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PARABOLIC HILBERT SCHEMES VIA THE DUNKL-OPDAM SUBALGEBRA

EUGENE GORSKY, JOSE SIMENTAL, AND MONICA VAZIRANI

ABSTRACT. In this note we explicitly construct an action of the rational Cherednik algebra H; .,/ (Sn, C™)
corresponding to the permutation representation of S,, on the C*-equivariant homology of parabolic
Hilbert schemes of points on the plane curve singularity {™ = y™} for coprime m and n. We use

this to construct actions of quantized Gieseker algebras on parabolic Hilbert schemes on the same

plane curve singularity, and actions of the Cherednik algebra at t = 0 on the equivariant homology

of parabolic Hilbert schemes on the non-reduced curve {y™ = 0}. Our main tool is the study of the
combinatorial representation theory of the rational Cherednik algebra via the subalgebra generated

by Dunkl-Opdam elements.

1. INTRODUCTION

1.1. Hilbert schemes on singular curves. It is well-known and classical that, if C' is a smooth
algebraic curve, then the Hilbert scheme Hilbg(C') of k points on C' is smooth and, in fact, isomorphic
to the symmetric product Symk(C). On the contrary, much less is known in the case where C' is a
singular curve. In particular, Maulik [36] proved a conjecture of Oblomkov and Shende [40] relating
the Euler characteristics of Hilbert schemes of points on a plane curve singularity to the HOMFLY-
PT homology of its link. A more general conjecture of Oblomkov, Rasmussen and Shende [41] [24]
relates the homology of these Hilbert schemes to the HOMFLY-PT homology of the link.

One possible approach to understanding the homology of Hilby(C) is by constructing the action
of interesting algebras on these. Rennemo [47] constructed an action of the two-dimensional Weyl
algebra for an integral locally planar curve C' (see also [38, [37]), and Kivinen [30] generalized this
action to reduced locally planar curves with several components.

In this paper, we relate the geometry of (parabolic) Hilbert schemes on singular curves to the
representation theory of the type A rational Cherednik algebra and other related algebras.

More precisely, consider coprime positive integers m and n, and let C' := {z™ = y™} be a plane
curve singularity in C2. Note that for every ideal I C O¢ we have that dim(I/zI) = n. We consider
the parabolic Hilbert scheme PHilby, 41 (C) that is the following moduli space of flags

(1) PHilbk,yH_k(C) ={0c DIy DIpy1 D D Iprp=xli}

where I is an ideal in the ring of functions O¢ of codimension s. Moreover, we set PHilb*(C') :=
UgPHilbg, »44(C). The natural C* action on C naturally lifts to PHilb*(C'). Since m and n are
coprime, the fixed points are precisely the flags of monomial ideals. In particular, the classes of

these fixed points form a basis for the localized equivariant cohomology. The first main result of
this paper is the following.

Theorem 1.1. There is a geometric action of the rational Cherednik algebra Hy y,/,(Sn,C") on

the localized C*-equivariant homology of PHilb*(C). Moreover, with this action HS (PHilb®(C))
gets identified with the simple highest weight module Ly, jy, (triv).

Recall that the rational Cherednik algebra H; . := H;.(S,,C") contains the trivial idempotent
e .= % > pes, P, and we can form the spherical subalgebra eH; e. As a consequence of Theorem
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[LI we get that the spherical subalgebra acts on the equivariant homology of the Hilbert scheme
Hilb(C) := UgHilbg (C).

Corollary 1.2. There is an action of the spherical rational Cherednik algebra eH\ ,,/,(Sn,C")e

on the localized C*-equivariant homology of Hilb(C). Moreover, with this action HE (Hilb(C)) gets
identified with eL,, , (triv).

Remark 1.3. By [37, [38] the homology of the Hilbert schemes of singular curves is closely related
to the homology of the corresponding compactified Jacobian, equipped with a certain “perverse”
filtration. By [24] [42], [43], [49] the latter homology carries an action of the spherical trigonometric
Cherednik algebra. Furthermore by [42] [43] the associated graded space admits a natural action of
the spherical rational Cherednik algebra corresponding to the reflection representation of S, (also
known as spherical rational Cherednik algebra of sl,,). The construction of this action uses global
Springer theory developed by Yun [52].

The main advantage of our proof of Theorem [[L1]is that it does not use compactified Jacobians
or perverse filtration at all. The generators of H ,,/,(S,,C") are identified with certain explicit
operators in the homology of PHilb*(C').

We explore some ramifications of this result. In the theory of rational Cherednik algebras there
is a “t = 0” and “t = 1”7 dichotomy, see Section 2.1, and in the statement of Theorem [I.1] we
assume that ¢ = 1. While the representation theory of the Cherednik algebra is very sensitive to
this dichotomy, we have a version of Theorem [Tl in the ¢ = 0 case.

To this end, consider the non-reduced curve Cy := {y™ = 0}. The punctual Hilbert scheme on
Cy is the moduli space of finite-codimensional ideals in the local ring O¢, 0 = Cl[z,y]]/(y"), and
we may define the parabolic (punctual) Hilbert scheme PHilby, ,11(Co) analogously to (Il). Again
we set PHilb®(Cy) := U,PHilby, ,1%(Co). We show the following “¢ = 0” (or “m = o0”) analogue
of Theorem [Tl

Theorem 1.4. There is a geometric action of Hy1(S,,C") on the localized C*-equivariant coho-
mology of PHilb®(Cy), where Cy is the non-reduced curve {y™ = 0}. Moreover, with this action
HE (PHiIb*(Cy)) gets identified with the polynomial representation Ag 1(triv).

Similarly to Corollary we get an action of the spherical subalgebra eHy e on the equivariant
homology of Hilb(Cp), and under this action HE (Hilb(Cp)) gets identified with the polynomial
representation of eHo,le.

1.2. Quantized Gieseker varieties. Another ramification of Theorem [[.I] connects parabolic
Hilbert schemes to the representation theory of quantized Gieseker varieties. These are quantiza-
tions of the moduli space M (n,r) of rank r torsion-free sheaves on P? with fixed trivialization at
infinity and second Chern class ¢ = n. The quantization, denoted A.(n,r), depends on a param-
eter ¢ € C, see Section [8 for a precise definition. For example, when r = 1, M(n, 1) is simply the
Hilbert scheme of n points in C? and A.(n, 1) is the spherical rational Cherednik algebra, see [19].

There is currently no presentation of the algebra A.(n,r) by generators and relations. Never-
theless, Losev [33] managed to classify all finite-dimensional representations for a slightly smaller
algebra A.(n,r) such that A.(n,7) = D(C) ® A.(n,r). Namely, if ¢ = m/n, ged(m,n) = 1 and
c is not in the interval (—7,0) then A.(n,r) has a unique irreducible finite-dimensional represen-
tation Z% (n,r), otherwise there are none. Furthermore, the action of GL(r) on M(n,r) induces
quantum comoment map gl(r) — A.(n,r) and hence defines an action of gl(r) on Z% (n,r). In [15]
Etingof, Krylov, Losev and the second author computed the dimension and graded gl(r) character
of Lm (n,r).

In this paper we give a geometric construction of this representation for m,n > 0.
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Fix an integer r > 0, and denote by C,(n) C ZX, the set of r-tuples of non-negative integers that
add up to n. For v = (7,...,7%) € Cr(n) we consider the following parabolic Hilbert scheme
(2)
PHilb»*(C) := {Oc¢ 2 J° 2 J' 2+ D J" = 2J" : dim(O¢/J°) < 0o and dim(J* ™' /J*) = v} .

For example, PHilb®(C') = PHilb:~1D%(C), where (1,1,...,1) € Cy(n) and Hilb(C) := UgsoHilbg (C)
is PHilb™*(C), where (n) € C(n). We define the compositional parabolic Hilbert scheme of C' to
be

(3) CPHilb™*(C):= | | PHiIb»(C).
~y€C(n)

Remark 1.5. Note that if 7; < 1 for every i then we have a natural isomorphism PHilb”"*(C) =

PHilb*(C). In particular, PHilbx(C)X(;) C CPHilb"™*(C). Similarly, if there exists i such that
vi =n and y; = 0 for j # ¢ then we have a natural isomorphism PHilb”*(C) = Hilb(C), so that
Hilb(C)*" C CPHilb"™*(C).

Remark 1.6. Note that we have chosen one projection to define our parabolic Hilbert schemes.
We could have instead chosen the other projection so that, for v € C.(m) we have the parabolic
Hilbert scheme PHilb7¥(C), where the condition J" = zJ° in (@) is now replaced by J" = 3.J°.
With this, we have
CPHilb™Y(C) := || PHib"¥(C)
vECr(m)
This distinction will be important for us below.

Theorem 1.7. There is an action of the quantized Gieseker variety A, ,(n,7) on the localized
C*-equivariant cohomology of CPHilb™(C). Moreover, with this action HS (CPHilb™(C)) gets
identified with the unique irreducible A, (n,r)-module

Ln(n,r)=O(C)® Lz (n,r)

with Gelfand-Kirillov dimension 1 where elements of negative degree act locally nilpotently. The
homology of PHilb™Y(C) is identified with ~y-weight space for gl(r) action on £%(n,r).

Example 1.8. When r = 1, C.(m) = {(m)} and CPHilb"¥(C) = Hilb(C). Since in this case
Apjn(n,1) = eHy 1 (Sn, C")e, we see that Corollary is a special case of Theorem [L.7}

Example 1.9. When n = 1, the curve C is smooth, and all the spaces PHilb"(C') are disjoint
unions of Z>q copies of contractible spaces (labeled by dim O¢/J). Therefore the homology of
CPHilb™(C') can be naturally identified with

HE (CPHilb™(C)) = HE (pt) @ @ C[X] ~ HE (pt) ® S™(C") ® C[X].
Cr(m)

On the other hand, A.(1,r) is isomorphic to a certain quotient of U(sl(r)), and Z% (n,r) ~ S™(C").

1.3. Coulomb branches and generalized affine Springer fibers. From the action of a reduc-
tive group G on a vector space N, Braverman, Finkelberg and Nakajima [3] construct an associative
algebra called the Coulomb branch algebra, which is modeled after the equivariant homology of
the affine grassmannian of GG, where multiplication is given by convolution. This algebra admits
a natural quantization that appears when we take the loop rotation into account for the equiv-
ariance. Webster in [50] generalized their construction by introducing a category of line defects,
where the BFN quantized Coulomb branch algebra appears as the endomorphism algebra of an
object. Roughly speaking, a line defect consists of the choice of a parahoric subgroup P C Gk and
a subspace L C Nk preserved by P. The BFN quantized Coulomb branch algebra corresponds to
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the choice P = Ggp and L = Ng. It turns out that all of the algebras we work with in this paper
appear as BFN quantized Coulomb branches or their generalizations:

e The spherical Cherednik algebra eH; (S, C")e is the BFN quantized Coulomb branch for
G = GL, and N = C" @ gl,,, [3T), 51].

e The full Cherednik algebra Hj (S, C") appears in the same setting as above, but choosing
a nontrivial line defect associated to P = I, the standard Iwahori subgroup, and L = Q" &1,
where i is the Lie algebra of the standard Iwahori, [51], 32].

e The quantized Gieseker variety A.(n,r) is the BFN quantized Coulomb branch for G =
GLY" and N = C" @ gIZ". This follows from results of [39] and [34]. This is an example
of symplectic duality [50] since A.(n,r) appears both as the quantized Higgs branch for the
Jordan quiver and the quantized Coulomb branch for the cyclic quiver with r nodes.

The recent paper [28] constructs an action of the quantized Coulomb branch in the cohomology
of generalized affine Springer fibers in the sense of [21I], again by certain convolution diagrams.
This has been extended to the parahoric setting in [20]. We identify the different parabolic Hilbert
schemes we consider with generalized affine Springer fibers.

e For Hilb(C), this is [20, Theorem 3.5].
e For PHilb*(C), see Proposition
e For CPHilb™¥(C), see Proposition

While we take this as a motivation for Theorems [I.T] and [I.7], our proofs do not use any of these
technologies, in particular we do not obtain the action via convolution diagrams. The proofs of
Theorems [I.1] and [[.4] are based on the study of the combinatorics of the various Hilbert schemes
we consider, as well as the combinatorial representation theory of the rational Cherednik algebra.
The development of this depends on a suitable presentation of this algebra, and we use work of
Webster [51], and more recent work of LePage-Webster [32] to verify, in the case of the scheme
PHilb*(C), that our action coincides with the one constructed in [20] via convolution diagrams, see
Section

On the contrary, there is no known set of generators and relations for the algebra A.(n,r).
However, we use Theorem [[T] together with [I5] Theorem 2.17] that constructs representations of
Ap/n(n,r) starting from representations of H,, /,,,(m) to prove Theorem [L.7]

1.4. Rational Cherednik algebras. The main idea behind the proof of Theorem [[.T]is to identify
a basis in Ly, ,(triv) that corresponds to the fixed-point basis in Hf*(l_lkPHilbkark(C’)). Our
main tool to construct this basis is a presentation of the rational Cherednik algebra Hy .(S,,C")
that is better-suited for this purpose than the usual presentation. To lighten notation, we write
H. = H;.(S,,C") below. Recall that, in its usual presentation, the algebra H, has generators x;, y;
(t=1,...,n) and S,. It is naturally graded, with x; of degree 1, y; of degree —1 and S,, in degree
zero. Dunkl and Opdam [12] constructed a family of commuting operators w1, ..., u, of degree 0
in H.. The algebra H. is, in fact, generated by u;, the group algebra of S, and two additional
generators
ri=x1(12--n),\ = (12---n) Ly

It is clear that 7, A and S, already generate the algebra since one can obtain 7 and y; (and hence
all z; and y;) using them. In Theorem B.4] we give a complete list of relations between 7, A, u;
and the generators of S,,. This presentation of the algebra H,. has already appeared in the more
complicated cyclotomic setting in the work of Griffeth [27] and Webster [51]. Since some relations
become more transparent in the type A setting, we present it in detail. The generators u; can be,
in principle, eliminated, and the remaining relations are listed in Proposition

We use the presentation of the algebra H,. via the Dunkl-Opdam operators to, in the case where
c is a rational number with denominator precisely n, simultaneously diagonalize the operators u;
on the polynomial representation A.(triv) and give an explicit combinatorial description of the
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eigenvalues. We prove that the action of the operators 7 and A sends an eigenvector to a multiple
of another eigenvector, and describe the action of S,, on an eigenbasis explicitly. We remark that
this has already appeared in work of Griffeth, see [25] 26, 27] and Remark [L12, but we reprove
these results with combinatorics that are more amenable to our geometric goal.

Theorem 1.10. Let ¢ = m/n, where m,n € Z~g,gcd(m,n) = 1. Then the following holds:

(a) A (triv) has a basis v, labeled by nonnegative integer sequences a = (a1, ..., ay). The action
of u;, T and X in this basis is given by

uva = (a; — (ga(i) — 1)c)va, TUa = Ur.a, Aa = (a1 — (ga(l) — 1)c)vr-1.4

where w(ay,...,an) = (ap+1,a1,...,an—1) and g is the minimal length permutation sorting
the sequence a to be mon-decreasing.
(b) Lc(triv) has a basis va labeled by sequences (a1, ..., an) such that |a; — aj| < m for all i, j

and if a; — aj = m then i < j.
The action of Sy, in the basis vy is given in Theorem [{.15]

Remark 1.11. Note that 7! - a is well defined unless a; = 0. In this case a; — (ga(1) — 1)c =0,
SO A\ - vy 1s well defined.

The proof of Theorem [Tl is based, roughly speaking, on the comparison of the basis of fixed
points in H*(UgPHilby, ,4++(C)) with the basis given by Theorem [LI0(b).

We give two proofs of Theorem [[T0O. One of them is completely explicit, using intertwining
operators to construct the basis v, inductively. This is done in Section Bl The other one uses
a Mackey-type result for the algebra H.. The algebra H,(u) generated by uq,...,u, and S, is
isomorphic to the degenerate affine Hecke algebra of rank n. In Theorem 5.9 we construct a filtration
of Resgz () Ac(p) by Hp(u)-modules and explicitly describe the subquotients. As a consequence,

we are able to give a combinatorial basis of all standard modules A.(u).

Remark 1.12. In [26, Theorem 5.1] Griffeth constructs, for generic values of the parameter (t,c)
an eigenbasis of every standard module, and in [25] he considers the case of the polynomial repre-
sentation. Both Theorem [[.TO] and the construction of a combinatorial basis for standard modules
are a consequence of this and [26, Theorem 7.5] after specializing parameters. Our proof and con-
struction of eigenbasis, using a Mackey-type formalism, is more conceptual and its combinatorics
seem better-suited for geometric applications.

As further application of the combinatorics of the Dunkl-Opdam presentation of the algebra H,
we are able to give an explicit combinatorial construction of all the maps appearing in the BGG
resolution of the module L.(triv) for ¢ = m/n, and we show that the complex formed by these maps
is indeed exact. In particular, we give a new construction of this resolution that avoids appealing to
the representation theory of finite Hecke algebras at roots of unity via the Knizhnik-Zamolodchikov
functor, which uses techniques of complex analysis. Moreover, we are able to give a combinatorial
basis in the spirit of that of Theorem [[LI0] for every simple module L.(u), see Corollary

Remark 1.13. More concretely, the standard modules A.(n — £,1%) and A.(n — £+ 1,171 have
bases labeled by pairs (a,T') and (a’,7") where T' and T” are standard tableaux of the corresponding
hook shapes. We explicitly compute matrix elements of the map between standard modules in this
basis in the case ¢ = m/n. As a consequence, we give two labelings of the basis in L.(n — ¢,1¢)
presented either as a simple quotient of A.(1¢,n — £), or as the radical of A.(n — ¢ — 1,1¢1), and
an explicit bijection between them.

1.5. Relation to other work. Finally, we would like to comment on the relations of our work
to the existing literature. As we have mentioned above, the Dunkl-Opdam presentation of the
Cherednik algebra has already appeared in work of Griffeth and Webster, [26] 27), [51], where it has
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been used for different purposes. In particular, Griffeth [26] 27] uses the fact that the operators u;
are self-adjoint with respect to the Shapovalov form to compute the norm of elements in standard
modules, see also [I1], while Webster [51] uses the Dunkl-Opdam subalgebra to give a concrete
equivalence between the category O and modules over the quiver Hecke algebra.

By [37, B8] the homology of the Hilbert schemes of singular curves is closely related to the
homology of the corresponding compactified Jacobian which is isomorphic to the Springer fiber in
the affine Grassmannian. One would expect a similar connection between our parabolic Hilbert
schemes and affine Springer fibers in the affine flag variety. These affine Springer fibers do admit
affine pavings, and the combinatorics of the affine cells was studied in detail in [35] 41 23].

The (co)homology of the affine Springer fibers in affine flag variety was studied in [24], [42] 43} 49]
where it was proved that it carries an action of the trigonometric Cherednik algebra. Furthermore,
this (co)homology has certain “perverse” filtration, and the associated graded space admits a
natural action of the rational Cherednik algebra corresponding to the refiection representation of
S, (also known as rational Cherednik algebra of sl,). The construction of this action uses global
Springer theory developed by Yun [52]. The combinatorics of finite dimensional representations of
the rational Cherednik algebra for sl,, was studied by Shin [44].

On the contrary, we find our construction to be more elementary than [42] [43]. Indeed, in our
construction of geometric operators 7 and A we use neither perverse filtration nor global Springer
theory. The combinatorial presentation of the algebra is easier in the gl, setup. Still, we make an
explicit comparison with the results of [23] in Section [£.6] see Remark

1.6. Structure of the paper. The main body of the paper follows a reverse structure from the
introduction. First we study the representation theory of rational Cherednik algebras and then
we move on to Hilbert schemes. Section 2.I]is devoted to the usual presentation of the rational
Cherednik algebra, as well as background on combinatorics of the extended affine symmetric group.
In Section Bl we give the Dunkl-Opdam presentation of H.. Theorem [[L.T0 is proved in Section @
and in Section Blwe prove a Mackey-type formula for representations of the algebra H.. In Section
we study standard modules other than A(triv). In particular, we give a combinatorial construction
of all the maps in the BGG resolution of L, /, (triv).

We turn to Hilbert schemes in Section [[l First, we examine the case of the reduced curve
C = {z™ = y"} and prove Theorem [[.T] see Theorem [.I4l In this section, we also compare the
parabolic Hilbert scheme with generalized affine Springer fibers, in particular proving that they
admit paving by affine cells, see Section [[.4l Section [ is devoted to the scheme CPHilb™¥(C),
we prove Theorem [[.7] as Theorem and also realize this Hilbert scheme as a generalized affine
Springer fiber. Finally, we study the case of the non-reduced curve C' = {y™ = 0} in Section
where we prove Theorem [[.4] see Theorem

ACKNOWLEDGMENTS

We would like to thank Tudor Dimofte, Niklas Garner, Joel Kamnitzer, Oscar Kivinen, Ivan
Losev, Alexei Oblomkov and Ben Webster for useful discussions. We would also like to thank
Stephen Griffeth for comments on the relationship of this paper with some of his previous work.
The work of E. G. was supported by the NSF grants DMS-1700814 , DMS-1760329. The work of
M. V. was partially supported by the Simons Foundation Collaboration Grant for Mathematicians,
award number 319233.

2. BACKGROUND

Throughout the rest of the paper we take m,n € Z~( and ged(m,n) = 1 unless otherwise stated.
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2.1. Rational Cherednik algebra. We work with the rational Cherednik algebra H; . := Hy .(S,,C")
of &, acting on C™ by permuting the coordinates. Let us recall that this is the quotient of the
semidirect product algebra C{x1,...,2Zn,Y1,...,Yn) X Sy by the relations

[z, ;] =0,  [y:,9;] =0,
[Yi, v5] = c(if), i, zi) =t — ¢ _(if)
J#i
Here t and c are complex parameters. Clearly, for a nonzero complex number a € C*, Hgt qc = Hy c.
So we have the dichotomy ¢t = 0 or t = 1. For most of the paper, we will assume that ¢t = 1 and
write H. 1= Hy .
We recall some basic facts about H . following [1]. The algebra H, . is graded, with z; of degree

1, y; of degree (—1), and S,, in degree zero. When t = 1, the grading on H, is internal and defined
by the Euler element

1 n ..
h = BY E (iyi + yix;) = E ;Y + 5 c E (i7).
i i i<j

Let us emphasize that the grading on Hy . is not internal. The algebra H; . is also filtered, with z;
and y; of filtration level 1 and S,, of filtration level 0. An important PBW theorem states that

ngt,c = (C[Z'l,... 7xn7y17"'7yn] Do Sna

where gr denotes associated graded with respect to this filtration. This implies that a basis of H; .
as a C-vector space is given by z2wyP, where w € S,,, z® := it xfn a € Z%, and similarly for
yP,. b e Z%,. We will refer to this basis as the PBW basis of H;.. Another easy consequence of
the PBW theorem is that H; . contains the following subalgebras:

H,(x) :=Clzy,..., 2] X Sy, H,(y) :=Clyi,...,yn] ¥ Sn.
Next we need to consider some modules for H; .. We have the standard modules

Ht c
Ate(p) = Indy,

where V), is an irreducible representation of S, corresponding to the Young diagram p of size n,
and y; annihilate V,. In particular, for ;o = (n) the representation V,, is trivial, and we get the
polynomial representation Ay (triv) o~ Clzy,. .., zy).

