducted a Monte Carlo simulation to 
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investigate different choices of FA, the first TE, and the echo spacing (∆TE) with a range of 

reference PDFF and R2* values at 0.55T. We limited our simulation to consider 6 echoes, a 

balance between sufficient number of echoes for quantification and reasonable scan time.  

 The signal 𝑠(𝑡:) at the m-th TE was simulated using the signal model: 

𝑠(𝑡") = 𝑀 '(1 − 𝐹) + 𝐹 ∙ -∑ 𝑎# ∙ 𝑒$%&'!(")
#*+ 12 ∙ 𝑒,-#∗(" ∙ 𝑒,$%&.(" + 𝑛   (Eq. 5-1) 

where 𝑀 represents the steady-state magnetization signal dependent on the TE, TR, T1 and FA, 

𝐹 represents the PDFF value, 𝑎1 and 𝑓1 represent the relative amplitudes and frequencies for a 7-

peak fat spectrum70, 𝜑 represents the frequency shift due to B0 field inhomogeneity, and 𝑛 

represents the complex-valued Gaussian noise.  

We used T1 of 339 and 187 ms for water and fat protons in the liver, respectively, based 

on previous work that measured in vivo relaxation times at 0.55T42. The simulated FA were in 

the range of 2° to 20°. The simulated first TEs and ∆TE were both in the range of 1.2 to 2.8 ms, 

considering hardware specifications of the 0.55T scanner and reasonable acquisition time of one 

breath-hold. The TR was set to include all the echoes and the spoiler gradient. When 

investigating PDFF accuracy and precision in the range of 0% to 40% (a range that covers most 

of the biopsy-proven metabolic dysfunction-associated steatotic liver disease [MASLD] patients 

with histologic steatosis grade 0 to 3160), the reference R2* value was fixed at 30 s-1 (R2* value at 

0.55T with no iron overload51). When investigating R2* accuracy and precision in the range of 

20 s-1 to 90 s-1 (a range that covers mild, moderate and no iron overload at 0.55T51), the reference 

PDFF value was fixed at 5% (close to the common cutoff value for MASLD diagnosis161).  

For each combination of parameters (FA, first TE, ∆TE, reference PDFF, and reference 

R2*), 500 simulated instances were generated. For each instance, 𝜑 was randomly drawn from a 

range of (-100,100) Hz. The complex-valued noise was modelled as 𝑛 = 𝑛N + 𝑖 ∙ 𝑛%, where 𝑛N 
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and 𝑛% were independently drawn from a Gaussian distribution with the same variance 𝜎". The 

value of 𝜎" was set to be similar to the noise level in actual in vivo liver scans at 0.55T. To be 

more specific, the resulting apparent signal-to-noise ratio (aSNR), defined as signal mean 

divided by noise standard deviation, equaled 10 when PDFF=5%, R2*=25 s-1, and flip angle=8° 

in our Monte Carlo simulation.  

All the simulated instances were fitted to 7-peak fat model70 with a single R2* decay term 

using a multi-step adaptive approach26. We measured the quantification accuracy by reporting 

the mean difference (MD) across instances of fitted PDFF and R2* versus the reference values 

(i.e., the bias) at different parameter settings. We measured the quantification precision by 

reporting the standard deviation across instances of fitted PDFF and R2* at different parameter 

settings. 

 

5.2.2 Locally Low-Rank PCA-Based Denoising 

 Here we briefly summarize the two techniques that were investigated in this work, RLLR 

and RMT denoising (Figure 5-1), and describe how we adapt them to our specific application. 

More technical details can be found in previous works146,150. In the following paragraphs, we use 

px, py and pz to represent the patch size in the three image dimensions, and use Ne and Nc to 

represent the number of echoes and number of coil channels, respectively.  
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Figure 5-1. Reconstruction pipelines of the two locally low-rank PCA-based denoising methods 
used in this work. RLLR denoising was applied on coil-combined multi-contrast images while 
RMT denoising was applied on the multi-coil multi-contrast images. Both RLLR and RMT 
denoising methods needed to accurately estimate noise variance before performing singular 
value thresholding or shrinkage to suppress Gaussian noise. PI: parallel imaging. RLLR: robust 
locally low-rank. PDFF: proton density fat fraction. RMT: random matrix theory. SVD: singular 
value decomposition. SURE: Stein’s unbiased risk estimate. 
 

The RLLR denoising method constructs a 2D low-rank matrix 𝑀- with dimensions [px	∙

	py	∙	pz by Ne] from the coil-combined multi-echo images. Assuming the signal rank of 𝑀- is 

smaller than Ne, the component associated with the smallest singular value is mainly noise. 

Before noise reduction, 2D random Gaussian matrix samples with dimensions [px	∙	py	∙	pz by Ne] 

were generated using a pre-determined variance 𝜎*". The median of the smallest singular values 

of these matrix samples, denoted as 𝜆:, is calculated. By comparing the smallest singular value 

of 𝑀- to 𝜆:, the noise variance 𝜎X-" can be estimated using 
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𝜎X-" =
B(E%)
Y/

∙ 𝜎*"  (Eq. 5-2) 

while 𝑃(∙) extracts the smallest singular values of its argument. After estimating 𝜎X-", RLLR 

denoising finds the optimal value for singular value soft-thresholding by minimizing SURE148 

and obtaining the denoised matrix. All the overlapping local patches (with stride=1 along three 

spatial dimensions) are denoised using the same method and averaged to generate the final 

denoised images. Please note that previous works applied RLLR denoising on PDFF and R2* 

mapping at 3T and only used a 2D low-rank matrix constructed from 2 image dimensions146,149. 

In this work, we extended the method to include the slice dimension.  

The RMT denoising method relies on the Marchenko-Pastur law153. Let us consider a 2D 

random matrix 𝑋 with dimensions [𝑝 by 𝑞] (𝑝 ≤ 𝑞) whose entries are drawn from a Gaussian 

distribution of mean 0 and variance 𝜎". The probability density function of the eigenvalues 𝜆 of 

the matrix 𝑌 = !
8
𝑋𝑋Z, can be described by the Marchenko-Pastur distribution: 

𝑝(𝜆|𝜎%, 𝛾) = :
/(1%,1)(1,1&)

%&314#
						𝑖𝑓	𝜆, ≤ 𝜆 ≤ 𝜆5

0																																𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
									   (Eq. 5-3) 

 
where  𝜆5 = 𝜎%(1 + √𝛾), 𝜆, = 𝜎%(1 − √𝛾), 𝛾 = 𝑝/𝑞. After constructing a low-rank matrix from 

local image patches, noise variance 𝜎% can be estimated by comparing the distribution of the 

singular values of the low-rank matrix to the Marchenko-Pastur distribution. Because it requires 

a sufficient number of eigenvalues/singular values for accurate estimation of the noise variance, 

we use both echo and coil dimensions to construct low-rank matrices, which have dimensions of 

[px	∙	py	∙	pz by Ne∙Nc]. Once the noise variance is estimated, optimal singular value shrinkage 

based on Frobenius norm minimization162 is used. All the overlapping local patches are denoised 

using the same method and averaged to generate the denoised multi-coil multi-echo images. Coil 

combination65 is performed after RMT denoising.  
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 Both denoising methods assume the noise is Gaussian distributed. Therefore, the 

reconstruction pipeline includes coil-decorrelation163 and requires g-factor correction164 for 

parallel imaging (PI)-accelerated data before denoising (Figure 5-1).  

 

5.2.3 PDFF and R2* Phantom Imaging  

 We validated the PDFF and R2* quantification accuracy using a reference phantom 

(Calimetrix, Madison, Wisconsin) with seven PDFF-only (0% to 100%) and ten R2*-only vials 

(17.7 to 1009.5 s-1 measured at 1.5T, provided by the vendor). Scans were performed using a 

whole-body 0.55T MRI system (prototype MAGNETOM Aera, Siemens Healthineers, Erlangen, 

Germany) equipped with high-performance shielded gradients (45 mT/m maximum amplitude, 

200 T/m/s slew rate). Phased-array receiver coils (18-channel spine array and 6-channel body 

array) were used, and there were Nc=12 activated coil channels during the scans. To acquire 

phantom images with similar SNR as in the in vivo liver scans, we placed pads between phantom 

vials and the coils such that the space between the body array coil and the spine array coil was 

similar to the volume of an adult abdomen. We acquired data using a 3D multi-echo gradient-

echo Dixon MRI research application sequence26. Key sequence parameters, based on findings 

from our Monte Carlo simulation, included Ne=6 with TEs = (2.16, 4.32, 6.48, 8.64, 10.8, 12.96) 

ms, TR = 14.7 ms, FA = 8°, field-of-view = 300x300 mm2, matrix size = 192×192, and slice 

thickness = 5 mm. PI with acceleration factor (R) of 2 was used. The scan was repeated 50 times. 

