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Abstract—Extensive research has been conducted on top of
online social networks (OSNs), while little attention has been
paid to the data collection process. Due to the large scale of OSNs
and their privacy control policies, a partial data set is often used
for analysis. The data set analyzed is decided by many factors
including the choice of seeds, node selection algorithms, and
the sample size. These factors may introduce biases and further
contaminate or even skew the results. To evaluate the impact of
different factors, this paper examines the OSN graph crawling
problem, where the nodes are OSN users and the edges are the
links (or relationship) among these users. More specifically, by
looking at various factors in the crawling process, the following
problems are addressed in this paper:

• Efficiency: How fast different crawlers discover nodes/links;
• Sensitivity: How different OSNs and the number of pro-

tected users affect crawlers;
• Bias: How major graph properties are skewed.

To the best of our knowledge, our simulations on four real world
online social graphs provide the first in-depth empirical answers
to these questions.

I. INTRODUCTION

Online social networks (OSNs) have become a major
Internet service in the past few years. Their popularity is
highlighted by the millions of users they attract and the huge
amount of interactions they boost among these users. For
example, Facebook was ranked as the 4th most visited website
in the world as of Aug. 2009 1 with “more than 300 million
active users.” 2 This global phenomenon has generated lots of
interest in many disciplines including sociology and computer
science.

Extensive work has been conducted on top of OSNs, in
many cases using partial social networks. There are several
reasons partial social networks are used. First of all, social data
is among the most valuable assets to the OSN providers and
is protected by privacy regulations/laws, therefore it is hard to
get such data directly from the OSN providers. Secondly, it
is a great challenge for crawlers to collect millions of contact
lists, profiles, pictures, videos, etc. from OSNs. Many OSNs
use a large number of dynamic pages containing AJAX and
DHTML effects, and it is not trivial to develop a parser to
deal with such complex pages efficiently. Moreover, OSN
users are often provided with the flexibility to customize the
layout of their pages, which further complicates the design
and implementation of the parser. To make things worse,

1http://en-us.nielsen.com/rankings/insights/rankings/internet
2http://www.facebook.com/home.php#/press/info.php?statistics

rate limiting is enforced by most OSNs, preventing crawlers
from making many requests within a short period of time.
Thirdly, as more users become concerned about their privacy
in OSNs, many of them choose not to reveal their information
to strangers, hence become “black holes” for crawlers.

Although partial datasets have to be used, most previous
work does not provide detailed analysis on how the data col-
lection process affects their observations/conclusions. While
there has been some research on sampling social graphs [1],
[2], most of them assume some prior knowledge of the
underlying social networks, which is not available for crawlers
in reality. Moreover, it is not clear whether their conclusions
on traditional social graphs such as affiliation networks apply
to OSNs as well. This paper examines the OSN data collection
problem from the crawler’s perspective, by evaluating different
crawlers with four real world OSN graphs. More specifically,
the social graph crawling problem investigated here consists
of the following three issues.

• Efficiency: How fast nodes/links are discovered through
a crawl;

• Sensitivity: How OSNs and “black hole” users affect the
crawling;

• Bias: How statistical properties of the crawled subgraphs
are different from those of the whole graph.

The factors we evaluate in this paper include:

• Choice of seeds: Seeds are the starting point of a
crawl. For Web crawling, it is important to select proper
seeds and order the crawling queue to avoid low quality
pages [3]. Our experiments show that the small world
effect of OSNs makes the choice of seeds less critical.

• Node selection algorithms: Node selection algorithms
decide which node to crawl next. In this paper we evaluate
four node selection algorithms, including the widely used
breadth-first search (BFS) and greedy algorithms.

• Protected users: There are concerns that as more and
more users adopt the access controls to protect their social
data, the crawlers may miss a large portion of the social
graph. To complement existing social network resilience
analysis [4], we show how different crawlers perform in
the presence of protected users on real OSNs.