When t = 1, it is not hard to see using the Euler element h that A.(u) := Aj (x) has a unique
irreducible quotient that we denote by L.(x). In fact, these are the simple objects of the category
O, which is defined as the category of H.modules which are finitely generated over Clz1, ..., x,]
and where y; act locally nilpotently. For example, the standard modules A.(u) belong to O.. We
have the following facts about the category O..

)Vu ~V,®c Clzy,..., 2],

Theorem 2.1 ([1]). a) If c € C\ Q then the category O, is semisimple, and all standard modules
Ac(p) are irreducible. The same is true if ¢ is rational but its denominator is greater than n.

b) Suppose that ¢ = m/n where m,n € Z~g,gcd(m,n) = 1. Then A.(u) is irreducible, unless u
is a hook.

¢) Suppose that ¢ = m/n where m,n € Zwg,ged(m,n) = 1, and let py = (n — ¢,1%) be a hook
partition. Then the morphisms between standard modules have the following form:

C if u= e, i/ = pe—1 for some £,
Hoch (AC(N)u Ac(ﬂ/)) = {O otherwise

This theorem is proved in [I] using the Knizhnik-Zamolodchikov functor which compares the
representation theory of H. to that of the type A finite Hecke algebra. In this paper we give an
alternative combinatorial proof. The “otherwise” case of (b) is proved in Lemma [6.7] and Lemma
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[6.100 while the interesting morphism A.(pg) — A.(pe—1) is constructed in Proposition Part
(b) easily follows from (c), see Corollary

The representation theory of the algebra Hy 1 is very different from that of H.. For example, it
is no longer true that the standard module Ag;(x) has a unique irreducible quotient, moreover,
the algebra Hy ; is finite over its center so every irreducible Hy ;-module is finite-dimensional, [13].
Still, in Section [ we will use our results in the ¢ = 1 case and a limiting procedure to give a
combinatorial basis of Ag 1(x).

We will also consider the spherical subalgebra of H; .. Let e := % > pes, P € CS, C Hy be the
trivial idempotent for S,. The spherical rational Cherednik algebra is the corner algebra eH; .e.
We have an obvious functor H;.mod — eH; .e-mod, given by M — eM = MS». When t = 0 or
t = 1 and c is not a negative real number, this functor is known to be an equivalence.

2.2. The extended affine symmetric group.

Definition 2.2. The extended affine symmetric group il

$iSi+1Si = Si+18:8i+1 for 1 <i<mn—1,

__ . $:8: = 8:8; for j#i+1

S,=( ms;, 1<i<n v I : 7

n » 9y — < ﬂsi:3i+1ﬂ' for1§1<n—1,
322 =1 for i € Z/nZ

Letting sg = 7 's;m, we could consider generators s; for i € Z/nZ. In this case g,: has as a
subgroup the affine symmetric group S, = (s; | i € Z/nZ). However for the purposes of this paper,
we rarely take this point of view. Further, we will refer to elements p € g; as affine permutations,
dropping the adjective “extended.”

We recall that :S’; acts faithfully on Z by n-periodic permutations, i.e. bijections p : Z — Z such
that p(i +n) = p(i) + n. For this action 7 (i) =i + 1. It also acts on the set C" via:

S; (Wl,. ey Wiy Wi 1,y e .Wn) = (Wl,. ey Wi 1y Wiy e ns ,Wn)

(4) e (WiyeooyWy) = (W + 8, Wi, Wo, .o e W)
To align the two actions, it is often convenient to extend an n-tuple to having coordinates indexed
by all of Z via w; g, = w; — kt. This is consistent with our conventions taken in Remark below.

Just as with the finite symmmetric group, it is convenient to use window notation for affine
permutations. The window notation of p is given by [p(1),p(2),...,p(n)], which determines p by
periodicity.

sy o 1 . .

Definition 2.3. Let us define the degree of p € S, to be = > (p(i) — ).

ot . . . . .
Let S, denote the submonoid of affine permutations p such that ¢ > 0 = p(i) > 0, i.e., the
entries of p in window notation are all positive.

Note p € 3; iff it has degree 0. The only permutations in :SZJF of degree 0 are those in the finite
symmetric group S,.

Let t, € :9; denote translation by a € Z™. In other words, its window notation is t, =
[14 nai, 2+ nag,...,n+ nay,).
Lemma 2.4. Any permutation w € S, can be uniquely written as w = tag for g € S, a € Z".
Furthermore, w € :S’;+ if and only if w = tag and a; > 0 for all 4.

Proof. By definition,
tag = [9(1) + Nag(1), .- - 79(”) + nag(n)]'

lwe drop the first relation when n = 2.
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Given w, we can uniquely write w(i) = r; +ng; where 1 < r; <n, so g(i) = r; and ag(;) = ¢;. Since
w(i) for 1 < i < n all have different remainders modulo n, we have g € S,,. Finally, w(i) > 0 if and
only if ag;y > 0. g

Let sort(a) denote the non-decreasing ordering of a, and g, € S,, the shortest element such that
Ja - @ = sort(a). Note that the element g, is given by
(5) ga(i) =8{j :aj < a;} +4{j: j <ianda; = a;}.
We denote

o —1
Wa = tag, -

Remark 2.5. Note that the element g, € S, is uniquely specified by the requirement that the
window notation of tag; ! is increasing.

Lemma 2.6. Assume wa(i) = wy(i) for some i € {1,...,n}. Then g3'(i) = g5, (i) and ay=1(;) =
bggl(i).
Proof. Tf wa(i) = wy(i) then g3 (i) — g5 ' (i) = n(bggl(i) —ag-1(;)- But gal(i), 951 (3) € {1,...,n}
so their difference is only divisible by n if it is in fact 0. The result follows. g

Corollary 2.7. If wa = wp then a = b.

= ~+
min(?) = {wa € Sy | a € Z%;}. Then w = wa € S, is a minimal

length (left) coset representative of Sy /Sy, i.e., we have 0 < w(1) < w(2) < -+ < w(n). Further
note that the degree of w, as well as that of t, agrees with ||a]|.
It is easy to see the following holds.

Let L. (n) denote the set Lt

Lemma 2.8. Let w € L. (n) be of degree v > 0. Then there is a unique expression of the form

min
w = (SI/T .. .3231)7{'. .. (SVQ .. '3231)7T(3V1 .. .3231)71'7

where 0 < vy < v;. In other words v is a partition with v1 < n and r parts, and we allow parts to
be zero.

Proof. Let us induct on r, noting we exclude the case r = 0 from the hypotheses. This corresponds
to w = id. For r = 1 consider the window notation w = [w(1), -+ ,w(n)]. Recall 0 < w(1l) <
w(2) < -+ < w(n). In particular 0 < w(i) — i but n < w(n) since w # id. Since the degree
of wis 1, n = 3" ;(w(i) — i) which forces w(n) < 2n and hence 0 < w(n) —n < n. Then
wrl = [wn) —n,w(l), - ,whn—1)] € :S’;Jr has degree 0 and so wr~! € S,,. Let k be maximal
such that w(k) < w(n) —n and 0 otherwise, in which case we have w = 7. Then wr~!sysy---s; €
S, NLE. (n) = {id} which implies w = sy - - - ses;7. This proves the base case.

Next assume the claim holds for all affine permutations in L;{lin(n) of degree < r. Suppose w has
degree r. Choose k exactly as above, and note p = wr sysy---5; € L;in(n) is of degree r — 1.
By the inductive hypothesis, the claim holds for p with respect to a partition with » — 1 parts we
renumber as n > vy > v3 > --- > v > 0. Thus

W= (8, 8281)T "+ (Syy -+ S281)7(S - - - S281)7.

p

We need only show k > v5 and then set v; = k. Recall vy is maximal such that p(r2) < p(n)
and recall k is maximal such that w(k) < w(n) —n. By choice of k we have p(k) = w(k) < w(n)
and p(k+ 1) =w(n)—n. lf vy = k+1then p(1n) = p(k+1) =w(n)—n > p(n)—nand if vo > k+1
then p(r2) = w(ve — 1) > w(n) — n > p, — n, both of which are contradictions. O

—n
—n



10 EUGENE GORSKY, JOSE SIMENTAL, AND MONICA VAZIRANI

Remark 2.9. Given w € L. (n), the partition v can easily be obtained from the inversions of w

as follows. For the transposed partition »? which has n — 1 parts, v} = #{k < 1 | w(k) > i}.
Observe the length ¢(w) = |v|.

Example 2.10. Let n = 5, a = (0,2,0,0,1). Thus ga = [1,5,2,3,4], gz* = [1,3,4,5,2], t

a
T

[1,12,3,4,10] and wa = tagy' = [1,3,4,10,12] = s;7s3505;7s352517, and so v = (3,3, 1), =
(322) Notew( )="T,w(—-1) =5w(—5) =2 and
{k<1|wk)>1} = {0,—-1,-5} vl =3
{k<1]|wk)>2} = {0, -1} vl =2
{k<1|w(k)>3} ={0,-1} vl =2
{k<1|w(k)>4} =0 vl =0
{k<1|w(k)>5=n} =0 vl =0.

There are other ways to obtain v from a, but discussing them is beyond the scope of this paper.
We will merely mention without proof one such way. Given a construct its n-abacus (with beads
at heights determined by a) and then its corresponding n-core partition. Next, following Lapointe-
Morse, remove all boxes from the n-core with hooklength > n and left-justify the remaining boxes.
For the a given above its 5-core is (4,3,1), from which we remove its box in the upper left corner
with hooklength 6 leaving us with v = (3,3, 1).

2.3. m-stable and m-restricted permutations. Here we recall some facts on m-stable and
m-restricted affine permutations from [23].

Definition 2.11. ([23]) We call an affine permutation w m-stable if the inequality w(x+m) > w(z)
holds for all . We call an affine permutation w m-restricted if for all j < i one has w(j) —w(i) # m.

It is clear that w is m-stable if and only if w™! is m-restricted. Also, w is m-stable if and only if
ww™@) +m)>ifori=1,...,n
Definition 2.12. We call a subset M C Z (m, n)-invariant if M +n C M and M +m C M.

Ifwe /S; is an m-stable permutation then for all 7 the set
M = {z€Z:w(x)>i} =w i, +oo).
is (m,n)-invariant. Indeed, if w(z) > i then w(x + n) = w(z) + n > ¢ by definition of affine
permutation and w(z +m) > w(z) > i because w is m-stable.
Clearly, Mt"™ = MY, 4+ n and w is m-stable if and only if M/, is (m,n)-invariant for all 7. This
implies the following useful proposition.

Proposition 2.13. An affine permutation w is m-stable if and only if the sets MY, are (m,n)-
invariant fori=1,...,n.

Next, we would like to characterize m-stable and m-restricted permutations using window nota-
tion, assuming ged(m,n) = 1. As in [23], we use the affine permutation

Pm = [0,m,...,(n—1)m].
Lemma 2.14. Let wp,, = [z1,...,2,]. Then w is m-stable if and only if
ry Swo < - < xpy S w1+ MmN

Proof. Tt is sufficient to check the condition w(x + m) > w(x) for a single choice of z in each
remainder modulo n, in particular, for z = 0,m,2m,...,(n — 1)m. Now for 1 < i < n we have
x; = w(pm (7)) = w((i — 1)m), so w is m-stable if 1 < ... <z, and

Tp =w((n —1)m) < w(nm) = w(0) + nm = x1 + mn.
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The condition z1 < ... < z, implies that we can write
-1 -1, -1 , —1
me = taga bl W = taga pm bl w = pmgat—a

for some vector a € Z™, and g, as above. We can write

w_l(ga_l(z)) = pm(_naggl(i) + Z) - _naggl(i) + m(Z - 1),

$0
(6) w () = —na; + m(ga(i) — 1), i=1,...,n.
Hence, in window notation w™! = [-na; + m(ga(1) — 1), ..., —na, + m(ga(n) — 1)].

We get the following result:

Lemma 2.15. Let ged(m,n) = 1. A permutation w is m-stable if and only if w™' can be written
in the form (@) for some vector a € Z" such that:

o a;—aj <m foralli,j
o ifa; —a; =m theni < j.
Proof. Since wpy, = tagy' = [r1,...,2,], we get 21 < ... < ,,. We need to check the last condition
T, < 1+ mn in terms of the vector a.
Observe z; = na -1, + g21(i), so z, < x1 + mn if and only if either ag=1qy +m>a
g=1(py +m = a1, and g2t (1) > g2 t(n).
Now a1y = min(a), (g1 () = max(a), so either max(a)—min(a) < m or max(a)—min(a) = m

- T
9a'(n) ©

and all appearances of max(a) are to the left of all appearances of min(a) in a. O

Remark 2.16. The above results were stated in [23] for the affine symmetric group 3; (as opposed

to extended affine :S’;), but are equivalent to them after imposing the balancing condition for all
affine permutations. In particular, p,, should be replaced by the degree 0 affine permutation
Pm = [0—r,m —k,...,(n — 1)m — k| where K = &(mn —m —n —1). In particular, Lemma
[2.14] can be rephrased by saying that p,, establishes a bijection between the set of m-stable affine

permutations and the dilated fundamental alcove.
Example 2.17. Let n = 5,m = 3,a = (0,1,0,0,2). Thus g;' = [1,3,4,2,5], wa = [1,3,4,7,15],
with inverses w;! = [1,—1,2,3, 5] and ga = [1,4,2,3,5] . Note
w = pawit =10,3,6,9,12] o [1,—1,2,3, 5] = [0,4,3,6,2]
is 3-restricted. Using () we can also check w™!(i) = —5a; + 3(ga(i) — 1) as
(0,4,3,6,2) = —5(0,1,0,0,2) +3(0,3,1,2,4) = —5(0,1,0,0,2) +3((1,4,2,3,5) — (1,1,1,1,1)).

3. AN ALTERNATIVE PRESENTATION OF Hj .

3.1. Presentation of the algebra. It will be convenient to work with a trigonometric presentation
of the algebra H; . that has already appeared in the work of Griffeth and Webster in the cyclotomic
setting, [27, 51]. Since some relations become more transparent in the type A setting, we recall
this presentation in detail. First, we have the Dunkl-Opdam elements in H; :

U 1= TiY; — cZ(zg)
j<i
Lemma 3.1. The Dunkl-Opdam elements generate a polynomial subalgebra of Hy .
Proof. 1t is straightforward to see that u;u; = wju;. Since the leading term of u; is x;y;, the leading

terms of u; in gr H; . are algebraically independent, and hence u; are algebraically independent in
Hi.. O
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We will denote this polynomial subalgebra by A.

We remark that we have the following relations where, as usual, s; = (i, + 1) € S, is a simple
transposition.
(7) Silli = U;418; + ¢
(8) sju; = u;s; if j # 4,0 —1
Remark 3.2. These equations imply that u; and s; form a subalgebra in H; . isomorphic to the
degenerate affine Hecke algebra. We will denote this algebra by H,(u).

We will also need the following shift operators. Let 7 := z1(12---n), A := (12---n)"ly;. Note
that, for every i, we have 7 = (1---4)z;(i---n), A= (n---1)y;(i---n). The following relations are
straightforward to check.

(9) TU; = U1 T, & F# N
(10) TUp = (u; — )T

(11) Ay = ui N1 # 1
(12) g = (up +t)A

(13) 8T =T8i_1,1 # 1
(14) 172 = 728,1

(15) SiA = Asa1,1 #Fn—1
(16) sn_1 A2 = \%sy

(17) TA=uy

(18) AT =up +1

(19) ASIT = TSp_1 A+ ¢

It is clear that the elements si,...,s,_1,7 and A generate the algebra H;.. It turns out that,

together with the w;, they give a presentation of this algebra.

Remark 3.3. Given relations (I2) and (I0), it is convenient to define u; for ¢ € Z by setting
Ujpnk = u; — kt for 1 <4 < n.

Theorem 3.4. Let Hy. be the algebra generated by elements uq,...,u,,7,\ and the symmetric
group Sy, subject to the relations that [u;,u;] =0 and ([@)-9). Then, H¢. = Hy,.

Proof. It is clear that we have a morphism H;. — H;.. We have to show that it is an iso-
morphism. To do so, we provide the inverse. Define x; 1= s;_1---5178,—1---8; € Hye, y; =
Si+"8p—1AS1- - 8i—1 € Hy.. We claim that the map x; — x;,y; +— y; and that is the identity on
Sy, defines a morphism H; . — H; .. So we have to check that these elements satisfy the relations
in Hy.. It is straightforward to check the commutation relations between S, and x;, as well as
between S, and vy;.

We check that x;x; = x;x;. Assume j < i:

xixj = (sic1- 8T (Sno1- 8)(8j-1 - $1)T(Sn1 - 5;)
= (sic1 - $1)7(8j-1 -+ 51)(Sne1 * -+ 8)T (St -~ 57)
= (sic1 - 51)(85+ 52)72 (Sn—2 ** i—1) (Sn_1 -+ 5])
= (sic1--51) (8 52)(51728n-1) (Sn—2 - -~ 8i—1) (Sm—1 - -~ ;)
= (Si—1---52)(85 -+ 525152)TT(Sn—25n—15n—2 " - - Si—1)(Sp—2 - - - 5;)
= (8i—1+-52)(85 - 8281)(751)(8n—1 T)(Sn—1"""8i-1)(Sn—2 " 8;)
= (851 5251)T(Sica 51) (St - $341)T(Sn_1 -+ - 51)
= (5j1- 5251)T(Sne1 - 8;)(5im1 - S1)T(Sn_1 -+ 1)

Il

x
<.

X
s
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where we have used the relation (I4) in the form 72 = 51725,_1, and we make repeated use of the
relation (I3). The proof that y;y; = y;y; is similar.
Let us now compute the commutator [y;, x;].

yisxi] = (8i+++Sn—1)AT(Sn—1-+8i) = (8i=1-+-81)TA(81" " 8i-1)
= (8i - Sp—1)(up +t)(Sp—1---5i) — (Siz1---s1)ui(s1 - si—1)
=t+ (s sp-1)Un(Sn—1---8;) — (Si—1---s1)ur(s1- - 8i-1)
=t+ (s sp-2)(Un—1 —cSp—1)(Sn—2--8;) — (Si—1---82)(uz +cs1)(s2- - 5i-1)
=t — Y i(if) = (s + e X5iif)) = t — e X zi(if)
Finally, we have to compute [y;,x;]. We first assume i = 1, j = 2. So y1 = s1--Sp—1,
X9 = 81TSn—1 - S2. We have

[y1,x2] =81+ 8n-1(As17)8p—1+ 82 — (51T8n—1""52)(5182 "+ Sn—1)

=581 Sp_1(C+ TSp—1A)Sp—1-"- 82 — ($17Sp—1" - $2)(8152 - - Sp—1)

=81+ 81 Sp_1TSn—1ASp—1"* 82 — S1T(Sp—1 " 28182 ** Sp—1)A

=81+ 51 Sp_1TSn—1ASp—1- 52 — SIT(S1 " Sp—2Sn—18p—2 - - S1)A

=51+ 81 Sp_1TSp—1ASp_1°+* 82 — 8152+ Sp_1TSp_1ASp_1 " 52

= CS1
so the relation [yj,x3] = ¢s1 = ¢(12) holds. Now the result follows for arbitrary ¢ # j by the
relations between S, and x;,y;. So we have a morphism H;. — H; ., which is an inverse of the
morphism mentioned at the beginning of this proof. ([l

We can also eliminate u; from this presentation:

Proposition 3.5. The algebra Hy . is generated by s;, A and T subject to the equations (13)), (1),

(I3, ([@6), (I9) and one more equation
n—1

(20) )\T:t+81"'8n_17)\8n_1"'81—CZSl---Si---sl
i=1

Proof. We define w1 := 7\ and

k—1
uk) = sk_l...slulsl...sk_l _Czsk‘—l“'si”'sk)—l‘
i=1

Then the relations s;u; = u;y115; + ¢ and A\t = u,, + t are automatic. Let us prove that all other
relations involving u; follow. We have:
UT = S1TASIT — 817 = S17(TSn_1A 4+ €) — €817 = 81728, 1A = T2\ = Tuy.
Now for all 1 < k < n we have
k—1
TU = TSg_1 " S1U1S1 " Sk—1 — CY iy TSk—1"""8i""* Sk_1 =
k—1
sk...s2’7_ul81...8k_l—CZZZlsk---82+1-"8k7—:
k—1
Sk"'s2u27—81"'8k—1_czizlSk...sl"rl"'skT:
k
S+ S2U2S2 - SET — €Y o Sk Si** SET = Up417T-
Also,
TUp =T(AT —t) = (TA —t)7 = (ug — ).
The relations between A and wu; can be checked similarly. This implies that u; commute, for example,
UL = TAUL = TUR_1A = URTA = UpU] (k#1).
Also, for i > 1 we have
SiUl = SiTA = TSi—1A = TAS;
and similarly s;u; = ujs; for j # i,i — 1. O
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The following lemma relates the nonnegative part of H; . to affine permutations.

Lemma 3.6. Let X' denote the monoid of monomials in s; and T (or, equivalently, in s; and x;).

Then there is an isomorphism of monoids Fy : X — :S’;Jr such that
Fx(s;) = si, Fx(r)=m, Fy(z{* - -20") = ta
for a; > 0.

Proof. We can define Fy by Fx(s;) = s;, Fx(r) = m. Since the relations s;7 = 7ws;—; and

s1m? = m2s,_1 hold in S,,, Fiy is a homomorphism. Considering the window notation for s; and ,
.. . . ot
it is easy to see the image is S, .
Now
Fx(zi) = si—1-8178p—1---8i = [1L,...,i = Li+n,i+1,....n] =t 010,..0
so Fx(z{",--- ,xp") = ta for all a € ZL,,

. <+ . .
Finally, by Lemma [2.4] any element of S, can be uniquely written as w = t,g for g € S,,
a € Z%, while any element of X’ can be uniquely written as zit - xlng for g € S,,. Therefore Fiy
is a bijection. O

Corollary 3.7. The monoid :S’;Jr is generated by s;, ™ modulo relations in S, and

ST = TS;j—1, 8171'2 = 7T28n_1.

Similarly, we have the following.

Lemma 3.8. Let ) denote the monoid of monomials in s; and X (or, equivalently, in s; and y;).
o . . . et . . .

Let S,  be the monoid generated by inverses of elements in S,, . Then there is an isomorphism of

monoids Fy : Y — Sn_ such that

Fy(si) = si, Fy(\) =771, Fy(yft - yi) = t_a.

Remark 3.9. The two isomorphisms Fy and F) are not compatible in the group :S'; in the sense
that relations between elements in the two monoids may not hold for their preimages in H; .. For

instance 7! = id = 7~ 7 in S,, whereas TA # A7. See equations (I7) and (IR).