Detailed sequence parameters are reported in Table 5-1. Each scan repetition was reconstructed 

individually, using three reconstruction methods: 1) conventional PI reconstruction (GeneRalized 

Autocalibrating Partially Parallel Acquisitions [GRAPPA]) without denoising, 2) PI 

reconstruction and RLLR denoising with an image patch size (px,py,pz) = (5,5,5), and 3) PI 
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reconstruction and RMT denoising with an image patch size (5,5,5). The reconstructed images 

were fitted with a multi-step adaptive approach26 accounting for fat model complexity70 and 

single R2* decay to generate PDFF and R2* maps.  

 

Table 5-1. Sequence parameters for phantom, in vivo pelvis, and in vivo liver MRI scans at 0.55 
T. The out-of-phase and in-phase echo times in the Dixon sequences are underlined.  
 

 Phantom In vivo pelvis In vivo liver 
 2D multi-echo 

gradient echo 
3D multi-echo 

Dixon 
3D multi-echo 

Dixon 
3D multi-echo 

Dixon 
Acquisition 
orientation 

Axial Axial Axial Axial 

Field of view 
(mm×mm) 

300x300 300x300 400×400 380×380 

TE (ms) 1.35, 3.5, 5.8, 
8.0, 10.3, 12.6, 
14.8, 17.1, 19.3, 
21.6, 23.9, 26.1 

2.16, 4.32,  
6.48, 8.64,  
10.8, 12.96 

2.16, 4.32,  
6.48, 8.64,  
10.8, 12.96 

2.16, 4.32,  
6.48, 8.64,  
10.8, 12.96 

TR (ms) 35 14.7 14.7 14.7 
Matrix size 160×160 192×192 192×192 192×192 

In-plane 
resolution 
(mm×mm) 

1.9×1.9 1.6×1.6 2.1×2.1 2.0×2.0 

Number of 
slices 

1 8 8 8 

Slice 
oversampling 

N/A 20% 20% 20% 

Slice thickness 
(mm) 

5 5 5 5 

Flip angle (°) 15 8 8 8 
Bandwidth 

(Hz/px) 
1565 590 590 590 

Parallel 
imaging 

No GRAPPA 
(R=2) 

GRAPPA  
(R = 2) 

GRAPPA  
(R = 2) 

Averages 2 1 1 1 
Scan time 
(min:sec) 

0:12 0:19 0:19 0:19 (breath-hold) 
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 The analysis consisted of two parts. First, we assessed the agreement of PDFF and R2* 

values from different reconstruction methods versus the reference for the evaluation of accuracy. 

In this part, results from one scan repetition were used. We placed a region of interest (ROI) in 

each vial and calculated the mean PDFF and R2*. PDFF values provided by the phantom vendor 

were used as the reference. To obtain the reference R2* values at 0.55T, a single-slice 12-echo 

gradient-echo sequence was scanned and the images were fitted to a mono-exponential model51. 

Two R2* vials had R2*>250 s-1 (T2*<4 ms) at 0.55T, which could not be reliably fitted using the 

specified protocol and were not included in the quantitative analysis. The MD and the 

concordance correlation coefficient (𝜌$)165 between the measured PDFF and R2* values versus 

the reference were calculated to assess agreement. Linear regression was also performed. 

Second, we evaluated the precision by calculating the standard deviation of quantitative 

measurements in each voxel across scan repetitions. The mean values of the change in PDFF and 

R2* standard deviations between different reconstruction methods were reported.  

 

5.2.4 In Vivo Pelvic Imaging 

Quantitatively assessing denoising performance in liver scans can be challenging due to 

the difficulty to obtain reference high-SNR images from multiple scan repetitions. The liver 

position can vary across multiple breath-holds, leading to artifacts after averaging. Therefore, we 

performed an experiment in the pelvis to quantify accuracy and precision of in vivo PDFF and 

R2* mapping. The experiment contained two analyses: 1) to investigate the denoising 

performance and the quantification accuracy under different noise levels and 2) to investigate the 

quantification precision by calculating the standard deviations of PDFF and R2* measurements 

across scan repetitions. All in vivo experiments in this work were conducted under a Health 



 83 
 

Insurance Portability and Accountability Act-compliant study protocol approved by the 

institutional review board. All subjects were scanned after providing written informed consent.  

For the first analysis, we scanned a healthy volunteer (29-year-old male with body-mass 

index [BMI] 26.4 kg/m2) using the 3D multi-echo gradient-echo Dixon MRI research application 

sequence26 with 30 scan repetitions. Key parameters were the same as the phantom scans except 

for the field-of-view and the in-plane resolution. We averaged the multi-coil multi-echo k-space 

data across the 30 repetitions to generate the “reference” k-space data. We then added complex-

valued random Gaussian noise with different variances to the reference k-space data to generate 

synthetic pelvis datasets with different noise levels. We chose the noise variances so that the 

synthetic images after GRAPPA reconstruction (without any denoising) had aSNR ranging from 

3 to 15 (while the original reference image had aSNR=95). Here, aSNR was measured by the 

signal mean in a muscle ROI divided by background noise standard deviation in coil-combined 

echo 3 (out-of-phase) images. We performed RLLR and RMT denoising on the synthetic images 

after GRAPPA reconstruction. PDFF and R2* maps were reconstructed using the same signal 

fitting method described earlier. We placed 3 ROIs, each with a size of 5 mm2, in the 

subcutaneous fat tissue and in the muscle. Quantification accuracy was assessed by comparing 

mean PDFF and R2* in these ROIs versus the quantification results in the reference data (from 

30 repetitions).  

For the second analysis, we scanned three healthy volunteers (3 males, age: 29.7±0.6 

years, BMI: 24.5±2.6 kg/m2) using the same sequence, each with 15 scan repetitions. Each 

repetition was reconstructed individually using three different methods: 1) conventional 

reconstruction without denoising, 2) RLLR denoising with a patch size (5,5,5) and 3) RMT 

denoising with a patch size (5,5,5). PDFF and R2* maps were calculated using the same signal 
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fitting approach. To assess precision, we calculated pixel-wise standard deviations of PDFF and 

R2* values across 15 scan repetitions. We further calculated the percentage of voxels which had 

reduced standard deviations of PDFF and R2* (meaning improved precision) in denoised results 

compared to conventional reconstruction results.  

 

5.2.5 In Vivo Liver Imaging 

 Eleven subjects (3 females and 8 males, age: 39.5±14.3 years, BMI: 26.3±4.0 kg/m2) 

were recruited and scanned. Four of the subjects (1 female and 3 males, age: 49.5±16.8 years, 

BMI: 29.9±2.9 kg/m2) had known fatty liver. All the subjects were scanned using the 3D multi-

echo gradient-echo Dixon research application sequence26 (Table 5-1) within a single breath-

hold. Conventional reconstruction (no denoising, only GRAPPA) and reconstruction with the 

two denoising methods were performed. The same signal fitting approach was used to generate 

PDFF and R2* maps.  

For each subject, 3 circular ROIs, each with a size of 5 mm2, were placed on 3 different 

axial slices in the liver while avoiding large vessels36. Mean and standard deviation of the PDFF 

and R2* values within each ROI were recorded. Bland-Altman analysis was performed to 

analyze the agreement of the quantification results between the conventional reconstruction and 

two different denoising methods.  

We performed Kruskal-Wallis tests to investigate if there were any differences in PDFF 

mean, R2* mean, PDFF standard deviation and R2* standard deviation in liver ROIs among the 

three reconstruction methods. P<0.05 was considered significant. If the Kruskal-Wallis tests 

indicated significant differences, additional pair-wise Wilcoxon signed rank tests with 

Bonferroni correction for the p-values (p<0.05/3=0.017 considered significance) were used to 
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evaluate if there was significant difference between a pair of two reconstruction methods. For all 

the statistical tests, only one liver ROI measurement in the mid-slice from each subject was used.  