• Different OSNs: Different OSNs have their unique prop-
erties even though they provide similar services. In this
paper we evaluate different crawlers with four OSN
graphs collected by Mislove et al. [5]: Flickr, LiveJournal,



Orkut, and YouTube.
A major contribution of this paper is to formalize how we

evaluate the crawling bias and what parameters need to be
considered. The two metrics we examined here, mean degree
and clustering coefficient, are fundamental statistics for graph
analysis. As the first paper to investigate the social graph
crawling problem, we believe that it is important to look at
them carefully. We are aware of many interesting metrics such
as average path length, diameter, and power law parameters
while choose not to report them in this paper due to the page
limit and computation cost.

The rest of this paper is organized as follows. Section II
briefly reviews the prior work on crawling and sampling social
graphs. Section III formally introduces the social graph crawl-
ing problem and the node selection algorithms tested in this
paper. Section IV discusses the simulation setup and the factors
we evaluate. Section V and VI presents the observations we
get in our experiments. Finally, we describe future work and
conclude in Section VII.

II. RELATED WORK

In this section, we review the prior work on social network
crawling and social graph sampling.

Despite the huge number of social network publications,
few have been dedicated to the data collection process. Chau
et al. [6] briefly describe using a parallel crawler running BFS
to crawl eBay profiles quickly. The measurement conducted
by Mislove et al. [5] is, to the best of our knowledge, the
largest OSN crawling study ever published. From four popular
OSNs, Flickr, YouTube, LiveJournal, and Orkut, 11.3M users
and 328M links are collected. Their analysis confirms most
well known properties of OSNs, such as a power-law degree
distribution, a densely connected core, strongly correlated in-
degree and out-degree, and small average path length.

Most studies are based on subgraphs, thus it is important
to know how similar the sampled subgraphs and the orig-
inal graphs are. Leskovec and Faloutsos [1] evaluate many
sampling algorithms such as random node, random edge, and
random jump. The datasets used in [1] are citation networks,
autonomous systems, the arXiv affiliation network, and the
network of trust on epinions.com, the largest of which consists
of 75K nodes and 500K edges. These are of much smaller
scale than the datasets we examine in this paper. More
importantly, none of the networks studied in [1] is an OSN.
epinions.com may be the closest to an OSN, but as a review
website its main subject is products instead of users and it gen-
erates little interaction between users. Many sampling methods
considered in [1] require some knowledge of the original
graph. For example, the random edge sampling method needs
to select an edge at random, which is not supported by most
OSNs. The random PageRank node sampling method needs to
know the PageRank of a node in advance, while to compute
the PageRank, one needs to know the whole graph.

Ahn et al. [7] obtain the complete network of a large South
Korean OSN site named CyWorld directly from its operators.
They evaluate the snowball sampling method (which is in fact

breadth-first search) on this 12M node, 190M edge graph.
Their results indicate that a small portion (< 1%) of the
original network sampled in snowball fashion approximates
some network properties well, such as degree distribution
and degree correlation, while accurate estimation of clustering
coefficient is hard even with 2% sampling. We revisit the
estimation of clustering coefficient in Section VI-B.

Gjoka et al. [8] propose a sampling method to select
nodes uniformly without knowledge of the entire network,
and use this method on a large sample (1M node) of the
Facebook graph. The basic idea is that given the current node
u, randomly select one of its neighbors v, move the random
walker to v with probability min(1, ku/kv), where ku and
kv are the degrees of u and v respectively. They compare
their method with BFS and simple random walk to show it
generates a more uniform node sample. Their sampling method
underestimates the clustering coefficient as it undersamples the
neighborhood of each node [1]. It is also worthwhile to note
that, to decide whether to move the random walker, it needs
to know kv . This is possible to know in Facebook without
having crawled v, but isn’t possible generally without having
crawled v. Therefore the method proposed in [8] is closer to a
sampling method over a crawled graph than a crawling method
over an unknown graph.