3.2. Generalized eigenspaces and intertwining operators. As above, we will denote by A C
H; . the polynomial subalgebra generated by the Dunkl-Opdam elements w1, ..., uy,.

For an H;.module M and w € C", let M&™" denote the generalized eigenspace with weight w,
that is, (u; — w;) acts locally nilpotently on Mg for every i. We also denote by M, C Mg™
the subspace of honest simultaneous eigenvectors. At ¢t = 1 the Euler element is h = Y u; + n/2
and it is therefore easy to see that every module in category O, is locally finite for the A-action,
so that it decomposes as the direct sum of its generalized weight spaces, and each such space is
finite-dimensional.

We are interested in the spectrum of A on the standard module M := A .(triv). To study it,
we will make use of the following intertwining operators, cf. [26] Section 4]:

O; ‘= S§; —

Note that 7 € Hi., while the o; are elements of the localization Hy.[(u; —u;)™! i # jl.
Alternatively, given a representation M, we may think of 7 as an operator which is defined globally
on M, while o; is only defined on those generalized eigenspaces Mg for which w; —w;41 # 0, i.e.,
Si W FE W,
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Lemma 3.10. /26, (4.13)]] We have 0;0;4+10; = 0;+10i0i+1 and, if i < n, T0; = 0;417. Further-
more,

w; — Uir1 — ¢)(u; — u; c
(21) O_ZQZ( 7 i+1 )( i . z+1+ )
(ui — uig1)
and Ao; = 0,1\ if i > 1, also AoyT = 70,1\ — uoqﬁ)ulc =TO0p_1\ — #ﬁtmc.
It is not hard to see that we have
o ME™ — ML, T ME™ — MES!

where the symmetric group S, acts on C"” by permuting the coordinates, and 7 - (wy,...,w,) =
(wp +t, w1, ..., wy—1) as in Equation (@]). In the first case we assume s; - w # w so o; is well-defined.
Remark 3.11. Note that, if 0;[yzen = 0, then w;—w; 11 = £c. If M is free as a C[x1, . .., x,]-module

(for example, a standard module) then 7|)zen # 0 provided Mg # 0.

Remark 3.12. Note that o; = (sju; — u;8;)/(u; — uiy1). These operators are well-defined on any
simple H; .-module on which A acts semisimply. It is sometimes convenient to instead consider

0; = (siui — UZSZ)/(’U,Z — Uj41 + C).

These also satisy the braid relations and their quadratic relation becomes 67 = 1. We will see
below (see Section [.5)) that these operators are well-defined on L. (triv).

Using intertwiners to construct and parameterize an A-weight basis for an A-semisimple (or
calibrated) module, as well as giving the action of generators on that basis, follows ideas developed
by Ram in [46] or Cherednik in [9]. In [46] the role of A was instead played by an appropriate
commutative subalgebra of the affine Hecke algebra, but the constructions apply in our context as
well.

4. THE POLYNOMIAL REPRESENTATION OF H,

4.1. Combinatorics of integer sequences. Recall that for a € Z%,, we denote ||a]| := }_; a;.
As in Section 2] we denote by ga € S, the shortest element such that g, - a = sort(a).

-1

Lemma 4.1. For every a € Z%, we have gra = 9ga(12---n) If a; # a;11, them we have

Js;-a = JaSi-

Proof. We use the explicit equation (Bl for ga. Assume i # 1. Denote X, := {j : (7-a); < (7-a);}
and Y == {j : (m-a); = (7-a); and j < ¢}. Similarly, denote X := {j : a; < a;—1} and
Y :={j:aj =a;—1 and j < i— 1}, so that gr.a(i) = § X5 + Y; and ga(i — 1) = §X + Y. Note
that, if j # 1, then j € X, (resp. j € Y;) if and only if j —1 € X (resp. j —1 € Y). Note also
that we cannot have n € Y because i — 1 < n. Moreover, we have that 1 € X, U Y, if and only
if n € X and, by the previous sentence, this happens if and only if n € X UY. This shows that
gra(i) = ga(i — 1). Note that this forces gr.a(l) = ga(n). S0 gr.a = ga(12---n)71, as needed. The
other equality is clear. O

We denote by Pi(n) := {a € Z%, : ||a]| = k}. There is a clear bijection between Pg(n) and the
set of monomials of degree k in n variables. We will define a partial order on Pg(n) inductively.
For n = 2 and even k = 2/ , we have

O <(L+1,—-1)<(L—-1,0+1)<---=<(2¢,0) < (0,20)
and for £k = 2¢ + 1 odd we have
+1,0)<(ll+1)<(L+2—-1)<(L—=1,04+2) <---<(2041,0) < (0,20 +1).

Now assume we have defined partial orders on Py (n) for every k’. Let us define partial orders
on Pr(n + 1). The set Py(n + 1) is a singleton so there is nothing to do. On Pi(n + 1) we have
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id
[1,2,3]
k=0  (0,0,0)

S1T 8981
2,3,4] [1,3,5] 1,2, 6]
k=1 (1,0,0)=<(0,1,0) V<(0,0,1)
Pe P’
72 TS|T T89S SIS S1TS89S 1T S8981TS9S1T
3,4,5] [2,4,6] 2,3,7] [1,5,6] [1,3,8] 1,2,9]
k=2  (1,1,0)<(1,0,1) =<(2,0,0)  =<(0,1,1) <(0,2,0) <(0,0,2)
P° P
73 7T2817T 7T282817T SIS TS1TMS81T TS981 T89S T
[4,5,6] [3,5,7] (3,4, 8] [2,6,7] [2,4,9] [2,3,10]
k=3 (1,1,1)<(2,1,0)  =<(1,2,0) =<(2,0,1) =<(1,0,2) <(3,0,0)
P
SITSIMSIT S{TMSITMS2SIT S1MS9S1 WSS S9S81 T89S T89S
1,6,8] [1,5,9] 1,3,11] [1,2,12]
<(0,2,1)  =(0,1,2) <(0,3,0) <(0,0,3)

%
FIGURE 1. The partial order on a € Pk(3) for degrees k < 3. So that one may

compare < to >1., and to Bruhat order, above each a is the corresponding w, both
in window notation and it expression from Lemma 2.8

(1,0,...,0) < (0,1,...,0) < --- < (0,0,...,1). Assume that we have defined a partial order on
Pi(n+ 1). To define a partial order on Pgi1(n + 1), we decompose

Prr1(n+1) :=Pp(n+1)UPr 4 (n+1)

where Py (n+1):={a € Prpi(n+1):a1 #0} and Py (n+ 1) := Pryi(n+ 1)\ Pp(n+1).
The map 7 gives a bijection 7 : Py(n + 1) — P, ;(n + 1), and this gives a partial order on the set
Pp1(n+1). By forgetting a; =0, Py ;(n + 1) is identified with Py,1(n), and this gives a partial
order on the set P;_ ;(n + 1). Finally, we declare every element in Pp_;(n + 1) to be smaller than
every element of P;_;(n + 1) This gives a partial order on Py11(n +1). Figure Il below gives some
examples on how these partial orders look when n = 3. For each a € Z3,, listed, we also include
wa, both in window notation and in its decomposition given by Lemma 2.8 for reference.

For another example, when n = 4, k = 2 we have (1,1,0,0) < (1,0,1,0) < (1,0,0,1) <
(2,0,0,0) < (0,1,1,0) < (0,1,0,1) < (0,2,0,0) < (0,0,1,1) < (0,0,2,0) < (0,0,0,2).

The following lemma gives properties of this partial order that will be important for us.

Lemma 4.2. With the partial order defined above, Py(n) is linearly ordered. Moreover, the follow-
ing properties are satisfied.

(1) Ifa<b in Pr(n), then m-a<m-b in Pryi(n).

(2) If ap, > a1 > 0, then (a1,az2,...,ap—1,ay) < (an + 1,a2,...,ap—1,a1 — 1),
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(3) If a; > ajy1, then a < s; - a.
(4) If a; > a;41 and b < a, then s;-b < s; - a.

Proof. By induction, it follows easily that Py(n) is linearly ordered, as it is defined to be the
concatenation of two linearly ordered sets. Property (1) is obvious from the definition. It remains
to show (2), (3) and (4). Note that whenn =2or k =0, 1, (2), (3) and (4) are easy to check from the
explicit definition of the partial order on Py (2) or on P;(n). So we may use an inductive procedure.
We assume that (2), (3) and (4) are valid for Py (n) for every k" and for Po(n +1),...,Pr(n+ 1),
and we show that they are valid for Pyi1(n + 1). Recall that Py (n + 1) = 7(Pg(n + 1)) and
Prp(n+1) =Prp(n+ 1)\ P (n+1).

We start with (2). Note that if a is as in (2), then a € P7_;(n +1). Then (2) happens if and
only if in Px(n + 1) we have (asg,...,an,apt1,a1 — 1) < (ag,...,an,a1 — 1,a,4+1). But this is clear
because Px(n + 1) satisfies (3).

Now we move on to (3). Thanks to (1) and our inductive assumption, the only problem can
arise with s1: indeed, for ¢ > 1 we can either go to Px(n), if a3 > 0; or to Pryi(n —1) if a3 =0
and the result follows by induction. So we assume i = 1. If a € P, ;(n + 1), then we can never
have a; > ap, so we may assume that a € Py, (n+1). If ap = 0, then sy -a € P, ,(n + 1), and
we have a < s - a by definition. Otherwise, we may assume that a; > as > 1. Then s; -a > a is
equivalent to, in Px(n + 1), having (ag,...,an4+1,a1 — 1) < (a1,as,...,an4+1,a2 — 1). This is clear
because Py (n + 1) satisfies (2).

Finally, we check (4). Note that we canot have i = 1 and a € Pj,(n + 1) simultaneously. We
also cannot have a € Pg,(n + 1) and b € P, (n + 1) simultaneously. If both a and b belong
to Py, (n + 1), the result follows by forgetting the initial 0 and using induction. If a € P, and
b € Py, then, since i # 1, s; preserves both P;_ ;(n + 1) and P°(n + 1) so the result is also clear.
The result is also clear if both a,b € P ;(n + 1) and 7 # 1. So it remains to check the case
a,beP° i=1. If as =0, by # 0, the result is clear.

If ag, by = 0, then we have that a > b if and only if (0,as,...,an+1,a1 —1) = (0,b3, ..., bpy1,b1 —
1). This happens if and only if in Pi(n) we have (as,...,ant1,a1 —1) > (b3,...,bpt1,b1 —1). By
(1), this implies that (ai,as,...,a,) > (b1,bs3,...,b,) in Prri(n). But then (0,a1,as,...,a,) =
(0,b1,b3,...,by), which is what we wanted to show.

If ag,be # 0, we need to show that (ai,...,ant1,a2 —1) = (b1,...,bp41,b2 — 1). This hap-
pens if and only if (as,...,apt1,a2 — 1,a1 — 1) > (b3,...,ba — 1,b; — 1). But by assumption,
(agy...,ant1,a1 —1,a9—1) = (bs,...,by —1,bo—1) and a; —1 > ag — 1. Since Px_1(n+ 1) satisfies
(4), the result follows. O

4.2. Comparing with lexicographic ordering. We would like to elaborate on the partial order
< defined in Section [l To do so, we will compare it to the lexicographic ordering on the window
notation of an affine permutation w, € LT, (n) associated to a € Z2, cf. Section

The following result is easy to see (see also Lemma [2.0]). -
n

Lemma 4.3. The assignment a — wa gives a bijection between ZZ, and the set Lli.(n). Moreover,

(a) the set Pr(n) gets identified with
Lt (n)g :={w el (n):degw = k}.

(b) Py, gets identified with {w el (N w(l) = 1}.

(c) Py with {w eLt (n):w(l) > 1}.

For affine permutations w,w’ € :9;, we say that w >1.; w’ if the window notation of w is greater
than that of &' in lexicographic ordering. More explicitly, w >1., w’ if there exists i € {1,...,n}
such that w(j) =w/(j) for j =1,...,i— 1 and w(i) > /' (i).

Lemma 4.4. Let a,b € Z%, and assume wa >1e0 Wp. Then, Wr.a >1ex Wrb-
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Proof. If the window notation of w is [w(1),w(2), - w(n)] then the window notation of 7w is
[w(l) + 1,w(2) + 1, --w(n) + 1]. Hence it is obvious that w >1¢; W = 7w >1¢; Tw'. Next,
observe wy., = mwy from which the lemma follows. Indeed the entries of the window notation for
wa sort those of t,, and these have the form 7 4+ na;. On the other hand, the entries of t,.5 are
i+nag-1(;) = i+na;—1 which we may reindex as i + 1+ na; as well as 1 +n(a, +1) = n+1+na,.

O

The next result tells us that, even though the partial order < looks complicated, it is in fact very
natural when transported via the map a — wj.

Lemma 4.5. Let a,b € Z%, be such that ||a|| = ||b[|. Then, a <b if and only if wa >1ex Wh-

Proof. Since for fixed degree we are dealing with linear orderings, by Lemma 3] we only need to
check a < b implies wy >1¢; wp. Let us denote &k := [|a]| = ||b||. The case when a € P} and
b € Pj. follows from Lemma[d3| (b) and (c). The case when a, b € Py follows from Lemma 4] and
an inductive argument on k.

Finally, assume a,b € P}, so that a; = by = 0 and therefore wa(1) = wp(1) = 1. We have to
consider @ = (ag,...,a,), b = (ba,...,b,). By induction on n we may assume wg >1¢s wg- Note
that we have g;'(i + 1) = g2 ' (i) + 1 and that @ = a;41 for i =1,...,n— 1, and

Wa = [1,w5(1) +1l4a1g)-- ywa(n — 1)+ 1+ ag;1(n)}

and similarly for gy, wp. By assumption, wg >1¢; wi. So there exists ig € {1,...,n — 1} such that

wa(i) = wy(i) for i < iy and wa(ip) > wy(ip). If @ < dp then by Lemma we get wa(i + 1) =

wp(i+1). Now, wa(io) > wi(ig) implies that (n — 1)(ag;1(2.0+1) - bggl(io+1)) +9="(io) —g%l(iO) > 0,

from where we deduce that a 92 L(io+1) >b og (o +1)" Finally,
walio +1) =walio) + 1 + Qg (ig+1) > wg(io) + 1+ bggl(io—i-l) = wp(igp + 1)

and we conclude that wy >1c: Wh. O

One can check Figure [l to see examples of the structure described in both Lemmas 4.4 and [4.3]
as well as Lemma below.
Now let w € L}, (n). Recall that by Lemma 28] that we may express w in the form

min
w = (SVT .. 8281)7T o e (Sllg o e 8281)7T(8y1 o .. 8281)7T
where 0 < v, <--- <17 <n. We select £ <r and j < vy and consider the affine permutation

(:) = (SI/T 3231)7{' (Sl/e 3]-{-15;3]—1 31)7{' (Sl/l 3231)7{'

. e ~ R~
where a hat over s; means that we omit that transposition. Clearly, & belongs to the monoid S,

and deg(w) = deg(®). Let us denote by w’ € L. (n) the permutation whose window notation is

the increasing arrangement of the window notation of .

Lemma 4.6. We have w' >1., w.

Proof. Let us start with the easy observation that, in window notation:

(22) Spresim=[1,2,...,k,k+2,...,n,n+k+1].
Now let us split w as follows:

w = (Sl/»r .. .sl)ﬂ'. .. (sy{+1 .. '81)7T (SVZ .. '81)7T (Syl—l .. .sl)ﬂ'. .. (SV1 .. .sl)ﬂ'

a B ol
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Note that «, 3,7 € me(n). Moreover, letting k := vy since vy < vp_1 < --- < 1y it follows
from [22)) that v = [1,2,...,k,v(k+1),...,7(n)], where k < y(k+1) < --- < y(n). If we write
a=[a(l),...,a(n)] we then have that
J j2
w=[a(l),...,a(j),...,a(k),wk+1),..., w(p), ...,w(n),
=a(k+1)+2zn

where we let 1 < p <n be such that v(p) = zn. Observe z > 0.

Let us now compute @. Let § :=s,, - 5j115j5j—1--- 517, so that @ = afy. A straightforward
computation shows that, in window notation, 8 = [1,2,...,j—1,k+1,5+1,... k, k+2,...,n,n+j].
Then,

j p

O=la(l),...;a(j = 1),k +1),a( +1),...,ak),wk +1),...,a(j) + 2n,...,w(n)],
=w(p)—zn =w(j)+zn
and in particular the window notation for w and @ agree except for in the jth and pth entries.
Since w is already sorted so its entries increase, to show w’ >1., w it suffices to show @(j) > w(j)
and O(p) > w( /). This will ensure that the first j — 1 entries of w and the sorted w’ agree, but the
jth entry of w’ will be strictly larger than w(j). We compute @(j) = a(k + 1) > a(j) = w(j) since
a €Lt (n), and @(p) = a(j) + zn > a(j) = w(j).

min

O
Remark 4.7. From Lemma 6 we see that for w,p € LY.

min

(n) of the same degree that
(23) p <p w implies p >1¢p w

in window notation. We could also deduce this from the characterization of Bruhaftv order for 3’;
given in Bjorner-Brenti [2, Theorem 8.3.7] (which one must extend appropriately to S,; this is easy
if only comparing permutations of the same degree). In particular, they characterize p <g w for

p,w € S, if pli, j] < wli, 7] for all i, j € Z where
pli,j] = #{a < i | p(a) > j}.

We can prove (23]) as follows.

Let p # w € Lt (n) be of the same degree, which means >>% | p(i) = Y%, w(i). (This sum
is n(n 4+ 1)/2 in the case p,w € 5;) Suppose that p $1e, w which means p <j., w. Hence for
some 1 < ¢ < n we have p(1) = w(1),p(2) = w(2), -+ ,p(f —1) = w(l — 1) but p(¢) < w(¥). Since
Srap(d) = Yo w(i), there must be some ¢ < i < n such that p(i) > w(i). Let i < n be the
largest such ¢. In other words for n > r > i we have p(r) < w(r). Let j := p(i). Let us compare
pli j] and wli, .

Since w € L. (n) we have w(1) < w(2) < -+ < w(n) and so given a such that w(a) > j = p(i) >
w(i) and a <itheni+1<a+kn<n for some k > 0. In particular p(a) = p(a + kn) — kn >
w(a + kn) — kn = w(a) > j. Hence {a < i | w(a) > j} € {a < i | p(a) > j}. Further as
w(i) < p(i) = j the element i does not belong to the first set but does to the second. This shows
wli, j] < pli, j] and so p £p w. This proves (23).

We remark that even though >i., is a total order on 3;, we only relate it to Bruhat order for
two affine permutations of the same degree and that are both in L. (n).

4.3. The action of the Dunkl-Opdam subalgebra. For the rest of this section, we assume
t = 1. The case t = 0 will be treated in Section [0l

For a € Z%, we let w := w(a) € C" denote the weight whose ith component is w; = a;—(ga(i)—1)c.
In other words, w(a) = wa- (0, —¢, —2¢, - - - , (1—n)c) where, as mentioned above, we specialize t = 1.
Now we are ready to describe the spectrum of A on A.(triv), in the case where ¢ is generic.
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Proposition 4.8. Assume that either ¢ € C\ Q or that ¢ is a rational number with denominator
greater than n. Let M = A.(triv). Then, Mffan) # 0 for every a € ZY, these are all the weight

spaces of A on M, and each one of them is 1-dimensional (so that Mff;) = Mw(a).)

Proof. Let Clxy,...,x,]x € M denote the space of homogeneous degree k polynomials. We will
show by induction on k that Clzy,...,zn]k = D|jaj=k Mf(e;) and that each one of these weight
spaces is nonzero.

The claim is clear for £ = 0. Now let a € Z" with ||a|| = k+1. Let igp be minimal such that a;, > 0.
By the inductive hypothesis, the weight space M;,/) is nonzero, where a' = (ay, ..., 0y, Qpn, Qi —
1). Since w(a);, # w(a); for j < iy and w(a);, —w(a); # %c for j < iy (here we use the genericity
of ¢) we have that 0,1 017 : My,(or) = My(a) is nonzero. Then, M) # 0.

Now note that if w(a) = w(a’) then a = a’. Indeed, if w(a); = w(a); then a;—a}—(ga(i) —gar (7))c =
0. Since c is irrational, this can only happen when a; = a;. By dimension reasons, it follows that
each M) is 1-dimensional and Clz1, ..., %n]x = @)|ja|=k Mu(a)- The result follows. O

In the proof above, we have used the fact that if c is generic, then for every a € Z%, we have
w(a); —w(a);+1 # *c provided a; # a;41. This is of course not true in the general case. However,
we still have the following result.

Theorem 4.9. Let ¢ = m/n > 0 with ged(m,n) = 1 and M = A(triv). For any a € Z%,

My(a) = Mf(e;) # 0. Moreover, if a; > a;+1, then Ui‘Mw(a) # 0.

Before starting the proof of Theorem note that, for such ¢ = m/n, we still have that w(a) =
w(a’) only when a = a’, so we will use a similar strategy to that in the generic case. To properly
implement this strategy, we will use the ordering on monomials defined in Section A1l From the
formula o; = s; — ui—fuﬂ it follows that, if My # 0 and o; is defined on My, then o;|5;, = 0 if and
only if w; — w41 = ¢ (resp. —c) and every vector in M, is symmetric (resp. antisymmetric) with
respect to x; and ;4.

Proof of Theorem [{.9. First we remark that, for ¢ = m/n as in Theorem and every a € Z" we
cannot have w(a); = w(a);+1. Indeed, w(a); —w(a)i+1 = a; — aj+1 — (ga(i) — ga(i + 1))m/n. Since
0 < |ga(i) — ga(i + 1)| < n, this last expression cannot be zero.

We will prove by induction on ||a|| that M f(C;) contains a nonzero element of the form

!
Vg 1= 12 + E ko arz®
a’<a
where 2? := z{'---z% . This is obvious for ||a|]| = 0. Before we proceed further, we have the

folllowing easy but important remark.

Remark 4.10. Note that, if a; > a;+1 then, thanks to Lemma [£2(3), we have s; -a £ a, 80 v,
cannot be symmetric nor antisymmetric on the variables x;, ;1.

Now we reason inductively similarly to the proof of Proposition[£.8 Assume ||a|| > 0 and let i be
minimal such that a;, # 0. Define a* = (ay,...,a;,...,an,a;, — 1). By the inductive assumption,
My(a+y # 0 and it contains va+ of the form specified above. Now 7(vax) # 0, and thanks to Lemma
M2(1), vr.a = T(vax). By the first paragraph of this proof, the vector o;,_; - --01(vr.a*) is well-
defined, by Remark it is nonzero and by (3) and (4) of Lemma .2 va = 0jy—1- - 01(Vr.a*)-
The result follows. 0

Remark 4.11. The same proof applies, mutatis mutandis, for the sl, RCA, with the operators
defined as in [44]. In particular, we can find a basis {v, : a € Zgal} of simultaneous eigenvectors
for the sl,-Dunkl-Opdam operators.
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Note that the action of 7 is injective on A.(triv). Combinatorially, the action of 7 on the set of
nonnegative sequences (aq,...,a,) is injective, and any such sequence can be uniquely written as

(al,...,an) :7Tk- (O,bg,...,bn_l).

where (0,b1,...,b,-1) € Z%. That is, the generating set for this action consists of sequences with
a1 = 0, and it is in bijection with the basis in the polynomial representation of sl, RCA.