 

5.3 Results  

5.3.1 Monte Carlo Simulation Results 

The Monte Carlo simulation results are in Figure 5-2. A larger FA results in larger biases 

in PDFF due to T1 differences between fat and water. In contrast, a smaller FA results in less 

precise PDFF and R2* due to lower SNR. Shorter TEs and less T2* weighting in the multi-echo 

signal also results in less precise PDFF and R2*. Considering the quantification accuracy and 

precision across a range of relevant PDFF and R2* values, we chose FA=8°, first TE=2.16 ms, 

and ∆TE=2.16 ms as the preferred setting. In this design, the third TE and the sixth TE 

corresponded to out-of-phase and in-phase echo times at 0.55T, respectively.  

Based on the simulation results at a representative aSNR level, our selected acquisition 

protocol achieved PDFF biases of 0.2% to 2% and PDFF standard deviations of 5.4% to 7.2% 

for reference PDFF values ranging from 0% to 40%. At the same time, our selected acquisition 

protocol yielded R2* biases of 0.2 s-1 to 2.2 s-1 and R2* standard deviations of 10.5 s-1 to 17.7 s-1 

for reference R2*values ranging from 20 s-1 to 90 s-1. Please note that these simulation results did 

not consider any denoising.  
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Figure 5-2. Monte Carlo simulation results regarding the accuracy and precision for PDFF and 
R2* mapping using different flip angles (FA), first echo time (TE), and ∆TE at 0.55 T. To 
balance between accuracy and precision of parameter quantification and breath-holding scan 
time, we chose first FA=8°, TE=2.16 ms, and ∆TE=2.16 ms as indicated by the stars. 

 

5.3.2 PDFF and R2* Phantom Imaging Results 

 Figure 5-3(a,b) shows the phantom images from different reconstruction methods. The 

signal difference between denoised and non-denoised images showed minimal structured signals, 
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demonstrating effective noise suppression without removing desired signal. Figure 5-3(c,d) 

shows quantitative maps from one scan repetition. Without denoising, large PDFF errors and 

noisy PDFF and R2* measurements were observed. Both denoising methods improved the visual 

quality of PDFF and R2* maps with reduced inhomogeneity.  

 

 
 
Figure 5-3. (a,b) Comparison of coil-combined echo 3 (out-of-phase) and coil-combined echo 6 
(in-phase) images from different reconstruction methods All the images are displayed using the 
same window/level. (c,d) PDFF and R2* quantification results in the reference phantom from 
one scan repetition. Numbers above each phantom vial show the measured mean value in that 
specific vial using a circular region of interest.  
 

 Compared with the reference, the MD (i.e., bias) of PDFF was 8.03% for conventional 

reconstruction, 0.51% for RLLR denoising, and 0.77% for RMT denoising. Compared with the 

reference, the MD (i.e., bias) of R2* was 2.08 s-1 for conventional reconstruction, 2.76 s-1 for 
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RLLR denoising, and 3.48 s-1 for RMT denoising. Figure 5-4(a,b) shows the correlation plots of 

PDFF and R2* measurements between different methods and the reference. Conventional 

reconstruction had 𝜌$=0.845 in PDFF and 𝜌$=0.984 in R2* when compared with the reference. 

Compared with reference PDFF, RLLR denoising had 𝜌$=0.997 with regression result 

y=0.956x+2.059 and RMT denoising had 𝜌$=0.997 with regression result y=0.949x+2.022. 

Compared with reference R2*, RLLR denoising had 𝜌$=0.992 with regression result 

y=1.020x+2.550 and RMT denoising had 𝜌$=0.994 with regression result y=1.028x+1.523. Both 

denoising methods achieved close PDFF and R2* agreement with the reference. Figure 5-4(c,d) 

shows maps of pixel-wise standard deviations of PDFF and R2* values from 50 scan repetitions. 

Compared with conventional reconstruction, RLLR denoising showed an average of 86% and 

77% decrease in PDFF and R2* standard deviations, respectively; RMT denoising showed an 

average of 77% and 67% decrease in PDFF and R2* standard deviations, respectively. 
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Figure 5-4. (a,b) Correlation plots that compare the mean PDFF and R2* measurements from 
one scan repetition with respect to the reference values. (c,d) Maps showing the pixelwise 
standard deviation of PDFF and R2* across 50 scan repetitions. Numbers above each phantom 
vial show the measured mean value in that specific vial using a circular region of interest. 𝜌$: 
concordance correlation coefficient. 
 

 

5.3.3 In Vivo Pelvic Imaging Results 

 Figure 5-5(a) shows the reference images (aSNR=95) and synthetic images with 

aSNR=8 reconstructed with different methods. Both denoising methods reduced PDFF 

quantification error and provided less noisy R2* measurements. Without denoising, larger PDFF 

quantification errors were observed near the center of the body. This is consistent with the fact 

that the center of the body is farther away from the coil elements and the central region in the 

field-of-view has a higher g-factor and more noise amplification.  

 Figure 5-5(b) compares quantification results in three ROIs across different aSNR levels. 

Different ROIs exhibited different levels of sensitivity to aSNR. This can be due to differences in 

signal intensity magnitudes and the underlying PDFF and R2* values in different types of tissue. 
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Both denoising methods reduced PDFF and R2* errors. However, for images with aSNR less 

than 6, a PDFF bias of 1% to 2% still existed in two ROIs after denoising.  

 

 
 
Figure 5-5.  (a) Comparison of coil-combined images and quantitative maps in the synthetic 
pelvis dataset (apparent signal-to-noise ratio [aSNR]=8) reconstructed with different methods. 
(b) PDFF and R2* measurements in three ROIs (locations depicted in (a)) across different aSNR 
levels. Both RLLR and RMT denoising achieved better quantification accuracy (closer 
agreement with reference results) for PDFF and R2* than conventional reconstruction.  
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 Figure 5-6 shows representative pelvis MRI reconstruction results and standard 

deviations of PDFF and R2* measurements across 15 scan repetitions. Compared to conventional 

reconstruction, both denoising methods improved PDFF and R2* precision in terms of smaller 

standard deviations. Figure 5-6(b,d) show the scatter plots of PDFF and R2* standard deviations 

from one representative slice. Across all the subjects in RLLR-denoised results, the percentage 

of voxels with decreased PDFF and R2* standard deviations were 97.5%±0.3% and 

98.9%±0.4%. Across all the subjects in RMT-denoised results, the percentage of voxels with 

decreased PDFF and R2* standard deviations were 96.9%±0.4% and 98.9%±0.5%.  

 
 
Figure 5-6.  (a) Representative PDFF map and corresponding voxel-wise PDFF standard 
deviation map for different methods. (b) Scatter plot of PDFF standard deviation in all voxels 
(background voxels excluded). (c) Representative R2* map and corresponding pixel-wise R2* 
standard deviation map for different methods. (d) Scatter plot of R2* standard deviation in all 
voxels (background voxels excluded). 
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5.3.4 In Vivo Liver Imaging Results 

 Figure 5-7 shows representative results from a fatty liver subject (45-year-old male, 

BMI=31.6kg/m2). Noisy images from conventional reconstruction led to PDFF quantification 

error and noisy R2* measurements. After RLLR or RMT denoising, vessels in the liver became 

more discernible and the PDFF and R2* maps were less noisy.  

 
Figure 5-7. Representative result of (a) coil-combined echo 3 out-of-phase image, (b) signal 
difference in echo 3 image, (c) PDFF map, and (d) R2* map from a fatty liver subject (45-year-
old male, BMI=31.6 kg/m2). The signal difference between conventional reconstructed and 
denoised images showed minimal tissue structures, demonstrating effective noise removal. Both 
RLLR and RMT denoising reduced PDFF quantification errors and provided less noisy R2* 
maps. 
 

 Figure 5-8 shows Bland-Altman plots comparing liver PDFF and R2* values from two 

denoising methods versus using conventional reconstruction. For PDFF, RLLR and RMT 

denoising showed a MD of -0.96% and -0.82%, respectively, when compared with conventional 
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reconstruction. This is consistent with previous findings166 that noise would lead to a positive 

PDFF bias (i.e., reducing noise can reduce the bias). On the other hand, the MD in R2* between 

denoised and non-denoised results were small, with values of 0.50 s-1 between RLLR denoising 

and conventional reconstruction and 0.55 s-1 between RMT denoising and conventional 

reconstruction.  