The link privacy problem raised by Korolova et al. [9]
concerns how an attacker discovers the social graph. The goal
of the attacker is to maximize the number of nodes/links it can
discover given the number of users it bribes (crawls). Several
attacks evaluated in [9] actually correspond to node selection
algorithms for crawling, such as BFS and greedy attacks.
The same problem is considered by Bonneau et al. [10].
They first collect a nearly complete subset of the Facebook
network consisting of 15K Stanford students, then test several
crawlers including a greedy crawler, a random crawler, and a
targeted attack of highest degree nodes (assuming the degrees
are known ahead of time.) They show that the targeted attack
is most efficient, the random crawler is nearly so, while the
greedy crawler isn’t as efficient as the other two. Maximizing
the number of victims is the sole objective in [9] and [10]
therefore neither of them examines other issues such as biases.

III. CRAWLING SOCIAL GRAPHS

Table I summarizes the list of notations used in this paper.

TABLE I
LIST OF SYMBOLS

Notation Definition
Out(v) The set of nodes which are linked by v (directed graph).
VSeen The set of nodes which are found by the crawler.

VCrawled The set of nodes which are crawled by the crawler.
ESeen The set of links which are found by the crawler.

A. Definition

An OSN can be modeled as a graph with users as nodes and
the relationship between users as edges. This paper focuses on



how to crawl this social graph, which can be naturally divided
into crawling nodes and crawling edges.

Crawling nodes: There is often extra information asso-
ciated with a node, such as personal information (profile),
photos, posts, and list of friends. The crawler must crawl a
node to collect such information, whereas the crawler may
become aware of the existence of a node without having
crawled it. The difference is captured in VCrawled and VSeen:
VCrawled is the set of crawled nodes, whereas VSeen is the set
of nodes of whose existence the crawler is aware.

Crawling edges: While we distinguish between crawled and
seen nodes, we do not have such distinguish between crawled
and seen edges. First of all, few edge attributes are provided
by most OSNs, such as when the edge is created and how a
node categorizes this edge (friends, classmates, etc.). Secondly,
these attributes often come with the list of multiple edges
directly instead of requiring the crawler to ask for a particular
edge. Therefore in many cases there is either no edge attributes
to crawl or no way to crawl a specific edge. Hence we do not
consider ECrawled in this paper.

The process for crawling a graph can be outlined as follows.
1) Put seeds into a queue.
2) Select a node v from the queue.
3) Crawl the node.
4) Add the newly found nodes in Out(v) into the queue.
5) Go to Step 2 or terminate if stop conditions are met.

B. What decides the crawled subgraphs

Given an OSN, the partial graph crawled is decided by the
following three factors.
• Seeds
• Node selection algorithm
• Size of the crawled subgraph
Seeds are where the crawler starts. In reality we have to

rely on the recommendation service provided by OSNs or use
some manually collected/voluntarily contributed seeds, neither
of which is feasible for getting large number of seeds.

The size of the crawled subgraph is decided by how fast the
crawler can go and when the crawler stops. It is subject to real
world resource constraints such as network bandwidth, time,
machines, and the rate limits enforced by OSN providers.

Node selection algorithms decide which node to select from
the crawling queue. Various information such as locations
and occupations is available for sophisticated node selection
algorithms while here we focus on the graph crawling problem,
i.e. only the abstraction of nodes and edges is considered.

There are lots of node selection algorithms, many of which
fit better in the context of graph sampling, such as random
node and random jump in [1]. In this paper, we focus on
those which are designed for crawlers. More specifically, such
a node selection algorithm needs to satisfy the following
requirements.
• No prior knowledge on the graph is needed. For example,

selecting nodes uniformly at random (random node in [1])
requires the knowledge of the entire graph.

• For fair comparison on efficiency, no crawled node can
be discarded. The uniform sampling method proposed
by Gjoka et al. [8] may choose to reject a node after
examining its degree, therefore is not considered here.