Remark 4.12. Note that Theorem .9 can also be obtained as a consequence of Theorem [(.9]
below. However, we present a separate proof since it gives an explicit A-eigenbasis of A.(triv) from
which it is easy to reconstruct the action of the entire algebra H., see e.g. Lemma T4 below.

4.4. Recovering the action of H.. From now on, we assume that ¢ = m/n > 0 with ged(m, n) =
1. We keep assuming t = 1. The goal of this section is to show that it is enough to know the weights
of the subalgebra A on A.(triv) in order to recover the action of the entire Cherednik algebra H..
Thanks to Theorem B.4] it is enough to know the action of the operators wui,...,un,S1,...,80_1,T
and \. Recall that we have the basis {va : @ € Z2} of A.(triv).

Obviously, u;va = w;va. Also note that, by construction, 7v, = vr.a. Note that the operator
T ¢ Ac(triv) — A/(triv) is injective and recall that u; = 7A. It is clear from the relations that
A ATV )g(a) = Ac(tTiv) r—1.4a)- It easily follows that Avy = wiv,-1.,. Note that 7~ 1. a does not
belong to P(n) if and only if a; = 0. The following easy lemma makes sure that we do not find a
contradiction.

Lemma 4.13. Let a € Z%. Then wy = 0 if and only if a; = 0.
Proof. If a1 # 0 then, since (ga(1) — 1)c cannot be a nonzero integer, we have
Wi = a1 = (ga(1) — 1)e #0.

On the other hand, if a; = 0 then, since all other coordinates of a are non-negative, we have
ga(l) =1. So a1 — (ga(1l) — 1)ec = 0. O

Finally, we need to find the action of the operators s;, ¢ = 1,...,n — 1. To do this, we employ

the intertwining operators o; = s; — u~—i~+1'
1 (3

Lemma 4.14. Assume a; > a;11. Then, 0;va = g, .a.

Proof. Clearly, o;v, is an eigenvector for u; with eigenvalue w(s;-a), so it is a multiple of vg,.a. Recall
that v, has the form vy = 72 + Y p<a kap2P. Thanks to Lemma [£2] (3) and (4), the largest (w.r.t.
=) monomial appearing in o;v, is %2, and it appears with coefficient 1. The result follows. O

Note that it follows that, if a; > a;41:

Cc
SiVa = VUs;.a + ﬁ?}a
i Wil

where w = w(a). Using (2I)) one can deduce that if a; < ajt+1,
Wit1 —W; —C)(Wigp1 —wW; + ¢ c
( i+1 ) )( 7,-1—12 ) )Uszwa + Va
(Wiy1 —w;) Wi = Witl
Finally, if a; = a;11 note that s; -w(a) is not of the form w(b) for b € Z%,. So 0i(va) = 0, and it
follows that s;va = v4. Summarizing,

SiVa =

Theorem 4.15. The module A.(triv) has a basis given by {va : a € Z%}, and the action of the
algebra H. on A.(triv) is given by the following operators:
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UiVa = WiVa
TUaq = Ur.a
AVp = W Ur—1.4

C

’L()si,a + wi_)?i+1va ) a; > Q1

. _ Wit1—Wi—C)(Wip1—W;+C c . .

SiVa i—wer1)? Vs;-a + wiswila Qi < Q41
Va a; = Qi1

where we denote w; = a; — (ga(i) — 1)c.

4.5. Renormalized basis. For geometric applications, we will need a different basis of A.(triv)
that gives nicer formulas for the action of the operators s;. This basis is a renormalization of the
basis v,, but we have to be careful with the renormalization factor. The main result of this section
is the following.

Proposition 4.16. There ezists a function ¢ : Z%, — C* such that, defining Ua = @(a)va we
have a

~ Wi —Wi+1 —C ,_ ~
(1 —8;)0a = ﬁ (Va — Us;a)

for everya € Z%; andi=1,...,n— 1.

Note that, the formula for (1 — s;)va in our current basis v, is

Wi—W;4+1—C

_Usi-a + Wi—Wit1 Va, a; > i1

_ .. — ) —(Wir1—wi—c)(Wit1—Wi+c) Wi—Wi41—C , ,
(1 Sz)’Ua = (Wig1—wi)2 Vs;.a + W'Ua, a; < Q41
0, a; = aiq1

thus, if a function ¢ with the properties of that in the statement of Proposition [4.16] exists we must
have

Lg) ) Wi . .
v(si-a) Wi«il—wiic a; < Qj41-

a; > i1

Moreover, if a; = a;41 then w; — w;11 = ¢ and it follows that, no matter what the value of ¢(a)
is, we have (1 — 5;)U4 =0 = %(ﬂa — Us;.a). Thus, we see that Proposition [4.16] is equivalent

to the existence of a function satisfying (24]).

Proof of Proposition [{.16, We show the existence of a function ¢ by induction on [|a||. For a =
(0,...,0), we may simply define p(a) = 1. Now assume a function ¢ satisfying the conditions
of the statement has been defined on the sets Py(n),...,Pr(n) where, recall from Section A.T]
Pi(n) =A{(a1,...,a,) € Z%; : a1 + --- 4+ a, = t}. Our job is now to define ¢ : Pjy1(n) — C*.

Let a € Prr1(n). If 771 - a € Py(n) (equivalently, if a; > 0) then we define p(a) := p(7~! - a).
Otherwise, let j > 1 be minimal such that a; > 0. We may assume that ¢(s;—; - a) has already
been defined, and define p(a) using (24)):

(25) pla) = —L—I——p(s;-1 - a).
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We need to show that, as defined, ¢ satisfies the statement of the proposition. As observed
above, this is equivalent to ¢ satisfying (24]). We consider several cases.

Case 1. 71 -a,m71s;-a € Pr(n). In this case by definition

pla) o !-a)

p(si-a)  p(rls;-a)
If i > 1, then 77 's;a=s;_;7 ' -aand (24]) follows by induction. If : = 1 note that the condition
77l a,n7ls; -a € Py(n) is equivalent to saying ai,az > 0. So 772 -a,7 251 -a € Pr_1(n). We
may assume that the function ¢ on Pk(n) is constructed from that on Py_1(n) in a similar way to

how we constructed ¢ on Pjiq(n). Thus,

pla) o ?-a)  p(n?-a)

p(si-a)  @(r?s1-a)  @(sp-1m? - a)
and (24)) again follows by induction.

Case 2. 71 -a g Py(n), 7 's;-a € Pr(n). In this case, we are forced to have i = 1, a; = 0 and
as > 0, and p(a) is defined using (25]) with j = 2. Thus, ([24) follows by the construction of .

Case 3. 7~ -a € Py(n), 7 's;-a & Pr(n). In this case, we are again forced to have i = 1, but
now we have a; > 0,a9 = 0. This case now follows similarly to Case 2.

Case 4. 71 a ¢ Pr(n),n1s;-a & Py(n). Let us denote by ip := min{i : a; > 0}, so that
ip > 1. If i <ig — 1, then a = s; - a and there is nothing to check. If i = ig — 1, then ([24]) follows
by construction from (25]). Finally, if ¢ > iy — 1 then 9 < min{i : s(a); > 0} and we may argue by
induction.

We have considered all cases, and the statement follows. O

Remark 4.17. The proof of Proposition [A.16] shows that, if we further require 7(0a) = Ur.a, then
the function ¢ is determined up to multiplication by a nonzero complex number. In particular, the
vectors U, are uniquely determined after specifying vy.

Remark 4.18. We could instead have defined the v, using the renormalized intertwiners &; of
Remark B.12] via the analogous formula to Lemma [£.14] The existence of the function ¢ is then
obvious and ¢(a) can be given as a product formula with terms indexed by the inversions of w.

Corollary 4.19. The action of the operators u;, T and A in the renormalized basis U, s given by
the same equations as in Theorem [{.15:

(26) UiUq = Wila, TUa = Ur.a, AUa = WiUp—1.5-

4.6. The radical of A.(triv). Theorem .15 allows us to explicitly describe the weights appearing
on the radical of the polynomial representation A.(triv). We continue working with the parameter
¢ =m/n, gcd(m;n) =1, t = 1. Define the set

S :={(a1,...,an) € ZZ, : max(a; — a;) > m, or max(a; — a;) = manda; — a; = mfor somej < i}
Proposition 4.20. The space

S = @(Cva

acsS
is an H.-submodule of A.(triv).
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Proof. To prove the claim, we need to check that S is closed under the action of the operators s;, A
and 7. Let us first check that S is closed under the action of 7. For this, it is enough to check that
S is closed under the action of m. So let us take a € S. If max((7-a); — (7 -a);) > m, we are done.
Else, we have two cases.

Case 1. If max((7 - a); — (7 - a);) < m then max((7 - a); — (7 - a);) < max(a; — a;) = m and it
is easy to see that this implies that min(a;) = a, and, moreover, a; > a, for i < n. But then a
cannot satisfy the condition a; — a; = m for some j < 7, a contradiction.

Case 2. The only remaining case is max((7-a); — (7-a);) = m. If max(a; —a;) = m, since a € S,
we can find g, jo with a;, — aj, = m and iy > jo. Obviously, we cannot have jo = n and if ig = n
then (7-a); — (7-a)jy41 = an+1—aj, = m+1, a contradiction. So (7-a);y+1 — (7-a)j,+1 = m and
m-a € S. If max(a; —a;) = m+1, then min((7-a);) = (7-a)1, so any j satisfying (7-a);—(7-a); =m
sees that m-a € S.

Now we need to show that S is closed under the action of A. So assume that a € S is such that
a1 # 0 (we do not need to worry about the case a; = 0 thanks to Lemma [4.13]). We need to show
that 7~ -a € S. Again, we have two cases.

Case 1. Assume that max((7~!-a); — (7! -a);) < m. Then, max(a; —a;) = m, and a; > a; for
every j > 1. But then, the only way we can get a; —a; = m is with ¢ = 1, so a ¢ S, a contradiction.

Case 2. Assume that max((7~!-a);—(7~!-a);) = m. If max(a;—a;) = m, then we can find iy > 7o
with a;, —aj, = m. Note that jo > 1 as, otherwise, (r7t-a);,—1— (7! -a), = m+1, a contradiction.
But then (771 a);,—1—(771-b);,—1 = m, so (7~1-a) € S. If max(a;—a;) = m+1, then max(a;) = a1
and max((7~!-a);) = (77! - a),. But then any j satisfying (7=!-a), — (77! -a); = m sees that
7 l.acs.

Finally, we need to show that S is closed under the action of s;. Assume that a € S. Note that
applying s; does not change max(a; — a;), so we can see that the only possible way for s;-a ¢ S is
if the following three conditions are satisfied:

(1) ;41 = Q4 +m

(2) a;<aj <ajq forj=1,...,i—1and
(3) a;<aj <ajq forj=i+1,...,n.
but in this case w; — w;+1 = ¢, SO S;v54 = —vUs. We are done. O

Now let 7 :=Z%, \ S. More explicitly,
(27) T ={a€Z% :a;—aj <m for every i, j;moreover, if a; — a; = m then j > i}.
So that the quotient module A.(triv)/S has an A-eigenbasis {v, : a € T }.
Corollary 4.21. The submodule S is the mazimal proper submodule of A.(triv).

Remark 4.22. It is well known (cf. [16]) that at this parameter ¢ = m/n, the polynomial repre-
sentation A.(triv) has a unique proper submodule. Here we give a direct combinatorial proof of
this fact which does not use Knizhnik-Zamolodchikov functor.

Proof. We need to prove that A.(triv)/S is simple. Suppose that R is a submodule of A.(triv)/S,
then it contains an eigenvector v, for some a € 7. Let us prove that R in fact contains v(g, o) =1
and hence R = A.(triv)/S.

Indeed, if a; # 0 then R contains A(va) which is a nonzero multiple of v -1.,. It is easy to see
that 7~'-a € 7. Ifa; =0 and a € T then a; < m for all 4, so |a; — a;| < m for all 4,5 and
w;(a) —w;(a) # £c. Therefore for all i the intertwining operator o; sends v, to a nonzero multiple
of vs,.a, and s;-a € T.

We conclude that by applying o; and A\, we can get from any vector vy, a € 7 to a nonzero
multiple of v(g . o) = 1 such that all intermediate vectors are nonzero multiples of v,,b € T

O
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Corollary 4.23. The module L.(triv) has a basis {va : a € T}. The action of H. on L(triv) is
given by the same formulas as in Theorem[{.1]], with the understanding that we set va =0 ifa & T.

Remark 4.24. Of course, we also have the basis {U, : @ € T} of L.(triv), that was constructed in
Section

Remark 4.25. The proof of Proposition can be easily adapted to the sl,-setting, cf. Remark
AI1l In that case, we have S* := {(a1,...,a,_1) € Zgal : max(a;) > m}. In particular, 75" =
{(a1,...,an_1) € Z%" : a; < m for every i} and we recover the formula dim(L5"™ (triv)) = m™ 1.
As in Remark .11 we can prove that the action of 7 is injective on the basis in 7. The generating
set for this action consists of sequences (0, aq, ..., a,), and it is easy to see that such sequence is in

T if and only if a; < m for all 4.

The following lemma provides an interpretation of the indexing set 7 in terms of affine permu-
tations.

Lemma 4.26. Let w;(a) :=w(a); = a; — = (ga(i) — 1) be the weights of u; as above. Consider the
affine permutation
w = [-nwi(a),...,—nw,(a)] "t
Then the following statements hold:
(a) (a1,...,a,) € T if and only if w is m-stable.
(b) a; >0 for all i if and only if wp,, € LT, (n) , where py, = [0,m,..., (n — 1)m].

Proof. We have
w (i) = —nw;(a) = —na; + m(ga(i) - 1),
so by (B) we have wp,, = tags; . By Lemma I8 w is m-stable if and only if a € 7. Finally, a; > 0

for all i if and only if tag, ' € Lt (n). O
Remark 4.27. The action of 7w on (ay,...,a,) corresponds to the conjugation of w, by m € :S’;

which effectively slides the window in w,. Remark gives a choice of a representative in each
m-orbit with a1 = 0 and m > a; > 0 for 7 > 1.

From the viewpoint of affine permutations, a more natural choice of a representative is given by
the balancing condition S ; w(i) = w The corresponding permutations will be still m-stable,
and by Remark 2.T6lthey are in bijection with the alcoves insider the m-dilated fundamental alcove.

Therefore we get an explicit bijection between the alcoves insider the m-dilated fundamental

alcove, m-stable balanced affine permutations and vectors (0, ag, ..., a,) with 0 < a; < m.

5. A MACKEY FORMULA FOR Hj .

5.1. Basis in H;.. In this section we present a basis in the algebra H;. using the generators
from Section B1] it is an analogue of the PBW basis from Section 2l Recall that H,(y) is the
subalgebra generated by S,, and y; (or, equivalently, by S, and \), and that H,(u) denotes the
subalgebra generated by S,, and u;.

Lemma 5.1. (a) The algebra H,(y) has a basis

g)\(3132 .. .SMI) . )\(3132 .. .Suz) e )\(3132 .. .Sur’)
forge S, and 0 < ppr < ... < py.
(b) The algebra Hy . has a basis
(SVT PR 8281)’7'- .. (Sljl .. -8281)7' .g . A(8182 .. .Sul) . )\(8132 .. -Suz) .. 'A(8182 .. ’S;,er)a
forge S, and 0 < pp < ... <, 0<y, < <y
(¢) The algebra Hy . is free as a right Hy(y)-module with the basis

(Sl/r e 3231)7—‘ .o (SVI e 3231)7—.
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c . . _ < T
Proof. By Lemma any monomial in z; of degree r can be written as F Xl(w) forw e S, also
of degree r. By Lemma 2.8 we can write

w:(31/7-"’3231)77"'(31/1"'3231)77'97 OSVTS”'SV:[-
so that
Fy'(w) = (50, -+ 5281)7 -+ (80, 5251)T - .

Similarly we can write

Fjjl(w_l) = g N(5182 -8, ) - A(5152 - 8uy) - (5189 5,,).

The algebra Hy; . has PBW basis z{* - - x%"g’yll’l -yl and we can rewrite z{" - - - %" and yll’l cogybn
as above independently. Finally, (c¢) is obvious from (a) and (b). O

Remark 5.2. We can also write this basis in more compact form F 1(w1)gF§ Ywyh), where wy
and wo are minimal length coset representatives in L. (n).

Corollary 5.3. Let V be a finite dimensional representation of S, with basis vp, T € T. We
can regard it as a representation of Hy(y) where y; act by 0. Then the induced representation

A e(V) :=Tndyc (V) has the basis

vr(w) = Fyl(w)or,
where w is a minimal length coset representative in L. (n) and T € T.

We define a partial order on the basis elements of A; (V) in Corollary [5.3] as follows: vp(w) <
v (w') if degw = degw’ and w >1¢, W'.

Example 5.4. If V is the trivial representation of S,, then A (V') is just the polynomial represen-
tation. By Lemma [3.6] the basis vy (w) matches the monomial basis in Clzq, ..., z,] and by Lemma
the partial order we have defined coincides with the partial order < defined in Section A1l

Next, we want to understand the action of the degenerate affine Hecke algeba H,(u) in this
basis. Via the homomorphism evq : H,(u) — S, that sends u; — 0 and s; — s;, the u; act on V
as Jucys-Murphy elements, and they can be simultaneously diagonalized.

Lemma 5.5. Suppose that vr € V' has weight w, i.e., it is a common eigenvector for the u; with
etgenvalues w;. Then
ui(vp(w)) = (w-w)vr(w) + Lot
= w,-13)vr(w) + L.0.t
J’_

where w is a a minimal length coset representative in L. (n), w-w is defined using the action (@)

and £.0.t denotes lower order terms.

Proof. As in Remark B.3] to simplify notation, we define w; for all i« € Z by u;+, = u; — t, and
likewise for w;y,. Now the relations between u;, s; and 7 get the following form:

c if i =jmodn
SjUi = Us,(iyS; +§ —¢ fi=j+1modn
0 otherwise,

and

Overall, we can write
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S0
w; Fyt(w)or = F);l(OJ)Uw—l(i)UT o= (wew) i Fetwr + ..

and by Lemma all extra terms are less than F, Y(w)vr in our order.
O

Corollary 5.6. The generalized eigenvalues of u; on A (V') are expressed as w = w - kp where kp
are eigenvalues of Jucys-Murphy operators for the basis vy and w € L:;in(n).
5.2. Decomposition into H,(u)-modules. In this section we give a more precise presentation of
induced modules. First, we recall a useful construction of H,,(u)-modules which are induced from
parabolic subgroups.

Let

P+(n):{a€Zgola1 <ag < <ap}
P_(’I’L):{dEZgo | di>dyg > -+ Zdn}
Let a € Z™ and let S(a) be its stabilizer in S,,. In the special case d € P~ (n), the stabilizer S(d) is

a standard parabolic subgroup. If (ki, ..., ks) is the composition of n that gives the multiplicities of
the entries of d, then S(d) = (s; | di = di+1) =~ Sky X - - - X Sk,,. Note that this subgroup is conjugate
to any such parabolic with the k; reordered. Recall wg = [n,...,2,1] is the longest element of S,,.
Let

dreV:wO.d: (dn7...,d2,d1)

so in particular S(d) and S(d™") are conjugate; and d € P~ (n) <= d" € P+(n). Let wq be
the longest element of S(d). Conjugation by wow§ induces an isomorphism S(d) — S(d*) we will
denote revgq. Observe wowf)l = gq as it sorts d to d™¥ = sort(d). In fact, we would have produced

the same isomorphism conjugating by wgl, where we recall wq € L;in(n) C /S; Similarly, we have
a corresponding parabolic subalgebra of H,,(u) we will denote

H(d,u) == (s;,uj | di = diy1,1 < j<n)=Clug,...,u,] xS(d).

Just as we have an algebra automorphism shift : H,(u) — H,(u) that sends s; — s; but does a
constant shift w; — u; +t, H(d,u) has a “finer” automorphism that is the identity on S(d) and
shifts u; — w; + d;t. Using this shift map, we can extend

revg : H(d,u) - H(d",u)

-1
Si > Sgq(i) = 9dSi9q
Uj — ugd(j) + djt.

Given an H(d™", u)-module M, via the above algebra isomorphism we can turn it into the “twisted”
H(d, u)-module we denote M V4. Note that revq(s;) = wy'siwa and revq(u;) = U1 () when we
extend the notion of the u; = uj iy, + kt to be indexed by j € Z as in Remark However, the
map revq does not agree with conjugation by wgl, but under some lens it does up to “lower order
terms” in a sense that will be made more precise in Remark [5.10] below. This is consistent with
the observation that in H,,(u) we have u; Fy'(w) = FEI(W)Uw—l(j) +£.0.t, where the latter are Fy'

applied to terms lower than w € :9; in Bruhat order.

Example 5.7. Let n = 5, d = (2,2,0,0,0), so d* = (0,0,0,2,2). Note wg = [3,4,5,11,12],
wyl=[-6,-5,1,2,3], S(d) =~ Sy x S3 and S(d™) ~ S3 x Ss.

The permutations wy = [5,4,3,2,1], w§ = [2,1,5,4, 3], wow§ = [4,5,1,2,3] = gq. The restricted
module Resg(grev y) triv = M XN where M, N are one-dimensional spanned by weight vectors with
u-weight (0, —c, —2c) and (—3c, —4c) repectively. The twisted H(d, u)-module [Res(grev ) triv]™¥d
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is one-dimensional, now spanned by weight vectors with u-weight (—3c¢+42t, —4c+2t) and (0, —c, —2¢)
repectively. It has the form NSt *X2X M. The map revq sends

S1 > Sy U — U_g = ug + 2t
S3 > S1 U — U_g = us + 2t
S4 > S92 us — U1

Ug — UQ

Uy — U3

.. . <t
Just as the minimal length left coset representatives {wa | a € P(n)} =LT. (n) C S, are those

min
affine permutations whose window notation have positive increasing entries, the minimal length

double coset representatives with respect to S,, are those w, whose inverses’ window notation have
increasing entries. These are exactly the wq for d € P~ (n). See Example 5.7

Example 5.8. Let n = 3, d = (4,1,1), so wq = [5,6,13] is a minimal length double coset
representative as d € P~ (n). Note the double coset decomposes into left cosets as

8315, 6,13|S3 =[5, 6,13|S3 U [4,6,14]S3 U [4,5, 15]S3
ie., S3wqS3 = waSs U WsdS3 U Wsys,dS3
= w1, U w4183 U w1,4)Ss.
S3/S8(d) has minimal length left coset representatives {id, s1, s2s1}.
It is well known that CS,, is a free right module over CS(d) of rank k,L'k, Given a repre-
sentation M of §(d), we can consider the induced representation Ind$ S(a )M which has dimension
YT k ;dim M. Note that if M is a H(d,u)-module, then Ind?{d) M naturally has a structure of

H, (u)-module, which agrees with Ind (((1 3) M.

