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Abstract
Introduction: The demographics of aging of the surgical population has

increased the risk for perioperative neurocognitive disorders in which

trauma-induced neuroinflammation plays a pivotal role.

Sources of data: After determining the scope of the review, the authors

used PubMed with select phrases encompassing the words in the scope.

Both preclinical and clinical reports were considered.

Areas of agreement: Neuroinflammation is a sine qua non for development

of perioperative neurocognitive disorders.

Areas of controversy: What is the best method for ameliorating trauma-

induced neuroinflammation while preserving inflammation-based wound

healing.

Growing points: This review considers how to prepare for and manage the

vulnerable elderly surgical patient through the entire spectrum, from pre-

operative assessment to postoperative period.

Areas timely for developing research: What are the most effective and safest

interventions for preventing and/or reversing Perioperative Neurocognitive

Disorders.
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Introduction to perioperative
neurocognitive disorders (PND)

The clinical problem

The aging of surgical patients as well as the increase
in surgical volume, which will soon reach a quarter
of a billion procedures,1 have converged to provide
the ‘perfect storm’ regarding the frequency of PND
and the resulting increase in mortality and early
retirement from the workforce.2 Postoperative
Delirium (POD) is the most common surgical com-
plication among older surgical patients, occurring
in between 15% and 25% following major elective
surgery and considerably higher in susceptible
patients undergoing hip-fracture repair and cardiac
surgery.3 The healthcare costs associated with these
conditions are staggering; for example, a bout of
POD can raise the in-hospital costs by between
$16 000 and 64 000.4

Nomenclature

A plethora of non-standardized terms has been used
to describe the spectrum of postoperative deterior-
ation in cognitive performance that can differ
according to time of onset, duration, severity, and
the cognitive domains that are affected. The
International Perioperative Cognition Nomenclature
Working Group,5 with expertize in postoperative
medicine, cognitive neurosciences and epidemiology,
coined the term Perioperative Neurocognitive Disorders
(PND) that is both over-arching and aligned to the
most recent Diagnostic and Statistical Manual of
Mental Disorders (DSM V). Notwithstanding that
the new semantic classification has yet to be ratified
by the relevant medical societies, in this review we
will use the encompassing term PND as the manu-
script describing the new nomenclature has been
published in the major journals in Anesthesiology
(British Journal of Anaesthesia, Anesthesiology,
Anesthesia and Analgesia, Acta Anaesthesiologica
Scandinavica, Canadian Journal of Anaesthesia).
Thus, PND denotes all the postoperative cognitive dis-
orders including POD to reflect an acute onset and
fluctuating course of inattentiveness, level of con-
sciousness, and disordered thinking and, Postoperative

Cognitive Dysfunction (POCD) to depict a longer-
lasting decline in cognitive function from the preopera-
tive status. As the diagnosis of POCD requires a
deterioration from an established baseline, this condi-
tion is more established in the research domain
because assessment of cognitive function is not yet a
standard part of preoperative clinical management.

Pathophysiologic mechanisms

Apart from the requirement of a surgical procedure
several other clinical circumstances have been pro-
posed, and rejected, as pivotal requirements for the
pathophysiology of PND; among the rejected clin-
ical circumstances for the development of PND,
include the type of anesthetic procedure (general vs.
regional), as well as intra-operative physiological
perturbations (especially, hypotension and hypox-
emia).6 Consideration of the putative mechanisms
must explain the age-dependency, the increased risk
in patients with metabolic syndrome patients, and
in patients in whom an inter-current infection
develops.

Supporting evidence for the
neuroinflammatory basis of PND

Before describing the likely sequence of events that
constitute the neuroinflammatory basis for PND, it
is worth considering the systems, cell types and bio-
chemical entities that are involved from surgical
incision until cognitive decline.

Systems

The Immune System comprises the Adaptive and
Innate arms with the latter dominating in the devel-
opment of PND. Apart from the barrier functions
provided by skin and mucosa, the Innate Immune
System consists of cellular and chemical constitu-
ents that are the key elements to inflammation.

The blood–brain barrier (BBB) consists of both
cellular and membranous components that form
tight junctions thereby protecting the brain from
the harmful effects of toxins and other detrimental
products in the peripheral circulation.
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Neuroplasticity is the basis for changing brain
function whether it be for the better, e.g. learning
and memory, or the worse, e.g. chronic pain. The
key elements are the synaptic junction that includes
both the presynaptic and postsynaptic neurones, the
neurotransmitters that are released presynaptically
and the postsynaptic signaling pathways that trans-
duce the effect of the neurotransmitters.