These constraints can be relaxed in some cases. For ex-
ample, when updating or re-crawling a graph, we have some
knowledge from the previous crawl. Crawled nodes may also
be discarded when we are willing to trade bandwidth for
certain sampling properties, although sampling over a crawled
graph is more common since it allows applying different
sampling methods to the same graph for multiple purposes.

In this paper, we consider the following four node selection
algorithms, which are widely used in practice.
• BFS: Simply selecting the first item in the queue, breadth-

first search is probably the most popular one.
• Greedy: The crawler selects the node with the largest

degree in the queue. Since the nodes in the queue are
not crawled yet, their degrees on the crawled subgraph
G(VSeen, ESeen) are used.

• Lottery: The crawler selects a node in the queue with
probability proportional to its degree. This algorithm
prefers nodes with large degrees, while also selecting
nodes with small degrees to reduce sampling bias. Similar
to the greedy algorithm, the degree here is computed on
the crawled subgraph.

• Hypothetical greedy: The crawler always selects the
node with largest degree in the queue, while the degree
here is the degree on the whole graph, i.e. the true degree.
A typical application scenario for this algorithm is to
sample a subgraph from a large graph. Or we can assume
an algorithm which makes accurate estimation of which
node in the queue has the largest degree based on various
information, such as the crawled partial graph and user
profiles. This algorithm serves as a baseline in this paper.

IV. SIMULATION SETUP

A. Summary of Data Sets

Instead of using synthetic datasets generated by small world
models, we use four real world social graphs collected by
Mislove et al. [5]. These four OSNs have different focuses.
Flickr specializes in photo sharing, YouTube focuses on video
sharing, and LiveJournal and Orkut are general social websites.
Table II summaries the basic statistics of these four graphs.

TABLE II
BASIC STATISTICS OF THE SOCIAL GRAPHS USED IN THIS PAPER

Graph Total Total Mean Clustering
Nodes Links Degree Coefficient

Flickr 1, 657, 846 22, 613, 981 13.6 0.209
LiveJournal 4, 929, 069 77, 402, 652 15.7 0.278

Orkut 3, 072, 441 223, 534, 301 72.8 0.164
YouTube 1, 099, 764 4, 945, 382 4.5 0.098

Being published in 2007, these four graphs have been
widely used in OSN studies. As of Oct. 2009, Google Scholar
reports 168 citations to [5], many of which either analyze this



data set directly or refer to conclusions based on it. Therefore
it is important to take a careful look at this data.

B. Parameters to Investigate

Here are the factors we consider in this paper.
• Social graphs: The same crawler may exhibit different

behaviors on different social graphs.
• Choice of seeds: We want to know how critical the

number of seeds and their degrees are.
• Crawling size: We are interested in how different

crawlers behave as more and more nodes are crawled.
• Number of protected users: We want to evaluate how

different crawlers explore the graph in the presence of
protected users.

• Node selection algorithms: We evaluate the four algo-
rithms discussed in Section III-B.

The combination of these factors generates a large problem
space to explore. Moreover, multiple tests are required to
produce reliable results. With a cluster of 36 PCs (two AMD
Opteron 2.6GHz CPU/4GB memory per node), it cost us three
weeks to finish all the simulations with various data structure
and algorithm optimizations.

V. CRAWLING EFFICIENCY

Node coverage and link coverage are important indicators
for how well the crawler is able to find new nodes/links. Given
the number of crawled nodes, they are defined as follows [9].
• NC (node coverage): |VSeen|

|V | , i.e. the number of nodes seen
by the crawler versus the number of nodes in the graph.

• LC (link coverage): |ESeen|
|E| , i.e. the number of links seen

by the crawler versus the number of links in the graph.
Node/link coverage is also a metric for how close the

subgraph G(VSeen, ESeen) is to the whole graph G(V,E).
When G(V,E) is fixed, the node/link coverage is a monotonic
function of the number of nodes being crawled. As the entire
graph being crawled, the node/link coverage approaches 1. In
many cases where it is not feasible to crawl the whole graph,
maximizing the node/link coverage is usually one objective
for the partial crawling, i.e. with the same number of nodes
being crawled, find as many nodes/links as possible.