Theorem 5.9. Let V be a representation of Sy, inflated to a representation of Hy(y) by setting y;
to act as 0. The induced module Ay (V) = IndHtE )(V) has a filtration such that subquotients are
isomorphic as H,(u)-modules to the induced representations

Hn(u) n (1) revd
Va = Indjsn) [Respist, ) V]
where here we inflate V' along the homomorphism evy.

Proof. Let d € P~ (n). By Lemma [5.1] and Lemma 2.8 H, . has filtrations

, deP (n),

B<a = S, CSuFy'(wa)Hn(y) Bea= D CSuFy " (wa) Hn(y)
acP~ (n) acP~ (n)
llal|<]|d]l llal|<[|d]|
lal[=[ld|| = a=1ezd llal[=[|d|| = a>1czd

clearly preserved by CS,,. By Lemma [£.6] the filtrations are also preserved by H,(u). These induce
filtrations on A(V') with subquotients

Va = BSdAt,c(V) / B<dAtvc(V)'

In the following argument we lighten notation, writing p for Fy 1(p), so for instance the above
expressions would become CS,,waHy,(y).

Because S,,wqS,, = L] gwaSn = L] Wq.dSn, the following spaces are isomorphic not
gESH/S(d) gESHL/S(d)

just as vector spaces, but as CS,,-modules, Vg4 ~ CS,,og ®cs, V. In particular, as a CS,,-module, Vg

is generated by wq® V', and is spanned by the independent spaces w,.q®cV, for g € S,,/S(d). Note

that if s; € S(d) then S;wg @ V = wd(wglsiw;i) @V =wqreva(s;) @ V = g @ revq(s;)V. Further
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as u;jwq = (wareva(u;) + L.0.t) , we have ujwg ® V = (wgrevq(u;) + L.0.t) @ V = g @ revg(u;)V

since the lower order terms here involve w, with a >1.; d by Lemma .6l and these are killed in
rev,

Vgq. Thus we see that as an H,,(u)-module Vg ~ Indg’zc(lul)l) {Resg’(‘g}?v u) V} 4

0

Remark 5.10. One can regard this theorem as a version of the classical Mackey formula:

ResgndG(p) = @@ md%, 1ne(0®) = @ dSy iox@est ip0)®,
weK\G/H weK\G/H

where G is a finite group, H, K are its subgroups, p is a representation of H and p“(z) = p(w™lzw).
Our setting shares many features with classical Mackey for the case G = 3;, H=K =S, where
the minimal length double coset representatives are {wq | d € Z",dy > --- > d,}. In that case
S(d) = waS,wy NSy, S(A™) = S, Nwy ' Spwa and one computes the action on an induced module
viap (wg®@ V) =wg® (wglpwd)v = wq ®pV¥d, which is also equal to wg @pV*d = wq®revq(p)V
for p € S(d).
In our setting H(d,u) plays the role of wdegl N K; H(d™,u) the role of H N wgled.

Fy l(wg 1pwd) =: wglpwd makes sense for p € S(d). On the other hand, wgluiwd is problematic
on many levels. This is in part why we must work with the isomorphism revq above.

While conjugation by wgl or by gq gives us in isomorphism from S(d) to S(d"™V) when working
inside of :S’;, the most natural way to extend the notion of conjugation by wy L to H; . does not send
H(d,u) to H(d™,u). While Fy,'(wq) =: @q is not invertible, this is not the main obstruction;
one can localize and invert the z; (as one does with the trigonometric Cherednik algebra [48]).This
essentially replaces 7 with 7 and adjoins 71, so would enlarge our algebra and embed a copy of
S,,. We can define ru;7—! = Ur(i) = Uit1 and 7~ lu;m = w;_; using the convention in Remark
B3] and this is compatible with relation ([@). This allows us to define conjugation by w;l. It
will still send S(d) — S(d™") but will not send H(d,u) — H(d™",u) as conjugation by S,
does not preserve A (even though conjugation by 7 does preserve A). For g € S, recall that
H,(u) 3 g tug = ug-1(;) + £.0.t, where here lower is with respect to u degree. More specifically,
uig = gug-1(;)+ terms <g g in Bruhat order. These are the lower order terms we throw away
when considering Vg or B<q/B<q. Throwing away these lower order terms agrees with replacing
conjugation by w;l with the isomorphism revq : H(d,u) — H(d"", u) when describing the Mackey
filtration.

As a corollary to Theorem we have the following.

Corollary 5.11. Let V be a CS,,-module such that when inflated along evy to be an Hy(u)-module
it has u-weight basis {vp | T € T}. Let wp denote the weight of vp. If we assume t # 0, then

the Hy.-module Indg:zy) V' has finite dimensional generalized u-weight spaces and a generalized
u-weight basis indexed by P(n) x T. Its generalized weights are

{wa-wr |aePn), TeT}={gwqg wr|deP (n),geS,/S), T T}

When t = 0, the weights are still given by the formula above but the u-weight spaces are no longer
finite-dimensional. We study this case in detail in Section [9.

It is worth noting that given fixed w = (wi,w2,...w,) € C", d = (di,d2,...,d,) € P~ (n) the set
{gwa -w|g € S,/S(A)} ={f - (w1 +dnt,wa +dp_1t,...,u, +dit) | f € S,/S(A™)}.

Remark 5.12. Note that Proposition 4.8, Theorem and Corollary [5.6] Theorem 4.9, Proposi-
tion L8] follow as corollaries to Theorem [5.9] see also Remark E.12]
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Example 5.13. Let us consider the Mackey formula for M = A.(triv) in the case n = 2,¢ = 2,t =
1. As we shall see, it is not A-semisimple. For weights of the form w = (d,d), dim M{gjz) =2>
1 = dim M4 4. For all other weights w = (w1, w2) with wy # wo that occur, its generalized weight
spaces ME™ = M, are 1-dimensional.

We have a single T' = and vr has weight w = (0, —¢) = (0,—2). For d € P~ (n) we split
into two cases according to S(d).
Case 1: d = (d,d) = d™, §(d) = S2. Thus our induction and restriction functors are trivial and

Indgz(gul)l) [Resgz(gfe)v ) triv]™vd = triv'®d. The module triv*®¥d still carries the trivial action of S,

but u; = 0+d,us = —c+d. In other words it corresponds to a weight vector vqg = V(d,d) € A, (triv)
of weight w = (d,d — 2). Recall we require d > 0.
Case 2: d = (di > dg), d™¥ = (da,d1), ga = s1, and S(d) = {id} = S(d*v). Now

Resjp: 4

module on which u; — « and ug — 3 vanish as («) X (5). The twisted module is

[(0) X (—¢)]"Yd = (—c+d1) R (0+ da) = (d1 —2) X (da).

) triv = ReSiQ(u) triv = (0)X(—c) where we write the one-dimensional A = C[u;|®@Clug]-

Finally

Hy(u)
]{(drev7

Ha(u)

I R, ai™s = a2y —2) 2 ().

(d,u)

This is an irreducible 2-dimensional Hs(u)-module.

In the special case do = di — 2 it is not A-semisimple. In other words the u; act with Jordan blocks
of size 2. The generalized w = (dy — 2,d2) = (da, d2)-weight space is 2-dimensional and corresponds
to the basis vectors in A.(triv) which by abuse of notation we can still call vq = v(g,42,4,) and
Vs1d = V(da,da+2)"

When dy # di — 2 we get one-dimensional weight spaces spanned by vq = v(q, 4,) of weight
w = (di — 2,d2) and v5,q = v(g,,q,) Of weight s1 - w = (d2,d; — 2). Because these (generalized)
weights occur with multiplicity one, the Mackey filtration tells us these generalized weight spaces
are true weight spaces.

6. THE STANDARD MODULES

6.1. Other standard modules. We continue to assume the parameter ¢ has the form ¢ =m/n > 0
with ged(m,n) = 1 and ¢ = 1. In this section, we will analyze the action of the Dunkl-Opdam
subalgebra on a standard module A.(u) where p is not necessarily the trivial partition of n. We
will denote by SYT (i) the set of standard tableaux on . For T € SYT(u), T; denotes the box of
w labeled by i under T', and ctp (i) is the content of this box.

Definition 6.1. Let (a,7T) € Z%; x SYT(u). Denote by w(a,T) € C" the weight whose i-th
component is w;(a,T) = a; — ctr(ga(i))c where, recall, go € S, is the minimal permutation that
sorts a increasingly.

From Lemmal[dT] it is clear that we have that the intertwining operators send 7 : Ac(pt)y(a,r) —
Ac()u(rary and, if a; # air1, 07 0 Ac(p)uar) = Ac(t)u(s,;ar)- The following result generalizes
Theorem 9
Theorem 6.2. Let c = m/n > 0 with gcd(m,n) =1 and M = A.(p). Then, for any (a,T) € Z2 %
SYT(u) we have My 1) = Mf(e;T is 1-dimensional. Moreover, if a; > a1, then oiln,, . £ 0,
and the action of the Dunkl-Opdam subalgebra on M is diagonalizable with eigenvalues given by
w(a,T).

Proof. The operators u; act on V,, as classical Jucys-Murphy operators, and have spectrum — ctr(i)c
for T € SYT(u). In other words the vector vy has weight wp = (—ctp(1)e, ..., —ctp(n)c). By
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Corollary 5.17] the generalized u-weights of u; on A.(u) are given by wawr = w(a,T). Now the
theorem follows from Lemma below. O

Lemma 6.3. Let (a,T),(b,S) € Z%; x SYT(u). Ifw(a,T) =w(b,S) thena=b and T = 5.
Proof. Assume w(a,T) =w(b,S). Then, for every i =1,...,n,

a; — b; = c(ctr(ga(i)) — cts(gp(7))).
But T and S have the same shape y, so
ctr(ga(i)) —cts(gp(i)) € {-n+1,—n+1,...,0,...,n —2,n— 1}
so, by our assumption on ¢ = m/n, we must have a; — b; = 0. From here, we have a = b and
cts(z) = ctp(i) for every ¢ = 1,...,n, which implies S = T. O

Remark 6.4. For arbitrary t,c, Corollary 517 still applies and the same proof shows that the
generalized eigenvalues of w; on A .(p) are given by w(a,T').

Let us now see that for ¢ = m/n,ged(m,n) = 1 the action of H, on the standard module A.(yu)
is completely determined by the spectrum of the Dunkl-Opdam subalgebra. Fix an eigenbasis
{vp : T € SYT(u)} of V}, for the Jucys-Murphy operators. Note that we have the basis vy (w),
w € LT (n) of Ac(u), cf. Corollary For each a € Z%, and every standard Young tableau T’
on y, denote by v(a,T") € Ac(pt)u(a,r) @ NONZETO Vector, normalized so that vr(wa) appears with
coefficient 1 in v(a,T).Then, as in the proof of Theorem we have

wv(a,T) =wv(a,T)
mv(a,T) =v(r-a,T)
M(a,T) =wo(r ! -a,T)

—

(o 7) v(si-a,T) + g——v(a,T) a; > aip1
5i0(a,T) =< (u i —w o) (e
Z e V(]Z,i_cz,gfﬁ Sy (s a,T) + v ) ai < ain

where w = w(a,T'). Finding s;v(a,T") when a; = a;41 is subtler. The weight of s;v(a,T) is s; - w.
Note that, in this case, ga(i+1) = ga(7) + 1. Let us denote by s, (;(7') the tableau that is obtained
from T' by permuting the entries ga (i) and ga(i +1). Note that s, ;) (7") may not be standard, and
this is the case precisely when in the tableau T" we have
(1) Tyo) = (R, C) and Ty, ;41 = (R +1,C) for some box (R,C) in p, or
(2) Tyo) = (R, C) and Ty, 341 = (R, C + 1) for some box (R, C) in p.
In these cases, s; - w(a,T) is not of the form w(a’,7") for a standard tableau 7", so we must

have o;v(a,T) = 0 and therefore s;v(a,T) = +v(a,T’). Moreover, using the explicit formula
0; = 8; — we see that

Ui —Ui41

v(a,T)  a; = a;41 and ga(i), ga(i + 1) belong to the same row in T'

siv(a,T) = {

—v(a,T) a; = a;+1 and ga(i), ga(i + 1) belong to the same column in T

Finally, if s, ;7" is a standard tableau, then o;v(a,T') = v(a, 54,(;)(T")) and we get

siv(a,T) =v (a, 5ga(i) (T)) + Lv(a, T)

so we have recovered the action of H. on A.(u).
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6.2. Maps between standards. In this section and the next one, we study maps between stan-
dard modules.

Lemma 6.5. Suppose that ¢ = m/n,ged(m,n) = 1. Let d;(p) be the number of boxes in p with
content i mod n. Then for all (a,T) € Z%, x SYT(u) one has

t{j : nw;j(a,T) = —mi mod n} = d;(p).
Proof. We have

nw;(a,T) = na; — mctr(ga(j)) = —mctr(ga(j)) mod n.

Since ga is a permutation, Ty, ;) runs over all boxes in y and the vector ctr(ga(j)) has exactly d;(u)
entries equal to 7 mod n. O
Remark 6.6. A similar argument and Remark show that for ¢ = m/¢, ged(m,?) =1 one has

#{j + tuj(a,T) = —mimod £} = di") (1),
where d@({) () is the number of boxes in p with content ¢ mod /.

Lemma 6.7. Suppose that ¢ = m/n,ged(m,n) = 1. Let p # u' be two partitions of n. Then
Homyp, (Ac(p), Ac(')) = 0 unless both p and u' are hook partitions.

Proof. Suppose that Homp, (Ac(p), Ac(p')) # 0, then w(a,T) = w(a’,T”) for some (a,T) € Z>g X
SYT(u) and (a’,T") € Z%, x SYT(¢'). By Lemma[6.5 we get d;(1) = d; (') for all ¢, which implies
that p and g/ have the same n-core [29].

Since p has size n, either its n-core is empty and p is a hook, or u is an n-core itself. The same
applies to p/, so they can share an n-core only if both partitions are hooks. O

Remark 6.8. A similar argument shows that for ¢ = m/¢, ged(m,£) = 1 one could possibly have
Homyy, (Ac(p), Ac(p')) # 0 only if u, p’ have the same f-core. This is known via the KZ functor,
cf. [1] and we have obtained a purely combinatorial proof.

Corollary 6.9. Let ¢ = m/n,ged(m,n) = 1. If u is not a hook partition then A.(u) is irreducible.

Proof. The proof is standard but we include it here for completeness. If R is a submodule of
A(p), then (since the action of yi,...,y, is locally nilpotent) there is a vector v € R such that

y1v = -+ = ypv = 0. It spans a finite-dimensional subspace U under the action of S,,, and A(U) = 0,
it contains an irreducible representation of S,, isomorphic to V). Then there is a notrivial morphism
H.-modules A(y') — A(p) which sends Vs to this subspace. O

We determine the morphisms between A.(u) for hook partitions p in the next subsection.

6.3. The BGG resolution. Throughout this section we assume ¢ = m/n, ged(m,n) = 1.

Let us denote by V,, = A'C™ 1 the hook representation of S, so that p, is the partition
(n—¢,1%, ¢ = 0,...,n — 1. In particular, Vo is the trivial representation and V), _, the sign
representation. It is known [1] that the representation L, /,, := L, ,(triv) admits a resolution

(28) 0— Ac(pn—1) = -+ = A1) = Ac(po) = 0

that in fact coincides with the Koszul resolution of L,,,, when considering a standard module as a
Clxy, ..., zn]-module. In this section, we will construct the resolution (28]) in a purely combinatorial
manner. We remark that this has been recently generalized in [I7] to some other BGG resolutions.
Let us set up some notation. For each collection 1 < iy < --- < iy < n, let T} <j,<...<i, be the
tableau on py that has the numbers 1,4y,...,%, on its leg. Clearly, every tableau on py is of this
form.
Recall that for each element (a,7) € ZZ%, x SYT(u) we have a nonzero vector v(a,T) €

AC(,u)w(a,T). Clearly, every map on A.(u) is completely determined by the image of the vectors
vp =v(0,T), T € SYT ().
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Lemma 6.10. Suppose that ¢ # j,j + 1. Then Homp, (Ac(pe), Ac(p4)) = 0.
Proof. Let T'= T}, <jp<...<i, be a standard tableau of shape i, we have
nw;, (0,7) =m,...,nw;,(0,T) =ml, nw;(0,T) <0 fori#1,i1,...,1.
Now suppose that w(0,7) = w(a,T") for some (a,T") € Z%; x SYT(p15). One has
0> nw;(a,T") = na; — m - cty(ga(i)) > —m - ctyr(ga(i)) for i # 1,4y, ... i,

so pj has at least n — £ — 1 boxes with positive contents, and ¢ > j.
Suppose that ¢ > j 4+ 2. It is easy to see that the equation

—mctp(i) = na; — mcty(ga(i)),
implies
a; =m, ctp(i) +n =ctr(ga(i)) if i =idj41,..., 10,
{ai =0, ctp(i) = ctpr(gali)) otherwise.
By definition, this implies ga(ij41) =n —£+1,...,9a(i¢) =n, so
ctp(n—L04+1)=n—(j+1),...,ctpr(n) =n—L

But this means that the first row of 7" contains the numbers n,n —1,...,n — £+ 1 in decreasing
order, contradiction. O

Remark 6.11. Note that if a simple L.(u) appears as a composition factor inside a standard
module A.(¢') then all weights w(0,7") have to appear as weights of A.(u), where T is a standard
Young tableau on p. Thus, the proof of Lemma shows that the only composition factors of
Ac(p;) can be Le(p5) and Le(ftj41)-

Moreover, the multiplicity of L.(u) as a composition factor of A.(') is bounded above by the
dimension of the (generalized) weight space A.(n' Ju(o,r) Where T' is any standard Young tableau
on p. Thus, [Ac(pj) @ Le(pj+1)] < 1. We will see in the next proposition that this multiplicity is
always equal to 1.

Proposition 6.12. For ¢ = 1,...,n — 1, the homomorphism space Homp, (Ac(pe), Ac(pe—1)) is
1-dimensional. Up to a nonzero scalar, the unique homomorphism ¢p : Ac(ue) — Ac(pe—1) is
determined by ¢p(v(0, T}, <...<i,)) = v(me;,, Tj) <...ciy_,)-

Proof. That Hompr, (Ac(pe), Ac(pe—1)) is at most 1-dimensional follows because weight-spaces are 1-
dimensional and A.(u) is cyclic. Now let ¢y : V,,, = Ac(p¢—1) be the C-linear homomorphism given
in the statement of the proposition, where we identify V},, with the span of {v(0,T") : T' € SYT (1) }.
Fix a tableau T' = T}, «...<;, on py and let T = i1<--<ip_,» & tableau on py_q. First, we will check
that

W(07 n1<"'<iz) = W(meip Tji1<"'<ig,1)

Let us denote the left-hand side of this equation by w, and the right-hand side by w’. We have that
w; = cj for j =1,... . Let us compute wéj. First, note that gme,, = (ig,i0+1,...,n)" . So we have
that w; = 0— (—j)c = jeif j <. For j = ¢, we have that w;, = m — cty(n)c = m — (n —{)c = lc.

Now set ig := 0 and ipy1 :=n+ 1. Assume ¢ € {1,...,n} \ {i1,...,i¢}, so there exists a unique
j=0,...,suchthati; < i <ij;1. Note that it follows that w; = —(i—j—1)c. If j < £, we have that
W, =0—ctp(i)e=—(i—j—1)c. if j = ¢, thenw, =0—ctp(i — 1)e = —((i—1)—l)c = —(i—¢—1)c.
So we have that w = w' as desired. Using this, we will show that ¢, intertwines the S,-action.
Obviously, go = id € S,,, which we will use below without further mention. Let j € {1,...,n — 1}.
We have several cases.

Case 1. j € {i1,... i}, j+1¢& {i1,...,ig}. Then s;(T") is a standard Young tableau, and
5;0(0,T) = v(0,s;T) + ﬁv(O,T).

J T Wi+
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Now we have to compute s;v(me;,, T"). We have two subcases.
Case 1.1. j # ip. Since j+1 # i, we have that the j and (j + 1)-st entries of me;, are both 0, and
s;T" is a standard Young tableau. Thus,

sjv(me;,, T') = v(me;,, s;T") + %v(meie,T').
Wi = Wit
Now s,¢¢(v(0,T)) = ¢¢(s;v(0,T)) follows because w = w’, as we have checked.
Case 1.2. j =iy. Here we have
s;v(me;,, T') = s;u(me;, T') = v(mejp1, T') + ———v(me;, T").
Wi T Vi
Note that ¢(v(0,s;T)) = v(meji1,T"), so we again have s;¢(v(0,T)) = ¢(s;v(0,T)).
Case 2. j & {i1,...,i¢},j +1 € {i1,...,i¢}. This is similar to Case 1.
Case 3. j,j+1 € {i1,...,i}. Here we have that s;v(0,7) = —v(0,7). So we have to compare
—v(e;,, T") with s;v(e;,, T"). Again we have two subcases.
Case 3.1. j+1 # iy. Here it is very easy to see that s;v(e;,,T") = —v(e;,, T"), as wanted.
Case 3.2. j+ 1 =1iy. Note that here we have

o o
Wj+1—Wj—Wj+1 Wj— C

and therefore

(wj+1 —wj — c)(Wjt1 —w; +¢) /
v(sj(me;,), T")+
(wj = wjt1)? T

sjv(me;,, T') =

c / /
S Wjv(mew,T ) = —v(me;,, T")
as wanted.
Case 4. j,j+1¢&{i1,...,i¢}. This is similar to Case 3.
In any case, we have ¢(s;v(0,T)) = s;¢¢(v(0,T)), so ¢p : Vu, = Ac(pe—1) intertwines the S,-
action. To show that ¢, does define a morphism of H.-modules it therefore suffices to check that
Y1,---,Yn act by 0 on ¢(V,). Note that A = (12---n)~1y; acts by 0 on ¢¢(V,,). Now,

Yige(v(0,T)) = si- - sp—1As1 - 5i-10¢(v(0, 1)) = sp—1- - Sp—1APe(s51 - 5i-10(0,7)) =0
where the last equality follows because Agy(V},) = 0. This finishes the proof. O

Corollary 6.13. For any £ =0,...,n — 1, the standard module A.(p¢) has a unique composition
series 0 C Iy C A(ug). Moreover, Iy = Le(por1) and Ac(pe)/Ip = Le(pe).

Proof. From Remark [6.11] and Proposition [6.12] it follows that

L, = e, pe
[Ac(jae) = Le(p)] = {0 T
else.
moreover, L.(py11) cannot appear as a quotient of A.(uy). So defining Iy := ¢pi1(Ac(pes1)) the
result follows. O

Corollary 6.14. We have im(¢p11) = ker(¢p). In other words, the complex Ac(fip+1) Pey Ac(pp)
is exact outside of degree 0 and coincides with (28]).