Cells

Circulating in the peripheral blood are monocytes
that are derived from haematopoietic sources such
as the bone marrow; when these bone marrow-
derived monocytes (BM-DMs) leave the circulation
they assume the tissue macrophage phenotype that
can be either pro-inflammatory (M1) or pro-
resolving (M2).7

In the parenchyma of the brain are located the
microglia, resident macrophages that had reached
its destination during embryologic development
before formation of the BBB. Microglia continu-
ously survey the milieu responding to changes by
adopting an M1 or M2 phenotype.

Damage-associated molecular patterns

(DAMPs), cytokines and chemokines

These organic molecules are the originators, media-
tors and chemo-attractants that are required for the
fully-fledged inflammatory response.

Lipoxins, resolvins, protectins and

maresins

These are specialized pro-resolving mediators
(SPMs) that are biotransformation products of
polyunsaturated fatty acids and are required for the
successful resolution of inflammation.

Proposed sequence of changes (Fig. 1)

The damage-associated molecular pattern (DAMP),
known as high molecular group Box 1 protein
(HMGB1), is released from the cytosolic compart-
ment of traumatized tissue and engages the innate
immune system by binding to pattern recognition
receptors on BM-DMs to induce translocation of

the transcription factor NFκB into the nucleus
where it enhances the transcription and translation
of pro-inflammatory cytokines.8–10 The released
cytokines are capable of disrupting the BBB, allow-
ing the migration of both cells and potential neuro-
toxins, such as fibrinogen,11 into the CNS.
Translocation of BM-DMs into the brain is orche-
strated by an upregulation of the chemo-attractant
MCP-1 from microglia.12 Within the CNS, the BM-
DMs interact with microglia to release proinflam-
matory cytokines, such as IL-1β and IL-6 within the
parenchyma; these cytokines can disrupt synaptic
plasticity thereby preventing long-term potentiation,
the neurobiologic correlate of learning and mem-
ory.13,14 Resolution of self-limited inflammation is
an active process; a combination of vagal activation
that downregulates NFκB by signaling through α7
nicotinic acetylcholine receptors on immunocytes,
and humoral factors especially the SPMs that trans-
duce its signal through G protein-coupled receptors
(GPCRs) which evoke rapid intracellular signaling and
long-term actions by regulating specific microRNAs
involved in resolution of inflammation.15 Together
these neural and humoral processes limit inflammation
and restore cognitive function to the pre-morbid
state.16–18

As mentioned above, any proposed pathophysio-
logic mechanism must explain the age-dependency
and the increased risk in certain patient populations
such as metabolic syndrome, and inter-current
infection. Regarding age, it is notable that even at
baseline (i.e. without any intervention) elderly sub-
jects exhibit a low-grade inflammatory state that
has been termed ‘inflammaging’.19 In an animal
model of the metabolic syndrome, several deficien-
cies in the resolution of inflammation following
aseptic trauma were noted.20 To simulate an inter-
current infection, a preclinical model explored the
effect of introducing lipopolysaccharide (LPS), a
constituent of the outer membrane of gram negative
bacteria, to rodents that had undergone aseptic
trauma21; again, excessive inflammation and exag-
gerated cognitive decline occurred. A recent meta-
analysis explored the relationship between the
degree of inflammation and PND and reported that
levels of both c-reactive protein and IL-6 are
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positively correlated with the prevalence and sever-
ity of PND.22

How does neuroinflammation produce

cognitive decline?

This section will focus on the links between hippo-
campal neuroinflammation and synaptic and mor-
phological plasticity that are required for successful
learning and memory formation.

Synaptic plasticity
Activated microglia have a profound influence over
synapse formation/elimination as well as its plasti-
city.23 Apart from the disabling action of pro-
inflammatory cytokines on long-term potentiation,24

activated microglia also release reactive oxygen spe-
cies that promote long-term depression.25

Morphological plasticity
The dentate gyrus portion of the hippocampus is
one of only two regions in the mammalian brain
that harbor regenerated neurons into adult life. It is
notable that these neurogenic cells become inte-
grated into hippocampal circuitry; approximately
700 adult-born hippocampal neurones are gener-
ated each day and contribute to its learning and
memory functions.26 Pro-inflammatory cytokines,
such as TNF-α, IL-1β and IL-6 interfere with inte-
gration and proliferation of adult hippocampal
neurogenesis27 and thereby prevent the morpho-
logical plasticity required for learning and memory.