This section focuses on how efficient different crawlers are
in terms of node/link coverage.

A. Crawling on Different Social Graphs

The online social graphs studied in this paper are different
in terms of their size, the services provided, user base, and
definition of friends. It is interesting to see that in many
cases there is little difference between the results obtained
from these graphs, which is a good indicator for applying our
findings here to other online social graphs. Due to the page
limit, we omit the similar results and indicate the outliers when
necessary.

Mislove et al. [5] crawled these graphs with BFS, which in-
evitably introduces biases. Fortunately the LiveJournal sample
is the large weakly connected component from LiveJournal
and covered 95.4% of the entire LiveJournal network in 2006

when it is crawled, therefore its results should be less biased.
Interestingly, although the crawled population is 26.9% and
unknown for Flickr and YouTube respectively, their results
are similar to those of LiveJournal. This indicates that our
conclusions here are not heavily affected by the bias in the
source data. The Orkut graph, on the other hand, consists of
11.3% nodes on the Orkut network and is the only strongly
connected graph of the four, which becomes the single outlier
in some cases.

B. Choice of Seeds

As we argued in Section III-B, the choice of seeds is limited
in practice. Here we consider two criteria, the number of the
seeds and the degree of the seeds.

To see how the number of seed nodes affects the crawler,
we randomly select 100, 1, 000, and 10, 000 nodes as seeds,
and run different crawlers with the same set of seeds.

With multiple tests, we find that the difference is small
for all four graphs, even when only 10% of the graph is
crawled. Furthermore, such difference diminishes quickly as
more nodes are crawled. This indicates that OSNs are tightly
coupled compared to other graphs such as Web.

To see if starting from nodes with large degrees improves
the node/link coverage, we select random seeds with different
minimum degree requirements ranging from 10 to 60. With
BFS, the improvement is less than 5% for both node and link
coverages. With node selection algorithms such as greedy and
hypothetical greedy, the improvement is even smaller.

Implication 1: Node/link coverage is sensitive to neither the
number of seeds nor the degree of seeds.

Unless explicitly specified, the results reported in the rest
of this section are all based on 100 random seeds with no
minimum degree requirements.

C. Node Selection Algorithms

Figure 1 shows the results of crawling on the LiveJournal
graph. With 10% nodes crawled, all crawlers are able to
discover more than 55% nodes and 30% links. It is a strong
sign of the small world phenomenon: lots of nodes are tightly
coupled together within a few hops of each other, therefore
crawling a small portion of the network is sufficient to reveal
most nodes/links.

Experiments on YouTube and Flickr show similar results.
For node/link coverage, we have hypothetical greedy > greedy
> lottery > BFS, although the difference between them is
small. The only outlier to this order is node coverage on
Orkut (link coverage on Orkut is consistent with others).
Shown as Figure 2, BFS gets node coverage close to the
hypothetical greedy crawler, and outperforms both lottery and
greedy crawlers by 10% − 30% when 10% of nodes are
crawled. Investigating the graph structures which fail greedy
crawlers is an interesting direction for future work.

Implication 2: Greedy crawlers are likely to get higher
node/link coverage, while BFS crawlers are more robust.

We further examine the results for BFS with 10% nodes
crawled, shown as Table III. The largest node coverage is



(a) Node coverage (b) Link coverage

Fig. 1. Node/link coverage of different node selection algorithms (LiveJournal).

Fig. 2. Node coverage on Orkut graph.

found on the Orkut graph, which is probably a result of its
small radius and diameter [5]. Since the mean degree of the
crawled nodes, shown as Figure 6, is close to that of the
original graph, the low link coverage suggests that there are
many links between the uncrawled nodes. The results on Flickr
and LiveJournal are counterintuitive. LiveJournal has a slightly
larger mean degree (15.7) than Flickr (13.6). Although the
crawler gets a larger node coverage on LiveJournal (52.0%
vs 49.0%), it gets a much smaller link coverage (33.3%
vs 72.7%). This indicates that the Flickr graph has a much
smaller, tightly coupled core compared to the LiveJournal
graph.