Proof. Tt is enough to see that ker(¢;) = I,. For this, it is enough to see that ¢y is neither zero nor
injective. That it is nonzero is obvious. Thanks to Lemma [6.10] we must have ¢p11 0 ¢y = 0. So
o¢(Iy) = 0 and ¢y is not injective. O
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6.4. Alternate proof of existence and description of ¢,. In this subsection we present an
alternative construction of the maps ¢, using the results in Section Bl

Lemma 6.15. Let D = 7(0,_1---02017)™ L. Then for 1 <i < n o;D = Do;_1 and u;D = Du;_1,
but u1 D = D(u,, + mt).

The proof is an easy computation we leave to the reader. Recall for e; = (1,0,...,0) that
H(el,u) = Hl(u) ® Hn_l(u).

Lemma 6.16. Let U C V,_sq 10-1) be the S,—1 x Si-submodule spanned by all vy where T' =
T <iv<ciy_y With ig_1 # n. In particular U ~ ‘/(n_é’lZ—l) as an S,_1-module.

(1) Let t,c be such that Ay .(n—0+1,171) is A-semisimple. Then H(e1,u)DU C Ay (n— £+
1,171 is an H(ey, u)-submodule which is isomorphic to Vin—g1e-1) as an Hy_1(u)-module
on which uy acts identically as c¢({ —n) + mt.

(2) In the caset = 1,c = % gcd(m,n) = 1, then uy acts as cf and Hy,(u)DU ~ Indg?é;l?u) (/)X
‘/(n—f,llfl)'

Proof. The first statement follows from Lemma Since A¢(n — £+ 1,171) is A-semisimple
the o; act triangularly with respect to the s;. So the action of the o; on the inflation via evg of
an S,,_1-module completely determines the S,_1 structure. Recall that via evy the u; will act as
Jucys-Murphy operators.

For the second statement, we use Lemma [6.I5] to determine the action of u;. Because F gl(wmen) =

T(Sp—1-"" 32317)’”_1 is a minimal length double coset representative we get the second statement.
O

Lemma 6.17. Indgn(r) )(CE)lg‘/(n_&lé—l) has an Hy(u)-submodule isomorphic to Vi,,_y 1ey (inflated

(e1,u
along evg). In particular uy is identically zero on this submodule.
The proof is a standard result for the degenerate affine Hecke algebra.

Lemma 6.18. Let M = A, (V') be an Hy.-module which has a H,(u)-submodule N on which u;
acts identically as zero. Then for 1 < i <mn the y; act as zero on N.

Proof. Recall u; = z1y;. Since Ay (V) is free as a Clxy,...,z,]-module, z; has no torsion so in
particular y; is zero on N. As N is Sp-invariant and y; = (1,2,...,9)y1(%,...,2,1), all the y; must
act as zero. O

As a consequence we get that A(n — £+ 1,1¢71) has a S,,-submodule isomorphic to Vin—g,14) on
which all y; vanish. Thus Frobenius Reciprocity gives us a nonzero H; . homomorphism

Ac(n— 6,15 25 Ag(n — 0 +1,1¢71),
This yields an alternate proof of Proposition [6.12]

More concretely, we can normalize the basis {vy | T € SYT(ue)} of V(,,_y4q16-1y so that we
fix vp for T = The3<..<¢p+1 and take the other basis vectors to be o,vr =: v, for id < w <
l,n—¢+1,....,n—1,n,2,3,...,n — ¢] in weak Bruhat order. (Recall as the o; satisfy the braid
relations, o, makes sense.) Then ¢y is determined by

vp > 0y --0201Dvry o,
where all tableau on the left of — have shape (n — £,1%) but all tableau on the right have shape
(n — £+ 1,171) More generally (noting i,_; > ¢) we have
VT <ig<cip 77 Oigy "7 U2O’1DUTi1<i2<---<i571’

In particular when i, = n we get

m
VT <ig<ocn ™ (op—1--02017) VT <ig<<ig_y *
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Recall (sp—1--52817)™ = time,. One can easily check the above vectors’ u-weights are preserved
by ¢¢. It is only slightly more work to check with the above assignment that ¢, intertwines the o;
acting on the vy, T € SYT(n — £, 1%).

6.5. Weight basis of simples. We continue assuming ¢ = m/n with m and n coprime positive
integers. In this section, we generalize Proposition and we describe weights belonging to the
maximal proper submodule of every standard module A.(u). Thanks to Corollary [6.9] this question
is only interesting when pu = py is a hook partition. Moreover, since A.(uy,—1) is simple, we may
and will assume throughout this section that 0 < ¢ < n — 1.

Lemma 6.19. Let (a,T) € Z%; x SYT(ug). Then, there exists (b, T") € Z%y x SYT(ues1) such
that w(a,T) =w(b,T") if and only if either

® a1y — M =a,, and gat(n) > g2t(ie)
where iy 1s the number labelmg the box with smallest content of e on the tableau T'. Moreover, if
this is the case, then (b,T") is uniquely determined.

Proof. Following the notation of Section [6.3] let us denote 7" = Tj, <...;,. We will, first, see that
there is a unique b € Z™ (possibly with negative entries) and 7" a tableau on pgy 1 (possibly
non-standard) such that w(a,T') = w(b,T”). Indeed, if such pair (b,T") exists we must have

n(a; — b;) = m(ctr(ga(i)) — ctr(gb(i)))
for every ¢ = 1,...,n. Since m and n are coprime and py, g1 are adjacent hooks, we must have
that either

(i) a; = b; and T, 3y = Tg’b(i) (meaning that this box is in gy N pes1) or
(ii) ai —b; =m, Ty, ;) is the box of highest content in p, and Tg’b (i) is the box of lowest content

n figqq.

Let k € {1,...,n} be such that T} is the box of highest content of u,. From (i) and (ii), the
vector b is uniquely specified: b; = a; if i # g;'(k), and bgq(k) = Qg1 — M- Moreover, the
tableau T is also uniquely specified: T W) = Tyoiiy if i # gxt(k), and T;b(gfl(k)) is the box with
lowest content in ppy1. Our job now is to check that all coordinates of b are non-negative and 7"
is standard if and only if the conditions of the lemma are satisfied. Clearly, b is non-negative if
and only if a o2 (k) > m, so we will focus on the condition that 7" is standard.

Let us first verify that 7" is standard on py N per1. Indeed, consider two consecutive boxes in
e N per1 and let j; < jo be their labels under T'. Note that j1, jo # k. By definition of g, and b
we have
bgattin) = “g*l(jl) < g1(5) = Py ()
and, if we have an equality, g5 '(j1) < g2 '(j2). From the definition of gy, it follows that gpg5 ! (j1) <
9b9a (j2), as wanted.

So T" is standard if and only if gngs'(i¢) < gbgs' (k). If iy = n, we have by1(iy) = Gg=1(ny >
Ayt () =M = bg—l(k) and therefore gng, 1 (i¢) > gbga (k). Thus, we must have k = n and i, < n. It
follows now that the tableau T" is standard if and only if either b 0zl (n) > b - 9t (i0) OF b ) = b (i)
and g5 (n) > g5 '(i¢), which translates precisely into the conditions of the Statement of the lemma.

Finally, note that a gsln) — M >a 9= 1(i0) automatically implies a gsln) — M > 0. We are done. [

Remark 6.20. Note that for £ = 0 there is a unique tableau 7" on ug and i, = 1. In this case,
Qy1q) = mina and (g1 (y) = MAX A, SO We recover the conditions defining the set S in Section

Corollary 6.21. Let (a,T) € Z%; x SYT(ug). Then, v(a,T) € Ip if and only if there exists
(b, T") € Z%q x SYT(pg11) such that w(a,T) = w(b,T").
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Proof. Since Iy = ¢p1(Ac(pue+1)), the necessity is clear. For sufficiency, assume that such (b, T")
exists. It is enough to see that v(b,T") & Iy, and to see this we can check that there does not exist
(d,T") € Z%y x SYT(pg12) such that w(b,T") = w(d,T”). So we have to check that (b,7”) does
not satisfy the conditions of Lemma Let igy1 = gpga ' (n), and note that TZ-"Z+1 is precisely
the box with lowest content in ;1. Now,

Doty = gty TS Aoy =M = by = b

9y ggl(il+1)

If the inequality is strict, we are done. Else, we need to show that gp*(n) < g5 (ip1) = ga - (n).

But in this case we have a ot (m) = Ggztm) and the result now follows by the definition of g,. O

Corollary 6.22. Assume 0 <{ <n—1 and let (a,T) € Z%, x SYT(u¢). Let us denote by iy the

label of the box with smallest content of ug under T'. Then, v(a,T) € I if and only if either

® Uiy T > A1,y OF

® A1y —M=a 1, and gat(n) > g3t (ip)
It follows that Le(pe) = Ac(pe)/Ir has a weight basis indexed by pairs (a,T) € Z>o x SYT (1)

such that

O a1y =M =a,1,y and g (n) < gy (i¢).

Remark 6.23. Note that, if 0 < ¢ < n — 1, then L.(ug) = I;—;. Thus, there is a weight-
preserving bijection between pairs (a,T') € Z%, x SYT(uy—1) satisfying the condition marked with

e in Corollary [6.22] and those pairs (b, T") € Z%, x SYT () satisfying the conditions market with
o. This bijection is described in the proof of Lemma [6.19]

7. SINGULAR CURVES

For coprime m,n > 1 we consider the plane curve singularity C' = {2™ = y"} at the origin. It
has an action of C* given by (z,y) — (s"x,s™y). This action extends to the local ring of functions
on C which is isomorphic to O¢ = Cl[[z, y]]/(z™—y"). A homogeneous basis in O¢ can be described
as follows:

(29) Oc = Clla]|(1,...,y" ")

This presentation shows that O¢ is a free module over C[[z]] of rank n, and the multiplication by
y is given by the matrix

0 0 0 =™
1 0 0 O
(30) y=101 0 O
Do w0
o0 --- 1 0

7.1. Hilbert schemes on singular curves. By definition, the Hilbert scheme of k points on C
is the moduli space of codimension k ideals

Hilby,(C) = {I C O¢ : I ideal, dim O¢ /I = k}.

The action of C* on C extends to an action on Hilbg(C') for all k. The fixed points of this action are
monomial ideals. In terms of the identification (29) such a monomial ideal is generated over C|[x]]
by monomials of the form (2, yx¢?, ... y" !z, Since it is invariant under the multiplication of
y (or the matrix Y above), we get a system of inequalities

(31) cp>cp> ... >c, >0 —m.
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y2 $y2 x2y2 $3y2 1114’3/2 x5y2 LL‘6y2 513'7y2

Yy Yy :czy oy | 7y L2y | 2y | 'Y

FIGURE 2. An ideal on C = {z* = 43} generated by z3y? and z°y.
Note that y-23y? = 2. The codimension of the ideal is 15 = 74+5+3 = ¢1 + 2+ ¢3
which is also the number of boxes under the staircase.

Note that dim O¢ /I = k =Y ¢;. In the notation of [40], such ideals can be represented by staircases
of height n and width at most m. See Figure 2

Lemma 7.1. Suppose that I C O¢ is spanned over C[[z]] by y* ..., y*rx where {a,...,an} =
{0,...,n—1}. Then the following holds:

(a) If max(c;) —min(c;) > m then I is not an ideal in O¢ for any choice of «;.

(b) If max(c;) — min(c;) < m then there exists a unique ideal I of this form.

Proof. Assume that I = Cl[z]](y**z°,...y* 2z} is an ideal in O¢. Let g € S, be the permutation
in §,, which sorts the «; in increasing order. Then by (31) CG-101) > C5-1(9) > ... > C5-1(n)- Observe
that ;1) = max(c;) and Co-1(n) = min(¢;). Therefore the condition Ci-1(n) = C5-1(1) — ™ In (330)
is equivalent to max(c;) — min(¢;) < m.
For part (b), the uniqueness is clear. O
Let I = C[[z]]{(z, yx2,...,y" to") be a monomial ideal in O¢ where ¢; satisfy (BI). We define
a composition A = (A1,..., ), Y. A; = n by looking at vertical runs of the staircase defined by c¢;:

=Cc- —>...>C = ... =Cp

01:...20:\:>c;\v1+1:...—c/\1+)\2 el =

We also define a composition A as follows:

B h\ if g — ¢ < m,
Tl A A if e — e =me

Lemma 7.2. The operator Y acting on the space I/xI has Jordan blocks of sizes \;.

Proof. The space I/xI is spanned (over C) by (v; = 2, vy = ya,..., v, = y" 'z°). Clearly, if
¢1 = cg then Y (v1) = vg, otherwise Y (v1) vanishes in I/xI . Similarly, we see chains of vectors

Y Y Y Y Y
— ... v = — 0, ey v — ... — Up.

v 5 Xove Lo v~
LT X ’ A1+l PYEBY

n—S\;—l—l
Finally, Y (v,) = "™ soif ¢,+m > ¢; then Y (v,,) = 0, otherwise ¢,+m = ¢; and Y (v,) = v;. O

7.2. Parabolic Hilbert schemes on singular curves. Observe that for any ideal I we have
dim I /zI = n. So we can define the parabolic Hilbert scheme as the moduli space of flags of ideals

PHﬂbkm_i_k(C) = {OC OI; D Ik+1 DD Ik+n =l : I, ideal, dimOc/Is = S}

and we define

PHilb*(C) := |_| PHilby ;1 4(C).
k>0
Again, we would like to describe the fixed points of the C* action on this variety explicitly.
These are described by flags where all I are monomial ideals. As above, for ¢ = 1,...,n we
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y2 $y2 x2y2 1

Y vy | 22y | 23y | 2y | 3

FIGURE 3. A flag of monomial ideals in PHilbys j543(z = 3):
Il5 = <$3y27 33‘5y>, 116 = <3§‘4y2, $5y7 $7>7 Il7 = <$4y27 x5y>
Here y®1az¢t = 23y2, y®22% = 27, y™®z% = 25y,

can assume that the one-dimensional space Ij.;_1/I;1; is spanned by the monomial y®z¢ where
0 < a; <n —1. In particular,

I = Cll][{y™ ...y rat).

Note that if ¢; = ¢j and ¢ < j then oy < v, so by Lemma [Tl ov; are uniquely determined by ¢;.
Furthermore, we can extend this construction by defining I;4,, = zI; for all integers i > k. Note
that it follows that a4, = o; and ¢j+p, = ¢; + 1 for i > 1.

Lemma 7.3. The vector ¢ = (ci,...,¢,) determines a fixed point in PHilby .11 if and only if
either of the two equivalent conditions hold:

(a) For allt >0 one has

(32) max!T" " (e;) — min!Te;) <m

(b) One has maxj,(¢;) —minj_;(¢;) < m and whenever c; +m = ¢; then j < i.

Proof. By construction, for all ¢ > 0 the subspace I_1¢ is spanned over C[[z]] by the monomials
(yget, ... yottn—lgeein-1) g0 by Lemma [ it is an ideal if and only if (32) holds. This proves
(a).

Now let us prove that (a) and (b) are equivalent. Indeed, the left hand side of ([82]) is n-periodic,
so it is sufficient to consider ¢ < n. Assume that max];(c;) — min?_;(¢;) < m, then (B2]) does not
hold if and only if there exists ¢ < t and j > ¢ such that ¢; = ¢;+m and ¢;1,, = ¢;+1 = c¢j+m+1. 0O

Remark 7.4. The proof of Lemma [7.3]is very similar to the proof of Lemma Indeed, this is
not a coincidence: let us parametrize the curve C by (z,y) = (2", 2™), then any monomial in x and
y corresponds to a monomial in z. A monomial ideal in O¢ then corresponds to an (m, n)-invariant
subset in Z>o, and a flag of monomial ideals corresponds to a flag of (m,n)-invariant subsets.
By Proposition 2.13] such flag determines an m-stable affine permutation. We conclude that fixed
points on parabolic Hilbert scheme are in bijection with m-stable affine permutations w such that
wpm € L. (n).

We define the line bundles £;, 1 < i < n on the parabolic flag Hilbert scheme as follows. The
fiber of L£; over the flag I, D Ixy1 D -+ D Ixyy = xly is Ix1;_1/Ig+;- Then we have the following:

Lemma 7.5. There is a bijection between the eigenbasis va in Ly, (triv) (defined in Corollary
[£-23) and the set of C* fized points in PHilb®(C'). Under this bijection, the weight of L; at a fized
point corresponds to the eigenvalue nwy,11—;(a) + m(n — 1) of the operator nu,41—; +m(n —1) on
Va.

Proof. Recall that by Corollary 1.23] the basis va in Ly, /,(triv) is parametrized by sequences of
nonnegative integers a = (a1, ..., ay) such that a; — a; < m for every 4, j, and if a; — a; = m then
J > 1. The eigenvalues of u; are given by w; = a; — (ga(i) — 1) where g, is the permutation which

sorts a in non-decreasing order (here we substituted ¢ = ).
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On the other hand, the fixed points in PHilby, ;4 are determined by sequences of monomials
(y*iz®) where max];(¢;) — minj’_;(¢;) < m and whenever ¢; + m = ¢; then j < i. We remark
that since y®z“ spans the quotient Ijy;_1/Ij4; it follows that when ¢; = ¢; with i < j we have
a; < aj. Clearly, the assignment ¢; = a,41—; is a bijection intertwining the restrictions on a; and
on ¢;. Note k =5 ¢; = a; = ||a]|.

Finally, the line bundle £; has the equivariant weight ma; + nc;. We have a; = g(i) — 1, where
g is the permutation defined in the proof of Lemma [7.I] which sorts the «; in increasing order.
Clearly, g(i) =n+ 1 — ga(n + 1 — 1), hence

ma;+nc; =mn+1—ga(n+1—14)—1)+napt1-; =
m(n —1) +m(l — ga(n + 1 —1)) + nanti—i = NWptp1—;i + m(n — 1).
O

Example 7.6. For a = (0,...,0) we get w;(a) = —(i — 1) while the corresponding fixed point
in PHilbg ‘corresponds to the flag Oc 2O yOc D -+ DO y" 'Oc. The section of L; is given by
monomial y*~! which has weight m(i — 1). Now

nipti—i(@) +mn—1)=-mn+1—-i—1)+m(n—1)=m(i —1).

7.3. Geometric operators. There is a natural projection 7 : PHilby, ,, 4, — Hilb;, which sends a
flag I, D Ipy1 D -+ D Ix1pn = xly to Ix. The fibers of this projection are just the classical Springer
fibers consisting of complete flags in Iy, /xI) invariant under the action of Y. In particular, Lemma
immediately implies the following.

Lemma 7.7. Given an ideal I = C[[z][(y*1 2!, ... y*»a®) in Hilby there are (y " ) fived points
in PHilby, ,, 1 projecting to I. There is a Springer action of S, on these fized points, in which they
span the induced representation from Sy, X --- x 8y, to Sy.

Here X is determined by c; as in Lemma[7.3, and ¢ is the length of \.

In what follows we will need a more explicit description of this action in the fixed point basis.
For this, we can also give a more explicit geometric description. Let PHilbg’)n 4 denote the moduli

space of flags of ideals
PHIb{) = {It D Lys1 D+ D Ijwi D Ingip D+ D Ippn = 2Ly} -

There is a natural projection m; : PHilby, ,, 11 — PHilbfj’)n 4 Let Z; C PHilbg’)n 4, denote the locus

where yly4; C Ii4;49. The key properties of m; are captured by the following lemma:
Lemma 7.8. (a) The map 7; is an isomorphism outside Z; and a P!-fibration over Z;.
(b) The preimage m; '(Z;) is cut out by a section of the line bundle L7 Liy1.
(¢) A fized point corresponding to vy is not in 7, *(Z;) if and only if wy1_i(a) = w,_;(a) —
(d) The tangent bundle to the fiber of m; over Z; is isomorphic to ﬁ,ﬁ;}l.

m
poil

Proof. (a) The fiber of 7; naturally corresponds to the space of y-invariant lines in two-dimensional
space Igyi/Ik1iro. Since y is nilpotent on Iy ;/Iy;io, it is either identically zero and every line is
y-invariant, or it is a Jordan block and has unique y-invariant line.

(b) A flag Iy D Iysq O -+ D Igyp = xlf is in 7r2-_1(ZZ-) if and only if ylxy; C Ixy;42. Since
Ypti C Iiyiv1, we have a map s, : £; — L;41 which is equivalent to a section of /Ji_lﬁzurl.

(c) A fixed point is not in 7; (Z;) if and only if the weight of £;y1 differs from the weight of £;
by m. By Lemma [T.5] we get

m
nip—i +m(n —1) =nw,p1—;+mn—1)+m, wy—; =wpy1—; + o
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(d) Recall that the tangent space to P! = P(V) at a line £ is canonically isomorphic to Hom (¢, V/£).
In our case ¢ ~ Ijy;1/Ikyivo = Lit1 and V/€ ~ Iy ;/Ix1;41 = L;. So the tangent bundle to the
fiber is isomorphic to Hom(L; 1, £;) ~ Eiﬁijrll. O

We can use the maps 7; to define the Springer action of S,, on the homology of PHilby, ,, 1. Let
i : m; (Z;) — PHilby 4 denote the natural inclusion map. By Lemma [T.8 we have well-defined
Gysin maps 7} : Hy(PHilbg ,4x) — Hu(m; *(Z;)) and 7} : Ho(Z;) — H.(7;*(Z;)). Consider the
composition
(33) By : Hy(PHilbgik) — Ho(m7N(Z) =% Ho(Z) = Ho(n7N(Z:)) 22 H,(PHilbg psp)-

By LemmalZ.5we can identify the fixed point basis in the equivariant cohomology of L PHilby, ,, 1
with the basis va in the representation Ly, /n = Ly, /n (triv). In fact, it is more natural to identify it
with the renormalized basis v,.

Lemma 7.9. The action of B; in the equivariant cohomology of UiPHilby, 11 agrees with the
action of 1 — sp—i on Ly, y,, if we identify the fived point basis in the former with va.

Proof. We just need to compute the matrix elements of all the operators involved in the definition
of B;. By Lemmal[Z.H (b) the subvariety 7; ' (Z;) is cut out by a section of £;'£;,; corresponding
to the map s, : £; — L;+1. This map has weight m, and so the Gysin map ~; correspond to the
multiplication by ¢1(L;41) — c1(£;) —m which at a fixed point corresponds to the multiplication by
(nwp—; — nwp41—; —m). Note that by Lemma (c) this annihilates the classes of all fixed points
outside 7; 1(Z;).

The map 7;, just maps the class of the fixed point in PHilby, ,,1 to the class of the corresponding
class in PHilbg’)n 4+, The map 77, however, amounts to dividing by the cotangent weight of the
fiber computed in Lemma [T.8] (d).

By combining these factors, it is now easy to compare the matrix elements of B; with the ones
in Proposition and observing that for ¢ = m/n one gets:

nw; —NwWi41 — M

1— 8;)0a = Ta — Us;.
(1 —si)va pr—— (Va — Us,-a)

where w = w(a). O

We also have a geometric analogue of the shift operator 7. Given a flag I D Iy D -+ D
Iy, = a1y, we can consider the flag I+ 1 D -+ D Iyyy = xly DO Ixynt1 = xlpr1. This defines a
map T : PHllbk7n+k — PHilbk+1’n+k+1.

Definition 7.10. We define Wy, ,, 4 C PHilby, ,, 11 as the set of flags I, D Iy 41 D -+ D Iy = 2},
such that Iy, 1 C zO¢.