Trauma

Cytokines

LTP
disruption 

BM-DMsDAMP

BBB

Chemokines

Neuroinflammation Cognitive Decline

Macrophage interaction

quiescent
microglia

activated
microglia

MCP-1
HMGB1 Fibrinogen

PRR CCR2
NF -kB

α7nAChR

nAChR agonists

SPM

GPCRs

miRNA

Fig. 1 A model for perioperative induced neuroinflammation and cognitive decline, and possible resolution. High molecular

group Box 1 protein (HMGB1), a damage-associated molecular pattern (DAMP), is passively released from traumatized tissue

during surgery. Through pattern recognition receptors (PRR) on circulating, CCR2-expressing, bone marrow-derived mono-

cytes (BM-DMs), to induce translocation of the transcription factor NFκB into the nucleus where it upregulates the transcrip-

tion and translation of pro-inflammatory cytokines. HMGB1 signaling also increases expression of monocyte chemo-attractant

protein-1 (MCP-1) in the central nervous system (CNS) through an unknown mechanism. A cytokine-induced disruption of the

blood–brain barrier (BBB) allows the migration of both cells and potential neurotoxins, such as fibrinogen, into the CNS.

CCR2-expressing BM-DMs, attracted by MCP-1, reach the hippocampus where they transform quiescent microglia, the resi-

dent immunocompetent cells, into its activated form. Together, activated microglia and BM-DMs generate a neuroinflamma-

tory response that interferes with long-term potentiation, the synaptic plasticity that is required for learning and memory.

Normal resolution of inflammation is an active process that occurs through neural and humoral mechanisms. Neural involves

vagal activation that downregulates NFkB by signaling through α7 nicotinic acetylcholine receptors (α7nAChR) on immuno-

cytes. Regarding humoral factors, the specialized pro-resolving mediator (SPM), Resolvin D1, transduce its signal through

G protein-coupled receptors (GPCRs) which evoke rapid intracellular signaling and long-term actions by regulating pro-

resolving microRNAs (miRNA).
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Preventing neuroinflammation

The neuroinflammatory response to peripheral sur-
gery appears to be an outmoded teleological defense
mechanism that was probably designed to preserve
animal life in the wild. To wit, if an animal had sus-
tained an injury there needs to be a mechanism miti-
gating further damage and to facilitate the reparative
processes; both the mitigation of further injury and
the repair mechanisms are orchestrated by inflamma-
tion, centrally and peripherally, respectively. The
mitigation of further injury appears to be orche-
strated by neuroinflammation through the develop-
ment of ‘sickness behavior’ that decreases appetite
and procreative instincts while also producing fever,
cognitive decline and fatigue.28 An animal with the
sickness behavior phenotype is unlikely to forage in the
wild; rather, the injured animal will likely remain in a
cool and non-threatening environment and thereby
keep away from possible predators who can exploit
their injured state.

In the case of aseptic surgical trauma to a hospi-
talized patient, neuroinflammation does not appear
to be beneficial for rapid healing. In that context
efforts need to be directed at limiting the neuroin-
flammatory response because of the possible harm
that it can create. Mitigating strategies to prevent
and/or limit neuroinflammation can be considered
in three different phases, pre-operatively, intra-
operatively and postoperatively. Also, the strategies
can be designed to affect neuroinflammation indir-
ectly (by limiting peripheral inflammation) and dir-
ectly on the central inflammatory response while
leaving the peripheral inflammatory response, and
hence repair of the traumatized site, unhindered.

Preoperative pre-emption of excessive

neuroinflammation

Exercise
That aerobic exercise has immune-modulatory
properties was described more than three decades
ago. Healthy young sedentary adult volunteers were
randomized to a 12-week training program at either
moderate or at high intensity which resulted in an
improvement in aerobic capacity. Monocytes were
harvested from peripheral blood and stimulated

with lipopolysaccharide (LPS) and the release of
tumor necrosis factor alpha (TNFα) into the
medium was monitored. The high, but not the mod-
erate, intensity training reduced LPS-induced release
of TNFα into the culture medium.29 These data sug-
gest that immunocytes are re-programmed by exer-
cise although the biologic processes involved were
not identified.