 
Figure 5-8. (a) Bland-Altman plots comparing mean liver PDFF measurements in results using 
RLLR and RMT denoising versus conventional reconstruction. (b) Bland-Altman plots 
comparing mean liver R2* measurements in results using RLLR and RMT denoising versus 
conventional reconstruction. MD: mean difference. LoA: 95% limits of agreement. 
 

Figure 5-9 shows scatter plots of PDFF and R2* standard deviations in liver ROIs from 

two denoising methods versus conventional reconstruction. The mean value of PDFF standard 

deviations in liver ROIs were 8.80% for conventional reconstruction, and was reduced to 1.79% 
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and 2.00% after RLLR and RMT denoising, respectively. The mean value of R2* standard 

deviations in liver ROIs was 14.17 s-1 for conventional reconstruction, and was reduced to 5.31 s-

1 and 4.81 s-1 after RLLR and RMT denoising, respectively. 

The Kruskal-Wallis (p<0.05 considered significant) tests did not indicate significant 

differences in mean PDFF (p=0.209) and mean R2* (p=0.846) among three reconstruction 

methods. On the other hand, the Kruskal-Wallis tests found significant differences in PDFF 

standard deviations (p<0.001) and R2* standard deviations (p<0.001) among three reconstruction 

methods. In pair-wise Wilcoxon tests, both RLLR denoising and RMT denoising had significant 

differences in PDFF standard deviations and R2* standard deviations when compared with 

conventional reconstruction (p<0.001 for all comparisons). There was no significant difference 

in PDFF standard deviations (p=0.083) and R2* standard deviations (p=0.577) between RLLR 

denoising and RMT denoising.  
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Figure 5-9. (a) Scatter plots comparing liver PDFF standard deviation in results using RLLR and 
RMT denoising versus conventional reconstruction. (b) Scatter plots comparing liver R2* 
standard deviation in results using RLLR and RMT denoising versus conventional 
reconstruction. Both denoising methods greatly reduced standard deviations of PDFF and R2* 
measurements in liver ROIs.  
 

5.4 Discussion 

In this work, we refined and validated the acquisition parameter choices for PDFF and 

R2* quantification at 0.55T and investigated the performance of two denoising methods to 

improve the quantification accuracy and precision. Based on the Monte Carlo simulation, we 

designed a 6-echo protocol for quantifying liver PDFF and R2* at 0.55T. Even with our careful 
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design of acquisition parameters at 0.55T, the resulting biases and appreciable standard 

deviations of PDFF and R2* underscored the importance and need of denoising algorithms. 

Using the proposed protocol in phantom and pelvis scans, we demonstrated that both RLLR and 

RMT denoising improved quantification accuracy in terms of close agreements with the 

reference, and improved quantification precision in terms of reduced standard deviations across 

scan repetitions. In a cohort of eleven subjects, RLLR and RMT denoising significantly reduced 

standard deviations of PDFF and R2* measurements in the liver ROIs when compared to 

conventional reconstruction.  

  To determine an acquisition protocol that can estimate PDFF and R2* values in a range 

that is relevant for patient cohorts, we focused on PDFF values from 0% to 40% and R2* values 

from 20 s-1 to 90 s-1. Although this range covers PDFF in fatty liver patients and mild iron 

overload (45 s-1 < R2* < 91 s-1 from previous work51), higher R2* in patients with severe iron 

might not be robustly estimated using the proposed protocol. While longer TEs with more fat-

water phase difference is beneficial for fat-water separation, quantifying higher R2* requires 

more echoes placed at shorter TEs. For these cases, the Monte Carlo simulation approach used in 

this work can be extended to include more relevant parameters and help design dedicated 

acquisition protocols.  

In a previous multi-center multi-vendor PDFF phantom study167, the slope of the 

regression line is in the range of 0.86 to 1.02 at 1.5T and 0.91 to 1.01 at 3T using vendor 

protocols. The intercept of the regression line was in the range of -0.65% to 0.18% at 1.5T and -

0.78% to -0.21% at 3T. In our phantom experiment at 0.55T, the slopes of the regression line 

were 0.956 and 0.949 after RLLR and RMT denoising, demonstrating similar PDFF linearity to 

that at 1.5T and 3T. The intercepts of the regression line were 2.06 and 2.02 after denoising. 
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Even though RLLR and RMT denoising can effectively reduce the noise, a higher positive bias 

in PDFF is still observed at 0.55T compared with results from 1.5T and 3T.  

The denoising performance of RLLR and RMT is dependent on the original image SNR, 

which is affected by different factors including tissue types, acquisition parameters, proximity to 

the coils, and g-factor distribution if PI is used. From our pelvis experiment, we found the 

quantification accuracy, especially for PDFF, is limited in extremely low aSNR cases. Therefore, 

future improvements such as better surface coils with more elements or sampling patterns with 

reduced g-factor penalty are also important to further improve PDFF and R2* quantification at 

0.55T. We also found PDFF and R2* had different sensitivities to noise. Without denoising, 

PDFF in liver ROIs showed larger bias. On the other hand, the mean R2* values in liver ROIs 

were rather consistent with or without denoising. Nevertheless, both denoising methods can 

provide less noisy R2* maps for more precise measurements and better diagnostic quality.  

The computational bottlenecks for both denoising methods were the calculations of 

singular value decomposition. In our 3D liver dataset, the average computational time for the 

denoising step (excluding PI reconstruction and signal fitting) was 4 minutes 20 seconds for 

RLLR denoising and 4 minutes 50 seconds for RMT denoising, using a MATLAB script 

(R2023a, MathWorks, Natick, Massachusetts) running on a 64-Core 2.7 GHz CPU (AMD Ryzen 

Threadripper PRO 5995WX). RMT denoising had longer computational time because the 

singular value decomposition was applied on larger 2D matrices. For both methods, 

computational time can be further reduced by optimizing the software implementation and 

running on high-performance hardware.  

Both RLLR and RMT denoising rely on two assumptions: 1) the underlying noise is 

Gaussian distributed and 2) the low-rank property exists in local image patches. The 
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requirements are typically met in multi-contrast MR images after noise statistics are carefully 

corrected. Therefore, both denoising methods can be potentially applied in many other lower-

field multi-contrast or quantitative MRI applications in which low SNR is a common problem. 

Even though the noise variance can be objectively estimated using these two methods, the choice 

of patch size is dependent on the effective signal rank and is usually based on empirical results, 

as used in this work and in previous locally low-rank denoising works146,150-152. One might need 

to adjust the patch size for optimal denoising performance for different datasets.  

Deep learning-based methods are another promising approach for noise suppression168. 

Many deep learning-based denoising methods for lower-field MRI rely on supervised learning 

that requires a database of training data169,170. However, obtaining high-SNR reference training 

data from multiple scan repetitions may be difficult for abdominal scans due to breath-holding 

requirements. For these cases, the denoising methods investigated in this work can be used to 

generate training data.  

This study has limitations. First, our studied cohort had a limited size and none of the 

subjects had liver iron overload (T2* > 45 ms at 0.55T51). Scans in subjects with high liver iron 

content should be conducted in future works and the denoising performance should be further 

validated. Second, our phantom analysis only included fat-only and R2*-only vials which may 

not reflect the actual in vivo environments in the liver, where both fat and iron may be present, 

although this condition is rare. Further experiments should be done in phantoms with different 

combinations of PDFF, R2* and T1 values171 to investigate the denoising performance and the 

limitations.  
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5.5 Conclusion 

We used a Monte Carlo simulation to design an acquisition protocol for PDFF and R2* 

quantification at 0.55T with validation in phantom experiments. We showed that both RLLR and 

RMT denoising improved quantification accuracy in terms of closer agreement with the 

reference, and improved quantification precision in terms of reduced standard deviations across 

scan repetitions. In a cohort with healthy volunteers and fatty liver subjects, RLLR and RMT 

denoising both improved quantitative maps in terms of the significant decrease of PDFF and R2* 

standard deviations in liver ROIs when compared with conventional reconstruction.  
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CHAPTER 6 

K-space Low-Rankness Enabled Additive NoisE Removal 

(KLEANER) for Liver Fat and R2* Quantification at 0.55T 

6.1 Introduction 

Clinical diagnosis using magnetic resonance imaging (MRI) can be significantly 

impacted by low signal-to-noise ratio (SNR) in the images, which may arise due to specific 

characteristics of certain sequences (e.g., diffusion-weighted imaging 46) or limitations imposed 

by physics (e.g., lower field strengths41,43). Scans with multiple averages can increase SNR but 

lengthen the acquisition time. Image filtering55 or constrained reconstruction56 can suppress high-

frequency components, but they can incur risks of over-smoothing the images. Deep learning 

methods have also been proposed to improve SNR172. However, deep learning methods may not 

generalize well to data outside of the training data distribution and the nonlinear processing in 

neural networks is still difficult to interpret or explain.  