It is easy to see that Wj, ,, 11 is a closed subvariety in PHilby, ;4.

Lemma 7.11. The map T : PHilby, 4, — PHilby 1 nip41 s injective and its image coincides with
Wit1 ntk+1- In particular, PHilby, . and Wi i1 pyr41 are isomorphic.

Proof. The image of T' is contained in Wy n,4x4+1 by construction. Given a flag Iy 1 D Ip19 D
o D Iy = 2y in Wiy pqpy1, we have I, C 2O, so we can define an ideal I}, := T .
Since Ijyn D xlg11, we have Iy D Ijy1. Therefore Iy D Iy1 D -+ D Iy = x1) is a well defined
point in PHilby, ,,44 sent to the original flag by T'. O

Recall that the £, has fibers Iy, 1/Ig1n = Igin—1/xI,. The inclusion I 1,1 < O¢ induces
amap i: L, = Oc/zOc¢.
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Lemma 7.12. Define the covector 1 : Oc/xOc — C by the equation n(y" ') = 1,n(y*) = 0 for
0<k<n—1. Then Wy 11 1s the zero locus of the composition

(34) s Ly Oc/z0c L C
or, equivalently, the zero locus of the section s: C — L.

Proof. Recall that Wy, 1 is cut out by condition I;4,—1 C xO¢ which is equivalent to vanishing
of i(L,). Since i(L,,) is a y-invariant subspace of O¢/xO¢ of dimension at most 1, either i(£,) =0
or i(L£,) = (y"~1). Therefore i(L,) = 0 if and only if n(i(L,)) = 0. O

Note that PHilby, ;4 is in general very singular and has several irreducible components. The
section s might vanish on some of these components identically. Still, by Lemma [.12] we can define
Gysin map[18]

j* : H*(PHilbkm_;_k) — H*_Q(ka_;_k).

where j = jj, is the inclusion j : Wy, 4, < PHilby, ;, 1. We define A as the composition

A H,(PHilb 1 ntk+1) EAN Hyos(Wiitnihi1) — Heoo(PHilbg ,,4).
Lemma 7.13. We have Ty o A(—) = c1(Ly,) N (—).
Proof. Indeed, if j : Wy, ;4 < PHilby, 4 is the inclusion, then
TioA(=) = juj" (=) = c1(Ln) N (=)
by Lemma O
Theorem 7.14. (a) The total localized equivariant homology

[e.e]
U = €D Hy (PHilby 11,)

k=0
has an action of the rational Cherednik algebra H,, .,. The action of S, is the Springer action
described above, up11—; +m(n — 1) correspond to capping with c¢1(L;) and the operators T and A
on U correspond to the action of T and .

(b) The representation U is irreducible and isomorphic to Ly n,(triv). Under this isomorphism,

fixed points of C* action correspond to the eigenbasis Us.

Proof. Let 3;,u;,7 and X be the generators of Hy . where ¢ = m/n. Recall that H,, , is isomorphic
to Hy /. under this isomorphism the generators s;, u;, 7 and A of Hj », are mapped to 5;, nu;, T
and n respectively. Below, we will use this isomorphism to identify Ly, (triv) with L,, /n-

By localization theorem [4, 22] U is spanned by classes of fixed points. By Lemma these are
in bijection with the basis va (or, equivalently, va) in L, /,. This defines an isomorphism between
U and L,,/, as vector spaces.

Next, we prove that the geometrically defined actions of w;,s;, T and A agree with the corre-
sponding actions on L,,,. This is done by explicitly comparing their matrix elements. For u; this
follows from Lemma For s; this follows from Lemma [7.9 For T and 7 it is easy to see from
equation (20)).

The action of A is uniquely determined by Lemma [.I3l More precisely, the map 7 in Lemma
[TI2 has equivariant weight —m(n — 1) (since the weight of y"~! equals m(n — 1)), while by Lemma
L,, has weight nw; + m(n — 1). Therefore section s in Lemma has weight nw. By Lemma
[[ I3l we conclude that Ty, o A = nuy = uy.

Finally, the operators w;, s;,T" and A satisfy the relations in H,, ,,, since their counterparts on
Ly, (triv) do. Therefore there is indeed an action of H,,,, on U and it is an irreducible represen-
tation. O
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Remark 7.15. In principle, one can check all the relations between the geometric operators directly
(similarly to the computations in [8]), but the above proof seems to be more transparent.

Remark 7.16. Note that the grading of L,, ,, by eigenvalues of the Euler operator, where deg(va) =
||a]| = 3" a; corresponds to the grading by k in @, HE (PHilbg ,,1)-

Consider now the Hilbert scheme Hilb(C') := U;Hilbg(C), and recall that we have defined
PHilb*(C) := UPHilby, ,,41(C). We have a C*-equivariant projection II : PHilb*(C) — Hilb(C),
(Ix D+ D Igyn = xly) — I, that induces an S,,-invariant map on (localized) equivariant homol-
ogy

I, : HS (PHilb®(C)) — HE (Hilb(C)).
Now let Ij, € Hilbg(C') be a monomial ideal. Thanks to Lemmal7.7] and using the notation there,
the span of the elements in HE (PHilby,,,44(C)) mapping to [Ix] is the induced representation
Indg’;l N triv. Now by adjunction

Homg, (triv, IndSAl x-S, triv) = Homg, | X X8, (Res‘s1 x-S, triv, triv) = C

so up to scalars there is a unique S,-equivariant section to the projection IL. : II;1(C[I]) N
HE (PHilby 4+ £(C)) — C[I}]. As a consequence we get the following result.

Proposition 7.17. There is a natural identification HE (Hilb(C)) = HE (PHilb*(C))%". In par-
ticular, we obtain a geometric action of the spherical rational Cherednik algebra eH /e on

HE (Hilb(C)), that makes it an irreducible module isomorphic to eLyym = LSn

mn’ where e =

% > pes, P is the trivial idempotent in CS,.

Remark 7.18. In [20], Garner and Kivinen study an action of the spherical rational Cherednik
algebra on the homology of Hilb(C') using the Coulomb branch perspective. They identify Hilb(C)
with a generalized affine Springer fiber and use the realization of eH, ,, /,€ as a quantized Coulomb
branch algebra [311 [51] to define an action via convolution diagrams. We will compare their con-
struction to ours, in the parabolic setting, in Section

7.4. Parabolic Hilbert schemes as generalized affine Springer fibers. The goal of this
section is to show that PHilb®(C') = | |, PHilby, ,,1 can be realized as a generalized affine Springer
fiber. Thanks to [21], a consequence of this is that PHilby, 44 admits a paving by affine cells and
therefore its cohomology is equivariantly formal.

Let us set G := GL,, acting on the vector space N := C" @ gl,,, so that N is the representation
space of the framed Jordan quiver:

©,

We will denote K := C((¢)) and O := C[[¢]]. We consider the groups Gg C Gk of invertible
O-linear (resp. K-linear) transformations on Q" (resp. K").

We choose an O-basis {b1,...,b,} of O". We define b; for i € Z by setting b;y, := eb;. The
standard flag is the flag of O-lattices in K"

2720 2Z; 2L 2 -
where Z; is the O-span of {bj,bj41,...,bj4n—1}. We denote by I C Gk the standard Iwahori
subgroup, that is, the stabilizer of the standard flag. The quotient space Fl := Gx/I is known as

the affine flag variety. This is an ind-scheme parametrizing flags of O-lattices --- 2 J;_1 2 J; 2
Jj+1 2 -+ in K" subject to the condition Jj4, = €J; for every integer j € Z.
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The group Gk acts on the module Ng := K® N = K" & gl,,(K) in the natural way, and the
subgroup Gg C Gk preserves the O-submodule Ng := O ® N C Nx. Now we consider the element
Y € gl,,(0) that in the basis {b1,...,b,} is represented by the matrix (B0]), with = replaced by e,
and the element (b1,Y) € Ng. We will consider the generalized affine Springer fiber, cf. [3, 20, 21]

Spr(b1,Y) := {[g] € Fl| (gb1,9Y g™ ") € O" @i} C FI

where i is the Lie algebra of the Iwahori subgroup I. More concretely, i := {X € g[,(0) |
X |e=o is lower triangular}.

Proposition 7.19. We have an isomorphism
Spr(bl, Y) = |_| PHilbk’rH_k
k

Proof. We use the presentation of O¢ at the beginning of this section as a free Cl[[z]]-module of
rank n. In this presentation, an ideal of O¢ corresponds to a C[[z]]-submodule I C C[[z]]" closed
under the action of the matrix Y in (30)). Similarly, an element of | |, PHilby, ;1) corresponds to
a flag of C[[z]]-submodules C[[z]]™ D I} O -+ D Iy4p—1 2 I} such that dim C[[z]|"/I]; = j < oo,
each ideal I; is stable under the action of ¥ and dim/;/I;;1 = 1. Now, we identify [¢] € FI
with the flag ¢Z7 O -+ D gZ,_1 2 gI, = €gZy where, as above, 7y 2O Zy O --- is the standard
flag. Identifying x = €, we see that to prove the proposition we have to check that the following
conditions are equivalent:

(1) g7y € O™ and ¢Z; is closed under the action of Y for every j > 1.
(2) gby € 0" and gYg~! €i.

Since gZ; is the O-span of {gbj,...,gbjin—1} and bji, = €b; for every j, it is easy to see that
(1) = (2). Let us check that (2) = (1). First, we need to check that gbi,...,gb, € Q™. We do this
by induction, the base of induction being one of the conditions in (2). Now, for i = 1,...,n — 1,
gbir1 = gYb; = gY g '(gb;). By induction hypothesis gb; € Q" and, by (2), gY¥ g~ ' € i C gl,,(0).
So gZ; C O™

Now we need to show that ¢g7; is closed under the action of ¥ for every j > 1. It is clearly
enough to do this for j = 1,...,n — 1. The condition gYg~!' € i is equivalent to Ygb; €
O-span{gb;, ..., gbitn-1} for every i = 1,...,n. This clearly implies that ¢gZ; is closed under
Y. ]

Remark 7.20. Proposition [[.19is a special case of a flag version of the main result of [20], which
the authors kindly provided a preliminary version of.

Now we would like to verify that the generalized affine Springer fiber Spr(by,Y’) satisfies the
conditions of [21] (3.2)]. Following that paper, let us denote by a := X,(A) ®z R, where A C G =
GL,, is a maximal torus, that we identify with the set of diagonal invertible matrices. For each
weight £ € a*, let us denote by N¢ C N the corresponding weight space. For a € a and ¢ € R, we
denote

Ngae= [ Nee? € Ng.

fea*,deZ
(€,a)+d>t

For a € a, let g4 := gk 00N go. This is a Lie subalgebra of go and we let G, € Ggp be the
corresponding subgroup, which is an Iwahori subgroup.

Lemma 7.21. There exist a € a and t € R such that G, = I is the Iwahori subgroup, and
NK,a,t =0"pi.
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Proof. Take any a = diag(ay,...,a,) € awith 0 <a; <--- <a, <1 and t=0. It is straightfor-
ward to verify the result. O

Note that Lemma [7.2]] tells us that Spr(b;,Y’) is one of the varieties considered in [21], Section
3]. In the notation of that paper, we have

Spr(bl, Y) = ]:a(tv (bly Y))
In [21], Section 3.2] it was proved that F, (¢, (b1, Y")) has affine paving provided that there exist b € a
and ¢ € R such that the following conditions are satisfied:
e c>t
° (bl,Y) S NK,b,c
e The projection (b1,Y) is G-good (in the sense of [21]), that is, that no nonzero G-unstable
covector in N* vanishes on the gl,,-orbit of (b1,Y)

To verify these conditions, we consider b = diag(c,2¢,...,nc) € a, where ¢ := m/n. Obviously
c >t =0, and is easy to check that (b1,Y’) € Nk .. For the last condition, we need to verify that
the element

1 0 0 0 1

0 10 0 0
(bl,Y): 0 ) 1 .00 eEN

: SRR |

0 0Oo0 --- 10

is G-good. This is a consequence of the following result.

Proposition 7.22. Let X be a reqular semisimple matriz and v a cyclic vector for X. Then
(v,X) € N is G-good.

To prove Proposition [7.22] we first give a necessary condition for a vector in the adjoint repre-
sentation gl, to be unstable.

Lemma 7.23. Assume B € gl,, is G-unstable. Then, B is nilpotent.

Proof. By definition, cf. [2I], B is unstable if and only if there exists a semisimple matrix y and
ti,...,tx > 0 such that B = By + -+ + By, with [y, Bx| = txBy. Since the t; are strictly positive
and the filtration given by y is bounded above, the result follows. ([l

Returning to the setting of Proposition [[.22], we may assume that X is already in diagonal form.
So X = diag(x;) with z; # x; for i # j and v = (v;), the cyclicity condition is equivalent to v; # 0
for every i.

Lemma 7.24. Let (w,B) € N be such that tr(B[, X]) + w - v = 0 for every £ € gl,,. Then

(1) w; =0 for everyi=1,...,n.
Proof. The proof is straightforward, but let us give it for the sake of completion. We have [, X| =
(&ij (@i — 25))ij and Lo = (3 &5v5);- Thus,

n
tr(BE, X]) +w - &v = Z bijfji(l‘j — ;) + §ijviw; =0
i,j=1
for every matrix £ € gl,,. Taking the matrix £ with &; = 1 and all other coordinates 0 we see, using
v; # 0, that w; = 0. Now take ¢ # j. Taking the matrix { with &;; # 0 and all other coordinates 0
we see, using x; — x; # 0, that bj; = 0. The result follows. O
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Proof of Proposition [T7.22 Let (w, B) € N* = N be an unstable covector vanishing on g, - (v, X),
where we use the trace form to identify N* = N. Thanks to Lemma [7.24] (1) we have that w = 0. It
follows now from Lemma[7.23]that B is nilpotent. But Lemmal[.24] (2) implies that B is semisimple
as well. So B =0, and it follows that (v, X) is G-good. O

From [21], we obtain the following result.

Corollary 7.25. The generalized affine Springer fiber Spr(by,Y') = || PHilby, 5,11 is paved by affine
spaces. Thus, its cohomology is equivariantly formal.

Remark 7.26. Classical affine Springer fiber Spr(Y’) can be obtained by similar construction for
N = gl,,. Similar to Proposition [7.I9] it can be defined as the space of Y-invariant flags

911 2 - 2 gLy 2 g1, = egly

in K™, but these flags are no longer required to be contained in Q™. It was proved in [35] 21] that
for the same matrix Y given by (B0) the classical affine Springer fiber Spr(Y) is paved by affine
spaces, and the combinatorics of this paving was studied e.g. in [35] 23].

The Springer action of S,, and the operator T in cohomology of Spr(Y’) were considered in
[52] 42, [43, [49]. They were shown to generate the extended affine symmetric group, in particular,
T is invertible. Indeed,

T 2 2¢Lp-1 29Iy =€gTh]) =9I D -+ 2 gLp—1 2 €gLy 2 gI)]

while
T gy 2 2 gTy 12 gLy =egT] = [¢ 'gTp 1 29Ty 2 -+ D 9T

Furthermore, S,,, T and line bundles £; were used in [42],[43] to construct the action of the trigono-
metric Cherednik algebra on the equivariant homology of the affine Springer fiber.

In our setting, the failure of T" to be invertible gives rise to a new operator A and together they
generate the rational Cherednik algebra. This shows both the similarity and a subtle distinction
between the trigonometric and rational setup.

7.5. Comparison to action by convolution diagrams. The main result of [28] constructs an
action of the Coulomb branch algebra for (G, N) in the equivariant homology of any generalized
affine Springer fiber for (G, N) satisfying some mild assumptions. If the affine Springer fiber is
invariant under the loop rotation, then the action extends to the equivariant homology. The main
result of [20] identifies the Hilbert schemes of points on arbitrary plane curve singularities with the
generalized affine Springer fibers for (G, N) = (GL,,C" @ gl,,), as in Section [[4l By combining
these results, [20] defines an action of the rational Cherednik algebra in the (equivariant) homology
of Hilbert schemes of points on arbitrary plane curve singularities. The goal of this section is to
compare their action with ours for the singularity {z™ = y"}, see also [20, Section 4.3.2].

Let t,c be formal variables and consider the Clt, c]-algebra Hy (S, C") defined by the same
relations as the usual Cherednik algebra but with the parameters ¢, ¢ replaced by the variables
t,c. Thanks to work of Webster, see [32], 51], H¢ c := Hg,c(Sn,C") is a generalized BFN Coulomb
branch algebra.

Recall that if we have a reductive group G acting on a vector space N, the BEN Coulomb branch
algebra is defined as the equivariant Borel-Moore homology H *G 021Cho (Ra,n) where Rg n is a space
modeled after the affine Grassmannian and Cj; is the torus acting by loop rotations, see [3] for
details. When G = GL, and N = C" @ gl,, we get precisely the spherical rational Cherednik

algebra. To get the full Cherednik algebra, we need to replace Rg n with a larger space R’G N that

. . I * *
is rather modeled after the affine flag variety, so we have Hy o & Hi N(C”“)X(Cﬁ( G.n) where I C Gk

is the standard Iwahori and the action of Cj comes from the framing vector. The parameter t is
the C};-equivariant parameter, and the parameter c is the Cj-equivariant parameter. See [32] 51]
for details.
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To compare the actions we look at the isomorphism Hy. = Hi (R ) constructed
by Webster in [51, Lemma 4.2]. First, we have both algebras acting on a polynomial algebra
C[t,c][U1,...,Uy,]. On the Cherednik algebra side, this comes from identifying U; with the Dunkl-
Opdam elements u;, and we remark that this is not the usual polynomial representation of Hy c,
see [51 (2.17)—(2.22)]. On the Coulomb side, this comes from identifying CIt,c|[U1,...,U,]| =

Him(c:"‘)xca (pt), where the U; are the Chern classes of the tautological line bundles on the
affine flag variety. Both representations are faithful, and we need to identify the operators on
C[t, c][Un,...,Uy,] corresponding to 7, A and S,,.

According to [51, Lemma 4.2], the action of 7 corresponds to the action of the correspondence: §

T:={(F.,F)) € FI x Fl: F; = F/_,},
while the action of A corresponds to the action of the correspondence:

L:={(F,,F}) € FI x Fl: F; = F/;,}.

Remark 7.27. Note that the rational Cherednik algebra Hy . admits a Fourier transform, that
is, a C[t, c]-involution sending y; — z;, x; — —y; and s; — s;. On the Coulomb branch setting,
this automorphism interchanges the correspondences T and L. So there is a choice of isomorphism

IxC C3 . . "
Hie — Hi o) (R ). To resolve this, we note that according to [20], Proposition 1.4] the

action of Hy e on HE (PHilb*(C)) coming from a C[t, c]-isomorphism Hy . — Him(c:"‘)xq*( G.N)

factors through H,,,, = Hgc/(t —1,¢ — m/n) and we choose the isomorphism that sends the
module constructed in [20, Theorem 4.9] to the category O, /-

It follows from the comparison of convolution diagrams to correspondences in |20} Section 4.2.1]
that the actions of 7, A that we defined coincide with those defined by |20, Theorem 4.9 and Corollary
4.16]. The action of S,, that we defined comes from projections to partial flag varieties, cf. Section
[7.3] while that in [20] comes from the usual Springer action of S, on the homology of Springer
fibers. The coincidence of these is well-known. Since the algebra H; . is generated by 7, A and &,
Proposition B.5] we obtain the following result, see also [20, Theorem 4.29].

Proposition 7.28. The action of Hy,, on HE (PHilb*(C)) defined in Theorem [T71J coincides
with that constructed by Garner and Kivinen in [20, Proposition 1.4].

Corollary 7.29. There is an action of Hy, ;, on the non-localized equivariant homology HE (PHiIb*(C))
lifting the action from Theorem [T.14].

Remark 7.30. Let C be a plane curve singularity and assume that the z-projection C' — C has
degree n. Garner and Kivinen in [20] construct an action of Hyog = Clz1,...,Zn,Y1,-..,Yn] X Sy =
Hg /(t,c) on the non-equivariant homology H.(PHilb®(C')), see also [28].

Remark 7.31. If C = {2™ = y"} and ged(m,n) = d > 1 then the curve C has d irreducible
components. There is a C* action on C' and on Hilbert schemes on C, and the results of [20]
still apply, so one gets an interesting representation of the rational Cherednik algebra H,,, in the

equivariant homology of LI PHilb" ’”+k(C ). It would be very interesting to study this representation.

Note that the C* action on the Hilbert schemes no longer has isolated fixed points, so even
computing the character of this representation is a nontrivial problem. Nevertheless, we expect the
representation to have minimal support in the sense of [14]. Indeed, the conjectures of [41] relate
the homology of Hilb(C) to the HOMFLY-PT invariant of the (m,n) torus link. On the other
hand, by [14, Theorem 4.11] the same invariant can be obtained as a character of a certain explicit
minimally supported representation of the spherical rational Cherednik algebra with parameter

2Note that our 7 is Webster’s o, while our A is denoted 7 by Webster.
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8. PARABOLIC HILBERT SCHEMES AND QUANTIZED GIESEKER VARIETIES

In this section, we use Theorem [.14] together with [I5] to study the geometric representation
theory of quantized Gieseker varieties.

8.1. Quantized Gieseker varieties. Fix positive integers n,r > 0 and consider the vector space

R := gl,, ® Hom(C",C").

We have a natural action of the group GL, on R, so every element ¢ € gl,, induces a vector
field on R, that we denote by {g. In particular, g € D(R), the algebra of polynomial differential
operators on R. Note that GL, acts on D(R). Let ¢ € C. It is straightforward to see that the
following space is in fact an associative algebra,

- D(R) GL,,
Ac(n,r) = D(R){€r — ctr(€) : £ gl }

we call A.(n,r) a quantized Gieseker variety.

Example 8.1. When r = 1 then A.(n,r) = eH.e, the spherical subalgebra in the type gl,-
Cherednik algebra. This follows from the main result of [19].

Let us now deal with the representation theory of A.(n,r). We follow [I5, Section 3|. Let
Ty € GL, be a maximal torus, and T := C* x Ty. For each co-character v : C* — T we can
define a category O, (A.(n,r)) of highest-weight A.(n,r)-modules. The co-character v has the
form ¢t — (t"°,V/(t)) for some co-character v’ of GL,. If vy # 0, then O,(A.(n,r)) admits a
module of Gelfand-Kirillov (GK)-dimension 1 if and only if ¢ = m/n, where ged(m,n) = 1 and
¢ & (—7,0). In this case, O,(A.(n,r)) admits a unique irreducible representation of GK-dimension
1, that we denote £fn/n(n, r). Moreover, £fn/n(n, r) depends only on the sign of v, so we have two
cases: ﬁ;/n(n,r) and ﬁ;/n(n,r). We denote L, /,, := 5;/n(n,r). Our goal is to give a geometric
description of this representation.

The next proposition follows from [15].

Proposition 8.2. Assume m,n > 0. We have a vector space isomorphism
Lo jn(1,7) = (L (t1iv) @ (C7)#7)5m

where Ly, (triv) is the simple highest weight representation of Hy, jp,(Sm,C™) and the action of
Sm 01 Ly (triv) @ (C")®™ is diagonal.