To explore this finding further, use was made of
metabolic syndrome rats—referred to as low-
capacity runner (LCR) rats—that were shown to
have an exaggerated and persistent form of post-
operative cognitive decline30 accompanied by an
enhanced inflammatory response to the trauma of
surgery.20 The high-capacity runner (HCR) rats did
not exhibit these abnormalities and served as the
controls. The hypothesis was that preoperative
exercise rectifies the abnormal inflammatory and
cognitive phenotype following surgery and this was
tested in a preclinical study.31 Each of LCR and
HCR rats was randomly assigned to four groups
and subjected to isoflurane anesthesia and tibia
fracture with internal fixation (surgery) or anesthe-
sia alone (sham surgery) and to a preoperative exer-
cise regimen that involved walking for 10 km on a
treadmill over 6 weeks (exercise) or being placed on
a stationary treadmill (no exercise). Cognitive tests
were performed at 3 days as well as 3 months post-
operatively. The previously observed exaggerated
cognitive decline at both time-points was prevented
by preoperative exercise in the LCR rats. Similarly,
preoperative exercise normalized the excessive post-
operative inflammation, both systemically and in
the hippocampus. Interestingly, the diversity of the
gut microbiome in the LCR rats improved after
exercise. While the gut microbiome is shown to regu-
late the inflammatory response,32 no causality could
be attribute to exercise-induced change in the micro-
biome and improvement in postoperative cognitive
decline. A clinical study (NCT3212300) to determine
whether preoperative exercise decreases the risk for
postoperative cognitive decline is underway.

Nutrition
Analogous to the situation of the metabolic syn-
drome (mentioned above), continuous high-fat diet
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is associated with a chronic low-grade inflamma-
tory state, referred to as meta-inflammation; a sec-
ondary response to this systemic inflammation is
the activation of microglia.33 A preclinical study
examined the influence of a western diet on brain
metabolism, transport across the BBB, inflammation
and cognitive impairment in a mouse model of
hyperlipidemia.34 The authors reported that a west-
ern diet diminished cognitive processes and was
associated with significantly increased BBB perme-
ability as well as microglial Iba1 staining both of
which are indicative of neuroinflammation. The
western diet altered the whole mouse brain metabo-
lome that included elevation of the proinflamma-
tory lipid mediators.34 Subsequently, it was reported
that a high-fat diet, which induced obesity and insu-
lin resistance, was associated with exaggerated post-
operative cognitive decline and neuroinflammation.35

Based upon these studies, investigators have used
dietary manipulation to try to reverse the meta-
inflammatory response. In an in vitro experiment,
LPS-induced release of nitric oxide and IL-6 from a
microglial cell line (BV-2 cells) was reduced when the
culture medium included either omega-3 (docosahex-
aenoic and eicosapentaenoic) fatty acids or vitamins
A and D. Moreover, the grouping of vitamins A and
D, together with omega-3 fatty acids, each at concen-
trations where they individually had little effect, com-
bined to significantly reduce LPS-induced nitric oxide
release.36 Four-week administration of omega-3 fatty
acids to rats fed a high-fat diet decreased astrogliosis
(GFAP-positive cells in the cerebral cortex) and pro-
inflammatory cytokines but not in the hippocam-
pus37; there was no improvement in cognitive decline.

Chunchai et al.38 evaluated the effect of either pre-
biotic (Xylo-oligosaccharide), or probiotic (Lactobacillus
paracasei HII01), or their combination (synbiotics), in
male high-fat diet-induced obese rats. After 12 weeks
of the high-fat diet, gut and systemic inflammation
and impaired peripheral insulin sensitivity developed;
these abnormalities were improved by each of the
treatments.38 Prebiotics, probiotics or synbiotics also
improved hippocampal plasticity, attenuated brain
mitochondrial dysfunction, decreased microglial acti-
vation and rectified cognitive dysfunction.