In recent years, image-domain random matrix theory (RMT)-based denoising150-152,154 has 

demonstrated superior performance compared to conventional techniques, and has a strong 

theoretical foundation in RMT. The success of image-based RMT denoising relies on 1) 

assumption and preservation of Gaussian noise characteristics in the MR images, 2) redundancy 

in the image patches, often across multiple dimensions (e.g., 2D/3D image space, coil channels, 

and contrast weighting), to separate signal and noise in the spectral domain (i.e., singular value 

distributions), and 3) an objective method to estimate noise variance based on the Marchenko-

Pastur law153. Once the noise variance is estimated, singular value thresholding173 or shrinkage162 

can then be used to suppress the Gaussian noise-related components.  
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There are some considerations when applying image-based RMT denoising methods. 

First, because some image reconstruction steps distort noise characteristics, corrections (e.g., g-

factor correction after parallel imaging (PI) reconstruction) may be required before denoising. 

Second, the redundancy level in images can be spatially varying and dependent on the number of 

coils or contrasts, the underlying tissue signal rank, and the patch size. On the other hand, k-

space linear dependencies, which is a general characteristic in multi-coil MRI k-space, have long 

been known since the introduction of GeneRalized Autocalibrating Partially Parallel 

Acquisitions (GRAPPA)174. Techniques involving constructing a low-rank block-Hankel matrix 

using k-space patches have also been proposed175-177, but mainly for undersampled MRI 

reconstruction.  

Inspired by these works, we developed a novel k-space denoising technique, “K-space 

Low-rankness Enabled Additive NoisE Removal (KLEANER),” which can suppress additive 

Gaussian noise in multi-coil multi-contrast k-space data. We investigated the spectral property of 

block-Hankel matrices constructed from Gaussian noise and empirically showed its connection 

with the Marchenko-Pastur law. We showed that the proposed KLEANER technique can be 

directly applied in originally-acquired PI-undersampled k-space datasets without the requirement 

of g-factor correction.  

We demonstrated the proposed KLEANER technique for denoising in a phantom 

experiment at 0.55T and in in vivo liver fat and R2* quantification using gradient-echo (GRE) 

Dixon MRI at 0.55T. We compared KLEANER denoising with image-based RMT denoising 

methods that have been proposed to reduce noise and improve quantitative maps155,178.  
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6.2 Methods 

6.2.1 Spectral Property of Block-Hankel Matrices 

 Limited support in images will lead to linear dependencies among signals in k-space 

patches176,179. Therefore, a low-rank block-Hankel matrix can be constructed by stacking 

vectorized data extracted from all local k-space patches, which contain signal and noise 

components. Since this block-Hankel matrix has repeated entries along the anti-diagonal line, its 

noise characteristics may differ from a random matrix. Therefore, we performed a Monte Carlo 

simulation to investigate the spectral property of noise in such block-Hankel matrices. 

The workflow of our Monte Carlo simulation is shown in Figure 6-1(a). We first 

generated a 3D tensor with independent and identically distributed random Gaussian noise to 

simulate 2D multi-coil noise-only data. Data dimensions were set to be similar to the actual MRI 

acquisitions of interest (e.g., [kx, ky, coils*contrasts] = [192, 192, 50]). A 2D block-Hankel 

matrix was constructed using a patch size of [5, 5]. For comparison, we generated another 2D 

random Gaussian matrix with the same dimensions as the block-Hankel matrix. We computed 

and compared their singular value distributions. This process was performed with different data 

dimensions, and each setting was repeated 1000 times.  

Monte Carlo simulation results using different data dimensions are shown in Figure 6-1 

(b). The block-Hankel matrix had similar noise spectral properties as the corresponding random 

matrix, where both distributions closely followed the Marchenko-Pastur law predictions. We 

performed one-sample Kolmogorov-Smirnov statistical tests with the null hypothesis (H0) being 

that the singular value distribution of a block-Hankel matrix generated from our Monte Carlo 

simulation is consistent with the Marchenko-Pastur law prediction. Across all the settings we use 

in our experiment, including matrix sizes 128x128 to 256x256 and coils*contrasts = 10 to 100, 
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the statistical tests failed to reject H0 (p>0.05). These results empirically showed that the 

Marchenko-Pastur distribution can describe the spectral property of a block-Hankel matrix 

constructed from a matrix containing random Gaussian noise. 

 

Figure 6-1. (a) Workflow of the Monte Carlo simulation for analyzing the spectral property of a 
block-wise Hankel matrix. (b) Examples of singular value distributions from a block-wise 
Hankel matrix and a 2D random matrix, along with the predicted Marchenko-Pastur (MP) 
distribution, for different simulated datasets. (c) Mean absolute errors between the singular value 
distributions of the block-wise Hankel and random matrices and the MP distribution. The low 
errors show that the singular value distribution from a block-wise Hankel matrix is close to the 
MP distribution across different kernel sizes, number of coils, and matrix sizes.  
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6.2.2 KLEANER Denoising 

In our KLEANER denoising pipeline, (Figure 6-2). the multi-coil k-space data were first 

decorrelated163 using pre-scan calibration data. Coil and contrast dimensions were concatenated 

into a single dimension. A block-Hankel matrix was constructed using multi-coil multi-contrast 

2D or 3D k-space patches. For PI-undersampled k-space datasets, we first specified an 

undersampling pattern and identifying patches with the same pattern across the k-space data, 

including the autocalibration signal (ACS) region (Figure 6-2(c,d)). It can be applied on data 

undersampled with GRAPPA174 or Controlled Aliasing In Parallel Imaging Results IN Higher 

Acceleration (CAIPIRINHA)180 with different acceleration ratios. Please note that non-sampled 

k-space data (i.e., zeros) were not included in the constructed block-Hankel matrix as it would 

distort the overall noise characteristics. Based on the spectral property of a block-Hankel matrix 

(previous section), we estimated the noise variance using the approach outlined in previous RMT 

denoising methods150. Optimal singular value shrinkage162 was then applied to suppress the 

additive Gaussian noise. Finally, the denoised block-Hankel matrix was reshaped back to the 

original data dimensions, and other standard reconstruction processes such as inverse Fourier 

transform or PI reconstruction were performed.  
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Figure 6-2. (a) KLEANER reconstruction pipeline. After signal decorrelation, a 2D low-rank block-Hankel matrix 
is constructed using multi-coil multi-contrast local k-space samples. Singular value decomposition (SVD) and 
optimal singular value shrinkage are applied on the block-Hankel matrix to suppress the additive Gaussian noise in 
the k-space. Data are reshaped back to the original data dimension. Standard Fourier or parallel imaging (PI) 
reconstruction can be used for the denoised k-space data. (b) Example of constructing a block-Hankel matrix from 
2D fully-sampled multi-coil multi-contrast k-space data. (c) Example of constructing a block-Hankel matrix from 
2D PI-accelerated multi-coil multi-contrast k-space data. (d) Example of constructing a block-Hankel matrix from 
3D PI-accelerated (e.g., using Controlled Aliasing In Parallel Imaging Results IN Higher Acceleration 
[CAIPIRINHA]) multi-coil multi-contrast k-space data. PI: parallel imaging. SVD: singular value decomposition. 
FFT: Fast Fourier Transform.  
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6.2.3 Phantom Experiment 

We scanned a standard American College of Radiology (ACR) phantom using a 3D 

multi-echo GRE sequence on a whole-body 0.55T system (prototype MAGNETOM Aera, 

Siemens Healthineers) with high-performance gradients.  Phased-array receiver coils (18-channel 

spine array and 6-channel body array) were used, and there were Nc=12 activated coil channels 

during the scans. Key parameters included TE = (2.16, 4.32, 6.48, 8.64, 10.8, 12.96) ms, 

TR=14.8 ms, flip angle=25°, field-of-view (FoV)= 320x320 mm2, matrix size=254x352, number 

of slices=10, resolution=0.8x0.8 mm2, slice thickness=5 mm. Two scans, one with fully-sampled 

data and one with GRAPPA (R=2), were acquired. Data were processed using 3D KLEANER 

with a patch size of [5,5,5]. To verify that KLEANER mainly suppressed Gaussian noise, we 

analyzed the distribution of the complex-valued signal residuals (i.e., difference before and after 

KLEANER). We measured the kurtosis and skewness of the signal residual, performed 

Anderson-Darling normality tests (p<0.05 considered significant), and plotted the quantile-

quantile (Q-Q) plots by comparing with a Gaussian distribution. We compared with results from 

4 scan averages and with image-based RMT denoising (using a patch size of [5,5,5]). Note that 

for image-based RMT denoising in GRAPPA (R=2) datasets, PI reconstruction with g-factor 

correction was applied before the denoising process and images across multiple coils were used 

for low-rank matrix construction, as demonstrated in previous RMT denoising works151,152. 