Proof. The sl,-version of this result is [15, Corollary 2.18]. The gl,,-version is proved identically.
Alternatively, it follows from the sl,-version by multiplying both sides of [15, Corollary 2.18] by a
polynomial algebra in one variable. ([l

We would like to emphasize that in the statement of Proposition there is a swap in the
parameters n,m.

Let us elaborate on the statement of Proposition A priori, it is only a vector space identi-
fication. However, we can recover the action of A,,/,(n,r) on the space (L, /, (triv) ® (Cr)®m)Sm
as follows. First, we construct a matrix version of the rational Cherednik algebra.

Definition 8.3. Let t,c € C and m,r € Z~o. We define the algebra H; .(m,r) as the quotient of
the semidirect product (C(z1,...,2m,y1,---,Ym) @ (End(C"))®™) x S,, by the relations

e [yo,yn] =0 = [zp,xn] for any ¢, N =1,...,m.

o (e, on] = c (X1 (By)e(Eji)n) (6, N) if £ # N.

o o) =t —cXnpe (X5 o1 (Bij)e(Eji)n) (6, N)
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22 | 22y |22 4

x zy | xy? | zyd | zy 2

FIGURE 4. An element of CPHilb%Y ({z3 = y*}). Here, JO = J' = (2243, 2y), J? =
J3 = (223, 2y%) and J* = J5 = JO = yJV = (2%y*, 2%). Also v = (0,1,0,2,0,0) €
Cs(3) which corresponds to 2142, Note that the roles of m and n, as well as those
of z and y are different from those in Figures 2 and Bl

where E;; is the r x r matrix that has a 1 in the (4, j)-th position and zeroes everywhere else, and
(Eij)e € End(C")*™ is Id®--- @ [d®E;; ® Id®- - ® Id, where Ej; is in the ¢-th position.

For example, when r = 1 we simply recover the rational Cherednik algebra H;.(S,,,C™).
To lighten notation but still emphasize the role of m over n, we will write H;.(m) in place of
H; (S, C™) or Hy . below.

It is clear from the relations that if M is an Hy.(m)-module, then M ® (C")®™ becomes an
H; .(m,r)-module, where the elements x1,...,Zm,Y1,...,Ym act only on the M tensor factor, the
elements from End(C")®™ act only on the (C")®™ tensor factor, and S, acts diagonally. In fact,
this defines a category equivalence H;.(m)-mod — Hy.(m,r)-mod, see [15]. Thus, the algebra
Hy yyym(m,7) acts on Ly, (triv) @ (C)®™.

Now we can form the spherical subalgebra eH , /,,,(m, )e, where e = % > pes., P, that acts on
the space (Ly,/p, (triv) ® (C™)®m)Sm, Upon the identification Lo jn(n,7) = (L (triv) @ (Cr)®m)Sm
of Proposition 8.2, the actions of A,,,(n,7) and eH ,/m(m,7)e on their respective spaces get
identified. This follows from [I5, Section 2] after minor modifications.

8.2. Compositional parabolic Hilbert schemes, combinatorially. We consider the curve
C = {z™ = y"}. Let us consider the scheme

CPHilb™ := {Oc D2 J°D--- D J 1D J =yJ")

where J* are ideals in O¢ of finite codimension (not necessarily k). We have an action of C* on
CPHilb™¥, and the fixed points can be identified with chains of monomial ideals. We can encode
these as follows. Start with the monomial ideal J = C[[y]](y**, zy2,..., 2™ ty°m) C O¢. For
k=1,...,7 let 4 := dim(J*~1/J¥) > 0. Note that S-%_, vx = m. The space J*~!/J* is spanned
by the monomials z%1y“k1 . 2%y k7 where ag1 <+ < Qgn,. Note that if o, = Cap
for some k < &’ then ay; < ags ;. Moreover, if ¢4, , — Cap ;=N then k' < k.

Pictorially, we consider the staircase diagram defined by the ideal J° and we fill in the box
corresponding to the monomial % iy with the number k. In particular, the number of boxes
labeled by k is precisely vx. See Figure[dl Note that the labels of these boxes are weakly increasing
along each vertical run of the staircase diagram, where we read bottom-to-top. Moreover, if two
labeled boxes are n horizontal steps apart, then the label of the top box is no greater than that of
the bottom box.

The localized equivariant homology HE (CPHilb™(C)) then admits a basis indexed by classes
of fixed points. As in Section [[I] see in particular Lemma for a monomial ideal J° =
Cllyll{ye, zy©2, ..., 2™ 'y°m) we can define a composition (A1, ..., As) of m. Thanks to the discus-
sion above, the flags of monomial ideals that start with JY can be labeled by /-tuples of monomials
(mq,...,my), where m; is a monomial of degree \; in r variables.
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On the other hand, it follows from Lemma [T.7] that, as a S,,-module we have

Ly, (triv) = @ Indﬁ?1 x-S, triv
J°COe
J9 monomial ideal
So that
(35) £m/n(n7 T) :(Ln/m(triv) ® ((CT)®m)Sm
= @ (IndgT xox Sy, bV ®(CT)&m)Sm
e 1 ¢

JO monomial ideal

— @ Homg, (Indgzl1 N triv, (C")®™)
JCOc
JO monomial ideal
= @ Homsg, x...xs,, (trinRenglxmxSM (CT)®™)

J°CO¢
JO monomial ideal

— @ SymM (C") @ - - - ® Sym™ (C")
J°CO¢
JO monomial ideal

This suggests that we have an identification L,/ (n,r) = HE (CPHilb™Y(C)). In the next
section, we are going to realize this identification geometrically.

8.3. Compositional parabolic Hilbert schemes, geometrically. Let us recall that we have
the decomposition

CPHilb"™Y(C) = || PHib™¥(C)
YECH(m)
where PHilb™Y(C) = {Oc 2 J° D --- D J" = yJ° | dim(J*1/J*) = 44} and C.(m) are weak

compositions of m with r parts. In particular, HX" (CPHiIb"™Y(C)) = @, ec, (m) Hr (PHilb¥(C)).
Now, for each vy € C,(m) we have a map

II” : PHilbY(C)) — PHilb™¥(C)
(.21 2 DDy =yli) = (J° 2T 2. D J" = yJ")

A
wher =1 .
RS

Lemma 8.4. Let v € C.(m) and consider the standard parabolic subgroup Syrev = S, X -+ xSy, C
Sm. The map II] : HE (PHiIbY(C)) — HE (PHilbYY(C)) induces an identification

HE (PHilbY (C))5» = HE (PHilb™Y(C)).

Proof. First, we verify that II] is S,rev-invariant, that is, it is constant on S,rev-orbits. The group
Syrev is generated by simple reflections s;, @ & {v:, % + Yr—1,...,% + -+~ +72}. It is enough to
verify that II] is invariant under each of these simple reflections.

By definition, II” sends an element (I 2 Ixiq1 2 -+ 2 Ixym = yli) to a flag involving only
the ideals Iy, Ipi~,, Tktyi4vs - - - s Ly +-4vo_1» and each one of these ideals has a multiplicity
determined by the zeroes in . The invariance now follows from the explicit form of the action of
s; obtained in Lemma [7.01
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Now we have the following commutative diagram:

I

PHilbY(C) PHilb"¥(C) .
K Y
Hilb(C)
The fiber of an ideal I over II is precisely the Springer fiber Spr(x) C FI(I/yl) consisting of full
flags of subspaces in I/yl = C™ that are stable under the action of the nilpotent operator x.
Likewise, the fiber of I over II is the Spaltenstein variety Spr”(x) C FI7(I/yI), consisting of partial

flags of subspaces in I /yI that are stable under the action of x. It is a standard result from Springer
theory, see e.g. [0] or [52, Section 2.6] that

H,(Spr())* = H.(Spr)(z))
from which the result follows. O

Thanks to the previous lemma and observing that v +— 4"V is an involution on C,(m) we get
HY (CPHID™Y(C)) = € H (PHILY(C) = @ HE (PHilbY(C))>
v€Cr(m) vEC(m)

on the other hand, we have the following well-known result.

Lemma 8.5. Let V' be a representation of Sy, and r > 0. Then
(Ve (@E)omsm= § v
YECH(m)
Moreover, V7 is the y-weight space for the gl(r) action on the left hand side.

Proof. Fix a basis eq,...,e, of C". For v € C.(m), let ((C’")?m be the span of those tensors
e, @+ @ e, such that v; = §{k : iy = j} (this is y-weight subspace in (C")®™). It follows by
definition that (C")$™ is stable under the action of S, and moreover that (C")$™ = Indg;” triv.

Thus, we get (C")®™ = Dyec, (m) Indg;” triv and the result now follows by adjunction. O

Theorem 8.6. Let m and n be coprime positive integers, and r > 0. There is an action of
the algebra Ay, /,,(n,7) on the (localized) equivariant homology HE" (CPHiIb™Y)(C), where C is the

singular curve {x™ = y"}, and with this action we have HE (CPHilb™Y(C)) = Lo jn(n,7).
Proof. We have a natural action of the spherical subalgebra eH ,, /m(m, r)e on
(L (t1iv) @ (Cr)®m)8m.

Thanks to Theorem [TI4] the latter space can be identified with (HE (PHilbY(C)) ® (C7)®m)Sm
which in turn, by Lemmas [R.4] and is naturally identified with HE (CPHilb"¥(C)). The result
now follows from Proposition O

Example 8.7. When 7 = 1, we have CPHilb"¥(C') = Hilb(C) and, up to [7, Proposition 9.5], we
recover Proposition [T.17]

Remark 8.8. We can realize the generators E;, F; of gl(r) by explicit correspondences between
PHilb"¥ and PHilbY¥ similar to [5, Theorem 3.4].
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8.4. Compositional parabolic Hilbert schemes as generalized affine Springer fibers.
Just as with parabolic Hilbert schemes, the compositional parabolic scheme CPHilb™¥(C) admits
an interpretation as a generalized affine Springer fiber. In this setting, we let the group G := GL"
act on the vector space N := C" @ gl¥" in the following way:

(907 gi,--- 797‘—1)-(’07 X07 ce 7X7“—1) = (90% ngO.gO_17 cee 790X7‘—lgr_—11)'

We can visualize N in terms of representations of the following cyclic quiver:

Xr Xo
& @

@, @,
f\
@
As in Section [.4] we consider the groups Gg C Gk. We will consider the affine Grassmannian

Grg = Gx/Go = (GLnx / GLn0)™"

that parametrizes r-tuples of Q-lattices inside K”. The group Gk acts on Ng := N ® K, and Gg
preserves Np. Recall the definition of b, € O™ and Y € gl,(0) from Section [[4l Here, we will
consider the following generalized affine Springer fiber

Spr(bi,Id,Id,...,Y) :={[g] € Grg | 9.(b1,1d,...,Y) € No} C Gre.
Proposition 8.9. We have an isomorphism
Spr(bi,1d, Id, . .., V) = CPHilb™(C).
Proof. By definition, an element [g] = [go,...,9r—1] € Grg belongs to Spr(by,1d,1d,...,Y) if and
only if ggby € O™, gi+1gi_1 € gl,(0) for i =0,...,r — 2 and gngr__ll € gl,,(0). It easily follows

from here that g;b; € O™ and g,-YgZ-_1 € O™ for every i = 0,...,r — 1. Thanks to [20, Theorem
3.3] this implies that Spr(by,1d,...,Y) C Hilb(C)*". Let (J°,...,J"~1) € Hilb(C)*" be the point

corresponding to [go, - - -, gr—1]. The condition g;119;* € gl,(0) for i = 0,...,r — 2 translates to
JOD Jt D ... D J"!, while the condition gngr__ll € gl,(0) translates to J"~' D yJY. The result
follows. .

Remark 8.10. Similar to [20], the same proof shows that for an arbitrary plane curve singularity C
such that the z-projection has degree n, the scheme CPHilb™¥(C') can be presented as a generalized
affine Springer fiber for G = GL}" and N := C" @ gl¥".

Just as in Section [T4] Spr(by,Id,Id,...,Y") can be realized as one of the varieties considered by
[21]. Indeed, it is straightforward to verify that

Spr(by,1d, ..., 1d,Y) = Fu(t, (b1, 1d,...,1d,Y))

where t = 0 and a € a := X,(A) ® R is also 0 where, recall, A C G is a maximal torus. We
can verify that Spr(by,Id,...,Y) admits an affine paving as follows. Recall that we need to find
b € a and ¢ € R satisfying the three conditions of Section [(.4. We can take ¢ = m/n >t = 0 and
b= (b%,b',...,0" 1), where b° = b! = ... = b""2 = diag(0,0,...,0) and b"~! = diag(c,c,...,c).
We need to verify that the element

(bl,Id,... ,Y) = (bl,Id,... ,Y|€:1) eEN



PARABOLIC HILBERT SCHEMES VIA THE DUNKL-OPDAM SUBALGEBRA 53

is G-good. This follows because the element

NN /0 0 - 0 Y]

0 Id 0o --- 0 0

ol |0 1 0 0 |ccmaq,
: s S 0

0 0O 0 --- Id 0

is GLy-good, which in turn is a consequence of Proposition [[.2221 Thus, thanks to [21] we get the
following.

Proposition 8.11. The Hilbert scheme CPHilb™Y(C) is paved by affine spaces. Thus, its cohomol-
oqy is equivariantly formal.

Remark 8.12. Similarly to what is done in Section [74] one can show that for a composition
v € Cr(m) the variety PHilb™¥Y(C) admits a paving by affine spaces. This gives another proof of
Proposition B.111

Remark 8.13. The algebra of functions on the Gieseker variety M(n,r) is known, thanks to results
of Nakajima-Takayama [39], see also [10], to be the (non-quantized) Coulomb branch algebra for
the gauge theory with gauge group G = GL" and matter representation N = C" @ gI>" as defined
in this section. Uniqueness of quantizations proved by Losev [34, Theorem 3.4] then shows that the
algebra A.(n,r) is the corresponding quantized Coulomb branch algebra. It would be interesting
to compare the action of A.(n,7) on HE (CPHilb"™¥(C)) we have constructed here with an action
by convolution diagrams as in [20], 28].

Remark 8.14. Let C be a plane curve singularity such that the z-projection C — C has degree n.
One can use the techniques developed by Hilburn-Kamnitzer-Weekes in [28] and Garner-Kivinen in
[20] to show that there is an action of the algebra of functions C[M(n,r)] on the non-equivariant
homology H,.(CPHilb?¥(C)), cf. Section and Remark B0

Remark 8.15. As in Remark [T3T], we can consider the case C' = {2™ = y"} for ged(m,n) =
d > 1. In this case by [20} 28] there is an action of the quantum Gieseker algebra Am (n,r) on

HE (CPHilb™Y(C)). We expect this representation to have minimal support in the sense of [15].
Note that by [15] Theorem 2.17, Lemma 4.1] minimally supported representations of Am (n,r) are
related to the minimally supported representations of H~ in a way similar to Proposition

9. LIMIT m — o0

In this section, we will see that, in the limit m — oo, the action of the Dunkl-Opdam subalgebra
on A(triv) = Clxy,...,z,] is still diagonalizable, and we will provide an explicit basis of A(triv)
completely analogous to that of Theorem Since H. = Hy . = Hy /.1, having ¢ — oo will yield
an action of the algebra Hy .

9.1. The polynomial representation. Recall that, for generic ¢ or for ¢ having denominator
precisely n, the action of the Dunkl-Opdam subalgebra on the polynomial representation A.(triv)
is diagonalizable. This is, of course, not true for every ¢, as an easy calculation in the case n = 2,
c = 1 shows. However, we have the following result.

Proposition 9.1. For any ¢ € C, the action of the Dunkl-Opdam subalgebra on A.(triv) =
Clz1, ..., 2] is diagonalizable up to degree ||c(n — 1)||. Moreover, up to this degree, the action of
the algebra H. is given by the same operators as in Theorem [{.1)]

Proof. Following the strategy of the proof of Theorem 4.9, we need to construct the eigenvectors
va for ||al| < [|e(n — 1)|]. The only obstruction to constructing these eigenvectors is that the
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intertwining operator o; may not be well-defined on the eigenspace M,,). But this is only the
case when w(a); = w(a);+1. Recall that w(a); — w(a)i+1 = a; — aix1 — (ga(?) — ga(i + 1))c where ga
is the shortest permutation that sorts a. Since ga(i) — ga(i + 1) € {£1,...,+(n — 1)}, the result
follows. a

Thanks to the previous proposition, letting ¢ — oo and appropriately rescaling, we get the
following “t = 0” analogue of Theorem [4.15]

Theorem 9.2. The Hy1-module Ag(triv) := Ho1 ®cly,,...y.xs, 1V has a basis given by {va :
ae Zgo}, and the action of the algebra Ho1 on Ag(triv) is given by the following operators.

U;Va = W;Va
TUa = Ur.a

)\?}a = W1Ug-1.4

1 .
Qésiké)Jr gé"%l)ig("(i??;a (i+1)41) ] A

. _ gall)—galt — gall)—gall X .
Sila = (Gali)—ga(i+1))2 Usia T Gli—gaGirn) V2 % < Gitl
Va a; = Q41

where w; :=w;(a) = (1 — ga(i)) and, as before, ga is the minimal-length permutation that sorts a.

Remark 9.3. As above, one can also define the renormalized basis U, such that

(1) — gali) — 1 1) — gali) 41
(1+Siﬁa:g(lf )~ a(i) - i gali +1) —ga()) £ 1

9a(i+1) — ga(i) ga(i+1) — ga(i)
Remark 9.4. We remark that, unlike the ¢t = 1 case, the module A ;(triv) is never irreducible.
Its unique irreducible graded quotient is Lo 1 (triv) = Clz1,...,zy]/(Clz1, ... ,xn]i")

Note that the proof of Theorem[9.2]can be extended to any Verma module Ag 1(p) := Ho1®c[y|xs,
V,.. In particular, we get that Ag1(u) has a basis given by v(a,T'), where a € Z%; and T' € SYT(u).
The action of Hyp ;1 on Ag(p) is given by

wv(a,T) =w;(a,T)v(a,T)
m(a,T) =v(r-a,T)
M(a,T) =w(a,T)v(r ! -a,T)

—~

v(s;-a,T) — Agv(a,T) a; > a1

siv(a, T) = Ajv(s;-a,T) + Asv(a, T) a; < ajt1
(ctr(gali+ 1)) — ctr(ga(i)))v(a,T)  ai = aiy1 and sg,;)(T) & SYT (1)
v(a, sg.i)(T)) — A2v(a,T) a; = a;1 and sg, (;)(T) € SYT(p)

where w;(a,T) = — ctp(ga(?)),

(ctr(9a (i) — ctr(gali + 1)) — 1)(ctr(ga(i)) — ctr(gali + 1)) + 1)

A= (ctr(ga(i)) — ctr(gali + 1)))?

and

1

A = ) (gl T D)
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9.2. Hilbert scheme of the non-reduced line. On the geometric side, the curve {z™ = y"}
has a natural limit at m — oo, namely, the non-reduced line {y™ = 0}. The ring of functions on
Co = {y™ = 0} has a basis 2y’ for i > 0,n —1 > j > 0, as above.

The Hilbert scheme of points on {y™ = 0} is the moduli space of ideals in the local ring

Ocy0 = Clle,yll/y" = Cllall(1, ... ,y" 7).
The multiplication by y is given by the matrix similar to (30):

0Ooo0 --- 00
1 0 --- 00
y—-(01 -+ 00
s w0
o0 --- 10

We consider the C* action on Cy and on Oc¢, o such that y has weight 1 and = has weight 0. It
naturally extends to the action on the punctual Hilbert scheme Hilbg(Cy,0).

Lemma 9.5. The fized points of this action are isolated and correspond to monomial ideals.

Proof. An ideal I in Oc¢, is fixed under this C* action if and only it it is generated by functions
y%p;(x) which are homogeneous in y but not necessary in z. On the other hand, in the ring of
formal power series p;(z) is proportional to z up to a unit, and hence I is the monomial ideal
generated by y*ix¢ for 1 <1i < n. O

Remark 9.6. It is important for the above proof that we work with the punctual Hilbert scheme
of ideals supported at the origin, rather than with the full Hilbert scheme.

Remark 9.7. Unlike the curve {2 = y"}, the curve Cj has an action of another C* such that y
has weight 0 and x has weight 1. The weight of this action on a monomial ideal I generated by the
y¥izt equals Y ¢; = dim O¢/I = k.

Similarly, one can define the parabolic Hilbert scheme PHilby ,,41(Co) as the space of flags of
ideals I, D Ik+1 DDl = Ik+n in OCO, and PHﬂbx(C()) = UkPHilbk’n+k(Co). The fixed
points in PHilb®(Cj) are determined by sequences of monomials (y®x“) with no restrictions on
¢;. As in Lemma [T.5, we have a; = ge(i) — 1, where g. is the permutation which sorts ¢; in non-
increasing order (recall that when ¢; = ¢; with i < j we have a; < o) . We can write ¢; = apq1—;
and ge(i) =n+1—ga(n+1—1).

The construction of geometric operators corresponding to u;, s;, 7 and A extends verbatim to this
case, however, one needs to be careful with the equivariant weights. Now L£; has the weight of the
monomial (y®z¢), that is

alli)=ai=gc(i) —1=n—ga(n+1—1i)=(n—1) 4+ wptp1-;.

The operators T' and A can be defined as in Section [(.3], and their matrix elements can be computed
similarly. Observe that O¢,/xO¢, still has a unique Y-invariant one dimensional subspace gener-
ated by y"~! which has weight (n —1). The computation in Theorem [Z.14] then implies T o A = u;.
We conclude the following;:

Theorem 9.8. Consider the non-reduced curve Co = {y" = 0} with the C* action (x,y) — (z, sy).
Then the C* equivariant cohomology

Uso = €P HY (PHilby jp14(Ch))
k=0

has an action of the rational Cherednik algebra Hy 1 defined by the same operators in Theorem|[7.14)
This representation is isomorphic to the polynomial representation of Hy .
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Finally, we would like to mention that the constructions of Section 8 can be extended to this
setup, and we get the following result.

Theorem 9.9. With the same notation as in Theorem [9.8 the C*-equivariant cohomology
HE (CPHilb™*(Cp))

has an action of the spherical algebra eHy 1(n,r)e, where Hy1(n,r) is the matriz version of the
Cherednik algebra defined in Definition[8.3. This representation is isomorphic to the representation
(Clwy, ..., 2n) ® (CT)E")Sn defined in a natural way.

Remark 9.10. From its interpretation as a generalized affine Springer fiber, see Section B4] it
follows that the homology HE (CPHilb™*(Cp)) admits an action of a flavor deformation of the
algebra of functions on the Gieseker variety M(n,r). When r = 1, this flavor deformation is
precisely eHg 1(n,1)e, which is known to be commutative and it is in fact the algebra of functions
on the Calogero-Moser space, [I3]. It is unclear the relationship that the flavor deformation bears
to eHp 1(n,r)e when r > 1.
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