Based upon these studies, interventions that mod-
ify the preoperative diet may prove to be a viable
strategy for decreasing risk in vulnerable preopera-
tive patients. However, this needs to be tempered by
the underwhelming results from interventional clin-
ical trials with omega-3 fatty acids for a variety of
inflammatory conditions.39

Perioperative pre-emption of excessive

neuroinflammation

Sleep hygiene
Hospitalized patients are subjected to an environ-
ment that does not facilitate sleep. Zhu et al. inves-
tigated whether sleep deprivation, produced by a
rocker inserted into the mouse cage for 24 h, can
induce neuroinflammation and cognitive disturb-
ance tested by Trace Fear Conditioning 1 and 7 days
later.40 Both hippocampal-dependent memory impair-
ment and hippocampal neuroinflammation, as evi-
denced by pro-inflammatory cytokine IL-6 levels and
microglial activation, were present 24 h after sleep
deprivation and this state persisted for seven days
after sleep deprivation. In a separate study,41 sleep
deprivation was associated with increased levels of
systemic and hippocampal TNF-α, IL-1β, IL-6 and
IL-8 as well as decreased hippocampal and systemic
levels of anti-inflammatory cytokines (IL-4; IL-10).
Vacas et al. explored the effects of 24-h pre-surgery
sleep fragmentation in mice.42 While sleep fragmenta-
tion did increase systemic IL-6 and transcription of
TNFα in the hippocampus, it was not associated with a
further deterioration in postoperative cognitive decline.

It is not recommended that benzodiazepines be
used as sleep aids as this class of sedative-hypnotic
does not produce the type of reparative and restora-
tive sleep that is needed to resolve inflammation.43

Interestingly, zolpidem, the non-benzodiazepine sleep
aid, benefits patients with a variety of neurological
disorders44; however, zolpidem has not been studied
in the perioperative setting for mitigating PND.

Education
Patients with a higher education level are less prone
to develop dementia although the post-mortem
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examination of the brain did not reveal less neuro-
degenerative changes.45 Higher educational attain-
ment also was associated with less postoperative
decline in a large cohort of elderly surgical patients.6

An ongoing study is investigating whether engaging
in preoperative ‘mental gymnastics’ could prevent
delirium. The mental gymnastics consists of 1 h/day
of electronic tablet-based cognitive exercise for 10
days prior to surgery (NCT02230605).

Reversing neuroinflammation

From Fig. 1, it becomes apparent that peripheral
trauma-induced neuroinflammation can be addressed
by either focusing interventions on processes in the
periphery or the CNS. For the purposes of this
review no further consideration is given to peripheral
inflammatory targets because these are likely to
interfere with wound healing.46 Therefore, in consid-
ering methods of reversing neuroinflammation, this
review will focus on the CNS processes that result in
its onset (disruption of the BBB and translocation of
circulating BM-DMs) and its propagation (pro-
inflammatory transformation of macrophages).

Restoring the BBB

As disruption of the BBB is a pathognomonic fea-
ture of several acute (e.g. stroke), subacute (neuro-
myelitis optica) and chronic (multiple sclerosis)
neurologic conditions, adoption of successful strat-
egies in these diseases can also be considered in
seeking ways of reducing surgery-induced neuroin-
flammation. Glucocorticosteroids (GC) can reduce
BBB permeability in the setting of multiple scler-
osis47; the mechanism may involve upregulation of
the tight junction proteins claudin and occludin.48

Interestingly, high-dose methylprednisolone was
ineffective in preventing the development of post-
operative delirium after cardiac surgery.49

Mesenchymal stromal cells (MSCs) reside in the
perivascular space and are thought to be progenitors
of pericytes that contribute to the neurovascular
unit that defines the BBB. Following BBB disruption
in a preclinical model of stroke, administration of
MSCs resulted in increased expression of tight

junction proteins and restoration of the barrier func-
tion.50 Another method of upregulating tight junction
proteins that has been tested in preclinical models is
with laquinimod.51 Also, statins can inhibit isopreny-
lation and also tighten the barrier function in disease
models52; it is notable that a retrospective analysis of
vascular surgery patients suggested that those receiv-
ing preoperative statins had a lower risk for develop-
ing delirium.53 Erythropoietin (EPO) protects brain
endothelium against VEGF-induced permeability by
reducing the level of eNOS and restoring junctional
proteins.54

APOε4 mice have a permeable BBB which can be
reversed by inhibiting the pro-inflammatory cyclo-
philin A pathway55; however, inhibitors of cyclophi-
lin A have yet to materialize into the clinical arena.
Also, activated protein C can also improve endothe-
lial barrier integrity56; again, this information has
yet to be translated into clinical utility.