Apparent SNR (aSNR) defined as mean signal divided by noise standard deviation181 were 

measured for each method. 

We further investigated the PDFF and R2* quantification accuracy using a reference 

phantom (Calimetrix, Madison, Wisconsin) with seven PDFF-only (0% to 100%) and ten R2*-

only vials (17.7 to 1009.5 s-1 measured at 1.5T, provided by the vendor). We acquired data using 
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the same 3D multi-echo gradient-echo Dixon MRI research application sequence26. Key 

sequence parameters, based on findings from our Monte Carlo simulation, included Ne=6 with 

TEs = (2.16, 4.32, 6.48, 8.64, 10.8, 12.96) ms, TR = 14.7 ms, FA = 8°, field-of-view = 300x300 

mm2, matrix size = 192×192, and slice thickness = 5 mm. PI with acceleration factor of 2 was 

used. The concordance correlation coefficient (𝜌$)165 between the measured PDFF and R2* 

values versus the reference were calculated to assess agreement. Linear regression was also 

performed. 

 

6.2.4 In Vivo Liver Experiment 

In an IRB-approved HIPAA-compliant study, we scanned 10 subjects, including 4 with 

fatty liver. We scanned with the same 3D multi-echo GRE sequence and the same body array 

coil used in the phantom scan with updated sequence parameters including FoV=300x300 mm2, 

matrix size=192x192, flip angle=8°, and scan time = 19 seconds (GRAPPA R=2, single breath-

hold). KLEANER was applied on the 3D k-space data with dimensions 224x124x10x54, 

representing 224 frequency encoding points, a total of 124 phase encoding lines, 10 kz encoding 

steps, and with 54 indicating a combined dimension from 9 coils and 6 gradient echoes. A 3D 

kernel size of [5,5,5] was used for 3D KLEANER denoising. We compared with results from 3D 

image-based RMT denoising which used a [5,5,5] patch size. Proton-density fat fraction (PDFF) 

maps were reconstructed by fitting the multi-echo images to a fat-water signal model with 7-peak 

fat spectrum70 and a single R2* term. Since a reference MR spectroscopy sequence for fat 

quantification was not yet available on the prototype 0.55T scanner, we only compared the mean 

PDFF values in results with or without denoising using regions of interest (ROIs) drawn in the 
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liver. Three liver ROIs were placed in three different axial slices in each subject while avoiding 

large vessels36.  

We also scanned one volunteer with the same sequence but with CAIPIRINHA (R=2x2) 

acquisition to demonstrate the capability of KLEANER for handling a different undersampling 

pattern.  

 

6.3 Results 

6.3.1 Phantom Denoising Results 

Denoising results in the ACR phantom are shown in Figure 6-3(a,b). The signal residual 

in an individual coil image only showed noise-like components, even in the GRAPPA (R=2) case 

with aliased signals. The kurtosis and skewness of the signal residual were close to 3 and 0, 

respectively. The normality test could not reject the null hypothesis (i.e., that the distribution is 

Gaussian), with p value larger than 0.05. Results of coil-combined images from average=1, 

average=4, and average=1+ two different denoising methods are shown in Figure 6-3(c,d). In the 

GRAPPA (R=2) case, the resolution grid was largely obscured in the average=1 image. Both 

image-based RMT and KLEANER denoising suppressed the noise and provide similar 

improvements in aSNR, which were 3-fold higher than that from average=1 (no denoising). 

 Figure 6-4(a) shows reconstructed PDFF and R2* maps from scan in the reference 

phantom. Both image-based RMT and KLEANER denoising improve the visual quality of PDFF 

and R2* maps. Figure 6-4(b,c) show the PDFF and R2* agreement results. KLEANER had close 

agreements with the reference and the image-based RMT denoising results in both PDFF and 

R2* (all 𝜌$>0.993). 
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Figure 6-3. ACR phantom at 0.55T. (a,b) 3D KLEANER denoising results in fully-sampled and 
GRAPPA (R=2) cases. The signal residuals showed no phantom structures. Normality tests did 
not reject the hypothesis of Gaussian distribution. (c,d) Coil-combined images after 
reconstruction. Both image-based RMT and KLEANER showed higher aSNR than the one-
average and four-average results. 
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Figure 6-4. (a) PDFF and R2* map from conventional reconstruction, image-based RMT 
denoising and KLEANER denoising. (b,c) PDFF and R2* agreement between KLEANER 
denoising versus the reference and between KLEANER denoising versus image-based RMT 
denoising. 
 
 

6.3.2 In Vivo Liver Denoising Results 

Figure 6-5 shows in vivo liver denoising results in single coils. No structured tissue 

signal was observed in the signal residual, and the signal residual was not significantly different 

from a Gaussian distribution using the normality test.  

Figure 6-6 compares conventional reconstruction and KLEANER results in the liver 

from two representative subjects with different liver PDFF levels. Noise was suppressed in both 

the 3rd and the 6th echo images. PDFF bias was observed in GRAPPA results, especially in the 

subject with low PDFF (<5%). KLEANER suppressed the noise in the multi-echo images and 

therefore reduced PDFF bias. In addition, KLEANER greatly reduced the noise in R2* maps. 
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Figure 6-7 compares results from conventional reconstruction, image-based denoising 

and KLEANER denoising. The conventional reconstruction results (i.e., no denoising) exhibited 

PDFF quantification errors due to low SNR in the images (consistent with previous work53), 

which tended to occur around the center. Both denoising methods suppressed image noise and 

reduced quantification errors in PDFF maps. However, image-based RMT denoising can 

contribute to blurring or over-smoothing in the PDFF map.  

Figure 6-8 shows the Bland-Altman plots for liver PDFF and R2* measurement between 

KLEANER denoising results and image-based RMT denoising results. The MD of PDFF was 

0.32% and the MD of R2* was -0.43 s-1. The small biases demonstrate close agreements of PDFF 

and R2* between two denoising results.  

Figure 6-9 shows the correlation plots of standard deviation of PDFF and R2* in liver 

ROIs. Image-based RMT denoising had smaller standard deviations, potentially contributed to 

over-smoothing.  

 

 
Figure 6-5. KLEANER denoising performance in an aliased single-coil image. The signal 
residual does not show tissue structures.  
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Figure 6-6. Coil-combined magnitude images, PDFF and R2* maps from liver MRI scans 
(GRAPPA, R=2) in 2 subjects with different liver PDFF levels: (a) a 49-year-old male with BMI 
29.1kg/m2, (b) a 29-year-old male with BMI 31.7kg/m2. KLEANER suppressed noise in the coil-
combined images (3rd and 6th echo images shown). Bias in the PDFF measurements was reduced 
using KLEANER compared to conventional method (see green arrows versus red arrows), 
especially in the low PDFF case. R2* maps were less noisy after KLEANER processing. 
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Figure 6-7. Comparison of reconstructed images from conventional reconstruction, image-based 
RMT denoising and KLEANER denoising. Blurring (zoomed-in patch) and inhomogeneity 
(green and yellow arrows) are observed in PDFF map from image-based denoising.  
 
 

Figure 6-10 shows reconstruction results from a liver scan with CAIPIRINHA (R=2x2) 

acceleration. With CAIPIRINHA acceleration, the scan can achieve a whole-liver coverage. 

KLEANER denoising can effectively suppress noise in the images, reduce PDFF quantification 

errors, and reduce noisy measurements in the R2* map.  
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Figure 6-8. Bland-Altman plots for liver PDFF and R2* measurements between KLEANER 
denoising results and image-based RMT denoising results. MD: mean difference. LoA: 95% 
limits of agreement. 
 