TABLE III
NODE AND LINK COVERAGE AFTER CRAWLING 10% NODES (BFS).

Graph Node coverage Link coverage
Flickr 49.0% 72.7%

LiveJournal 52.0% 33.3%
Orkut 77.4% 25.8%

YouTube 57.8% 51.7%

Implication 3: Crawling a small number of nodes is suffi-
cient to discover a large portion of the OSN.

Fig. 3. Duplicate crawls when crawling in parallel without coordination.

This observation has a direct impact on parallel crawlers.
Figure 3 shows the percent of duplicated crawls when running
4 crawlers in parallel without coordination. With only 10% of
the network being crawled, 20%− 50% crawls are wasted on
the nodes we have crawled before. The percent of duplicated
crawls increases when a larger portion of the network is
crawled. In most cases the crawling rate is limited by the social
network service, increasing the impact of duplicated crawls.

Implication 4: When crawling an OSN in parallel, coordi-
nation between crawlers is required to avoid huge amount of
duplicate crawls.

D. Number of Protected Users

As many users being aware of the OSN privacy issues, some
users choose to make their profiles, posts, contact lists, etc.
visible to a limited number of users, such as their friends or
the users within a certain social group. These users appear on
the social graph as black holes from the crawler’s perspective.
Here we perform initial investigations of how these nodes
impede the crawling process.

To address the impact of protected users, we compute the
change of node coverage: Given a graph G, ∆NC = NC −



NC ′, where NC ′ is the node coverage when a certain number
of nodes on G are protected. Similarly we have ∆LC.

On the YouTube graph we randomly select 100K nodes to
be protected, i.e. their contact lists can not be seen by the
crawler. Shown as Figure 4, the node/link coverage drops less
than 7% for all four crawlers with 9% nodes being protected.

Fig. 4. Crawling in the presence of 100K protected users. (YouTube)

We have similar observations on other graphs. Shown as
Table IV, crawlers can easily get around the black holes
caused by protected users, therefore the decrease in node/link
coverage is small compared to the fraction of protected users
on these graphs. Crawling on larger OSN graphs (LiveJournal
and Orkut) is more resilient to protected users. Experiments
with greedy and lottery crawlers verify this observation too.

TABLE IV
∆NC , ∆LC WITH 200K PROTECTED USERS (BFS)

Graph Flickr LiveJournal Orkut YouTube
Users being protected 12.1% 4.1% 6.5% 18.2%
10% users ∆NC 3.3% 0.6% 0.3% 6.4%

crawled ∆LC 8.8% 1.4% 2.1% 9.4%
80% users ∆NC 6.4% 0.9% 0.2% 10.5%

crawled ∆LC 10.8% 3.6% 6.1% 15.4%

Implication 5: A small portion of protected users does not
hurt the node/link coverage of OSN crawlers especially for
large social graphs.

VI. CRAWLING BIAS

A. Mean Degree

If we consider crawled subgraphs for the LiveJournal graph
only, we have the mean degree shown in Figure 5. It is
not surprising to see that the mean degree reported by each
crawler follows the order of hypothetical greedy > greedy
> lottery > BFS: the hypothetical greedy crawler and the
greedy crawler choose higher degree nodes over lower degree
ones. BFS chooses randomly, but the high betweenness of high
degree nodes means they get picked with higher probability
than low-degree ones [11]. The lottery crawler lies somewhere
between the two extremes. Naturally the differences between
these crawlers, as more nodes are crawled, becomes small.