Fibrinogen/fibrin

Increased permeability of the BBB permits influx of
the neurotoxin fibrinogen that is converted to fibrin
through tissue plasminogen activator. Within the
CNS fibrin binds to CD11/CD18 integrin receptor
on tissue macrophages (both microglia and translo-
cated BM-DMs) activating pathways57 that include
nuclear factor-κB (NF-κB), mitogen-activated pro-
tein kinase (MAPK), phosphatidylinositol 3-kinase
(PI3K), AKT (a serine–threonine protein kinase)
and the Rho-family of GTPases. Through the acti-
vation of these pathways the following processes
are affected including adhesion, migration, chemo-
taxis, phagocytosis and transformation into the M1
phenotype; when in the M1 phenotype the brain tis-
sue macrophages release ROS, CCL2 (MCP-1) and
CXCL10 that propagate further trafficking of BM-
DMs, and T lymphocytes into the brain parenchyma.
As fibrinogen/fibrin is necessary and sufficient for the
induction/propagation of neuroinflammatory pro-
cesses, this neurotoxin represents a potential target
for reversing neuroinflammation.

While there are available compounds that
deplete fibrinogen (ancrod) and promote the
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degradation of fibrin (tissue plasminogen activator;
tPA), these also can promote severe hemorrhage
because of the key role that fibrinogen/fibrin plays
in the coagulation pathway. Interfering with the
interaction between fibrin and the integrin receptor,
CD11b/CD18, on microglia with a 19 amino acid
residue peptide fragment58 inhibits its activation
(PMID: 17339406). Fibrin can also interact with
β amyloid and this can be prevented with RU 505
which also mitigates the neuroinflammation.59 Trials
to test the efficacy of these modulators of fibrin sig-
naling are awaited.

Interrupting macrophage recruitment

The increase in circulating inflammatory factors can
disrupt the BBB permitting translocation of CCR2-
expressing BM-DMs into the hippocampus.60 Within
the hippocampus, the tissue macrophages become
activated, synthesize and release pro-inflammatory
cytokines that are capable of disrupting long-term
potentiation. Treatment with CCX872, a novel CCR2
selective antagonist, significantly reduces TBI-induced
accumulation of inflammatory macrophage, multiple
proinflammatory and neurotoxic mediators and
hippocampal-dependent cognitive dysfunction.61

Preventing macrophage activation

As microglial activation is a pathognomonic feature
of neuroinflammation strategies to prevent its activa-
tion need to be further considered. 18β-Glycyrrhetinic
acid is a major metabolite of glycyrrhizin a constitu-
ent of some traditional Japanese medicines; this
compound has been shown to inhibit microglial
activation in a model of autoimmune encephalomy-
elitis62 and attempts to use this to block liver inflam-
mation in clinical trials have not been successful.
There are three major types of K+ channels on
microglia: KV 1.3, Kir 2.1 and KCa 3.1 current. Both
KV 1.3 and KCa 3.1 blockers, PAP-1 and TRAM 34
respectively, inhibit pro-inflammatory cytokine pro-
duction and iNOS and COX2 expression demon-
strating that these ion channels play important roles
in microglia activation.63

Transforming macrophage phenotype from

M1 to M2

There are several possible therapeutic candidates
for conversion into the pro-resolving M2 macro-
phage phenotype. Fumarates prevent microglial
activation through a novel hydroxycarboxylic acid
receptor-2 and dampen neuroinflammation64; dimethyl
fumarate (Tecfidera®), which is biotransformed to the
active monomethyl fumarate, has been shown to be
clinically useful in MS patients and is available for fur-
ther exploration in other clinical settings including
PND. JWH133, a selective cannabinoid receptor-2
(CB2) agonist, suppresses neuroinflammation by
modulating microglial polarization to the M2
phenotype through activation of the protein kinase
A (PKA) pathway.65 As other cannabinoids (CB1
agonists) are progressing through clinical trials it is
possible that selective CB2 agonists may also become
available for conditions such as PND. Acting via the
PGC-1α pathway, resveratrol promotes the convers-
tion of microglia to the M2 phenotype; importantly,
resveratrol attenuated both LPS-induced neuroin-
flammation and sickness behavior.66 Two recently
completed, but as yet unreported, clinical trials have
explored the clinical potential of resveratrol in the
setting of cognitive decline; a positive demonstration
of its efficacy vs cognitive decline may result in
extension to PND.

Conclusion

Current evidence strongly supports targeting neuroin-
flammation for the prevention and reversal of peri-
operative neurocognitive disorders. Extrapolating
from other neurological disorders, such as multiple
sclerosis and Alzheimer’s Disease in which neuroin-
flammation plays a prominent role, there are several
possible interventions both pharmacological and
non-pharmacological. Clinical trials are needed to
test the efficacy and safety of these interventions.
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