 

Figure 6-9. Correlation plots of PDFF and R2* standard deviations in liver ROIs between 
KLEANER denoising and image-based RMT denoising versus conventional reconstruction.  
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Figure 6-10. Images and quantitative maps from a liver scan with CAIPIRINHA acceleration 
(R=2x2) reconstructed using the conventional CAIPIRINHA algorithm and KLEANER 
denoising.  
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6.4 Discussion 

Low SNR in MRI datasets is a fundamental limitation in many applications, and 

denoising continues to be an active direction of research54. Inspired by image-domain RMT and 

adopting an alternative k-space perspective on low-rank denoising for MRI, we presented 

KLEANER, showing its capability of removing only the additive Gaussian noise components 

directly in k-space. We achieved 3-fold aSNR improvement in the phantom images at 0.55T and 

demonstrated noise reduction and improved quantitative maps in the in vivo application. 

The capability for k-space denoising using a low-rank block-Hankel matrix has been 

mentioned in the Low-Rank modelling of Local k-Space Neighborhoods (LORAKS) 

technique179. However, it was only applied on fully-sampled simulated single-coil datasets and 

required an iterative algorithm with manually chosen regularization parameters. In contrast, our 

proposed KLEANER technique is compatible with undersampled multi-coil data, non-iterative, 

and has an objective approach to estimate the noise level and perform singular value shrinkage 

for noise suppression. 

In the in vivo results, we found that the means of the quantitative parameters were similar 

using either image-based RMT or KLEANER denoising. However, spatial smoothing was 

observed in results from image-based RMT denoising. Other recent works also pointed out 

potential spatial resolution issues in image-based RMT denoising from signal “leaking” across 

voxels182,183. This smoothing effect can be dependent on the underlying tissue signal rank and the 

patch size. KLEANER can potentially be an alternative approach to prevent smoothing. Another 

advantage of KLEANER over image-based RMT denoising is that KLEANER can directly 

suppress noise in the originally-acquired k-space data without concerns of distorting the 
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Gaussian noise characteristics from previous reconstruction processes (e.g., PI), which can 

potentially make KLEANER compatible with more MRI applications.      

There are limitations of the proposed KLEANER technique. First, calculating singular 

values from a 2D block-Hankel matrix can become computationally impractical when dealing 

with large 3D multi-coil multi-contrast datasets. More memory efficient implementations are 

required for such applications. Second, a theory-based explanation for the singular value 

distribution of a block-Hankel matrix has not yet been established. Further study of theoretical 

noise distribution of a block-Hankel matrix is required to better understand the limitations and 

promise of the KLEANER technique. 

 

6.5 Conclusion 

We proposed a k-space denoising method, termed KLEANER, using a low-rank block-

Hankel matrix constructed from multi-coil multi-contrast k-space data combined with singular 

value shrinkage. We demonstrated that KLEANER achieved a 3-fold increase in apparent SNR 

in phantom experiments at 0.55T and successful denoising for quantitative liver MRI at 0.55T. 

Compared with image-based RMT denoising methods, KLEANER showed similar noise 

reduction performance in images and sharper features in quantitative maps.  
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CHAPTER 7  

Summary and Future Studies 

7.1 Dissertation Summary 

In this dissertation, we developed several reconstruction and motion compensation 

techniques to improve MRI liver PDFF and R2* quantification. First, we developed a phase-

preserving beamforming-based technique to effectively reduce radial streaking artifacts from 

system imperfections. We demonstrated how this technique can be integrated with motion-

resolved reconstruction to improve self-gated free-breathing stack-of-radial MRI liver PDFF and 

R2* quantification.  Second, we developed an uncertainty-aware physics-driven deep learning 

network for rapid reconstruction of PDFF and R2* maps from self-gated free-breathing stack-of-

radial MRI. We demonstrated that the uncertainty maps generated from the network can be used 

to predict quantification errors and improve reliability of deep learning reconstruction results. 

Third, we developed a compressed sensing reconstruction model with non-rigid motion 

compensation to improve and accelerate self-gated free-breathing stack-of-radial MRI liver 

PDFF and R2* quantification. The quantitative maps from non-rigid motion compensated 

compressed sensing reconstruction exhibit sharper features with less artifacts when compared 

with motion-resolved reconstruction. Fourth, we developed and evaluated image-based and k-

space-based denoising techniques to improve quantification accuracy and precision of breath-

holding 3D Cartesian-based liver PDFF and R2* quantification at 0.55T. 

Techniques introduced in this dissertation provide 1) accelerated and motion-robust free-

breathing liver PDFF and R2* quantification using stack-of-radial MRI at 3T and 2) accurate and 

precise breath-holding Cartesian-based liver PDFF and R2* quantification at 0.55T. Furthermore, 
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we discussed limitations of the current techniques and potential solutions. There are also 

opportunities worth considering for clinical applications.  

 

7.2 Standardization of Free-Breathing PDFF and R2* Imaging Biomarkers 

A meta-analysis of over 1500 participants on linearity and bias of breath-holding liver 

MRI PDFF at 1.5T or 3T showed a regression slope of 0.97 and a mean bias of -0.13% versus 

PDFF estimated by breath-holding MRS184. With a meta-analysis of more than 400 participants, 

liver MRI PDFF at 1.5T or 3T showed high repeatability and reproducibility coefficients of 

2.99% and 4.12%184. A systematic phantom study further showed PDFF (from breath-holding 

acquisitions) was accurate across vendors, imaging centers, and field strengths (1.5T and 3T) 

using vendor-specific acquisition and reconstruction167. This sets a performance benchmark that 

free-breathing CSE MRI techniques should aim to achieve.  

While several research works36-38,185 evaluated the accuracy or repeatability of free-

breathing PDFF and R2* quantification with respect to breath-holding techniques in patients with 

hepatic steatosis and/or liver iron overload, these works only studied limited numbers of 

subjects. One factor limiting a large-scale evaluation is that most of these free-breathing MRI 

techniques are based on recently developed research sequences that are still being refined and are 

not widely available. Future efforts to standardize and disseminate free-breathing CSE MRI 

techniques will be essential to enable studies that evaluate their quantitative performance across 

in larger populations, especially in subjects with limited breath-holding capability. Repeatability 

and reproducibility analysis across different scanners and different sites are also necessary for 

widespread adoption of the free-breathing techniques in clinical settings.  
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Many free-breathing MRI techniques showed that R2* is sensitive to motion, which can 

vary substantially from scan to scan. This can make systematic analysis of the linearity, bias, and 

repeatability of R2* measured from free-breathing scans challenging. Compared to liver PDFF, 

which has an active Quantitative Imaging Biomarker Alliance (QIBA) profile in development 

186, more efforts are required to establish R2* as an accurate and repeatable MR imaging 

biomarker in the liver. The insights gained from standardizing breath-holding MRI R2* mapping 

will also benefit the continued development of free-breathing MRI R2* mapping.  

 

7.3 Pilot Tone Motion Tracking Technique  

Although different navigators, including a readout line interleaved within the sequence or 

the k-space DC signal, have been shown to effectively estimate respiratory motion in free-

breathing MRI scans, they can be inadequate in cases with higher breathing frequency or 

irregular changes in breathing patterns. Recent studies187 have found that a rapidly updating 

navigator (e.g., a navigator echo for every TR) allows better motion gating and can lead to better 

image quality in radial scans. A recent motion tracking technique, Pilot Tone (PT)188,189, is a 

promising motion surrogate signal with a high sampling frequency. During the scan acquisition, 

a stand-alone device continuously transmits a radiofrequency signal with a frequency within the 

MRI readout bandwidth. The respiratory information modulated and encoded in the PT signal is 

acquired along with the k-space data, and can be extracted for motion-gated reconstruction. 

Since the PT signal is encoded in every k-space readout, the temporal resolution of this type of 

motion surrogate signal is the same as TR, and notably higher than conventional navigators.  

 In the reconstruction techniques introduced in Chapter 3 and 4, all the radial spokes with 

same angle (but different kz encoding) were binned into the same motion state. As the number of 
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kz encoding increases (i.e., larger volumetric coverage), this strategy can lead to suboptimal 

results because the liver position can have noticeable changes in the position within the 

acquisition time of one radial angle along all the kz points. With PT motion tracking techniques, 

scans with a larger volumetric coverage can become more motion-robust. To combine PT motion 

tracking with the techniques introduced in Chapters 3 and 4, one only needs to replace the 

motion gating method, and the other reconstruction modules (e.g., non-rigid motion 

compensation technique in Chapter 4) can still be applicable. 