Fig. 5. Mean degree vs. different node selection algorithms. (LiveJournal)

Figure 6 shows the estimates of mean degree from BFS on
each of the graphs. The initial point, with 0% of the nodes
crawled, is based on the degree of the seeds. The seeds are
chosen at random, and therefore represent a random sample
of the graph. For the Flickr and YouTube graphs, the initial
degree estimate isn’t radically different from the true mean
degree, and the degree estimates based on crawled subgraphs
remain relatively accurate. The Orkut and LiveJournal graphs
are rather different, however. The LiveJournal estimate of
mean degree based on randomly chosen nodes is relatively
accurate, but as more of the network is crawled, the estimate
grows rapidly, reaching a peak when 10% of the graph is
crawled. The estimate then steadily declines as more of the
graph is crawled, yet doesn’t approaching the true mean degree
until a significant portion of the network has been crawled.
The Orkut estimate of mean degree based on randomly chosen
seeds is far lower than the mean degree of the graph. As the
graph studied here is a 11.3% sample crawled by BFS, the
true mean degree of the original Orkut network is likely to
be smaller (thus closer to the mean degree estimated by the
seeds) due to the bias BFS has toward high degree nodes.

Implication 6: Only by crawling a substantial portion of the
network is the degree estimate guaranteed to be accurate.

To get better degree estimation with small amount of crawls,
a sampling over the crawled subgraph is required, such as the
random node sampling we use for selecting seeds and the
sampling method proposed by Gjoka et al. [8].

B. Clustering Coefficient

Shown as Figure 7, clustering coefficient increases as the
crawler completes the network except for the YouTube graph,
where the clustering coefficient remains stable. The underes-
timation of clustering coefficient comes from oversampling
nodes with large degrees. Given a node v, its clustering
coefficient is defined as |{ei,j}|

kv(kv−1) , where i, j ∈ Out(v) and kv

is the degree of v [12]. In other words, it is the number of links
between v’s neighbors versus the maximum possible number
of such links. Hence oversampling large degree nodes often
leads to small clustering coefficients, which is also reported
by Ahn et al. [7].



Fig. 6. Mean degree on different social graphs. (BFS)

The accurate estimate of clustering coefficient on YouTube
indicates that high degree nodes have their neighbors tightly
connected. In other words, the YouTube graph exhibits a
stronger “birds of a feather flock together” effect.

Fig. 7. Clustering coefficient on different social graphs. (BFS)

Experiments on different crawlers with the same graph show
little difference on clustering coefficient. For all four graphs,
hypothetical greedy crawlers result in the largest clustering co-
efficients, followed by greedy crawlers, then lottery crawlers.
BFS crawlers always give the smallest ones.

Implication 7: Clustering coefficients are easily underesti-
mated.

VII. CONCLUSIONS AND FUTURE WORK

Attempting to crawl the entire graph is tempting, because
more data usually leads to better analysis. As online social
networks grow in size, the practicality of crawling the entire
graph decreases. This paper investigates the influences of
seeds, sample size, node selection algorithms, and the graph
being crawled. We believe that the implications we conclude
here shed light on future OSN studies, which will increasingly
rely on crawled subgraphs. The inconsistency across different
crawlers and graphs, as well as our bias analysis, suggests
future studies to pay more attention to the data collection

process and the introduced biases to make their conclusions
applicable to more general networks.

In the future, we plan to evaluate other OSN graphs we have
crawled entirely. We also plan to make these graphs available
to the social network research community.

An interesting question we did not consider in sufficient
detail is where the transition between high degree nodes
and low degree nodes is. For example, in the LiveJournal
crawl, the estimate of mean degree rises dramatically initially,
and declines almost equally dramatically. Investigating this
transition is a topic of future work.

Another challenging problem is how to update a crawled
subgraph efficiently. As OSNs grow rapidly, nodes may join
or leave the network, and links may also be created or deleted.
Identifying nodes whose statuses may have changed recently
saves bandwidth and makes it possible to track the dynamics
of larger graphs. One area of ongoing work is applying link
prediction [13] to estimate how frequently a node changes
its status in order to schedule the crawling to maximize the
freshness of the crawled subgraphs.
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