 

7.4 Free-Breathing Techniques for Body Composition Measurement in 

Fetuses and Infants 

Body composition analysis quantifies the amount and proportions of body tissue 

compartments190. Quantifying the adipose tissue volume and fat content is one essential aspect of 

body composition analysis. Studies have reported the body composition analysis may provide 

information or insights into the risk of metabolic syndrome190,191. Studies to develop automatic 

segmentation pipelines that can help MRI-based body composition analysis are also being 

actively investigated192,193.   

MRI-based free-breathing PDFF quantification techniques developed in this dissertation 

can serve as valuable tools for measurement of body composition, especially in challenging cases 

such as in fetuses194 and in infants195 where motion is inevitable during MRI scan acquisitions. 

Compared to adult and pediatric volunteers and patients investigated in this dissertation, the 

motion patterns in fetuses and infants are usually more variable and bulk motion is more likely to 

happen. The non-rigid motion compensation framework introduced in Chapter 4 can be a 
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promising approach to capture the non-rigid motion and improve image quality and 

quantification accuracy.  

We observed that streaking artifacts usually come from the arms in adult and pediatric 

scans where a standard axial plane is prescribed. In fetal scans, where the imaging plane needs to 

be adjusted, the streaking artifact patterns and sources resulting from system imperfections will 

be more difficult to identify. Figure 7-1 shows an example with streaking artifacts coming from 

outside of the prescribed field-of-view obscuring the important imaging features. Key sequence 

parameter for this scan included: TEs = (1.23, 2.46, 3.69, 4.92, 6.15, 7.38) ms, TR = 8.85 ms, 

flip angle = 5°, field-of-view = 460 mm x 460 mm, slice thickness = 1.5 mm, in-phane resolution 

= 1.6 mm x 1.6 mm. In this case, applying beamforming-based streaking reduction with manual 

selection of an interference region can greatly improve the image quality and resulting PDFF 

map. Studies to develop an automatic pipeline for interference region identification in fetal MRI 

cases can be conducted in the future.  

 

Figure 7-1. Reconstructed images and PDFF maps from a fetal scan using free-breathing 3D 
stack-of-radial multi-echo gradient-echo MRI. Beamforming-based coil combination can be used 
to suppress the radial streaking artifacts in the images and corresponding PDFF map. 
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7.5 Other Non-Cartesian Trajectories for Free-Breathing PDFF and R2* 

Quantification 

 We focused on the 3D stack-of-radial trajectory for free-breathing liver PDFF and R2* 

quantification in this dissertation. Other non-Cartesian trajectories, such as 3D radial196 and 3D 

cones197, have also been proposed to quantify liver PDFF and R2* during a free-breathing 

acquisition. Despite having different artifact patterns, these non-Cartesian trajectories may also 

be affected by system imperfections. The artifact suppression technique developed in Chapter 2 

may be applied in these datasets. These different methods involve different motion estimation 

and different reconstruction methods. An extensive study on their motion robustness, diagnostic 

image quality and quantification accuracy should be conducted in the future. 

 

7.6 Free-Breathing Multi-Parametric Quantitative Liver MRI 

There is also a trend towards developing multi-parametric quantitative liver MRI 

techniques198 (one example from a MASLD patient shown in Figure 7-2). In addition to the 

quantitative parameters PDFF and R2* for fat and iron, studies also found associations between 

liver T1 and fibrosis and cirrhosis199,200, associations between liver T2 and hepatic steatosis and 

inflammation201, and associations between liver stiffness measured by magnetic resonance 

elastography (MRE) and liver fibrosis202. Sequences for joint quantification of multiple 

parameters203-205 could not only address the confounding factors together but also provide 

additional information for liver assessment. As multi-parametric quantitative liver MRI with a 

large volumetric coverage is difficult to achieve in one breath-hold, free-breathing quantitative 

MRI becomes an attractive approach206,207. Reconstruction and motion compensation techniques 



 125 
 

developed in Chapters 2 to 4 can be adapted to these applications to reduce streaking artifacts, 

improve motion robustness, and shorten the acquisition times.  

Figure 7-2. Example of multi-parametric quantitative liver MRI from a MASLD patient.  
 

 

7.7 Free-Breathing PDFF and R2* Quantification at Lower Field Strengths 

 We demonstrated that image-based and k-space-based denoising techniques can both 

improve the Cartesian-based PDFF and R2* quantification at 0.55T in Chapters 5 and 6. 

However, further improvement in the image resolution and the volumetric coverage is limited by 

the breath-holding requirement. Free-breathing motion compensation and reconstruction 

techniques introduced in Chapters 2 to 4 can be applied for free-breathing PDFF and R2* 

quantification at 0.55T using the 3D stack-of-radial MRI sequence.   

An example of free-breathing liver PDFF and R2* quantification results at 0.55T using a 

multi-echo 3D stack-of-radial Dixon MRI sequence is shown in Figure 7-3. Key parameters 

include TE = (2.17, 4.32, 6.47, 8.62, 10.77, 12.92) ms, TR = 16.2 ms, flip angle = 5°, field of 

view = 300 mm x 300 mm, matrix size = 192x192x30, radial spokes = 454 (1.5x radial 

oversampling), scan time = 4 minutes 24 seconds. Motion-gating can reduce the signal blurring 

around the liver dome and improve sharpness in tissue features. With motion-resolved 

compressed sensing reconstruction, the streaking artifacts can be further suppressed to improve 

the diagnostic quality of the PDFF and R2* maps. Although the free-breathing techniques can 



 126 
 

greatly increase the volumetric coverage (e.g., 30 slices compared with the breath-holding 

Cartesian technique in Chapter 5 with only 8 slices), the acquisition time is long. Further 

investigation on radial undersampling and the usage of non-rigid motion compensation for scan 

acceleration (as introduced in Chapter 4) in the future can improve this application at 0.55T. 

 

 

Figure 7-3. Example of free-breathing liver PDFF and R2* quantification at 0.55T using a 3D 
stack-of-radial multi-echo gradient-echo sequence. Self-gated motion-resolved reconstruction 
can reduce blurring and the elevated R2* values caused by breathing motion.  
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7.8 k-Space Denoising Techniques for Other Applications 

 We validated image-based and k-space-based denoising techniques to improve PDFF and 

R2* quantification at 0.55T in Chapters 5 and 6. The denoising techniques rely on assumptions of 

Gaussian-distributed noise and low-rank properties in images or k-space data and can potentially 

applied in other MRI applications that require noise reduction. 

 Preliminary works have been performed to investigate image-based RMT denoising in 

high-resolution diffusion-weighted MRI in the prostate at 3T155. Here, we compared KLEANER 

denoising results versus the image-based denoising results in Figure 7-4. Similar to the results in 

liver scans (Chapter 6), no tissue structures were seen in the residual signal after KLEANER 

denoising. Image-based RMT and KLEANER denoising both effectively suppressed noise. 

Apparent diffusion coefficient (ADC) maps from image-based RMT denoising show smoothing, 

while KLEANER preserved sharper features. Analysis of the ADC maps showed that both 

denoising techniques provided similar mean ADC values in the prostate. Using standard-

resolution diffusion MRI as reference, both denoising techniques reduced the bias in ADC values 

due to noise (conventional reconstruction without denoising). 
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Figure 7-4. (a) KLEANER denoising in one single coil before parallel imaging reconstruction. 
Normality test on the signal residual does not reject the null hypothesis that it is Gaussian 
distributed. (b) The coil combined images and apparent diffusion coefficient (ADC) maps 
reconstructed from conventional reconstruction and different denoising methods. (c-d) Bland-
Altman plots comparing ADC values in the prostate transition and peripheral zones.  
 
 

7.9 Conclusion 

 In this dissertation, we presented several different reconstruction and motion 

compensation techniques for liver fat and R2* quantification. We focused on the technical 

development, and further validation in large cohorts, including patients with fatty liver and 

hepatic overload, across different MRI systems and different institutions can pave the way for 

wide clinical adoption of these advanced techniques. Alongside the technical developments, 

standardization of the quantitative imaging biomarkers, PDFF and R2*, is also required for 

extensive validation of different advanced reconstruction methods.  
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